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Abstract. A general model-theoretic theory of approximation is presented which
encompasses approximation methods found in analysis in both standard and non-
standard settings. We first give a simple version of the main idea, in the classical
metric space setting. This was inspired by work of Anderson and Henson. We
inductively define the notions of a closed formula, closed forcing, and the set of
approximations of a closed formula. It is shown that given a relatively compact
sequence, a closed formula is forced if and only if all its approximations are even-
tually true, and also if and only if the formula is true at every limit point. Then,
in the nonstandard setting, we prove harder analogous results using our theory of
neometric spaces, where saturation arguments take the place of compactness ar-
guments. These results shed light on well-known nonstandard constructions that
produce new theorems about standard objects.

§1. Introduction. One of the main uses of model theory outside of
mathematical logic itself has been the introduction in the early sixties of
nonstandard analysis by Abraham Robinson (see [R]). He showed how to
apply nonstandard models of the appropriate language to a wide variety
of problems in analysis. His construction captured the attention of mathe-
maticians because it made the old idea of infinitesimal quantities available
to modern mathematics (for a detailed history of the development of these
ideas see the last chapter in [R]).

Robinson’s original presentation, which relied heavily on the theory of
types, has been “cleaned up”, so that today one does not have to be a lo-
gician in order to understand and use nonstandard analysis. Nevertheless
there are close ties between model theory and developments that have orig-
inated from nonstandard practice. The purpose of this paper is to develop
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one of these ties: we give a general model theoretic theory of approxima-
tion which encompasses approximation methods found in both standard
and nonstandard settings. Our primary objective is to explain a range of
phenomena that occur throughout standard and nonstandard approxima-
tion theory. In the tradition of model theory, we obtain results of a general
nature that can replace similar arguments that appear in many different
mathematical settings. As an added bonus, these general theorems provide
a method for the discovery of new results. We give three examples of this
method in Section 4.

The ideas presented here originated in the paper “From Discrete to Con-
tinuous Time” ([K2]). In that work the second author of this paper pro-
posed a uniform approach to applications of nonstandard analysis to exis-
tence theorems in probability theory, and especially in stochastic analysis.
He introduced a language adequate for expressing the main properties of
stochastic processes and used a notion of forcing to study the approxima-
tion of a continuous time process by a sequence of discrete time processes.
The Forcing Theorem in that paper reduced the problem of proving that a
statement is true to showing that it is forced.

The work in [K2] led to the development of the theory of neometric
spaces in the series of papers [FK1]–[FK4], [K2]–[K6]. In this paper we
return to the original forcing idea in [K2] in the light of the subsequent
work. The paper “A Neometric Survey” [K5] gives an overview of the
series of papers mentioned above, and also has a section called “Forcing
and Approximations” which previews the results that are proved in the
present paper.

The contents of this paper are as follows. In Section 2 we present a
simple analog of the main ideas in the classical metric space setting, which
was inspired by the work of Anderson [A] and Henson [H]. We introduce
the notions of a closed formula, and closed forcing. Briefly, a condition
is an infinite set p ⊆ N, and the property “p forces a formula ϕ(〈xn〉)” is
defined by induction on complexity of formulas, starting with the property
“every p-limit point of 〈xn〉 belongs to the closed set A.” Another notion
defined by induction on complexity is the set of approximations of a closed
formula. The main results are the Closed Approximation Theorem and
the Closed Forcing Theorem. Together they show that a closed formula
at a convergent sequence is forced if and only if all its approximations are
eventually true, and also if and only if the formula is true at every limit
point.

In the rest of the paper, beginning in Section 3, we work in a given non-
standard universe. We introduce neoclosed forcing, a more powerful cousin
of closed forcing which sheds light on well-known nonstandard construc-
tions that produce new results about standard objects. In Section 3 we



NEOCLOSED FORCING 3

review the basic notions and results about neometric spaces which will be
needed from the papers [FK1] and [FK2], and define the neoclosed formulas.
In Section 4 we define neoclosed forcing, and give three typical examples
involving Nash equilibria and stochastic differential equations. In Section
5 we introduce the approximations of a neoclosed formula, and prove the
Neoclosed Approximation Theorem, which shows that a neoclosed formula
is forced if and only if all its approximations are eventually true. In Section
7 we prove the Neoclosed Forcing Theorem, which says that if a neoclosed
formula ϕ(〈xn〉) is forced, then ϕ(xJ ) is true for all sufficiently small infinite
J . We apply the Neoclosed Forcing Theorem to prove existence theorems
related to the examples of Section 4, and give several general consequences
of the theorem.

§2. Closed Forcing. As a warmup, in this section we shall develop a
simple version of our forcing and approximation machinery, which is closely
related to the papers Anderson [A], Henson [H], and Henson and Iovino [HI].

Anderson [A] introduced a first order language with variables ranging
over metric spaces, predicates for closed sets, and symbols for continuous
functions, defined a natural notion of an approximation for such formulas,
and proved the “Almost-Near” theorem. This theorem says that for a
certain class of formulas ϕ (corresponding to the closed formulas in the sense
of this section), for each ε > 0 and compact set C there is an approximation
ψ of ϕ such that each point in C which satisfies ψ is within ε of a point which
satisfies ϕ. Anderson gave a variety of applications of this theorem, for
example to almost commuting matrices, to the Peano existence theorem for
differential equations, and to cores and approximate competitive equilibria
in exchange economies.

Henson [H] introduced a similar notion of approximation for formulas in
a language appropriate for Banach spaces, and showed that many results in
classical model theory have analogues for Banach spaces where the notion
of approximate truth plays a central role.

The forcing language and forcing theorem in this section are simpler
“deterministic analogues” of the forcing language and theorem for random
variables in the paper [K2]. The existence of this deterministic analogue
was already pointed out in [K2] in the remark on page 118.

We let S be the collection of all complete metric spaces, and let N denote
the set of positive integers.

The product of two metric spaces M and N is the metric space M ×N
where the distance between two points in the product is the maximum of
the distances in the M and N coordinates. Thus S is closed under finite
products. We use the notation ~v for a finite tuple of variables ranging over
a finite product of spaces in S.
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We introduce two classes of formulas, the finite formulas and the closed
formulas.

Definition 2.1. The language of closed formulas has infinitely many
variables u, v, . . . of sort M for each M ∈ S. It has a constant symbol
for each element of each M ∈ S, a function symbol for each continuous
function f : M → N where M, N ∈ S, and a relation symbol for every
closed subset C of each space M ∈ S. Terms are built from constants and
function symbols in the usual way.

The atomic formulas are expressions of the form τ(~v) ∈ C, where τ is a
term and C is a closed set of the same sort.

The language has the following connectives and quantifiers:
Countable conjunctions with finitely many free variables,
Finite disjunctions,
Bounded existential quantifiers (∃v ∈ B)ϕ where B is compact,
Bounded universal quantifiers (∀v ∈ D)ϕ where D is closed and separa-

ble.

The language of finite formulas has the same vocabulary and the same
atomic formulas as the language of closed formulas, but has the following
connectives and quantifiers:

Finite conjunctions and disjunctions,
Unbounded existential quantifiers of the form (∃v)ϕ,
Bounded universal quantifiers (∀v ∈ D)ϕ where D is finite.

There is no negation symbol. Note that there are finite formulas which
are not closed and closed formulas which are not finite. Every term defines
a continuous function and thus could be replaced by a term with just one
function symbol.

Since the family of complete metric spaces is closed under finite Cartesian
products, the language also has symbols for all closed relations and all
continuous functions on finitely many variables. Thus every closed relation
is already defined by an atomic formula. Since the distance function ρ on
each M ∈ S maps M ×M continuously into R, the closed forcing language
has a symbol for ρ.

The language of closed formulas is adequate for expressing many limit
notions which arise in analysis. Here are a few examples which illustrate
the kinds of things that can be expressed by closed formulas.

Example 2.2. (i) An equation σ(~v) = τ(~v) between two terms can be
expressed by the closed formula

ρ(σ(~v), τ(~v)) ∈ {0},
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where ρ is the metric.
(ii) An inequality σ(~v) ≤ τ(~v) between two terms of the real sort R can

be expressed by the closed formula

min(σ(~v), τ(~v)) = σ(~v).

(iii) If B is compact, the closed formula

(∃v ∈ B)f(v) = v

says that f has a fixed point in C.
(iv) If C is closed and separable, the closed formula

u ∈ C ∧ (∀v ∈ C)f(u) ≤ f(v)

says that f has a minimum at u in B.

We shall give some further examples involving spaces of random variables.
Let M be the space of measurable functions from a probability space Ω into
the set R+ of nonnegative real numbers, with the metric of convergence in
probability. Let {ϕn : n ∈ N} be the set of continuous piecewise linear
functions on R+ with bounded support and rational vertices—a countable
set. Then for each n, the expected value functions v 7→ E[ϕn(v)] and
v 7→ E[min(n, |v|)] are continuous from M into R+.

Example 2.3. (i) The inequality E[|v|] ≤ r can be expressed by the
closed formula

∧

n

E[min(n, |v|)] ≤ r.

(ii) The property that u and v have the same distribution is expressed by
the closed formula

∧

n

E[ϕn(u)] = E[ϕn(v)].

(iii) The property that u is independent of v is expressed by the closed
formula

∧

m

∧

n

E[ϕm(u)ϕn(v)] = E[ϕm(u)]E[ϕn(v)].

The notion of a formula ϕ(~v) being true for a tuple of constants ~b with
the same sort as ~v, in symbols |= ϕ[~b], is defined inductively in the usual
way.

The following important result shows that every closed formula defines
a closed set.
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Theorem 2.4. For every closed formula ϕ(~v) where ~v has sort M , the
set

{~x ∈ M : |= ϕ[~x]}

is closed.

Proof: First show by induction on the complexity of terms that every
term defines a continuous function. It follows that every atomic formula
defines a closed set. Then show By induction on the complexity of closed
formulas that every closed formula defines a closed set. 2

We shall now introduce the notion of closed forcing. As in set theory, we
shall define by induction the notion of a “condition” forcing a formula in
which the variables are replaced by “names”.

A sequence 〈xn〉 in a complete metric space M is relatively compact
iff each subsequence has a convergent subsequence in M . A finite tuple of
sequences is denoted by 〈~xn〉. If τ(~v) is term and 〈~xn〉 is relatively compact,
then 〈τ(~xn)〉 is relatively compact. For each complete metric space M , we
introduce a name of sort M for each relatively compact sequence 〈xn〉 in
M .

By a condition we mean an infinite subset of the set N of positive
integers. p, q, r, . . . denote conditions. We shall write q v p, or p w q, if
q ⊆ p ∪ F for some finite set F . The phrase “for almost all n ∈ p” means
“for all but finitely many n ∈ p”.

Lemma 2.5. Given a countable decreasing chain of conditions
p1 w p2 w · · · , there is a condition q such that q v pk for all k.

Proof: For each k, p0 ∩ · · · ∩ pk contains almost all n ∈ pk and thus is
infinite. Let a0 = 0. For each k > 0 we may choose ak+1 ∈ p0 ∩ · · · ∩ pk

such that ak+1 > ak. Then the set q = {a0, a1, . . . } is such that q v pk for
all k. 2

Given a condition p, we let p(n) be the nth element of p, so that
〈p(1), p(2), . . . 〉 is a strictly increasing sequence of positive integers. For
each sequence 〈xn〉 and condition p, 〈xp(n)〉 is the subsequence of 〈xn〉
associated with p. Note that if q ⊆ p then 〈xq(n)〉 is subsequence of 〈xp(n)〉.

We write limn∈p xn = y if the subsequence 〈xp(n)〉 converges to y. We say
that y is a p-limit point of 〈xn〉 if some subsequence of 〈xp(n)〉 converges
to y, that is, limn∈q xn = y for some q v p. Thus if q v p, then every
q-limit point of 〈xn〉 is a p-limit point.

Definition 2.6. We say that a sequence 〈yn〉 approximates a sequence
〈xn〉 in M if limn→∞ ρ(xn, yn) = 0.
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Note that if 〈xn〉 is relatively compact and 〈yn〉 approximates 〈xn〉, then
〈yn〉 is relatively compact. Moreover, if xn converges to x on a set p, then
yn converges to x on p, so 〈xn〉 and 〈yn〉 have the same p-limit points.

For each closed separable set D, let us pick once and for all an increasing
chain of finite sets Dm such that

⋃

m Dm is dense in D.

Definition 2.7. (Closed Forcing) For each closed formula ϕ(~v), rela-
tively compact sequence 〈~xn〉 of the same sort as ~v, and condition p, the
relation p ‖−ϕ(〈~xn〉) is defined inductively as follows, where B is compact,
C is closed, and D is closed separable.

(a) p ‖− τ(〈~xn〉) ∈ C iff τ(~a) ∈ C for each p-limit point ~a of 〈~xn〉.
(b) p ‖−(ϕ1∨ϕ2)(〈~xn〉) iff (∀q v p)(∃r v q) r ‖−ϕ1(〈~xn〉) or r ‖−ϕ2(〈~xn〉).
(c) p ‖−

∧

m ϕm(〈~xn〉) iff p ‖− ϕm(〈~xn〉) for all m.
(d) p ‖− ((∃v ∈ B)ϕ)(〈~xn〉) iff

(∀q v p)(∃r v q)(∃ relatively compact 〈yn〉) r ‖− yn ∈ B ∧ ϕ(〈~xn, yn〉).
(e) p ‖−((∀v ∈ D)ϕ)(〈~xn〉) iff (∀m ∈ N)(∀〈yn〉 ∈ (Dm)N))p ‖−ϕ((〈~xn, yn〉).
The next lemma can be proved in a straightforward manner by induction

on complexity of formulas. Part (iii) shows that “weak closed forcing” is
equivalent to closed forcing.

Lemma 2.8. Suppose 〈~xn〉 is relatively compact and 〈~yn〉 approximates
〈~xn〉.

(i) If p ‖− ϕ(〈~xn〉) then p ‖− ϕ(〈~yn〉).
(ii) If p ‖− ϕ(〈xn〉) and q v p, then q ‖− ϕ(〈xn〉).
(iii)

p ‖− ϕ(〈~xn〉)
if and only if

(∀q v p)(∃r v q) r ‖− ϕ(〈~xn〉).
2

Given a set C and a point x in a metric space (M,ρ), let

ρ(x,C) = inf{ρ(x, u) : u ∈ C}
be the distance from x to C. Here is a characterization of closed forcing
for atomic closed formulas.

Proposition 2.9. Let τ(~v) ∈ B be an atomic closed formula (i.e. an
atomic formula where B is closed), and let 〈~xn〉 be relatively compact. Then

p ‖− τ(〈~xn〉) ∈ B

if and only if

lim
n∈p

ρ(τ(~xn), B) = 0.
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Proof: First suppose that limn∈p ρ(τ(~xn), B) = 0. Let ~a be a p-limit
point of 〈~xn〉. Then for some q v p, limn∈q ~xn = ~a. The function ~x 7→
ρ(τ(~x), B) is continuous, so

0 = lim
n∈q

ρ(τ(~xn), B) = ρ(τ(~a), B).

The set B is closed, so τ(~a) ∈ B. This proves that p ‖− ϕ(〈~xn〉).
For the converse, suppose that not limn∈p ρ(τ(~xn), B) = 0. Then there

exists q v p and b > 0 such that ρ(τ(~xn), B) ≥ b for all n ∈ q. Since 〈~xn〉 is
relatively compact, there exists a q-limit point ~a of 〈~xn〉. ~a is also a p-limit
point. We have ρ(τ(~a), B) ≥ b, so τ(~a) 6∈ B. Therefore p does not force
τ(〈~xn〉) ∈ B. 2

We shall now introduce the notion of an approximation of a closed for-
mula, and prove results which give a relationship between forcing, truth,
and approximate truth.

Given a real number r ≥ 0, let

Cr = {x ∈M : ρ(x,C) ≤ r}.

Recall that if C is closed, then Cr is closed. Thus for any finite formula
ϕ(~x, y), real r, and compact set B, the property (∃y ∈ Br)ϕ(~x, y) can be
expressed by the finite formula

(∃y)[y ∈ Br ∧ ϕ(~x, y)].

Definition 2.10. The set A(ϕ) of approximations of a closed formula
ϕ(~v) is defined by induction on the complexity of ϕ as follows.

A(τ(~v) ∈ B) = {τ(~v) ∈ B1/n : n ∈ N}.
A(

∧

m ϕm) = {
∧

m≤n ψm : n ∈ N and ψm ∈ A(ϕm) for all m ≤ n}.
A(ϕ ∨ ψ) = {ϕ0 ∨ ψ0 : ϕ0 ∈ A(ϕ) and ψ0 ∈ A(ψ)}.
A((∃v ∈ B)ϕ) = {(∃v ∈ B1/n)ψ : ψ ∈ A(ϕ) and n ∈ N}.
A((∀v ∈ D)ϕ) = {(∀v ∈ Dm)ψ : m ∈ N and ψ ∈ A(ϕ)}.

We observe that each approximation of a closed formula is a finite formula
(up to logical equivalence). In fact, for each closed formula ϕ, A(ϕ) is a
countable set of finite formulas. Moreover, if ψ ∈ A(ϕ) then |= ϕ ⇒ ψ.
The approximations in A(ϕ) are in general not closed formulas, because
for a compact set C, the set C1/n is not necessary compact.

A typical approximation of formula (iv) in Example 2.2 has the form

u ∈ C1/k ∧ (∀v ∈ Cm)f(u) ≤ f(v) + 1/n.

We leave the approximations of the other examples of closed formulas as
an exercise for the reader. The following result is an analogue of Henson’s
Perturbation Principle for Banach spaces in [H].
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Proposition 2.11. (Perturbation Principle) For each closed formula
ϕ(~v), compact set D, and approximation ψ ∈ A(ϕ) there is a real δ > 0
such that whenever ~x, ~y ∈ D, |= ϕ[~x], and ρ(~x, ~y) ≤ δ, we have |= ψ[~y].

Proof: The proof is a straightforward induction on the complexity of
ϕ. The atomic case follows from Proposition 2.9 and the fact that every
continuous function is uniformly continuous on compact sets. 2

The following lemma shows that the set of approximations of a closed
formula is directed in the natural sense. A sequence of formulas 〈ψn〉 is said
to be cofinal in A(ϕ) if ψn ∈ A(ϕ) for each n ∈ N, |= ψn ⇒ ψm whenever
m ≤ n, and for each approximation ψ ∈ A(ϕ) there exists n ∈ N such that
|= ψn ⇒ ψ.

Lemma 2.12. For each closed formula ϕ there is a cofinal sequence in
A(ϕ).

Proof: An easy induction on the complexity of ϕ. 2

We shall now prove the Closed Approximation Theorem. In the case
that ϕ is a closed sentence, it says that p forces ϕ if and only if every
approximation of ϕ is true.

Theorem 2.13. (Closed Approximation Theorem) Let ϕ(~v) be a closed
formula and 〈~xn〉 be relatively compact sequence. The following are equiv-
alent.

(i) p ‖− ϕ(〈~xn〉).
(ii) For all ψ ∈ A(ϕ), |= ψ[~xn] for almost all n ∈ p.

Proof: The result for atomic formulas ϕ follows from Proposition 2.9.
(i) ⇒ (ii). We remark that for any set S ⊆ N, n ∈ S for almost all n ∈ p

if and only if (∀q v p)(∃r v q)n ∈ S for almost all n ∈ r. We argue by
induction on the complexity of ϕ. The conjunction step is trivial.

For the finite disjunction step, assume the implication holds for ϕ and
for ψ. Suppose p ‖− (ϕ ∨ ψ)(〈~xn〉). Any approximation of ϕ ∨ ψ has the
form ϕ0 ∨ ψ0 where ϕ0 ∈ A(ϕ) and ψ0 ∈ A(ψ). We must show that
|= (ϕ0 ∨ ψ0)[~xn] for almost all n ∈ p.

Suppose this fails. Then there is an infinite set q v p such that |= ¬ϕ0[~xn]
and |= ¬ψ0[~xn] for all n ∈ q. By the inductive hypotheses, it follows that
for each r v q, neither r ‖− ϕ[~xn] nor r ‖− ψ[~xn]. This contradicts the
assumption that p ‖− (ϕ ∨ ψ)(〈~xn〉).

The (∃v ∈ B) step is similar.
For the (∀v ∈ D) case, suppose the implication holds for ϕ. Assume that

p ‖− (∀v ∈ D)ϕ)(〈~xn〉). We must show that for each m ∈ N and ψ ∈ A(ϕ),
|= ((∀v ∈ Dm)ψ)[~xn] for almost all n ∈ p.

Let us suppose not, so that |= ¬((∀v ∈ Dm)ψ)[~xn] for infinitely many
n ∈ p. We will get a contradiction. Choose yn ∈ Dm so that |= ¬ψ[~xn, yn]
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for infinitely many n ∈ p. Since Dm is finite, it is compact, so 〈yn〉 is
relatively compact. By the definition of forcing, p ‖− ϕ(〈~xn, yn), and by
our inductive hypothesis, |= ψ[~xn, yn] almost all n ∈ p. This is the desired
contradiction.

(ii) ⇒ (i). The proof is again by induction on the complexity of ϕ.
The induction step for countable conjunctions is trivial.
For the finite disjunction step, assume the implication holds for ϕ and

for ψ. Suppose it is not the case that p ‖− (ϕ ∨ ψ)(〈~xn〉). Then there
is a condition q v p such that for every r v q, neither r ‖− ϕ(〈~xn〉) nor
r ‖− ψ(〈~xn〉). By inductive hypothesis, there are approximations ϕ0 ∈
A(ϕ), ψ0 ∈ A(ψ) such that |= ¬ϕ0[~xn] and |= ¬ψ0[~xn] for infinitely many
n ∈ q. Then it is not the case that |= (ϕ0 ∨ ψ0)[~xn] for almost all n ∈ p.

Assume the implication holds for ϕ(~u, v). We prove the implication for
(∃v ∈ B)ϕ where B is compact, and for (∀v ∈ D)ϕ where D is closed and
separable.

Suppose that for each θ ∈ A((∃v ∈ B)ϕ)), |= θ[~xj ] for almost all j ∈ p.
By Lemma 2.12 there is a cofinal sequence 〈ϕk〉 in A(ϕ). For each k,
(∃v ∈ B1/k)ϕk is an approximation of (∃v ∈ B)ϕ, and any approximation
of (∃v ∈ B)ϕ is implied by one of these formulas. Therefore there is an
increasing sequence n(·) in N such that |= ((∃v ∈ B1/k)ϕk)[~xj ] whenever
n(k) ≤ j ∈ p. For each j ∈ N let m(j) be the greatest k with n(k) ≤ j.
Then |= ((∃v ∈ B1/m(j))ϕm(j))[~xj ] for all j ∈ p. Choose yj ∈ B1/m(j) so
that |= ϕm(j)[~xj , yj ] whenever j ∈ p. Since B is compact, 〈yn〉 is relatively
compact and p ‖− 〈yn〉 ∈ B. By inductive hypothesis, p ‖− ϕ(〈~xn, yn〉), so
p ‖− (〈~yn〉 ∈ B) ∧ ϕ(〈~xn, yn〉). It follows that p ‖− (∃v ∈ B)ϕ(〈~xn〉).

Now suppose that for each θ ∈ A((∀v ∈ D)ϕ), |= θ[~xj ] for almost all
j ∈ p. We wish to prove that p ‖− ((∀v ∈ D)ϕ)(〈~xn〉). Fix an m ∈ N and
consider any sequence 〈yn〉 ∈ (Dm)N. Since Dm is finite, 〈yn〉 is relatively
compact. For each ψ ∈ A(ϕ), (∀v ∈ Dm)ψ ∈ A((∀v ∈ D)ϕ), so |= ψ[~xj , yj ]
for almost all j ∈ p. By inductive hypothesis, p ‖− ϕ(~xn, yn). This shows
that p ‖− ((∀v ∈ D)ϕ)(〈~xn〉). 2

The following result characterizes forcing in terms of truth of formulas.
A similar fact was stated as an exercise for the reader in [K2, p. 118]. In
the case that ϕ is a sentence (i.e. a formula with no free variables), it says
that p forces ϕ if and only if ϕ is true.

Theorem 2.14. (Closed Forcing Theorem) Let ϕ(~v) be a closed formula,
and let 〈~xn〉 be a relatively compact sequence of sort ~v. Then p ‖− ϕ(〈~xn〉)
if and only if |= ϕ[~a] for every p-limit point ~a of 〈~xn〉.

Proof: By induction on the complexity of ϕ. The result holds for atomic
formulas by definition.

We assume the result for ϕ(~v) and ψ(~v), and prove it for (ϕ ∨ ψ)(~v).
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Suppose that |= (ϕ ∨ ψ)[~a] for every p-limit point ~a of 〈~xn〉. Let q v p.
There exists an r v q which converges to a p-limit point ~a. Then either
|= ϕ[~a] or |= ψ[~a], and by inductive hypothesis, either r ‖− ϕ(〈~xn〉) or
r ‖− ψ(〈~xn〉). It follows that p ‖− (ϕ ∨ ψ)(〈~xn〉).

Now suppose that p ‖− (ϕ ∨ ψ)(〈~xn〉). Let ~a be a p-limit point of 〈~xn〉
There exists a q v p which converges to ~a. Then for each r v q, either
r ‖−ϕ(〈~xn〉) or r ‖−ψ(〈~xn〉). But ~a is the only r-limit point, so by inductive
hypothesis, either |= ϕ[~a] or |= ψ[~a]. Hence |= (ϕ ∨ ψ)[~a].

The
∧

m and (∀v ∈ D) cases are trivial.
Assume the result for ϕ(~u, v), and let B be compact. Suppose that

|= ((∃v ∈ B)ϕ)[~a] holds for every p-limit point ~a of 〈~xn〉. Let q v p. There
exists r v q such that 〈~xn〉 converges to a point ~a on r. ~a is a p-limit
point of 〈~xn〉, so |= ((∃v ∈ B)ϕ)[~a], and |= ϕ[~a, b] for some b ∈ B. Let
yn = b for all n. By inductive hypothesis, r ‖− yn ∈ B ∧ ϕ(〈~xn, yn〉), so
p ‖− (∃v ∈ B)ϕ(〈~xn〉).

Now suppose that p ‖− ((∃v ∈ B)ϕ)(〈~xn〉). Then

(∀q v p)(∃r v q)(∃ relatively compact 〈yn〉) r ‖− yn ∈ B ∧ ϕ(〈~xn, yn〉).
Let 〈~xn〉 converge to ~a on some set q v p. Then for some r v q and some
relatively compact 〈yn〉, r ‖− ϕ(〈~xn, yn〉). 〈yn〉 has an r-limit point b ∈ B.
Then (~a, b) is an r-limit point of (〈~xn, yn〉). By inductive hypothesis, b ∈ B
and |= ϕ[~a, b]. Therefore |= ((∃v ∈ B)ϕ)[~a] as required. 2

Corollary 2.15. Suppose limn∈p ~xn = ~a. Then p ‖−ϕ(〈~xn〉) if and only
if |= ϕ[~a]. 2

Corollary 2.16. Let ϕ(~v) be a closed formula. For each constant tuple
~x and each condition p, the following are equivalent:

p ‖− ϕ[~x];
|= ψ[~x] for all ψ ∈ A(ϕ);
|= ϕ[~x].

Proof: This follows at once from the Closed Forcing Theorem and the
Closed Approximation Theorem. 2

As a special case we have the classical analogue of the Approximation
Theorem in [FK1].

Corollary 2.17. Let A be closed in M and f : A → N be continuous
from M to N . Let B be compact in M and D be closed in N . Suppose
that for each ε > 0,

(∃v ∈ A ∩Bε)f(v) ∈ Dε.

Then

(∃v ∈ A ∩B)f(v) ∈ D.
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Proof: Apply the preceding corollary with M = A and take ϕ to be the
formula (∃v ∈ A ∩B)f(v) ∈ D. 2

We now prove a form of Anderson’s Almost Near theorem from [A].
Given a closed formula ϕ(v) and a compact set C, it says that each x ∈ C
which “almost” satisfies ϕ is “near” some y ∈ C which really does satisfy
ϕ. Here “near” means within ε, and to “almost” satisfy ϕ means to satisfy
a sufficiently good approximation of ϕ.

Proposition 2.18. (Almost Near Theorem) Let ϕ(v) be a closed for-
mula where v has sort M, let C be a compact set in M, and let

D = C ∩ {x : |= ϕ[x]}.

Then for every real ε > 0 there exists an approximation ψ ∈ A(ϕ) such
that

C ∩ {x : |= ψ[x]} ⊆ Dε.

Proof: Suppose the result fails for ε. List all the approximations of ϕ in a
countable sequence 〈ψk〉. Then there is a sequence 〈xn〉 in C such that for
all n, |= ψn[xn] but xn 6∈ Dε. We may assume without loss of generality
that 〈xn〉 is convergent, and let x = limn→∞ xn ∈ C. By the Closed
Approximation Theorem we have N ‖− ϕ(〈xn〉). By the Closed Forcing
Theorem, |= ϕ[x]. But then x ∈ D by hypothesis, which is impossible since
xn 6∈ Dε. 2

Corollary 2.19. Let ϕ(v) and θ(v) be closed formulas and C a compact
set such that

C ∩ {x : |= ϕ[x]} ⊆ {x : |= θ[x]}.

Then for every approximation θ0 ∈ A(θ) there is an approximation ϕ0 ∈
A(ϕ) such that

C ∩ {x : |= ϕ0[x]} ⊆ {x : |= θ0[x]}.

Proof: Apply the Perturbation Principle and the Almost Near Theorem.
2

§3. Neometric Spaces. In this section we give a brief summary of
the theory of neometric spaces in the setting of a nonstandard universe,
as developed in the papers [FK1] and [FK2]. We omit the proofs in this
section, and instead refer to proofs in [FK1] and [FK2]. At the end of this
section we introduce the neoclosed formulas, and state the key result that
every neoclosed formula defines a neoclosed set.

We assume in this section that the reader is familiar with the basic no-
tions concerning superstructures in nonstandard analysis. See [Li] or [ACH]
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for the necessary background. We fix once and for all an ω1-saturated non-
standard universe, and begin with a review of the family of neometric spaces
in this nonstandard universe introduced in the paper [FK2].

Given an internal ∗metric space (M̄, ρ̄), the standard part oX of an
element X ∈ M̄ is defined as the set of all Y ∈ M̄ such that ρ̄(X, Y ) ≈ 0.
For a subset C ⊆ M̄ , the standard part of C is the set oC = {oX :
X ∈ C}. For each point z ∈ M̄ , the nonstandard hull around z is
the set H(M̄, z) = {oX : ρ̄(X, z) is finite}, with the metric ρ(oX, oY ) =
st(ρ̄(X, Y )). Each nonstandard hull is a complete metric space. A subset B
of M̄ will be called limited if the distance between any two points of B is
finite, or equivalently, oB is contained in some nonstandard hull H(M̄, z).

Definition 3.1. By a neometric space we will mean a closed subspace
of the nonstandard hull of a ∗metric space around some point z.

Thus each neometric space is a complete metric space. The family of all
neometric spaces is called the huge neometric family in [FK2].

Throughout this section, M,N , . . . will stand for neometric spaces, and
M̄, N̄ , . . . will be the ∗-metric spaces which they came from.
M is a neometric subspace of N , in symbols M ⊆ N , if they are

both subspaces of the same nonstandard hull H(M̄, z) and M is a metric
subspace of N .

The monad of a subset A ⊆M is the set

monad(A) = {X ∈ M̄ : oX ∈ A}.

Note that for any set A ⊆M, A = o(monad(A)).
A point X ∈ M̄ is near-standard in M if it belongs to the monad of

M, that is, oX ∈M. Note that the monad of M is limited, and so is any
subset of monad(M).

We adopt the usual convention of identifying a point x of a standard
metric space M with the standard part of its internal counterpart, o(∗x).
With this convention, each standard complete metric space M in the orig-
inal superstructure is a closed subset of a nonstandard hull of M̄ , and thus
is a neometric space. This is important for applications. For example, we
often want the product of a neometric space with the real line to again be
a neometric space.

We now introduce the neocompact sets, which are analogues of compact
sets.

By a Π0
1 set we mean the intersection of a countable collection of internal

subsets of M̄ .

Definition 3.2. A set C ⊆M is neocompact if C is the standard part
of some Π0

1 set A ⊆ M̄ .
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If we need to specify the neometric space we are working in, we will say
“neocompact in M”. It is easily seen that finite unions of neocompact sets,
and finite Cartesian products of neocompact sets, are neocompact. Here
are some examples of neocompact sets.

Example 3.3. (i) Every compact set is neocompact. ([FK2], Corollary
4.8)

(ii) A separable set is neocompact if and only if it is compact. ([FK1]
Proposition 4.8.)

(iii) Let x ∈ M and 0 < r ∈ R. In general, the closed ball {y ∈ M :
ρ(x, y) ≤ r} will not be neocompact, but if M is the nonstandard hull in M̄
around some point, then the closed ball is neocompact.

(iv) Let Ω be a Loeb probability space, M be a complete separable metric
space, and M be the space of all M -valued random variables x : Ω → M ,
with the metric of convergence in probability. For each compact set C ⊆ M ,
the set of all x ∈ M such that law(x) ∈ C is neocompact in M. ([FK2],
Theorem 5.14.)

The following lemma is useful for proving results about neocompact sets.

Lemma 3.4. A set C ⊆ M is neocompact if and only if monad(C) is a
Π0

1 set. ([FK2], Corollary 3.8.)

Here are two important consequences.

Proposition 3.5. (i) If C ⊆ M ⊆ N , then C is neocompact in M if
and only if C is neocompact in N .

(ii) Finite intersections of neocompact sets are neocompact.

Another consequence is the following fact, which says that neocompact
sets behave like compact sets.

Theorem 3.6. (Countable Compactness Property) If Bm is a decreasing
chain of nonempty neocompact sets, then

⋂

m Bm is a nonempty neocompact
set.

Proof: Let B =
⋂

m Bm. By Lemma 3.4, for each m, monad(Bm) is
equal to a nonempty Π0

1 set
⋂

n Cmn. It is easily seen that

⋂

m

(

⋂

n

(Cmn)

)

=
⋂

m

(monad(Bm)) = monad(B),

so B is neocompact. For each k there is a point Xk which belongs to Cmn

for all m, n < k. By ω1-saturation, there is a point X which belongs to
Cmn for all m,n ∈ N. Therefore oX ∈ B, so B is nonempty. 2

The next result says that the family of neocompact sets in M is closed
under “diagonal intersections”. It is proved in [FK2], Theorem 4.7.
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Theorem 3.7. (Diagonal Intersection Property) Suppose that Cn is neo-
compact for each n ∈ N, and let rn be a sequence of non-negative real
numbers which converges to 0. Then the set

⋂

n((Cn)rn) is neocompact.

The following lemma from the paper [FK1] is the main consequence of
the diagonal intersection property which we will need.

Lemma 3.8. If C is neocompact and limn→∞ ρ(xn, C) = 0, then the set
C ∪ {xn : n ∈ N} is neocompact.

Proof: Choose a decreasing sequence εn such that εn ≥ ρ(xn, C) and
εn → 0 as n →∞. Let Cn = C∪{xm : m ≤ n} and D = C∪{xm : m ∈ N}.
Then each Cn is neocompact, and D ⊆

⋂

n(Cn)εn . We claim that the
opposite inclusion D ⊇

⋂

n(Cn)εn also holds. To see this, suppose y /∈ D.
Then y /∈ C, and since C is closed, ρ(y, C) = δ > 0. Take n large enough
so that εm < δ for all m ≥ n. Since y /∈ {xm : m ∈ N}, there is an η > 0
such that η < ρ(y, xm) for all m < n and η < δ. Then η ≤ ρ(y, D). For
sufficiently large m ∈ N, εm < η and Cm ⊆ D, so y /∈ (Cm)εm . This proves
the claim. By closure under diagonal intersections, D is neocompact. 2

We now introduce the neoclosed sets.

Definition 3.9. A set C ⊆ M is neoclosed if C ∩ D is neocompact
for every neocompact set D. The complement of a neoclosed set in M is
called neoopen.

Proposition 3.10. (i) Every neocompact set is neoclosed and bounded.
([FK1], Lemma 4.6.)

(ii) Every neoclosed set is closed. ([FK1], Proposition 4.5.)

Note that neocompact is weaker than compact, but neoclosed is stronger
than closed.

Example 3.11. (i) For each neocompact set C and positive real number
r, the set Cr is neoclosed. ([FK1], Proposition 4.14.)

(ii) For each x ∈ M and 0 < r ∈ R, the set {y ∈ M : ρ(x, y) ≥ r} is
neoclosed. ([FK1], Lemma 4.7.)

(iii) Let M be the space of all square integrable stochastic processes on
an adapted Loeb space, with the L2 norm. The sets of all adapted processes
and of all square integrable martingales are neoclosed in M ([FK2], page
167).

Neoclosed sets can often be found using the following proposition.

Proposition 3.12. ([FK2], Proposition 4.1.) For each internal or Π0
1

set A ⊆ M̄ , the standard part

M∩ oA = M∩ {oX : X ∈ A}
is neoclosed in M. 2
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We now introduce the analogue of the continuous functions.

Definition 3.13. A function f : M→N is said to be neocontinuous
if for every neocompact set A in M, the restriction f |A = {(x, f(x)) : x ∈
A} of f to A is neocompact in M×N .

Proposition 3.14. (i) Every neocontinuous function is continuous. ([FK1],
Proposition 4.11.)

(ii) If f : M → N is neocontinuous and B is neocompact in M, then
f(B) is neocompact in N . ([FK1], Proposition 3.9.)

(iii) If f : M → N is neocontinuous and C is neoclosed in N , then
f−1(C) is neoclosed in M. ([FK1], Proposition 3.10.)

(iv) Compositions of neocontinuous functions are neocontinuous. ([FK1],
Proposition 3.13.)

Example 3.15. (i) The distance function ρ is neocontinuous from M×
M to R. ([FK2], p. 145.)

(ii) Let M be a Polish space, let Ω be a Loeb probability space, and let
M be the space of all random variables x : Ω → M , with the metric of
convergence in probability.

(a) For every continuous function f : M → M , the function x(·) →
f(x(·)) is neocontinuous from M to M. ([FK1], Lemma 5.19.)

(b) The law function is neocontinuous fromM to the space B(M) of Borel
probability measures on M with the Prohorov metric. ([FK1], Proposition
5.12.)

(c) For each closed set C ⊆ M and r ∈ [0, 1], the set
{x ∈M : P [x(ω) ∈ C] ≥ r} is neoclosed.

(iii) Let Ω = (Ω,Ft)t∈[0,1] be an adapted Loeb space. The stochastic
integral function

(f, m) 7→
∫ t

0
f(ω, s)dm(ω, s)

is neocontinuous from A×M to M where A is the L2 space of uniformly
bounded adapted stochastic processes on Ω and M is the L2 space of con-
tinuous square integrable martingales on Ω. ([K6], p. 267.)

Proof of (ii) (c): By the Portmanteau theorem ([B], page 11), the set
D = {µ : µ(C) ≥ r} is closed in B(M). We have P [x(ω) ∈ C] ≥ r if and
only if x ∈ law−1(D). By (b) and Proposition 3.14 (iii), the set law−1(D)
is neoclosed.

Neocontinuous functions can often be built using the next proposition.
By a uniform lifting of a function f : M → N we mean an internal
function F : M̄ → N̄ such that whenever X ∈ monad(M), we have F (X) ∈
monad(N ) and o(F (X)) = f(oX).
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Proposition 3.16. (i) If f : M → N has a uniform lifting, then f is
neocontinuous. ([FK2], Theorem 4.16.)

(ii) If the whole space M is neocompact, then a function f : M → N
is neocontinuous if and only if it has a uniform lifting. ([Fk2], Theorem
4.18.)

Example 3.17. If M comes from an internal Banach space M̄ , then the
addition and scalar product functions on M are neocontinuous.

Finally, we introduce the neoseparable sets, which are analogues of closed
separable sets.

Definition 3.18. A set C ⊆M is basic in M if C is the closure of the
standard part of an internal set A ⊆ M̄ . A set C ⊆ M is neoseparable
in M if C is the closure of a countable union of basic sets Bn, n ∈ N.

Note that a finite union of basic sets is basic, and hence any neosepa-
rable set can be represented as the closure of a countable increasing chain
B0 ⊆ B1 ⊆ · · · of basic sets.

Proposition 3.19. A set is both neocompact and neoseparable if and
only if it is basic. ([FK2], Corollary 4.4.)

Example 3.20. (i) Every closed separable set is neoseparable.
(ii) Every nonstandard hull is neoseparable.
(iii) Let Ω be a Loeb probability space and let M be the space of all

random variables x : Ω → R , with the metric of convergence in probability.
The set of all integrable x ∈ M is neoseparable in M. ([FK2], Theorem
6.4.)

The next result characterizes the neoseparable sets in terms of their mon-
ads.

Proposition 3.21. A set D ⊆M is neoseparable if and only if there is
an increasing chain of internal sets E1, E2, . . . ⊆ M̄ such that monad(D) =
⋂

m

⋃

n((En)1/m). ([FK2], Proposition 4.2.)

We now turn to the neoclosed formulas. These formulas were discussed
in the survey paper [K5], where they were called positive bounded formulas
because of their similarity to the positive bounded formulas in the Banach
space setting of Henson [H]. The word positive indicates that the language
does not have a negation, and bounded indicates that the quantifiers are
bounded However, neoclosed formulas can be infinite, while the positive
bounded formulas of [H] are finite.

Definition 3.22. The language of neoclosed formulas for a given
nonstandard universe has infinitely many variables u, v, . . . of sort M for
each neometric space M, an n-ary function symbol for each neocontinuous
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function f : M1 × · · · × Mn → N , a constant symbol for each element
c ∈ M, and a unary predicate symbol of sort M for each neoclosed set A
in M. Terms are built in the usual way.

The atomic neoclosed formulas are τ(~v) ∈ A where τ is a term and
A is a neoclosed set of the same sort.

The connectives and quantifiers are:

Countable conjunctions with finitely many free variables,

Finite disjunctions,

Bounded existential quantifiers of the form (∃v ∈ B)ϕ where B is neo-
compact,

Bounded universal quantifiers (∀v ∈ D)ϕ where D is neoseparable.

Example 3.23. All the formulas in Example 2.2, with “neoclosed” in
(iii) and “neoseparable” in (iv), are neoclosed. If M is the set of random
variables on a Loeb probability space, then all the formulas in Example 2.3
are neoclosed.

The next theorem is a key result saying that every neoclosed formula
defines a neoclosed set. It follows from the closure principles for neoclosed
sets that were proved in [FK1] and [FK2].

Theorem 3.24. For every neoclosed formula ϕ(~v), the set {~x : |= ϕ[~x]}
is neoclosed.

Proof: First show that every term defines a neocontinuous function. The
basis step, that the identity and projection functions are neocontinuous,
follows from Proposition 3.16. The induction step comes from the fact that
compositions of neocontinuous functions are neocontinuous (Proposition
3.14 (iv)). Then by Proposition 3.14 (iii), every atomic formula defines a
neoclosed set.

Next, it is shown in [FK2], Theorem 3.11, that the family of neocom-
pact sets is closed under finite unions and cartesian products, finite and
countable intersections, the existential projection (∃y)((x, y) ∈ C), and the
universal projection (∀y ∈ D)((x, y) ∈ C) where D is nonempty and basic.

Using the results in the above two paragraphs, one can show by induction
on complexity of formulas that every neoclosed formula defines a neoclosed
set. The existential quantifier step is given in [FK1], Proposition 3.5, and
the universal quantifier step in [FK1], Proposition 4.18. 2

The above theorem can be used to show that particular sets are neo-
closed. For example, the sets defined by the formulas in Example 3.23 are
neoclosed.
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§4. Neoclosed forcing. We are now done stating results from earlier
papers, and will start proving things again. In this section we introduce
neoclosed forcing in a nonstandard universe. We first introduce neotight
sequences, which are the neometric analogues of relatively compact se-
quences. As usual, a sequence in M is a function 〈xn〉 from the set N of
standard natural numbers into M.

Definition 4.1. A sequence 〈xn〉 in M is said to be neotight if there
is a neocompact set B such that xn ∈ B for all n ∈ N.

The next lemma contains some elementary facts about neotight sequences.

Lemma 4.2. Suppose that f : M→N is neocontinuous.
(i) If 〈xn〉 is neotight in M then 〈f(xn)〉 is neotight in N .
(ii) If 〈xn〉 and 〈yn〉 are neotight in M and 〈yn〉 approximates 〈xn〉, then

〈f(yn)〉 approximates 〈f(xn)〉.
Proof: (i) 〈xn〉 is contained in some neocompact set B. Then 〈f(xn)〉 is

contained in the neocompact set f(B) and hence is neotight.
(ii) There is a neocompact set C containing both sequences 〈xn〉 and 〈yn〉.

Suppose that 〈f(yn)〉 does not approximate 〈f(xn)〉. Then for some ε > 0,
σ(f(xn), f(yn)) ≥ ε for infinitely many n. Since the distance functions ρ
and σ are neocontinuous,

Bk = {(x, y) ∈ C × C : ρ(x, y) ≤ 1/k and σ(f(x), f(y)) ≥ ε}
is a decreasing chain of nonempty neocompact sets. By countable com-
pactness this chain has a nonempty intersection. But if (x, y) belongs to
this intersection, then x = y but f(x) 6= f(y), contradiction. 2

The following lemma is a consequence of the Diagonal Intersection Prop-
erty.

Lemma 4.3. (i) If C is neocompact and limn→∞ rho(xn, C) = 0, then
〈xn〉 is neotight.

(ii) If 〈yn〉 is neotight and 〈xn〉 approximates 〈yn〉, then 〈xn〉 is neotight.

Proof: (i) The set C ∪ {xn : n ∈ N} is neocompact by Lemma 3.8.
(ii) If B is a neocompact set containing each yn, then limn→∞ ρ(xn, B) =

0, and 〈xn〉 is neotight by part (i). 2

We now define forcing for neoclosed formulas. As in the case of closed
forcing, we add to our language a name for each neotight sequence 〈xn〉 in
each neometric spaceM, and we callM the sort space of 〈xn〉. As before, a
condition is an infinite subset of N. Our rule for forcing an atomic formula
will be analogous to the rule for closed forcing given by Proposition 2.9.

To prepare the way, for each neoseparable set D let us choose once and
for all a countable increasing chain D0 ⊆ D1 ⊆ · · · of basic sets such that
D is the closure of the union

⋃

m Dm.
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Definition 4.4. (Neoclosed Forcing) For each neoclosed formula ϕ(~v),
neotight sequence of tuples 〈~xn〉 of the same sort as ~v, and condition p, the
forcing relation p ‖− ϕ(〈~xn〉) is defined inductively as follows, where A is
neoclosed, B is neocompact, and D is neoseparable.

p ‖− τ(〈~xn〉) ∈ A iff limn∈p ρ(τ(~xn), A) = 0.
p ‖−

∧

m ϕm(〈~xn〉) iff (∀m)p ‖− ϕm(〈~xn〉).
p ‖− (ϕ ∨ ψ)(〈~xn〉) iff

(∀q v p)(∃r v q)[r ‖− ϕ(〈~xn〉) or r ‖− ψ(〈~xn〉)].

p ‖− ((∃v ∈ B)ϕ)(〈~xn〉) iff

(∀q v p)(∃r v q)(∃ neotight 〈yn〉) r ‖− (yn ∈ B ∧ ϕ(〈~xn, yn〉)).

p ‖− ((∀v ∈ D)ϕ)(〈~xn〉) iff

(∀m)(∀〈yn〉 ∈ (Dm)N) p ‖− ϕ(〈~xn, yn〉).

The definition of neoclosed forcing was given in [K5] with an apparently
stronger rule for the universal quantifier step. We shall return to this
point in Proposition 5.6 where we shall see that the two formulations are
equivalent.

The next lemma is proved by a straightforward induction on the com-
plexity of neoclosed formulas.

Lemma 4.5. Suppose 〈~xn〉 is neotight and 〈~yn〉 approximates 〈~xn〉.
(i) If p ‖− ϕ(〈~xn〉), then p ‖− ϕ(〈~yn〉).
(ii) If p ‖− ϕ and q v p, then q ‖− ϕ.
(iii)

p ‖− ϕ(〈~xn〉)

if and only if

(∀q v p)(∃r v q)r ‖− ϕ(〈~xn〉).

2

Neoclosed forcing as defined here is similar to the kind of forcing intro-
duced in the paper [K2]. The rules for forcing atomic formulas, conjunc-
tions, disjunctions, and existential quantifiers are the same. However, the
forcing in [K2] was defined only for spaces of random variables on Loeb
probability spaces. The forcing language in [K2] had a more restricted
family of atomic formulas, but had a negation symbol. The forcing rule for
universal quantifiers in [K2] was defined using the negation rule.

In many applications of nonstandard analysis in the literature, one con-
structs a standard object by pushing down a hyperfinite approximation
of some kind. These applications can often be translated into arguments
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showing that a neoclosed formula is forced by a sequence of standard ob-
jects.

The following example is motivated by the paper [MS].

Example 4.6. Let Ω be an atomless Loeb probability space, M be a com-
pact metric space, M be the space of M -valued random variables on Ω, and
N be the space of all Borel probability measures on M×M with the Prohorov
metric. Let g be a measurable function from Ω to the space C(M ×N, R)
of continuous real valued functions on M ×N with the sup norm, and let
u ∈ M. A random variable x ∈ M is a Nash equilibrium for g, u if
there is a y ∈M such that y(ω) = x(ω) almost surely and

g(ω)(y(ω), law(y, u)) ≥ sup
a∈M

g(ω)(a, law(y, u))

for all ω ∈ Ω. It is shown in [MS], Theorem 1, that a Nash equilibrium for
(g, u) exists when u is a simple function. Using results from Section 3, one
can see that the following formula, which defines the set of Nash equilibria,
is neoclosed.

(∀a ∈ M)P [g(ω)(x(ω), law(x, u)) ≥ g(ω)(a, law(x, u))] = 1.

Let {aj : j ∈ N} be a countable dense subset of M . The following “weaker”
formula is also neoclosed and defines the set of Nash equilibria.

∧

j

∧

k

P [g(ω)(x(ω), law(x, u)) + 1/k ≥ g(ω)(aj , law(x, u))] ≥ 1− 1/k.(1)

If 〈xn, un〉 is a sequence in M×M such that for each j, k,

P [g(ω)(xn(ω), law(xn, un)) + 1/k ≥ g(ω)(aj , law(xn, un))] ≥ 1− 1/k

for all sufficiently large n, then N forces the formula (1) at 〈xn, un〉.

In the next two examples, let Ω be an adapted Loeb space with time set
[0, 1], let w be a Brownian motion on Ω, let x range over the space M of
continuous adapted stochastic processes on Ω, and let f(·, ·) be a bounded
continuous real function.

Example 4.7. The stochastic integral equation

∀t ∈ [0, 1]
(

x(ω, t) =
∫ t

0
f(s, x(ω, s))dw(ω, s)

)

(2)

is a neoclosed formula in x, which defines a neocompact set. If 〈xn〉 is a
neotight sequence in M such that

lim
n→∞

ρ
(

xn(ω, t),
∫ t

0
f(s, xn(ω, s))dw(ω, s)

)

= 0

for each rational t ∈ [0, 1], then N forces the formula (2) at 〈xn〉.
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Example 4.8. Let Φ be a countable set of bounded continuous real func-
tions such that whenever E[g(x(ω))] = E[g(y(ω))] for all g ∈ Φ, x and
y have the same distribution. Let (gk, tk), k ∈ N be an enumeration of
Φ× (Q ∩ [0, 1]). Let C0 be the set defined by formula (2). For each k, let

bk = sup{E[gk(x(·, tk))] : x ∈ Ck},
Ck+1 = {x ∈ Ck : E[gk(x(·, tk))] = bk}.

The intersection C =
⋂

k Ck is of interest because it is shown in [K1], [K6]
that C is a nonempty neocompact set, and each x ∈ C is a strong Markov
process which solves (2). Moreover, the formula

∀u ∈ [0, 1]
(

x(ω, u) =
∫ u

0
f(s, x(ω, s))dw(ω, s)

)

∧
∧

k

E[gk(x(·, tk))] = bk

(3)

is neoclosed and defines the set C. If 〈xn〉 is as in Example 4.7 and for
each k we have

lim
n→∞

E[(xn(·.tk))] = bk,

then N forces the formula (3) at 〈xn〉.

We will revisit the above three examples in Section 7, after the statement
of the Neoclosed Forcing Theorem. In each case, the example together with
the Neoclosed Forcing Theorem will give an existence result.

§5. Neoclosed Approximations. The main advantage of neoclosed
forcing compared to the forcing in [K2] is that there is a useful characteri-
zation of neoclosed forcing in terms of approximations of formulas.

We now define the set of approximations of a neoclosed formula. These
approximations will not be neoclosed formulas, but will instead be finite
formulas, which have only finite conjunctions and disjunctions, but allow
atomic formulas of the form τ(~v) ∈ A1/n and existential quantifiers of the
form (∃v ∈ B1/n)ϕ.

Definition 5.1. The set A(ϕ) of approximations of a neoclosed for-
mula ϕ(~v) is defined by induction on the complexity of ϕ as follows:
A(τ(~v) ∈ A) = {τ(~v) ∈ A1/n : n ∈ N}.
A(

∧

m ϕm) = {
∧

m≤n ψm : n ∈ N and ψm ∈ A(ϕm) for all m ≤ n}.
A(ϕ ∨ ψ) = {ϕ0 ∨ ψ0 : ϕ0 ∈ A(ϕ) and ψ0 ∈ A(ψ)}.
A((∃v ∈ B)ϕ) = {(∃v ∈ B1/n)ψ : ψ ∈ A(ϕ) and n ∈ N}.
A((∀v ∈ D)ϕ) = {(∀v ∈ Dm)ψ : m ∈ N and ψ ∈ A(ϕ)}.
The set ̂A(ϕ) of strong approximations of a neoclosed formula ϕ is

defined as above except that the ∃ clause is replaced by
̂A((∃v ∈ B)ϕ) = {(∃v ∈ B)ψ : ψ ∈ ̂A(ϕ)}.
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Note that for each neoclosed formula ϕ, A(ϕ) and ̂A(ϕ) are countable sets
of finite formulas. The approximations of ϕ are not necessarily neoclosed
formulas, because A1/n might not be neoclosed when A is neoclosed, and
B1/n might not be neocompact when B is neocompact. However, if ϕ is
built from atomic formulas of the form τ(~v) ∈ C where C is neocompact,
then every strong approximation of ϕ is a neoclosed formula.

If ψ ∈ A(ϕ) and ̂ψ ∈ ̂A(ϕ) then |= ϕ ⇒ ψ and |= ϕ ⇒ ̂ψ. Moreover, for
each approximation ψ ∈ A(ϕ) there is a strong approximation ̂ψ ∈ ̂A(ϕ)
such that |= ̂ψ ⇒ ψ.

Proposition 5.2. (Perturbation Principle) For each neoclosed formula
ϕ(~v), neocompact set B, and strong approximation ψ ∈ ̂A(ϕ) there is a
real δ > 0 such that whenever ~x, ~y ∈ B, |= ϕ[~x], and ρ(~x, ~y) ≤ δ, we have
|= ψ[~y].

Proof: The proof is a straightforward induction on the complexity of ϕ.
The atomic case follows from the fact that every neocontinuous function is
uniformly continuous on neocompact sets. 2

A sequence of formulas 〈ψn〉 is said to be cofinal in A(ϕ) if ψn ∈ A(ϕ)
for each n ∈ N, |= ψn ⇒ ψm whenever m ≤ n, and for each approximation
ψ ∈ A(ϕ) there exists n ∈ N such that |= ψn ⇒ ψ. Cofinal sequences in
̂A(ϕ) are defined similarly.

Lemma 5.3. For each neoclosed formula ϕ there exist cofinal sequences
in A(ϕ) and in ̂A(ϕ) .

Proof: An easy induction on the complexity of ϕ. 2

Theorem 5.4. (Neoclosed Approximation Theorem) Let ϕ(~v) be a neo-
closed formula, p be a condition, and 〈~xn〉 be a neotight sequence. The
following are equivalent.

(i) p ‖− ϕ(〈~xn〉).
(ii) For all ψ ∈ ̂A(ϕ), |= ψ[~xn] for almost all n ∈ p.
(iii) For all ψ ∈ A(ϕ), |= ψ[~xn] for almost all n ∈ p.

Proof: We first prove (i) ⇒ (ii) by induction on the complexity of ϕ. The
atomic step and conjunction step are trivial.

For the finite disjunction step, assume the implication holds for ϕ and
for ψ. Suppose p ‖− (ϕ∨ψ)(〈~xn〉), and let ϕ0 ∈ ̂A(ϕ) and ψ0 ∈ ̂A(ψ). Then
for every q v p there exists r v q such that either r ‖− ϕ or r ‖− ψ. By
inductive hypothesis, in either case we have |= (ϕ0 ∨ ψ0)[~xj ] for almost all
j ∈ r. Therefore |= (ϕ0 ∨ ψ0)[~xj ] for almost all j ∈ p.

For the (∃v ∈ B) step, assume the implication holds for ϕ(~u, v), and
p ‖− ((∃v ∈ B)ϕ)(〈~xn〉). Let ϕ0 ∈ ̂A(ϕ). Then for each q v p there
exists r v q and a sequence 〈yn〉 in B such that r ‖− ϕ(〈~xn, yn〉). By
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inductive hypothesis, |= ϕ0[~xn, yn] for almost all n ∈ r. Therefore |= ((∃v ∈
B)ϕ0)[~xn] for almost all n ∈ r, and it follows that |= ((∃v ∈ B)ϕ0)[~xn] for
almost all n ∈ p.

For the (∀v ∈ D) step, suppose D is neoseparable, and recall that D is
the closure of

⋃

m Dm where Dm is an increasing sequence of basic sets.
Suppose further ϕ0 ∈ ̂A(ϕ) and for each m ∈ N, |= ¬(∀v ∈ Dm)ϕ0[~xn]
for infinitely many n ∈ p. Choose 〈yn〉 in Dm such that |= ¬ϕ0[~xn, yn]
for infinitely many n ∈ p. By inductive hypothesis, not p ‖− ϕ(〈~xn, yn〉).
Therefore not p ‖− (∀v ∈ D)ϕ(〈~xn〉).

(iii) ⇒ (i). The proof is again by induction on the complexity of ϕ. For
each ϕ, choose a cofinal sequence 〈ϕk : k ∈ N〉 in A(ϕ). The induction
steps for atomic formulas and countable conjunctions are trivial.

The induction step for ϕ ∨ ψ is exactly the same as the corresponding
step in the proof of the Closed Approximation Theorem.

Assume the result holds for ϕ(~u, v). We prove the result for (∃v ∈ B)ϕ
where B is neocompact, and for (∀v ∈ D)ϕ where D is neoseparable.

Suppose that for each θ ∈ A((∃v ∈ B)ϕ), |= θ[~xj ] for almost all j ∈
p. Then there is an increasing sequence n(·) in N such that |= ((∃v ∈
B1/k)ϕk)[~xj ] whenever n(k) ≤ j ∈ p. For each j ∈ N let m(j) be the
greatest k with n(k) ≤ j. Then |= ((∃v ∈ B1/m(j))ϕm(j))[~xj ] for all j ∈ p.
Choose yj ∈ B1/m(j) so that |= ϕm(j)[~xj , yj ] whenever j ∈ p. Since n(·)
is increasing, limj→∞ 1/m(j) = 0, so there is a sequence 〈zn〉 in B which
approximates 〈yn〉. Since B is neocompact, 〈zn〉 is neotight, and hence
〈yn〉 is neotight by Lemma 4.3. (This is the one place where the diagonal
intersection property is needed in the proof). Then p ‖− ϕ(〈~xn, yn〉) by
inductive hypothesis. Therefore p ‖−ϕ(〈~xn, zn〉) by Lemma 4.5. This shows
that p ‖− (∃v ∈ B)ϕ(〈~xn〉).

Suppose that for each θ ∈ A((∀v ∈ D)ϕ)), |= θ[~xj ] for almost all j ∈ p.
Then for each k ∈ N there exists n(k) such that |= (∀v ∈ Dk)ϕk[~xj ] for
all n(k) ≤ j ∈ p. We may take n(k) to be strictly increasing. Let 〈yn〉
be a sequence in some Dk. Then 〈yn〉 is neotight, and |= ϕk[~xj , yj ] for all
n(k) ≤ j ∈ p. By inductive hypothesis, p ‖− ϕ(〈~xn, yn〉). Since this holds
for each k and each sequence 〈yn〉 in Dk, p ‖− (∀v ∈ D)ϕ(〈~xn〉). 2

As a consequence of the Neoclosed Approximation Theorem we show that
apparently stronger quantifier rules for neoclosed forcing are equivalent to
our official rules. We used weaker rules in our definition in order to get a
stronger Neoclosed Forcing Theorem in the next section.

Lemma 5.5. Suppose C is neocompact in M, D is neoseparable in M,
and C ⊆ D. Then for each n ∈ N there exists m(n) ∈ N such that C ⊆
((Dm(n))1/n).
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Proof: Suppose the conclusion fails. That is, there exists n ∈ N such
that for each m ∈ N, the set C \ ((Dm)1/n) is nonempty. By Example 3.11,
for each m the set

Em = {y ∈ C : ρ(y,Dm) ≥ 1/(2n)}
is neocompact. Since the sets Dm form an increasing chain, the sets Em

form a decreasing chain. Moreover, each set Em is nonempty because it
contains the nonempty set C \ ((Dm)1/n). By countable compactness there
is a point x ∈

⋂

m Em. But then x ∈ (C \D), contrary to hypothesis. 2

Proposition 5.6. Let B be neocompact, D be neoseparable, 〈~xn〉 be
neotight, and p be a condition.

(i)

p ‖− ((∃v ∈ B)ϕ)(〈~xn〉)
if and only if

(∃〈yn〉 in BN) p ‖− ϕ(〈~xn〉, 〈yn〉).
(ii)

p ‖− ((∀v ∈ D)ϕ)(〈~xn〉)
if and only if

(∀ neocompact C ⊆ D)(∀〈yn〉 in CN) p ‖− ϕ(〈~xn〉, 〈yn〉).

Proof: (i) We prove the nontrivial direction. Suppose that

p ‖− ((∃v ∈ B)ϕ)(〈~xn〉).
Let 〈ϕm〉 be a cofinal sequence of strong approximations of ϕ. By the
Neoclosed Approximation Theorem, for each m we have

|= ((∃v ∈ B)ϕm)[~xn]

for almost all n ∈ p. It follows that there is a sequence 〈yn〉 in B such that

|= ϕm[~xn, yn]

for almost all n ∈ p. By the Neoclosed Approximation Theorem again,

p ‖− ϕ(〈~xn〉, 〈yn〉).
We prove the nontrivial direction of (ii). Suppose that p ‖− ((∀v ∈

D)ϕ)(〈~xn〉). Let 〈ψk〉 be a cofinal sequence of approximations of ϕ. By
the Neoclosed Approximation Theorem, for each k ∈ N there exists n(k)
such that |= (∀v ∈ Dk)ϕk[~xj ] for all n(k) ≤ j ∈ p. We may take n(k) to
be strictly increasing. Let C be a neocompact subset of D and let 〈yn〉
be a sequence in C. By Lemma 5.5, for each m there exists k(m) such
that C ⊆ D1/m

k(m). We may take the sequence k(m) to be increasing. We
may therefore choose a sequence 〈zj〉 such that for each m, zj ∈ Dk(m)
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and ρ(yj , zj) ≤ 2/m whenever n(k(m)) ≤ j < n(k(m + 1)). Then 〈zj〉
approximates 〈yj〉, so 〈zj〉 is neotight by Lemma 4.3. Moreover, for each k
we have |= ϕk[~xj , zj ] for all n(k) ≤ j ∈ p. By the Neoclosed Approxima-
tion Theorem, p ‖−ϕ(〈~xn, zn〉). By Lemma 4.5, we have p ‖−ϕ(〈~xn, yn〉) as
required. 2

§6. Neometric Convergence. We now define the neometric analogue
of a set which contains every p-limit point of a sequence, and prove several
lemmas about the notion. This will play the same role for neoclosed forcing
that the set of p-limits played for closed forcing in Section 2.

Definition 6.1. Let 〈xn〉 be a neotight sequence in M, let A be neo-
closed inM, and let p be a condition. We write xn ↪→p A, and say that 〈xn〉
neometrically p-converges to A, if every neocompact set that contains xn

for infinitely many n ∈ p contains an element of A.

Note that if xn ↪→p A and q v p,B ⊇ A, then xn ↪→q B. Also, if xn ∈ A
for each n ∈ p, then xn ↪→p A . We first look at the case where 〈xn〉 is
relatively compact.

Proposition 6.2. Suppose 〈xn〉 is relatively compact and A is neoclosed
in M. Then xn ↪→p A if and only if A contains every p-limit point of 〈xn〉.

Proof: Suppose xn ↪→p A, and let a be a p-limit point of 〈xn〉. Then
limn∈q xn = a for some q v p. For each k let Ck = {a} ∪ {xn : k ≤
n ∈ q}. Then each Ck is a neocompact (even compact) set which contains
xn for infinitely many n ∈ p, and therefore Ck meets A. Thus A ∩ Ck is a
decreasing chain of nonempty neocompact sets. By countable compactness,
⋂

k(A ∩ Ck) is nonempty. But
⋂

k Ck = {a}, so a ∈ A.
Let B be the set of all p-limit points of 〈xn〉. Then B is closed. Since

〈xn〉 is relatively compact, B is compact, and hence B is neocompact. By
hypothesis, B ⊆ A. Let C be a neocompact set which contains xn for all
n ∈ q where q v p. By relative compactness there exists r ⊆ q and b ∈ M
such that limn∈r xn = b. Then b ∈ C ∩B, so C meets B. Hence xn ↪→p B
and therefore xn ↪→p A. 2

We now turn to the general case where 〈xn〉 is neotight.

Lemma 6.3. Suppose A is neoclosed in M, 〈xn〉 is neotight, and xn ↪→p

A. If 〈yn〉 approximates 〈xn〉, then yn ↪→p A.

Proof: Let B be a neocompact set which contains xn for all n and let
C be a neocompact set which contains yn for infinitely many n ∈ p. For
each k, the set C1/k is neoclosed, so B ∩ C1/k is a neocompact set which
contains xn for infinitely many n ∈ p. By hypothesis, B∩C1/k meets A for
each k. Thus B ∩C1/k ∩A is a decreasing chain of nonempty neocompact
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sets. By countable compactness the intersection of this chain is nonempty.
Therefore C meets A as required. 2

Corollary 6.4. Suppose A is neoclosed in M and 〈xn〉 is neotight. If
limn∈p ρ(xn, A) = 0, then xn ↪→p A.

Proof: Choose yn ∈ A such that limn∈p ρ(xn, yn) = 0. Then 〈yn〉 approx-
imates 〈xn〉. 〈yn〉 is neotight by Lemma 4.3. Since each yn ∈ A, yn ↪→p A.
By Lemma 6.3, xn ↪→p A. 2

We will see later that the converse of the above corollary is false. Here
are some necessary conditions for xn ↪→p A.

Lemma 6.5. Suppose A is neoclosed in M, 〈xn〉 is neotight, and xn ↪→p

A.
(i) If B is neocompact and contains xn for almost all n ∈ p, then xn ↪→p

(A ∩B).
(ii) Every neoopen set which contains A contains xn for almost all n ∈ p.
(iii) For every neoseparable set D ⊇ A, limn∈p ρ(xn, D) = 0.

Proof: Let C be a neocompact set containing each xn.
(i) Let C be a neocompact set which contains xn for infinitely many

n ∈ p. Then C ∩B is also neocompact and contains xn for infinitely many
n ∈ p. Therefore C ∩B meets A, so C meets A ∩B and xn ↪→p (A ∩B).

(ii) Let O be a neoopen set containing A. Suppose that xn ∈ C \ O for
infinitely many n ∈ p. The set C \ O is neocompact, and hence meets A.
But this is impossible because A ⊆ O. Therefore O contains xn for almost
all n ∈ p, as required.

(iii) Let D be the closure of
⋃

m Dm where Dm is an increasing chain of
basic sets. Assume that (ii) fails, so that for some ε > 0 and some q v p,
ρ(xn, D) > ε for all n ∈ q. For each m, the set Cm = {y ∈ C : ρ(y, Dm) ≥
ε} is neocompact and contains xn for all n ∈ q. Then the intersection
⋂

m Cm is neocompact, contains xn for all n ∈ q, and is disjoint from A.
This contradicts the hypothesis that xn ↪→p A. 2

Lemma 6.6. Suppose f : M → N is neocontinuous, A is neoclosed in
N , and 〈xn〉 is neotight in M. Then

f(xn) ↪→p A

if and only if

xn ↪→p f−1(A).

Proof: Let B be a neocompact set in M which contains each xn.
First suppose xn ↪→p f−1(A). Let C be a neocompact set in N such

that f(xn) ∈ C for infinitely many n ∈ p. Then f−1(C) is neoclosed in M,
so D = B ∩ f−1(C) is neocompact, and xn ∈ D for infinitely many n ∈ p.
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Therefore D meets f−1(A), and hence f(D), which is a subset of C, meets
A. Thus f(xn) ↪→p A.

Now suppose f(xn) ↪→p A. Let C be a neocompact set in M such that
xn ∈ C for infinitely many n ∈ p. Then f(C) is neocompact in N and
f(xn) ∈ f(C) for infinitely many n ∈ p, so f(C) meets A. Then C meets
f−1(A), and hence xn ↪→p f−1(A). 2

We conclude this section by showing that the neometric convergence
relation xn ↪→p A is closely related to the notion of a long sequence which
was studied in the paper [FK3].

By a long sequence in M we mean a function 〈xJ〉 from the set ∗N of
hyperintegers into M such that for some internal function 〈XJ〉 from ∗N
into M̄ , we have xJ = o(XJ) for all J ∈ ∗N. The internal function 〈XJ 〉 is
called a lifting of 〈xJ〉. Note that if xJ = o(XJ) is a long sequence in M,
then for each K ∈ ∗N, the truncated sequence yJ = xmin(J,K) is also a long
sequence in M.

Long sequences give us useful examples of neocompact sets.

Proposition 6.7. ([FK3]). Let 〈xJ 〉 be a long sequence in M and p be
a condition. Then the set

{xJ : J ≤ K, J ∈ ∗p}

is basic and the set
{xJ : J ≤ K, J ∈ ∗p \ p}

is neocompact.

Proof: {xJ : J ≤ K ∧ J ∈ ∗p} is the standard part of the internal subset
{XJ : J ≤ K ∧J ∈ ∗p} of monad(M), and {xJ : J ≤ K ∧J ∈ ∗p \ p} is the
standard part of the Π0

1 subset {XJ : J ≤ K ∧ J ∈ ∗p \ p} of monad(M).
2

Example 6.8. The converse of Corollary 6.4 is false; there is a neocom-
pact set A and a neotight sequence 〈xn〉 such that xn ↪→p A but ρ(Xn, A) =
1 for all n.

Proof: Let M be a neometric space which neotight sequence 〈xn〉 such
that ρ(xm, xn) = 1 for all m < n ∈ N. (For example, one can take M to be
the nonstandard hull of a hyperfinite dimensional internal Euclidean space,
or the space of random variables on an atomless Loeb probability space).
Extend 〈xn〉 to a long sequence 〈xJ〉. For some infinite K, ρ(xH , xJ) = 1
for all H < J ≤ K. By Proposition 6.7, the set A = {xJ : J ≤ K, J /∈ N}
is neocompact, and ρ(xn, A) = 1 for all n. However, an overspill argument
shows that A meets any neocompact set which contains infinitely many xn,
so xn ↪→p A for every condition p. 2
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Here is a characterization of neotight sequences in terms of long se-
quences.

Proposition 6.9. A sequence 〈xn〉 in neotight in M if and only if it
can be extended to a long sequence in M.

Proof: If 〈xn〉 can be extended to a long sequence 〈xJ〉 in M, then by
Proposition 6.7, each xn belongs to the basic set {xJ : J ∈ ∗N}. For the
converse, suppose each xn belongs to a neocompact set C. Let monad(C) =
⋂

m Bm where Bm is a decreasing chain of internal sets. Then for each finite
n there exists an Xn ∈

⋂

m Bm with standard part xn. By ω1-saturation
the sequence 〈Xn〉 can be extended to an internal function 〈XJ〉 from ∗N
into

⋂

m Bm. This is a lifting of a long sequence 〈xJ〉 in M which extends
〈xn〉. 2

The following notion of “almost everywhere in p” is convenient.

Definition 6.10. Let p be an infinite subset of N, and let Φ(J) be a
statement where J varies over the set ∗N of hyperintegers. We say that Φ(J)
holds a.e.(p), or that Φ(J) holds for all sufficiently small infinite
J ∈ ∗p, if there is an infinite K ∈ ∗N such that Φ(J) holds whenever
J ∈ ∗p \ p and J ≤ K.

Lemma 6.11. If 〈xJ〉 and 〈yJ〉 are long sequences in M such that xn =
yn for all n ∈ p, then xJ = yJ a.e.(p).

Proof: Let 〈XJ〉 and 〈YJ〉 be liftings of 〈xJ〉 and 〈yJ〉. Then ρ̄(Xn, Yn) ≤
1/n for all n ∈ p. By overspill, there is an infinite K such that ρ̄(XJ , YJ) ≤
1/J , and hence xJ = yJ , whenever J ∈ ∗p and J ≤ K. 2

Lemma 6.12. Suppose that for each m ∈ N, property Φm(J) holds a.e.(p).
Then property

∧

m Φm(J) holds a.e.(p).

Proof: By hypothesis, for each m ∈ N there is an infinite hyperinteger
K(m) such that Φm(J) holds for all J ∈ ∗p \ p such that J ≤ K(m). By
ω1-saturation there is an infinite hyperinteger K such that K ≤ K(m) for
all m ∈ N. Then

∧

m φm(J) holds for all J ∈ ∗p \ p such that J ≤ K. 2

We now characterize neometric convergence in terms of long sequences.

Theorem 6.13. Let 〈xn〉 be neotight in M, 〈xJ〉 be a long sequence in
M extending 〈xn〉 and A be neoclosed. Then

xn ↪→p A

if and only if

xJ ∈ A a.e.(p).
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Proof: Assume xJ ∈ A a.e.(p). Let C ⊆ M be a neocompact set which
contains xn for infinitely many n ∈ p, and let q = {n ∈ p : xn ∈ C}. Let
〈yn〉 be a sequence such that yn ∈ C for all n ∈ N and yn = xn whenever
n ∈ q. Then 〈yn〉 is neotight in the subspace C of M, and by Proposition
6.9, it can be extended to a long sequence 〈yJ〉 in C. By Lemma 6.11, there
is an infinite K ∈ ∗N such that xJ = yJ whenever J ∈ ∗q and J ≤ K. We
may also choose K so that xJ ∈ A whenever J ∈ ∗p \ p and J ≤ K. Thus
for any J ∈ ∗q \ q such that J ≤ K, we have xJ = yJ ∈ A ∩C, so A meets
C and xn ↪→p A.

Now suppose xn ↪→p A. Since 〈xn〉 is neotight, there is a neocompact set
B such that xn ∈ B for all n ∈ N. By Lemma 6.5 (i), xn ↪→p (A∩B). The
set A ∩ B is neocompact. By Proposition 3.21 there is a decreasing chain
of internal sets C1, C2, . . . ⊆ M̄ such that monad(A ∩B) =

⋂

m Cm.
Let 〈XJ 〉 lift 〈xJ 〉. We claim that for each m ∈ N, XJ ∈ Cm a.e.(p). To

see this, suppose that it is not the case that XJ ∈ Cm a.e.(p). Then there
are arbitrarily small J ∈ ∗p \ p such that XJ /∈ Cm. Let q = {n ∈ p : Xn /∈
Cm}. By underspill, q is infinite, and thus is a condition q v p. Let D be
the internal set

D = {XJ : J ∈ ∗q} \ Cm.

Each element of D is near-standard in M, and Xn ∈ D for all n ∈ q.
Moreover, D is disjoint from Cm, and monad(A ∩ B) ⊆ Cm. Therefore
o(D) is a neocompact set in M which contains xn for all n ∈ q but is
disjoint from A∩B. This contradicts xn ↪→p (A∩B) and proves the claim.

By Lemma 6.12 we have XJ ∈
⋂

m Cm a.e.(p), so xJ ∈ (A ∩ B) a.e.(p).
2

Corollary 6.14. Suppose 〈xn〉 is neotight, and for each m ∈ N, Am is
a neoclosed set and 〈xn〉 ↪→p Am. Then 〈xn〉 ↪→p (

⋂

m(Am)). 2

§7. Neoclosed Forcing Theorem. Consider the simple neoclosed for-
mula

(∃~v ∈ B)f(~v) ∈ C,(4)

where B is neocompact and C is neoclosed. The approximations of this
formula are

(∃~v ∈ B1/n)f(~v) ∈ C1/n.(5)

The paper [FK1] has an Approximation Theorem showing that condition
(5) for all n ∈ N implies condition (4). We now come to the Neoclosed Forc-
ing Theorem, which says that xn ↪→p A is a necessary condition for forcing
any neoclosed formula which defines A. A consequence of the Neoclosed
Forcing Theorem, Corollary 7.3, is a generalization of the Approximation
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Theorem in [FK1] which applies to arbitrary neoclosed formulas rather
than only to neoclosed formulas of the simple form (4).

Theorem 7.1. (Neoclosed Forcing Theorem) For any neoclosed formula
ϕ(~v), neotight sequence 〈~xn〉 of the same sort as ~v, and condition p, if

p ‖− ϕ(〈~xn〉)(6)

then

~xn ↪→p Aϕ(7)

where Aϕ is the neoclosed set defined by ϕ. Moreover, if 〈~xJ〉 is a long
sequence extending 〈xn〉, then

|= ϕ(~xJ)(8)

for all sufficiently small infinite J ∈ ∗p.

Before giving the proof of this theorem, we illustrate how the theorem
can be used by revisiting Examples 4.6—4.8. The following result appears
to be new.

Example 4.6 continued. Let Ω, M, M , and g be as in Example 4.6.
Then for every u ∈M there exists a Nash equilibrium for g, u.

Proof: Let 〈xn, un〉 be as in Example 4.6, and extend it to a long se-
quence 〈xJ , uJ〉. Be Example 4.6, N at 〈xk〉 forces the formula (1), which
defines the neoclosed set of Nash equilibria for (g, uk). By the Neoclosed
Forcing Theorem, for all sufficiently small infinite J , xJ satisfies (1) and
thus is a Nash equilibrium for (g, uJ ). If 〈un〉 is a sequence of simple func-
tions converging in probability to u, then uJ = u for infinite J , so xJ is a
Nash equilibrium for (g, u). Since it is proved in [MS] that a Nash equilib-
rium exists for (g, un) when un is a simple function, it follows that a Nash
equilibrium exists for arbitrary u. 2

The next two results were first proved in [K6] using the Approximation
Theorem of [FK1] (which, as remarked above, is a special case of Corollary
7.3). Here we will instead use the Neoclosed Forcing Theorem directly. As
in Section 4, we let Ω be an adapted Loeb space with time set [0, 1], let w
be a Brownian motion on Ω, let x range over the space M of continuous
adapted stochastic processes on Ω, and let f(·, ·) be a bounded continuous
real function.

Example 4.7 continued. Suppose there is a neotight sequence 〈xn〉 in
M such that

lim
n→∞

ρ
(

xn(ω, t),
∫ t

0
f(s, xn(ω, s))dw(ω, s)

)

= 0



32 SERGIO FAJARDO AND H. JEROME KEISLER

for each rational t ∈ [0, 1]. Then the stochastic integral equation (2),

∀t ∈ [0, 1]
(

x(ω, t) =
∫ t

0
f(s, x(ω, s))dw(ω, s)

)

,

has a solution x in M.

Proof: By Example 4.7, N at 〈xk〉 forces the neoclosed formula (2).
Let 〈xJ 〉 be a long sequence extending 〈xn〉. By the Neoclosed Forcing
Theorem, for all sufficiently small infinite J , xJ satisfies (2). 2

Example 4.8 continued. Let bk, gk, and tk be as in Example (4.8).
Suppose there is a sequence 〈xn〉 which satisfies the hypotheses of Example
4.7 above, and furthermore that for each k we have

lim
n→∞

E[(xn(·.tk))] = bk.

Then the equation (2) has a solution x in M with the strong Markov prop-
erty.

Proof: By Example 4.8, N at 〈xk〉 forces the neoclosed formula (3).
By the Neoclosed Forcing Theorem, for all sufficiently small infinite J , xJ

satisfies (3), and hence is a solution of (2) with the strong Markov property.

Proof of the Neoclosed Forcing Theorem: Part (8) follows from (7) and
Theorem 6.13. We argue by induction on the complexity of the formula
ϕ(~v). It will always be understood that C is a neocompact set in the sort
space of ~v, and 〈~xn〉 is a sequence in C. We must prove that for every
neoclosed formula ϕ, property (6) implies property (7).

Suppose first that ϕ is an atomic neoclosed formula τ(〈~xn〉) ∈ B. Let f :
M→N be the neocontinuous function defined by τ . f(C) is neocompact
by the Proposition 3.14 (ii). The set defined by ϕ is Aϕ = f−1(B), which
is neoclosed by the Proposition 3.14 (iii). In this case, (6) says that

lim
n∈p

ρ(f(~xn), B) = 0.

Then (7) follows from Lemma 6.6 and Corollary 6.4.
The infinite conjunction step follows from the inductive hypothesis and

Corollary 6.14.
For the finite disjunction step, suppose ϕ = (ψ ∨ θ) and the result holds

for ψ and for θ. Assume that (6) holds for ϕ. To prove (7), let D be a
neocompact set which contains ~xn for all n in an infinite set q v p. By
(6), there is an r v q such that either r ‖− ψ(〈~xn〉), or r ‖− θ(〈~xn〉), say the
former. By inductive hypothesis, ~xn ↪→r Aψ. Since r v q, ~xn ∈ D for all
n ∈ r. Therefore D contains an element of Aψ. But Aϕ = Aψ ∪ Aθ, so D
meets Aϕ, and (7) follows.
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For the existential quantifier step, suppose ϕ = (∃v ∈ B)ψ(~u, v) where
B is neocompact, and the result holds for ψ. We assume that (6) holds
and prove (7). Again let D be a neocompact set which contains ~xn for all
n in an infinite set q v p. By the definition of forcing there exists r v q
and 〈yn〉 in B such that

r ‖− ψ(〈~xn, yn〉).

By inductive hypothesis,

(~xn, yn) ↪→r Aψ.

D × B is neocompact and contains (~xn, yn) for all n ∈ q, so there exists
(~x, y) ∈ Aψ ∩ (D×B). Then ~x ∈ Aϕ∩D, and thus ~xn ↪→p Aϕ. This proves
(7).

For the universal quantifier step, suppose ϕ = (∀v ∈ D)ψ(~u, v) where D
is a neoseparable set, and the result holds for ψ.

We first consider the case where the set D is basic. Thus D = o(E)
for some internal set E ⊆ monad(N ). By the definition of forcing, for all
〈yn〉 ∈ DN we have p ‖−ψ(~xn, yn). By inductive hypothesis, (~xn, yn) ↪→p Aψ

for all 〈yn〉 ∈ DN.
The product C×D is neocompact, so the intersection A = Aψ ∩ (C×D)

is neocompact. Moreover, for all 〈yn〉 ∈ DN, we have (~xn, yn) ∈ C × D
for all n, and therefore (~xn, yn) ↪→p A by Lemma 6.5 (i). By Lemma 3.4,
monad(A) =

⋂

m Am for some decreasing chain of internal sets Am. Extend
〈xn〉 to a long sequence 〈xJ〉 in C, and take a lifting 〈XJ 〉.

Now fix an integer m ∈ N. Since Am is internal, there is an internal
function 〈Zm

J 〉 from ∗N into E such that for each J ,

( ~XJ , Zm
J ) ∈ Am if and only if (∀U ∈ E)( ~XJ , U) ∈ Am.(9)

Let zm
J = o(Zm

J ) ∈ D. Then 〈 ~XJ , Zm
J 〉 is a lifting of the long sequence

〈~xJ , zm
J 〉 in C×D. Since (~xn, zm

n ) ↪→p A, it follows from Theorem 6.13 that
(~xJ , zm

J ) ∈ A a.e.(p), and therefore ( ~XJ , Zm
J ) ∈ Am a.e.(p). By Lemma

6.12,
(

∧

m

( ~XJ , Zm
J ) ∈ Am

)

a.e.(p).(10)

Thus there is an infinite K such that for every m ∈ N, ( ~XJ , Zm
J ) ∈ Am for

every infinite J ≤ K in ∗p.
By (9) and (10),

(∀U ∈ E)( ~XJ , U) ∈

(

⋂

m

(Am)

)

a.e.(p).
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Therefore
(∀u ∈ D)(~xJ , u) ∈ A a.e.(p),

and hence
~xJ ∈ Aϕ a.e.(p).

Finally, by Theorem 6.13 again, the required condition (7) holds. This
completes the universal quantifier step in the case that D is basic.

In the case that D is neoseparable, we note that condition (6) says that

p ‖− ((∀v ∈ D)ψ)(〈~xn〉),

and by definition of forcing this is equivalent to

(∀m)p ‖− ((∀v ∈ Dm)ψ)(〈~xn〉).

By our preceding argument, this implies that

(∀m)~xn ↪→p Bm,(11)

where Bm is the neoclosed set defined by ((∀v ∈ Dm)ψ)(〈~xn〉). Since D is
the closure of

⋃

m Dm and the set defined by ψ is closed, the formula (∀v ∈
D)ψ is equivalent to

∧

m(∀v ∈ Dm)ψ, that is, Aϕ =
⋂

m Bm. By Lemma
6.12, (11) is equivalent to the required condition (7). This completes our
induction. 2

We shall now give several consequences of the Neoclosed Forcing and
Approximation Theorems.

Corollary 7.2. Let ϕ(~v) be a neoclosed formula. If p ‖− ϕ(〈~xn〉) for
some condition p and some neotight sequence 〈~xn〉, then |= ϕ[~a] for some
point ~a. 2

Corollary 7.3. Let ϕ(~v) be a neoclosed formula and suppose limn∈p ~xn =
~a. Then for each condition p, the following are equivalent.

(i) p ‖− ϕ(〈~xn〉).
(ii) |= ϕ[~a].
(iii) |= ψ[~a] for every ψ ∈ A(ϕ).
(iv) |= ψ[~a] for every ψ ∈ ̂A(ϕ).

Proof: Since limn∈p ~xn = ~a, we have ~xn ↪→p {a}. By Lemma 4.5, (i)
holds if and only if p ‖− ϕ(〈~a〉). The result now follows from the Neoclosed
Approximation and Forcing Theorems. 2

Corollary 7.4. Suppose ϕ(v) is neoclosed, D is a neoclosed set such
that every sequence in D is neotight, and for each approximation ψ ∈ A(ϕ)
and n ∈ N there exists x ∈ D1/n such that |= ψ[x]. Then there exists x ∈ D
such that |= ϕ[x].
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Proof: Let 〈ψn〉 be a cofinal set of approximations of ϕ. For each n ∈ N,
choose xn ∈ D1/n such that |= ψn[xn], and choose yn ∈ D with ρ(xn, yn) ≤
1/n. Then 〈yn〉 is neotight in D, and by Lemma 4.3, 〈xn〉 is neotight. By
the Neoclosed Approximation Theorem, N ‖−ϕ(〈xn〉). Moreover, N ‖−〈xn〉 ∈
D. Therefore there exists x ∈ D such that |= ϕ[x]. 2

Theorem 7.5. (Almost Near Theorem) Let ϕ(v) be a neoclosed formula
where v has sort M, let B be a neocompact set in M, and let D be a
neoseparable set in M such that B∩{x : |= ϕ[x]} ⊆ D. Then for every real
ε > 0 there exists an approximation ψ ∈ A(ϕ) such that B∩{x : |= ψ[x]} ⊆
Dε.

Proof: Suppose the result fails for ε. Let A be the set defined by ϕ.
Thus B ∩ A ⊆ D. Take a countable cofinal sequence of approximations
〈ϕk〉 of ϕ. Then there is a sequence 〈xn〉 in B such that for all n, |= ϕn[xn]
but xn 6∈ Dε. Since B is neocompact, 〈xn〉 is neotight. By the Neoclosed
Approximation Theorem, we have N ‖−ϕ(〈xn〉). By the Neoclosed Forcing
Theorem, xn ↪→N A. The set B ∩ A is neocompact, so by Lemma 5.5
there is an m such that B ∩ A ⊆ (Dm)ε/2. By Example 3.11, the set
{x ∈ B : ρ(x,Dm) ≥ ε} is neocompact. But this set contains xn for all n
and is disjoint from A, contradicting xn ↪→N A. This contradiction proves
the result. 2

In the case that M is a separable metric space, the preceding result
reduces to the Almost Near theorem of Anderson [A].

Corollary 7.6. Let ϕ(v) and θ(v) be neoclosed formulas and B a neo-
compact set such that

{x : x ∈ B∧ |= ϕ[x]} ⊆ {x : |= θ[x]},

and suppose that {x : |= θ[x]} is neoseparable. Then for every approxima-
tion θ0 ∈ A(θ) there is an approximation ϕ0 ∈ A(ϕ) such that

B ∩ {x : |= ϕ0[x]} ⊆ {x : |= θ0[x]}.

2

Corollary 7.7. (Invariance Theorem) Suppose that ϕ(~v) is a neoclosed
formula, 〈~xn〉 is neotight, and for each approximation ψ ∈ A(ϕ), |= ψ[~xn]
for almost all n ∈ p. Then for every neocontinuous function f from the sort
space M of ~v to a complete separable metric space N , there exists ~b ∈ M
and q v p such that |= ϕ[~b] and limn∈q f(~xn) = f(~b).

Proof: Since f is neocontinuous, 〈f(~xn)〉 is neotight. Since N is sep-
arable, 〈f(~xn)〉 is relatively compact. Therefore for some q v p, 〈f(~xn)〉
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converges on q to an element c ∈ N . By the Neoclosed Approximation
Theorem,

q ‖− [ϕ(〈~xn〉) ∧ f(〈~xn〉) = c].

By the Neoclosed Forcing Theorem, there is a point ~b such that |= ϕ[~b] and
f(~b) = c. 2
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