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Abstract

We give a detailed exposition of the use of neocompact sets in proving existence
of solutions to stochastic Navier-Stokes equations. These methods yield new results
concerning optimality of solutions.

1 Introduction

In this paper we give a detailed exposition of the way in which the recent work of S. Fajardo
and H. J. Keisler [6] can be used to establish existence of solutions to stochastic Navier-Stokes
equations. Fajardo & Keisler [6] develop general methods for proving existence theorems in
analysis, with the aim of embracing the many particular existence theorems that can be
proved rather easily using nonstandard analysis. The machinery developed centres round
the notion of a neocompact set - which is a weakening of the notion of a compact set of random
variables with values in a metric space M - and the notion of a rich adapted probability space,
in which any countable chain of nonempty neocompact sets has a nonempty intersection.

In the papers [2, 3] Capiński & Cutland used nonstandard methods to greatly simplify
some known existence proofs for the deterministic Navier-Stokes equations and (using sim-
ilar methods) solved a longstanding problem concerning existence of solutions to general
stochastic Navier-Stokes equations. The aim here is to show how the main results of these
papers can be obtained using the neocompactness methods developed in [6]. In addition,
these methods yield additional information concerning the nature of the set of solutions and
existence of optimal solutions.

For the convenience of the reader we begin with a brief summary of the notions and
results we shall need from [6].

2 Neocompact sets.

In this section we review the notion of a neocompact set from the paper [6]. Neocompact
sets share many of the useful properties of compact sets. We shall introduce the notion in
two contexts – probability spaces and adapted spaces.
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If ΩΩ = (Ω, P,G) is a probability space and (M,ρM) is a complete metric space, then
L0(Ω,M) will denote the metric space of all measurable functions from Ω into M with the
metric of convergence in probability,

ρ(x, y) = inf{ε > 0 : P [ρM(x(ω), y(ω)) < ε] ≥ ε}.

For any set A we write Aε = {x : ρ(x,A) ≤ ε}.
We let Meas(M) be the space of all Borel probability measures on M with the Prohorov

metric, and let law : L0(Ω,M) → Meas(M) be the function mapping each random variable
x to the measure on M induced by x. This function is continuous.

Definition 2.1 Let ΩΩ be a probability space and let M, M ′ denote complete separable metric
spaces. A set B ⊂ L0(Ω,M) is called basic if either

(1) B is compact, or

(2) B = {x : law(x) ∈ C} for some compact set C ⊂ Meas(M).

By the family of neocompact sets over Ω we mean the collection of all subsets of
L0(Ω,M) obtained by repeated application of the following rules:

(a) Every basic set is neocompact.

(b) Finite unions of neocompact sets are neocompact.

(c) Finite and countable intersections of neocompact sets are neocompact.

(d) Finite cartesian products of neocompact sets are neocompact (where we identify L0(Ω,M)×
L0(Ω,M ′) with L0(Ω, M ×M ′) in the natural way).

(e) If C ⊂ L0(Ω,M ×M ′) is neocompact, then the set

{x : (∃y)(x, y) ∈ C}

is neocompact.

(f) If C ⊂ L0(Ω,M × M ′) is neocompact and D ⊂ L0(Ω,M ′) is basic neocompact and
nonempty, then the set

{x : (∀y ∈ D)(x, y) ∈ C}
is neocompact.

It is not hard to see that the family of compact sets is closed under all of the rules (a)–(f).
In fact, the family of compact sets is closed under arbitrary intersections, and condition (f)
holds for arbitrary nonempty sets D. One of the reasons that compact sets are useful in
proving existence theorems is that they have the following property:

If C is a set of compact sets such that any finite subset of C has a nonempty intersection,
then C has a nonempty intersection.

We define a rich probability space as one in which the neocompact sets have a weaker
form of this property, called the countable compactness property.
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Definition 2.2 A collection C of sets has the countable compactness property if the
intersection of any countable decreasing chain C1 ⊃ C2 ⊃ · · · of nonempty sets in C is
nonempty.

Definition 2.3 A probability space ΩΩ is said to be rich if it is atomless and for any complete
separable metric space M , the collection of neocompact sets in L0(Ω,M) has the countable
compactness property.

We now turn to neocompact sets in adapted spaces. By an adapted space we shall mean a
structure ΩΩ = (Ω, P,G,Gt) where t runs over the dyadic rationals and the Gt are σ-subalgebras
of G which increase in t. For each real s, we let Fs be the P -completion of

⋂

t>s Gt.

Definition 2.4 Let ΩΩ be an adapted space. The families of basic sets and neocompact
sets for the adapted space are defined exactly as for the case of a probability space except that
we add to the family of basic sets all sets B of the form

(3) B = {x ∈ L0(Ω,M) : law(x) ∈ C and x is Gt-measurable},

where C is compact in Meas(M) and t is a dyadic rational.

Definition 2.5 An adapted space ΩΩ = (Ω, P,G,Gt) is said to be rich if the probability
space (Ω, P,G0) is atomless, ΩΩ admits a Brownian motion, and for any complete separable
metric space M , the collection of neocompact sets in L0(Ω,M) has the countable compactness
property.

The following fact is implicit in the paper [12] and will be proved explicitly in [7].

Theorem 2.6 Rich probability spaces and rich adapted spaces exist.

This is proved by showing that the adapted Loeb spaces, which were the underlying
spaces used in [2] and [3], are rich. Every rich adapted space is also rich as a probability
space.

The analogues of closed sets and continuous functions are defined in terms of neocompact
sets in the following way.

Definition 2.7 A set C ⊂ L0(Ω,M) is neoclosed if C ∩ D is neocompact for every
neocompact set D.

A function f mapping a neoclosed set C ⊂ L0(Ω,M) into L0(Ω, N) is neocontinuous
if for every neocompact set D ⊂ C, the graph of f restricted to D is neocompact.

It is shown in the paper [6] that for a rich adapted space, every neoclosed set is closed,
and every neocontinuous function is continuous. Parallel to the classical case, images of
neocompact sets under neocontinuous functions are neocompact, and preimages of neoclosed
sets under neocontinuous functions are neoclosed. We shall identify N with the set of
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constant functions from Ω into N . With this identification, each closed subset of N becomes
a neoclosed subset of L0(Ω, N), and we obtain the notions of a neocontinuous function from
L0(Ω,M) into N , and a neocontinuous function from a closed subset of M into L0(Ω, N).

In the paper [6], several important sets and functions are shown to be neocompact,
neoclosed, or neocontinuous for a rich adapted space.

For example, it is shown that the set of Brownian motions on ΩΩ is neocompact, the set of
stopping times between 0 and 1 for ΩΩ is neocompact, and the set of all Ft-adapted stochastic
processes with values in M is neoclosed.

Some examples of neocontinuous functions which will be used in this paper are the dis-
tance function ρ for L0(Ω, M), the function x(·) 7→ f(x(·)) where f : M → N is continuous,
the expected value function x(·) 7→ E(x(·)) restricted to a uniformly integrable subset of
L0(Ω, IR), and the stochastic integral function x 7→

∫

x db where b is a Brownian motion and
x is in a bounded set of adapted processes.

Moreover, compositions of neocontinuous functions are neocontinuous.
In the paper [6] the notion of neo-lower semicontinuity, abbreviated neo-lsc, is defined as

a useful generalisation of the classical notion of lowersemi-continuity. Recall that a function
f : M → IR is lower semicontinuous (lsc) if whenever xn → x in M then limn→∞f(xn) ≥ f(x);
equivalently, f is lsc if for every compact C ⊆ M , the upper graph

{(x, r) ∈ C × IR : f(x) ≤ r}

is compact. This is the definition that is generalised in [6]. Regard IR = [−∞,∞] as a
compact metric space with the metric ρ(r, s) = | arctan(r)− arctan(s)| and we have:

Definition 2.8 Let D ⊆ L0(Ω,M); a function f : D → L0(Ω, IR) is neo-lsc if for every
neocompact set C ⊆ D the upper graph

{(x, y) ∈ C × L0(Ω, IR) : f(x) ≤ y a.s.}

is neocompact.

If f : D → IR it is easy to check that f is neo-lsc if and only if the upper graph
{(x, r) ∈ C × IR : f(x) ≤ r} is neocompact for each neocompact C.

It is shown in [6] that the expectation operator restricted to positive random variables is
neo-lsc, and that a composition g ◦ f of two neo-lsc functions is neo-lsc provided that g is
monotone. Also, if f : M → IR is lsc then the function g : L0(Ω,M) → L0(Ω, IR) defined by
g(x)(ω) = f(x(ω)) is neo-lsc.

We shall need the following important lemma from [6].

Lemma 2.9 (Closure Under Diagonal Intersections.) Let ΩΩ be either a rich probability
space or a rich adapted space. Let An be neocompact in L0(Ω,M) for each n ∈ IN, and let
εn ↘ 0. Then the set A =

⋂

n ((An)εn) is neocompact in L0(Ω,M).

The key result from [6] which we shall apply in this paper is the following theorem.
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Theorem 2.10 (Approximation Theorem.) Let ΩΩ be either a rich probability space or a
rich adapted space. Let A be neoclosed in L0(Ω,M) and let f : L0(Ω,M) → L0(Ω, N) be
neocontinuous. Let B ⊂ L0(Ω,M) and D ⊂ L0(Ω, N) be neocompact. Suppose that for each
ε > 0

(∃x ∈ A ∩Bε) f(x) ∈ Dε.

Then
(∃x ∈ A ∩B) f(x) ∈ D.

It is easy to check that the analogous result holds with compact, closed, and continuous
in place of neocompact, neoclosed, and neocontinuous. We shall use this classical analogue
as a warmup in Section 4, and then apply the Approximation Theorem for rich probability
spaces and rich adapted spaces later in this paper.

3 The Navier-Stokes equations.

The classical Navier-Stokes equations describe the evolution in time of the velocity field
u : D → IRn of an incompressible fluid in a domain D ⊆ IRn, so we are thinking of a function
u(x, t) : D × [0, T ] → IRn given by:







∂u
∂t
− ν∆u + 〈u,∇〉u +∇p = f

div u = 0
(1)

(where 〈, 〉 denotes the inner product in IRn). For convenience we will assume a fixed finite
time horizon T but there is no difficulty in extending to the time set [0,∞). The domain
D is bounded with boundary of class C2 and we will work with the homogeneous Dirichlet
boundary condition u |∂D= 0. Of course in important applications, n = 3 but from the
mathematical point of view we can allow n ≤ 4. In this equation, p denotes the pressure,
and f denotes the external forces.

The usual setting for these equations involves the function spaces H, V which are obtained
by closing the set {u ∈ C∞

0 (D, IRn) : div u = 0} in the norms | · | and | · |+ ‖ · ‖ respectively,
where

|u| = (u, u)
1
2 ; (u, v) =

n
∑

j=1

∫

D
uj(ξ)vj(ξ)dξ,

‖u‖ = ((u, u))
1
2 ; ((u, v)) =

n
∑

j=1
(
∂u
∂ξj

,
∂v
∂ξj

).

H,V are Hilbert spaces. We fix an orthonormal basis (en)n∈IN for H consisting of eigenvec-
tors of the operator −∆ with eigenvalues (λn)n∈IN . For u ∈ H we write uk = (u, ek). We
let V′ be the dual space of V with respect to the | · | norm, and let (·, ·) denote the duality
between V′ and V extending the scalar product in H. In the equation (1) it is usual to
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take the force f ∈ L2(0, T ;V′), and then the equation is understood as a Bochner integral
equation in V′. i.e. for each v ∈ V:

(u(t), v)− (u0, v) =
∫ t

0
[−ν((u(s), v))− b(u(s), u(s), v) + (f(s), v)]ds (2)

where u0 is the given initial condition. The pressure vanishes in this weak formulation
because 〈∇p, v〉 = −〈p, div v〉 = 0, but of course p can be recovered from a solution to the
equation (2). The trilinear form b is the nonlinear term in (1), so that we have:

b(u, v, w) =
n

∑

i,j=1

∫

D
uj(ξ)

∂vi

∂ξj
(ξ)wi(ξ)dξ = (〈u,∇〉v, w).

Note that for u, v, z ∈ V we have b(u, v, z) = −b(u, z, v) so that b(u, v, v) = 0. There are a
number of well known inequalities giving continuity of b in various topologies (see [13] and
[14] p.12 for example) and we list here those (for n ≤ 4) that we shall need.

|b(u, v, z)| ≤ c‖u‖ ‖v‖ ‖z‖ (3)
|b(u, v, z)| ≤ c|u| ‖v‖ |Az| (4)
|b(u, v, z)| ≤ c|u| |Av| ‖z‖ (5)

It is customary to write A for the self-adjoint extension of the operator −∆ on H, and
to write B(u) = b(u, u, ·) ∈ V′ for appropriate u. Then it is an easy consequence of (4) and
(5) that:

Proposition 3.1 For all m, B(·) ∈ C(Km,V ′
weak), where Km is the compact subset of H

given by Km = {u ∈ H : ‖u‖ ≤ m} with the H-topology. 2

Proof See Proposition 3.4 of [3].

We can now make precise what is taken to be a weak solution to (1)

Definition 3.2 Given u0 ∈ H and f ∈ L2(0, T ;V ′) the function u : [0, T ) → H is a weak
solution of the Navier-Stokes equations if

(i) u ∈ L2(0, T ;V) ∩ L∞(0, T ;H) ,
(ii) for all v ∈ V, for all t ≥ 0, u satisfies equation (2)

The regularity condition (i) emerges naturally by consideration of the time evolution of
the energy 1

2 |u|
2.

The spaces H and V involved in the formulation of the Navier-Stokes equations are two
from the spectrum of Hilbert spaces Hα given by

Hα = {u ∈ H :
∞
∑

k=1

λα
ku2

k < ∞}



4 EXISTENCE OF WEAK SOLUTIONS 7

for α ≥ 0, with norm |u|α = (
∑∞

k=1 λα
ku2

k)
1
2 . The dual spaces H−α are represented by the

sets

H−α = {u ∈ IRIN :
∞
∑

k=1

λ−α
k u2

k < ∞}

with the corresponding norms |u|−α. It is easily checked that H = H0, V = H1 and
V′ = H−1.

We write Hn = span{e1, . . . , en} and denote the projection from H onto Hn by Πn. For
u ∈ H, u(n) denotes Πnu.

4 Existence of weak solutions

In this section we prove

Theorem 4.1 For every u0 ∈ H there is a weak solution u to the Navier-Stokes equations
with u(0) = u0 and with u in the space M0 defined below.

This is, of course, a classical result. We shall present a proof using the classical analogue of
the Approximation Theorem (Theorem 2.10) and compare it with a classical proof. The point
of doing this is to show how the neocompactness machinery allows a direct generalization
of our proof to give the existence result for the stochastic Navier-Stokes equations [3], for
which there is no classical proof using compactness.

For the development here and in subsequent sections we define some spaces and auxiliary
functions that will be important for the construction of solutions. We put

M = C([0, T ],H−2) ∩ {y : y(0) ∈ H}

which is a complete metric space with the metric | · |M given by

|y1 − y2|M = sup
t≤T

|y1(t)− y2(t)|−2 + |y1(0)− y2(0)|.

For y ∈ M define θ(y) by

θ(y) = ν
∫ T

0
‖y(t)‖2dt + sup

t≤T
|y(t)|2.

Let M0 be the subset of M given by

M0 = M ∩ {y : θ(y) ≤ K + |y(0)|2}

where K = ν−1 ∫ T
0 |f(t)|2V′dt.

Proposition 4.2 M0 is a closed subspace of M.
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Proof This follows easily from the fact that if u, un ∈ H−2 with un → u in H−2,
then |u|α ≤ lim|un|α for any α. Apply this to |yn(t)| = |yn(t)|0 and ‖yn(t)‖ = |yn(t)|1 for
any sequence yn ∈ M0 with yn → y ∈ M , and use Fatou’s lemma (

∫ T
0 lim‖yn(t)‖2dt ≤

lim
∫ T
0 ‖yn(t)‖2dt) and the fact that supt≤T lim|yn(t)|2 ≤ lim supt≤T |yn(t)|2. 2

Remark It is easy to check that M0 ⊆ C([0, T ],H−α) for all α > 0, although we will not
need this. It is a consequence of the fact that for y ∈ M0 each yk(t) is continuous, and |y(t)|
is bounded.

Now for each k > 0 define

Mk = M ∩ {y : θ(y) ≤ k}

Clearly each Mk is closed in M and M0 ⊆
⋃

k>0 Mk = M∞, say.
We now define a function γ : M∞ → M by

γ(y)(s) =
∫ s

0
[−νAy(t)−B(y(t)) + f(t)]dt.

To see that γ takes its values in M , use the following key facts about A and B:

(i) |Au|−1 = ‖u‖
(ii) |B(u)|−1 ≤ c‖u‖2 (6)

with (ii) holding by (3). These properties of A and B ensure that for y ∈ M∞ we have

γ(y) ∈ C([0, T ],H−1
weak) ∩ L∞(0, T ;H−1)

⊆ C([0, T ],H−α)

for any α > 1 and in particular for α = 2.

Remark This shows that the choice of H−2 in the definition of M was somewhat arbi-
trary. We could have taken H−α for any α > 1.

We observe that u = y is a weak solution to the Navier-Stokes equations with initial
condition u0 = x if and only if y = x + γ(y).

The next two facts are the key to the construction of a solution.

Proposition 4.3 The function γ is continuous on each set Mk (in the topology of M).

Proof This is routine Bochner integration theory using the facts (6) above. 2

Proposition 4.4 For each k > 0 the set γ(Mk) is relatively compact in M .



4 EXISTENCE OF WEAK SOLUTIONS 9

Proof The facts (6) can be used to show that there are constants d and (dm)m≥1 such
that

γ(Mk) ⊆ {z ∈ M : z(0) = 0 & sup
t≤T

|z(t)|−1 ≤ d

& |zm(s)− zm(t)|2 ≤ dm|s− t| for all s, t ≤ T and m ∈ IN}.

It is then routine to check that the set on the right is compact in M . 2

As with classical proofs, we now consider the finite dimensional approximations to (2) -
known as the Galerkin approximations. For this purpose we define a sequence of functions
γn : M∞ → M by

γn(y)(s) =
∫ s

0
[−νAy(n)(t)−B(n)(y(t)) + f (n)(t)]dt

= Πnγ(y)(s).

It is clear that γn(y) ∈ C([0, T ],Hn).

Classical ODE theory (see [13] for example) shows:

Theorem 4.5 For each n > 0 and x ∈ H there is a unique y ∈ M0 such that y = x(n)+γn(y)
(so y ∈ MK+|x|2).

Proof The equation y = x(n) +γn(y) for x ∈ H is simply the Galerkin approximation
to the Navier-Stokes equations in dimension n, with initial condition x(n), which has a unique
solution y ∈ C([0, T ],Hn); consideration of the time evolution of the energy |y(t)|2 shows
that

|y(s)|2 + ν
∫ s

0
‖y(t)‖2dt ≤ |y(0)|2 + ν−1

∫ s

0
|f(t)|2V′dt

so that y ∈ M0. Clearly, y ∈ MK+|x|2 . 2

The final result in preparation for the fundamental existence result Theorem 4.1 is:

Proposition 4.6 For k > 0, γn(y) → γ(y) uniformly on Mk.

Proof By Proposition 4.4, γ(Mk) is a compact subset of M . Dini’s theorem tells us that
Πnz → z uniformly on any any compact set. 2

We now complete the proof of 4.1 by using the classical analogue of the Approximation
Theorem (2.10).

Proof of Theorem 4.1 Using the classical analogue of the Approximation Theorem,
it is sufficient to prove that there is a compact D ⊆ M such that

(∀ε > 0)(∃y ∈ Dε ∩M0)(|x + γ(y)− y|M < ε).

For this we take D = x + γ(Mk) where k = K + |x|2, which is compact by Proposition 4.4.
Now, given ε > 0 take n such that |γn(y) − γ(y)| < 1

2ε for all y ∈ Mk (using Proposition
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4.6), and |x − x(n)| < 1
2ε. Take the unique y ∈ M0 with y = x(n) + γn(y) ∈ Mk, given by

Proposition 4.5. Then

|x + γ(y)− y| ≤ |γ(y)− γn(y)|+ |x− x(n)| < ε

and since x + γ(y) ∈ D we have y ∈ Dε and the proof is complete. 2

This proof is really not very different from a classical proof using the preliminary results
Propositions 4.4, 4.5 and 4.6 above, which runs as follows:

For x ∈ H, take yn = x(n) + γn(yn) ∈ M0 ∩ Mk as given by Proposition 4.5, and let
zn = x + γ(yn) ∈ D. By Proposition 4.4, there is a convergent subsequence zni → z, say
with z ∈ D. Then

|yni − z| ≤ |x(ni) + γni(yni)− (x + γ(yni))|+ |zni − z| → 0

using Proposition 4.6. So z belongs to the closed set M0 . By Proposition 4.3 we have

x + γ(z) = x + lim γ(yni) = lim zni = z,

so that z is the required solution.

5 Existence of statistical solutions

The idea of a statistical solution to the Navier-Stokes equations was developed by Foias [8],
and the idea is as follows. Suppose that in the Navier-Stokes equations (1) or (2) the initial
condition is given by a probability measure µ0 on H, with the informal idea that there is
some underlying probability P such that for A ⊆ H

µ0(A) = P (u0 ∈ A).

Then, informally, as time evolves we can think of measures µt given by

µt(A) = P (u(t) ∈ A). (7)

However, this idea is only heuristic, because we do not have any meaning for the value u(t)
for a random initial condition u0 - since in dimension n ≥ 3 the uniqueness problem for
equation (2) is still open. If we did have uniqueness of solutions then equation (7) could
be made precise by writing St(u) for the value at time t of the solution to (2) with initial
condition u, and then the family of measures µt would be given by

µt(A) = µ0(S−1
t (A)).

Even though there is no such function St to make this precise, by arguing informally Foias
[8] derived the following equation that would be satisfied by the family µt if St did exist:

∫

H
ϕ(u)dµt(u)−

∫

H
ϕ(u)dµ(u) =
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∫ t

0

∫

H
[−ν((u, ϕ′(u)))− b(u, u, ϕ′(u)) + (f(s), ϕ′(u))]dµs(u)ds (8)

where ϕ is any test function of the form ϕ(u) = expi(u,v) with v ∈ V. This is called the
Foias equation, and it makes sense because there is no reference to the possibly non-existent
function St that was used informally in Foias’ derivation. Solutions to the Foias equation (see
below) are called statistical solutions to the Navier-Stokes equations. In dimensions n ≥ 3
Foias’ derivation of equation (8) is only heuristic so it does not guarantee the existence of
statistical solutions, and these must be constructed by some other means, as Foias did in [8].

Here is the precise definition of a statistical solution.

Definition 5.1 Suppose that a Borel probability measure µ on H is given, with
∫

H |u|2dµ <
∞. Then a family of probability measures (µt)t≥0 is a statistical solution of the Navier-
Stokes equations with initial condition µ if µ0 = µ and

(i) the function t 7→
∫

H
|u|2dµt(u) is L∞(0, T ) for all T < ∞,

(ii)
∫ T

0

∫

H
‖u‖2dµt(u)dt < ∞ for all T < ∞,

(iii) for all t ≥ 0 and test functions ϕ as above equation (8) holds.

Foias’ proof [8] of existence of statistical solutions to the Navier-Stokes equations in
dimensions n ≤ 4 is long and complicated. A new and very short proof in [2] was based on
the uniqueness of solutions to the Galerkin approximation in an infinite hyperfinite dimension
N , which made Foias’ heuristic derivation completely rigorous in this setting. Essentially
what was proved there was the existence of a random solution to (2) for a given random
initial condition. This is easily proved using the neocompactness methods from [6], together
with the results of the previous section, as follows.

Theorem 5.2 Let x(ω) ∈ H be a random variable defined on a rich probability space (Ω, P ).
Then there is a random variable y : Ω → M0 such that for almost all ω ∈ Ω, y(ω) is a (weak)
solution to the Navier-Stokes equations with initial condition x(ω).

Proof Since H is separable there is an increasing sequence of compact sets Cn with
x(ω) ∈ ∪n≥1Cn a.s. Let Dn =

(

Cn + γ(Mkn)
)

∩M0, where kn = K + supz∈Cn
|z|2. Then by

Proposition 4.4, Dn is compact, and by Theorem 4.1 we have

(∀z ∈ Cn)(∃y ∈ Dn)[y = z + γ(y)]. (9)

By [6], the function
y(·) 7→ γ(y(·))

is neocontinuous and the set

D = {y(·) : (∀n)(P [y(ω) ∈ Dn] ≥ P [x(ω) ∈ Cn])}
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is neocompact. It follows that there are sequences xn(·) and yn(·) of simple random variables
(i.e. random variables with finite ranges) such that xn takes its values in Cn, xn(ω) → x(ω)
almost everywhere, yn(·) ∈ D, and

yn(ω) = xn(ω) + γ(yn(ω))

for almost all ω ∈ Ω.
Now let C = {x(·)}, which is neocompact. Then we have proved

(∀ε > 0)(∃y ∈ Dε)(∃z ∈ Cε)(z + γ(y) = y)

(simply take z = xn within ε of x and y = yn).
The Approximation Theorem gives a random variable y(·) ∈ D with

y(ω) = x(ω) + γ(y(ω))

for almost all ω, which is as required. 2

To see that this is sufficient to give statistical solutions, we have

Theorem 5.3 Suppose that y is an M0-valued random variable on a probability space (not
necessarily a rich space) with

y(ω) = x(ω) + γ(y(ω))

for a.a. ω, and such that
E(|x(ω)|2) < ∞.

Then the family of measures µt on H given by µt(A) = P (y(ω, t) ∈ A) is a statistical solution
to the Navier-Stokes equations.

Proof Simply follow through Foias’ heuristic, as in [2]. 2

6 Stochastic Navier-Stokes equations

We show here how the existence proof for stochastic Navier-Stokes equations in dimensions
n ≤ 4 can be presented using the machinery of [6]. The pattern of the proof is similar to
the corresponding existence result for the deterministic case (Sec. 4), that used the classical
analogue of this machinery. In that case we showed how the essential facts that made this
work also led to a simple proof that avoids that machinery. In the stochastic case however, it
seems unlikely that the proof below can be recast in a way that avoids the use of some form
of the neocompactness machinery, because of the need for some kind of enriched probability
space to carry the solution in general.

We begin by reviewing from [3] the formulation of the stochastic Navier-Stokes equations.
Suppose that Q : H → H is a linear nonnegative trace class operator and that w(t), t ≥ 0
is an H-valued Wiener process with covariance Q, defined on an adapted probability space
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ΩΩ = (Ω,F , (Ft)t≥0, P ). If f : [0, T ] × V → V′ and g : [0, T ] × V → L(H,V′) then the
stochastic Navier-Stokes equations with full feed-back take the form

du(t) = [−νAu(t)−B(u(t)) + f(t, u(t))]dt + g(t, u(t))dw(t) (10)

which is to be understood as an integral equation, using the Bochner integral for the drift
term and the stochastic integral of Ichikawa [10] for the noise term. The initial condition u0

can be random in H, although to begin with we consider only fixed initial conditions u0 ∈ H.
Thus we have the following definition:

Definition 6.1 A stochastic process u(t, ω) on ΩΩ is a solution to the stochastic Navier-
Stokes equations (10) if it is adapted and has almost all paths in the space

Z = C(0, T ;Hweak) ∩ L2(0, T ;V) ∩ L∞(0, T ;H)

and the integral equation

u(t) = u0 +
∫ t

0
[−νAu(s)−B(u(s)) + f(s, u(s))]ds +

∫ t

0
g(s, u(s))dw(s) (11)

holds as an identity in V ′.

Now take a rich adapted probability space ΩΩ = (Ω, P,G, (Gt)t≥0) carrying an H-valued
Wiener process w with covariance Q. A process is said to be adapted for ΩΩ if it is adapted
with respect to the filtration (Ft)t≥0 where Ft is the P -completion of

⋂

s>t Gs.
Recall that Km is the compact subset of H given by Km = {u ∈ H : ‖u‖ ≤ m} with the

H-topology.
The existence theorem proved in [3], in the special case that ΩΩ is an adapted Loeb space,

is

Theorem 6.2 Let ΩΩ be a rich adapted space. Suppose that u0 ∈ H and f : [0, T ]×V → V ′

and g : [0, T ]×V → L(H,H) are jointly measurable functions with the following properties:
(i) f(t, ·) ∈ C(Km,V ′

weak) for all m,
(ii) g(t, ·) ∈ C(Km,L(H,H )weak) for all m,
(iii) |f(t, u)|V ′ + |g(t, u)|H,H ≤ a(t)(1 + |u|), for some function a ∈ L2(0, T ).
Then for each fixed u0 ∈ H the stochastic Navier-Stokes equation (11) has a solution u

on ΩΩ, with u independent of G0, and such that

E
(

sup
t≤T

|u(t)|2 +
∫ T

0
‖u(t)‖2dt

)

< ∞.

(In fact u is in the space N0 defined below).
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We present a proof of this using the neocompactness machinery; first we set up some
notation.

Let N be the set
N = {y ∈ L0(Ω,M) : y is adapted},

and let G⊥ be the set

G⊥ = {y ∈ L0(Ω,M) : y is independent of G0}.

Let
E(y) =

∫ T

0
‖y(t)‖2dt + sup

t≤T
|y(t)|2,

and define
N0 = N ∩ {y : y(0) ∈ H & E(E(y)) ≤ K1 + K2|y(0)|2 }

where K1 and K2 are constants to be specified below. (In this definition by “y(0) ∈ H” we
mean that y(0) is non-random and in H.)

Proposition 6.3 N , G⊥, and N0 are neoclosed subsets of L0(Ω,M).

Proof It is shown in [6] that the set of adapted processes is neoclosed; i.e. N is neoclosed.
To show that G⊥ is neoclosed, first show that the set

G⊥
0 = {x ∈ L0(Ω, IR) : |x| ≤ π/2 and x is independent of G0}

is neoclosed. We have

G⊥
0 = {x : (∀z ∈ C)(E(xz) = E(x)E(z) and |x| ≤ π/2)}

where C is the set of G0-measurable indicator functions, which is a basic neocompact set.
Then use the universal quantifier rule (f) and the fact that the expectation E is neocontinous
on uniformly bounded sets of random variables. For G⊥ itself, note that

y ∈ G⊥ ⇔ (∀k)(∀q ∈ [0, T ])(arctan(yk(q, ·)) ∈ G⊥
0 )

(q ranging over rationals). The function y(·) 7→ arctan(yk(q, ·)) is neocontinuous. Now
use the facts that neoclosed sets are closed under countable intersections and preimages by
neocontinuous functions.

The set of y with y(0) ∈ H, constant, is neoclosed because the function y 7→ y(0)
is neocontinuous and the space H is closed and separable (so the set of constant random
variables in L0(Ω,H) is neoclosed).

The set of y with E(E(y)) ≤ K1 +K2|y(0)|2 is neoclosed since the function E : M → IR
is lsc and so E(E(y(·)) is neo-lsc, and the function y 7→ y(0) is neocontinuous.

N0 is the intersection of these two sets with N and thus is also neoclosed. 2
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Now for each k > 0 define

Nk = N ∩ {y : E(E(y)) ≤ k}.

Clearly each Nk is neoclosed in N , and N0 ⊆ ∪k>0Nk = N∞ say.
We now define a function γ̃ : N∞ → N by

γ̃(y)(s) =
∫ s

0
[−νAy(t)−B(y(t)) + f(t, y(t))]dt +

∫ s

0
g(t, y(t))dw(t) (12)

Note that u = y is a solution to the stochastic Navier-Stokes equations with initial
condition u0 = x if and only if y = x + γ̃(y). Moreover, we have

γ̃ : G⊥ ∩N∞ → G⊥ ∩N ,

because the Wiener process w has increments that are independent of F0 (by definition).
We wish to prove neocompact analogues of Propositions 4.4 and 4.3 for the sets Nk. For

this we must deal with the two integrals in γ̃ separately. We may write

γ̃(y) = h(y) + I(y)

where I(y) denotes the infinite dimensional stochastic integral

I(y) =
∫ ·

0
g(s, y(s))dw(s).

and h(y) is the Bochner integral term

h(y)(s, ω) =
∫ s

0
[−νAy(t, ω)−B(y(t, ω)) + f(t, y(t, ω))]dt = γ(y(ω))(s).

Here γ : M∞ → M is slightly more general than the function γ in Section 4 because of the
feedback in f , but Propositions 4.3 and 4.4 are still valid; i.e. γ here is also continuous on
Mk and γ(Mk) is relatively compact for each k > 0 (with the obvious modifications to the
definition of Mk).

First we deal with h. Define the set

N̂k = {y ∈ L0(Ω,M) : E(E(y)) ≤ k}

which is neoclosed, and let

M̂m = {y ∈ L0(Ω,M) : E(y(·)) ≤ m a.s. } = L0(Ω,Mm).

First we note that:

Lemma 6.4 Assume the hypotheses of Theorem 6.2. Then for each m > 0 the function h
is neocontinuous from M̂m into L0(Ω,M) and h(M̂m) is contained in a neocompact subset of
L0(Ω,M).
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Proof Since h(y)(ω) = γ(y(ω)) and γ is continuous, it follows that h is neocontinuous
on each M̂m. Since γ(Mm) is relatively compact, it follows that h(M̂m) is contained in a
neocompact set. 2

Lemma 6.5 Assume the hypotheses of Theorem 6.2. Then for each k > 0 the function h
is neocontinuous from N̂k into L0(Ω,M) and h(N̂k) is contained in a neocompact subset of
L0(Ω,M).

Proof For each m let Dm be a neocompact set with h(M̂m) ⊆ Dm. Fix k, and take y ∈ N̂k.
By Chebyshev’s inequality, for each m we have P (E(y) ≤ m) ≥ 1− k

m . Define ym by

ym =
{

y on the set {E(y) ≤ m}
0 otherwise

Then we have ym ∈ M̂m and h(y) = h(ym) on {E(y) ≤ m}. Hence ρ(h(y), h(ym)) ≤ k
m and

so h(y) ∈ (Dm)k/m. Thus h(N̂k) ⊆ D where

D =
⋂

m
(Dm)

k
m

which is neocompact by closure under diagonal intersections.
To see that h is neocontinuous on N̂k, take a neocompact set C ⊆ N̂k and for each m

let Cm = {ym : y ∈ C} ⊆ M̂m. The function y 7→ ym is neocontinuous, and so Cm is
neocompact. The graph of h restricted to C is the neocompact set

⋂

m
{(y, v) ∈ C ×D : (∃z ∈ Cm)

(

ρ(y, z) + ρ(v, h(z)) ≤ 2k
m

)

}.

2

Corollary 6.6 Assume the hypotheses of Theorem 6.2. Then for each k the function h is
neocontinuous from Nk into N , and h(Nk) is contained in a neocompact subset of N with
respect to L0(Ω,M).

Proof This follows immediately from Lemmas 6.4 and 6.5, since Nk ⊆ N̂k. 2

To obtain the same result for I we must first prepare the way by dealing with a class of
bounded integrands. For each m > 0 define

Jm = N ∩ {y : sup
t≤T

|y(t)|2 ≤ m a.s.};

clearly Jm is neoclosed.

Lemma 6.7 Assume the hypotheses of Theorem 6.2. Then for each m the function I is
neocontinuous from Jm into N , and I(Jm) is contained in a neocompact subset of N with
respect to L0(Ω,M).
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Proof Let In(y) denote the finite dimensional stochastic integral

In(y) = (
∫ ·
0 g(s, y(s))dw(s))(n).

The results of [6] show that for each n and m, the function In is neocontinuous from Jm

into L0(Ω,M). The bound (iii) on g insures that for fixed m the set ∪nlaw(In(Jm)) is tight,
so the function I maps Jm into a neocompact set D in L0(Ω,M).

For each neocompact set C ⊆ Jm in L0(Ω, M), the graph of I|C is the neocompact set

⋂

n {(y, z) ∈ C ×D : Πn(z) = In(y)}.

Therefore I is neocontinuous on Jm. 2

Now we must extend Lemma 6.7 to Nk.
Let ST be the set of all stopping times τ ∈ L0(Ω, [0, T ]) and for any process y let yτ

denote the stopped process y(ω)(t∧ τ). It is shown in [FK] that ST is neocompact, and that
the function (y, τ) 7→ yτ is neocontinuous from N × ST into N .

Proposition 6.8 For each k > 0 the set I(Nk) is contained in a neocompact subset of N
with respect to L0(Ω, M).

Proof By Lemma 6.7, for each m ∈ IN there is a neocompact set Dm ⊆ N such that

I(Jm) ⊆ Dm.

If y ∈ Nk then E(supt≤T |y(t)|2) ≤ k, and by Chebyshev’s inequality we have

P (sup
t≤T

|y(t)|2 ≤ m) ≥ 1− k
m .

For y ∈ N let τm,y(ω) be the first time t such that either t = T or sups≤t |y(s)|2 ≥ m. Then
τ = τm,y is a stopping time; if y ∈ Nk, then yτ belongs to Jm and P (y = yτ ) ≥ 1 − k

m ;
i.e. ρ(y, yτ ) ≤ k

m . Moreover I(y) = I(yτ ) on the set {y = yτ} and so ρ(I(y), I(yτ )) ≤ k
m .

But I(yτ ) ∈ Dm and hence I(y) ∈ (Dm)k/m in the space L0(Ω,M). It follows that I(Nk) is
contained in the set

D = N ∩
⋂

m
(Dm)

k
m .

By closure under diagonal intersections, D is neocompact in L0(Ω,M). 2

Proposition 6.9 Assume the hypotheses of Theorem 6.2. Then for each k the function I
is neocontinuous from Nk into N .
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Proof Let C be a neocompact subset of Nk. By the preceding proposition, there is neo-
compact D ⊇ I(Nk). Since C and ST are neocompact, the set C̃ = {yτ : y ∈ C ∧ τ ∈ ST}
is neocompact. Moreover, the argument in the proof of Proposition 6.8 shows that for each
y ∈ C, for each m there is a stopping time τ such that yτ ∈ C̃ ∩ Jm and ρ(y, yτ ) ≤ k

m and
ρ(I(y), I(yτ )) ≤ k

m . It follows that the graph of I|C is the neocompact set

⋂

m
{(y, v) ∈ C ×D : (∃z ∈ C̃ ∩ Jm)

(

ρ(y, z) + ρ(v, I(z)) ≤ 2k
m

)

},

so I is neocontinuous on Nk. 2

The following proposition is the key to the construction of a solution. It is the neocom-
pact analogue of propositions 4.4 and 4.3, and follow immediately from Corollary 6.6 and
Propositions 6.8, 6.9.

Proposition 6.10 Assume the hypotheses of Theorem 6.2. Then for each k > 0 the function
γ̃ is neocontinuous from Nk into N and the set γ̃(Nk) is contained in a neocompact subset
of N with respect to L0(Ω,M).

Next we define the Galerkin approximation to equation (11) and show that the stochastic
version of Theorem 4.5 holds. We set

γ̃n(y) = Πnγ̃(y).

Then we have

Theorem 6.11 There are constants K1 and K2 such that for each n > 0 and x ∈ H there
is y ∈ N0 ∩G⊥ such that y = x(n) + γ̃n(y) (so y ∈ G⊥ ∩NK1+K2|x|2) .

Proof The equation y = x(n) + γ̃n(y) is a finite dimensional SDE which can be solved
by routine standard methods and has a solution. It was shown in [3] that there are K1 and
K2, independent of n (and which can be given explicitly in terms of the parameters ν, T ,
trQ,

∫ T
0 a2), such that E(E(y)) ≤ K1 + K2|y(0)|2 whenever y = x(n) + γ̃n(y). The proof

of this estimate uses the same ideas as are used for estimating the energy for the Galerkin
approximation to the deterministic Navier-Stokes equations, coupled with the Burkholder-
Davis-Gundy inequality and an application of Gronwall’s lemma. (In [3] it was established
for an infinite integer n, by transfer of finite dimensional methods which are used in the
present situation.) 2

Theorem 6.12 (Neo-Dini’s Theorem) For a rich adapted space ΩΩ, let D ⊆ L0(Ω,M) be a
neocompact set and suppose that fn : D → IR is a sequence of neocontinuous functions with
fn(x) ↘ 0 monotonically as n →∞ for each fixed x ∈ D. Then fn → 0 uniformly on D.
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Proof Suppose fn does not converge uniformly to 0 on D. Then there is an ε > 0 such
that for arbitrarily large n ∈ IN, the set

Dn = {x ∈ D : |fn(x)| ≥ ε}

is nonempty. Since fn(x) converges monotonically for each x, the sets Dn form a decreasing
chain. Each Dn is neocompact because D is neocompact and fn is neocontinuous. By the
countable compactness property,

⋂

n Dn is nonempty, contrary to hypothesis. 2

We now use the neo-Dini’s theorem to prove a stochastic analogue of Proposition 4.6.

Proposition 6.13 For k > 0, γ̃n(y) → γ̃(y) uniformly on Nk.

Proof By Proposition 6.10, γ̃(Nk) ⊆ D for some neocompact set D ⊆ N . The projection
function Πn is continuous on M and therefore neocontinuous on L0(Ω,M). By the above
neo-Dini’s Theorem, Πn(z) → z uniformly on D, and the result follows. 2

Proof of Theorem 6.2 We argue as in the proof of Theorem 4.1. Let x = u0. It suffices
to show that there exists y ∈ G⊥ ∩ Nk where k = K1 + K2|x|2 such that y = x + γ̃(y). By
Proposition 12, there is a neocompact set D ⊆ N such that γ̃(Nk) ⊆ D. By 6.11 and 6.13,
for each ε >0 there exists n ∈ IN and yn ∈ G⊥ ∩Nk such that

yn = x(n) + γ̃n(yn),

and in the space N , yn is within ε of x + γ̃(yn) which belongs to D. Thus

(∀ε > 0)(∃z ∈ Dε ∩G⊥ ∩Nk)(ρ(z, x + γ̃(z)) ≤ ε).

By Proposition 6.10, γ̃ is neocontinuous on Nk. The Approximation Theorem now gives the
required solution y ∈ G⊥ ∩Nk such that y = x + γ̃(y). 2

We conclude with an existence theorem for stochastic Navier-Stokes equations with a
random initial condition.

Theorem 6.14 Let ΩΩ be a rich adapted space. Suppose that u0(ω) is a G0-measurable ran-
dom variable on ΩΩ with values in H, and f, g satisfy the hypotheses of Theorem 6.2. Then
the stochastic Navier-Stokes equation (11) has a solution u(t, ω) on ΩΩ with initial value
u(0, ω) = u0(ω). Moreover, if E [|u0(ω)|2] < ∞, then

E
(

sup
t≤T

|u(t)|2 +
∫ T

0
‖u(t)‖2dt

)

< ∞. (13)

Proof We shall use the fact that Theorem 6.2 gives us a solution with a deterministic
initial value which is independent of G0.
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Let x(ω) = u0(ω) be a G0-measurable initial value. Since H is separable there is an
increasing sequence of compact sets Cn ⊆ H with P [x(ω) ∈ Cn] ≥ 1 − 1/n for each n ≥ 1.
Let kn = K1 + K2 supz∈Cn

|z|2. Let Dn be a neocompact subset of N such that

Dn ⊇ γ̃(Nkn).

We can take the sets Dn to be increasing. Let Gn be the neocompact set of all G0-measurable
random variables in L0(Ω, Cn). Then the set Bn = Gn + Dn is a neocompact subset of N
such that

Bn ⊇ Gn + γ̃(Nkn).

By closure under diagonal intersections (Lemma 2.9), the set

B =
⋂

n≥1

((Bn)1/n)

is neocompact.
For each n ≥ 1 there is a simple function xn ∈ Gn such that for each m ≤ n, whenever

x(ω) ∈ Cm then xn(ω) ∈ Cm and xn(ω) is within 1/n of x(ω). Hence xn ∈ (Gm)1/m for all
m ≤ n.

By piecing together finitely many solutions from Theorem 6.2 which are independent of
G0, we see that for each n there is a yn ∈ Nkn ∩Bn such that

yn = xn + γ̃(yn) (14)

So yn ∈ (Bm)1/m for each 1 ≤ m ≤ n, and it follows (since the sets Bn are increasing) that
yn ∈ B. Thus for each n,

(∃xn ∈ {x}1/n)(∃yn ∈ B)[yn = xn + γ̃(yn)].

Since the addition function is neocontinuous on random variables, it follows that the function

(z(·), y(·)) 7→ z(·) + γ̃(y(·))

is neocontinuous on L0(Ω,H)×Nkn . So by the Approximation Theorem there is a stochastic
process y(·) ∈ B with

y = x + γ̃(y)

as required.
Suppose finally that E [|x(ω)|2] = m < ∞. By Theorem 6.2, the yn may be chosen so

that yn ∈ Nk, where k = K1 + K2m. Since Nk is neoclosed, we may take the solution y to
be in Nk, and therefore (13) holds. 2

In Theorem 6.14, it would be more natural to allow the initial value u0(ω) to be F0-
measurable rather than G0-measurable, where F0 is the completion of

⋂

t>0 Gt. The follow-
ing corollary shows that this can be done if the rich adapted space is good enough. The
construction of a rich adapted space in [7] actually produces a rich adapted space

ΩΩ = (Ω, P,G,Gt)
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with the following additional property:

For every complete separable M and every F0-measurable random variable x ∈ L0(Ω,M)
there is a σ-algebra G ′0 ⊆ F0 such that x is G ′0-measurable and the adapted space ΩΩ with G ′0
in place of G0 is still rich.

Corollary 6.15 If ΩΩ is a rich adapted space with the above additional property, then The-
orem 6.14 holds with F0 in place of G0.

7 Optimal solutions

We show in this section how the neocompact machinery provides existence of optimal solu-
tions to the stochastic Navier-Stokes equations - where the term ‘optimal’ is capable of a wide
variety of interpretations. We shall restrict attention to the case of a fixed initial condition
u0 = x ∈ H, as in Theorem 6.2. Recall that we proved above that there is a solution y to
the equation (11) in the set Nk(x) where k(x) = K1 +K2|x|2 (in fact the solution constructed
is in G⊥ also). It is natural to define the following solution set Sx for the initial condition
x ∈ H:

Sx = {y ∈ Nk(x) : y is a solution to the stochastic Navier-Stokes equation and y(0) = x}

= {y ∈ Nk(x) : y = x + γ̃(y)}
The key point now is the observation that

Theorem 7.1 For each x ∈ H the set Sx is neocompact.

Proof (i) Let f(y) = y − x− γ̃(y), which is neocontinuous on the neoclosed set Nk(x), by
Proposition 6.10. Clearly we have

Sx = Nk(x) ∩ f−1({0})

which is neoclosed. Moreover, Sx ⊆ x+ γ̃(Nk(x)) which is contained in a neocompact set (by
Proposition 6.10 again). Hence Sx is neocompact. 2

The following is a general optimality result for solutions to the stochastic Navier-Stokes
equations; it is a special case of a general optimization result found in [6].

Theorem 7.2 Suppose that g : N0 → IR is a function that is neo-lsc on Nk(x); then there is
a solution ŷ ∈ Sx with

g(ŷ) = inf{g(y) : y ∈ Sx}

i.e. ŷ is an optimal solution for the quantity g(y).
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Proof Since g is neo-lsc and Sx is neocompact, the upper graph

A = {(y, r) ∈ Sx × IR : g(y) ≤ r}

is neocompact; so the set

B = {r ∈ IR : (∃y ∈ Sx)(y, r) ∈ A}.

is a neocompact subset of IR, which means that it is in fact compact. Thus B has a minimum
element s, say, and there is ŷ ∈ Sx with g(ŷ) ≤ s. On the other hand, for any y ∈ Sx, putting
r = g(y) we have (y, r) ∈ A and so r ∈ B. Thus s ≤ r = g(y) and the optimality of ŷ for g
is established. 2

There are several natural functions g for which optimal solutions might be sought - for
example the function E(E(y)) that occurs naturally in the proofs of the previous section,
and the expected energy integral

E(y) = 1
2E(

∫ T

0
|y(t)|2dt

and the expected enstrophy integral

S(y) = 1
2E(

∫ T

0
‖y(t)‖2dt.

Each of these functions is neo-lsc.
On the face of it, the optimality theorem appears to be specific to the particular rich

adapted space on which we are working. However, it has been shown that rich adapted
spaces are universal, so that if y′ is a solution on some other adapted space ΩΩ′ then there
is y ∈ L0(Ω,M) with the same adapted distribution as y′ and so for any neo-lsc function
g of the form g(y) = Eg0(y(·)) where g0 is lsc, we have the existence of globally optimal
solutions. This applies to the natural examples E , E, and S above.

The optimality result above can be generalised to the case where the initial condition u0

is random, or specialised to the deterministic setting (where g = 0).
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