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Abstract

In [14] nonstandard analysis was used to construct a (standard)
global attractor for the 3D stochastic Navier–Stokes equations with gen-
eral multiplicative noise, living on a Loeb space, using Sell’s approach
[26]. The attractor had somewhat ad hoc attracting and compactness
properties. We strengthen this result by showing that the attractor
has stronger properties making it a neo-attractor – a notion introduced
here that arises naturally from the Keisler-Fajardo theory of neometric
spaces [18].

To set this result in context we first survey the use of Loeb space
and nonstandard techniques in the study of attractors, with special
emphasis on results obtained for the Navier–Stokes equations both de-
terministic and stochastic, showing that such methods are well-suited
to this enterprise.

KEYWORDS attractor, neo-attractor, stochastic Navier–Stokes equations,
Loeb space

1 Introduction

The chief topic of this paper is the study of attractors for the time-homogeneous
stochastic Navier-Stokes (sNS) equations in a bounded domain D ⊂ Rd, prin-
cipally for d = 3. These are equations that describe the velocity of an in-
compressible fluid at each point in D; a general version of the sNS equations
is

{

du =
[

ν∆u − 〈u,∇〉u + f(u)−∇p
]

dt + g(u)dwt

div u = 0 (1)

Here u = u(t, ·, ·) where u(t, x, ω) is the (random) velocity of the fluid at the
location x ∈ D at time t, so that we have

u : [0,∞)× D× Ω → Rd
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where Ω is the domain of an underlying probability space. The initial condition
u(0, ·, ·) = u0 is prescribed (and may be random); the boundary condition is
either u(t, x, ω) = 0 for x ∈ ∂D or, occasionally, when d = 2 we assume periodic
boundary conditions. The term p denotes the pressure and ν is the viscosity.
The terms f and g represent external forces influencing the fluid, which allow
for feedback involving the velocity field u but for the present discussion are
homogeneous in time.

The deterministic Navier–Stokes equations are the result of taking g = 0
and u non-random – so we simply have u = u(t, x).

Although the theory of attractors for 2D deterministic Navier-Stokes equa-
tions is well understood (see [28] for an exposition), in higher dimensions, or
when noise is introduced into the system, or both, even the existence of at-
tractors is still problematic. Nonstandard techniques have prove to be useful
in the study of the problems to be addressed. For example, in the paper [14], a
new notion of a process attractor was introduced. A process attractor A ⊆ X
was constructed for a family X of solutions to the 3D stochastic Navier-Stokes
equations with a general multiplicative noise. This made essential use of a
filtered Loeb probability space using methods from nonstandard analysis, and
followed earlier papers [6], [7], [9] that show the usefulness of nonstandard anal-
ysis in the study of attractors for Navier-Stokes equations – in all cases giving
completely standard results. Such techniques are natural because attractors
have to do with the behaviour of a system “at infinity” – a notion which can
be handled easily in the extended framework of nonstandard analysis. In the
case of the Navier–Stokes equations a further advantage stems from the fact
that nonstandard analysis has proved to be an effective tool for the study of
these equations – both deterministic [3] and stochastic [4]; see the book [8] for
a complete exposition.

The purpose of the current paper is two-fold. The first (Part I) is to amplify
the remark above by giving a brief survey of the way in which nonstandard
analysis provides a useful tool for the study of attractors in general and specif-
ically for the Navier-Stokes equations – both deterministic and stochastic. We
include a new and simple proof of Sell’s result establishing the existence of an
attractor for 3D Navier–Stokes equations, and its characterization in terms of
two-sided solutions. This then provides the context for Part II of the paper.

The second purpose, in Part II, making this a sequel to [14], is to strengthen
the results of that paper by introducing the notion of a neo-attractor for a
system of stochastic Navier-Stokes equations. This is a stronger notion than
that discussed in [14], and we show that the attractor A of that paper is actually
a neo-attractor. The upshot of this is the existence of an attractor for the 3D
stochastic Navier–Stokes equations that has new, stronger and more natural
compactness and attraction properties. The general theory of neoattractors
that is developed also gives the existence of a neoattractor for any specialized
subset Y of the family X having natural closure properties.

The authors would like to thank the editor for suggesting the expansion of
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an earlier version of this paper to include the survey to put the new results in
context.

1.1 Outline of the paper

In Part I (Section 2) we take a general definition of an attractor for a dynamical
system and show how nonstandard analysis can be used to prove one of the
basic existence theorems. This is applied in Section 3 to give a simple proof of
Sell’s existence theorem for an attractor for the 3D deterministic Navier-Stokes
equations.

Part II begins with a discussion of the general problem of defining attractors
for stochastic systems (Section 4) followed by an outline of the existence results
for these that was established in the papers [7], [9] and [14].

We then proceed to new ideas and results. In [14] the compactness and
attraction properties of the attractor A for general 3D stochastic Navier-Stokes
equations were somewhat ad hoc and unsatisfactory. The class of open neigh-
bourhoods of A that absorb bounded sets was rather unnatural, while the
compactness property required of an attractor was defined in terms of laws of
the processes in A rather than in terms of the set A itself. In Section 5 we use
the Keisler-Fajardo theory of neometric spaces from [18] to define a stronger
and more natural notion called a neo-attractor. The open neighbourhoods of a
neo-attractor that absorb bounded sets are the neo-open sets, while the attrac-
tor itself is required to be neo-compact. We prove a general abstract existence
theorem that isolates sufficient conditions for the existence of a neo-attractor.
In Section 7 it is shown that the family of solutions X in the paper [14] satisfies
these conditions, and that the attractor A of that paper is a neo-attractor in
the sense of this paper. The general existence theorem also gives existence of a
neo-attractor for any subset Y of solutions having natural closure properties.

Part II depends in an essential way on [14] although we will outline in
Section 6 the main ideas to make this paper as self-contained as possible.

1.2 Preliminaries

In Section 2 below we outline the basic ideas of global attractors in a deter-
ministic setting. The book [28] is a good reference for a general background
on attractors.

The book [8] for background on stochastic Navier-Stokes equations, and any
of the books [1, 2, 13] for more background on nonstandard analysis and Loeb
measures. The appendices provide a brief summary of the notions needed
from nonstandard analysis, and a short account of the theory of neometric
spaces that is needed here. In order to assist the reader we use sans serif sym-
bols (x, y, u, v, T etc) for nonstandard objects and the symbols σ, τ to denote
nonstandard time.
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PART I: DETERMINISTIC SYSTEMS

2 Attractors

A setting for the study of attractors that includes all particular instances in
this paper is that of a dynamical system in a metric space M described by a
semigroup (St)t≥0 of operators, which are assumed to be continuous. To make
this precise we have (drawing largely on the exposition in [28])

Definition 2.1 A semiflow on a metric space M is a semigroup of contin-
uous operators St : M→M (t ≥ 0) such that

(a) S0 = I (the identity mapping),

(b) St+s = St ◦ Ss for all s, t ≥ 0,

(c) St is continuous for all t ≥ 0.

(Some authors require the resulting mapping S : [0,∞) ×M →M to be
continuous, but we do not need this.)

The notion of an attractor for such a system is concerned with the asymp-
totic behaviour of its trajectories. There is a variety of notions of an attractor
in the literature, each with its own rationale. For our purposes we adopt the
following fairly strong definition.

Definition 2.2 A global attractor for a semiflow (St)t≥0 is a set A ⊆ M
such that

(a) (Invariance) StA = A for all t.

(b) A is compact

(c) (Attraction) For every open neighbourhood U of A and every bounded
set B ⊆M,

StB ⊆ U

eventually (meaning that there is t0 = t0(B, U) such that StB ⊆ U for
all t ≥ t0).

Remarks

1. Some authors describe such an attractor as a (global) set attractor (in
contrast to a point attractor, where the attraction property (c) applies
only to singleton sets B = {x}).
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2. If there is a global attractor it is unique. To see this consider x ∈ A′ \A
where A′ is another global attractor. Take an open neighbourhood U of
A that excludes x. Since A′ is bounded there is t with StA′ ⊆ U , which
is impossible since StA′ = A′ for all t.

A fairly general existence result for global attractors (as given in [28] for
example) involves the notion of an absorbing set. From the various definitions
that appear in the literature the following is appropriate for our needs.

Definition 2.3 A set E is an absorbing set for the semiflow(St)t≥0 if for
every bounded set B ⊆M

StB ⊆ E

eventually.

To illustrate the applicability of nonstandard techniques for the study of
attractors we give a proof of the following variation of a theorem that appears
in [28] (Theorem 1.1) .

Theorem 2.4 Suppose that M is a metric space with a semiflow (St)t≥0 hav-
ing a bounded absorbing set E. Assume further that there is some t > 0 such
that StE is relatively compact (i.e. has compact closure). Then there is a global
A attractor for the semiflow given by

A =
⋂

t∈[0,∞)

St(E) (2)

Remarks 1. It is clear that for any two bounded absorbing sets E, E ′ we
have

⋂

t∈[0,∞)

St(E) =
⋂

t∈[0,∞)

St(E ′)

2. It is easy to see that the assumption on the absorbing set E implies the
following apparently stronger condition that often appears in the literature:

for each bounded set B ⊆M there is t > 0 such that StB is relatively
compact.

3. If StE ⊆ K with K compact then clearly K is a compact absorbing set
– so this apparently stronger hypothesis is also implicit.

Proof. First, as noted above, we may assume that E is compact, so that
∗E ⊆ns(M). Let

A =
⋂

t∈[0,∞)

St(E)

Then each St(E) is compact (since St is continuous) so A is also compact.
Write T = ∗S, so that we have Tτ for all τ ≥ 0, τ ∈∗ R, and observe that:
(]) if x ∈ ∗E and τ is infinite then Tτx is nearstandard and ◦Tτx ∈ A.
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To see this we have
Tσx ∈ ∗E

and so
◦(Tσx) ∈ E

for any infinite σ by the absorbing property of E and so for any finite t

◦(Tτx) = ◦(TtTτ−tx)
= St

◦(Tτ−tx) ∈ StE

where we have used the continuity of St, and hence ◦(Tτx) ∈ A.
To see that A is invariant take any a ∈ A. Then a = Tτx for some infinite

τ and x ∈ ∗E, so (]) and the continuity of St gives

Sta = ◦Tta =◦ (TtTτx) = ◦(Tτ+tx) ∈ A

and
a = ◦a =◦ (TtTτ−tx) = St

◦(Tτ−tx) ∈ StA

which shows that A =StA.
Finally we show that A attracts bounded sets. Take an open neighbourhood

U of A; it is sufficient to show that StE ⊆ U eventually. If this fails then there
is a sequence of points xn ∈ E with Snxn /∈ U . Then for any infinite N we have
◦TNxN ∈ A but TNxN /∈ ∗U ; since U is open this means that ◦TNxN /∈ U , a
contradiction.

Remark It can also be shown that the attractor A is given by

A = ◦
⋃

τ−infinite

Tτ
∗E =◦

⋂

n∈N

⋃

τ≥n

Tτ
∗E

which was essentially the way an attractor was defined in the papers [7],[9] for
example.

Theorem 2.4 has a counterpart in the theory of neo-attractors to be devel-
oped later. The same is true for the next result, which gives necessary and
sufficient conditions for the existence of a global attractor. We have not been
able to find this stated explicitly in the literature although it is easy to derive
using standard techniques. For interest we provide a nonstandard proof, using
the fact that a sequence (sn) is relatively compact in M iff and only if ∗sN is
nearstandard for each infinite N .

Theorem 2.5 Suppose that M is a metric space with a semiflow (St)t≥0. The
the following are equivalent.

(a) There is a global attractor for the semiflow (St)t≥0;
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(b) There is a bounded absorbing set E such that for any sequence (xn) in E
and tn →∞ the set {Stnxn} is relatively compact.

If (a) (or (b)) holds the global attractor A is given by

A =
⋂

t≥0
StE (3)

for any bounded absorbing set E.

Proof. (a)⇒(b) For each n let

En = A 1
n = {x : d(x,A) < 1

n}

which is open and therefore an absorbing set that is bounded (because A is
compact hence bounded).

Let E = E1, and let T = ∗S. Take a sequence xn ∈ E and tn → ∞ and
consider an infinite N. We need to show that TtN xN is nearstandard. Since
each Em is absorbing, TtN xN ∈ ∗Em for each finite m and so TtN xN ∈ ∗EM

for some infinite M . Then d(TtN xN , z) < 1
M ≈ 0 for some z ∈ ∗A ⊆ns(M) and

so TtN xN is nearstandard as required.
(b)⇒(a) Take a bounded absorbing set E as given by (b) and r0 such that

StĒ ⊆ E for t ≥ r0. Make the following observation.

(]]) If xn ∈ E for all n and tn → ∞ then TtN xN is nearstandard and
◦TtN xN ∈ A for all infinite N.

To see this, the relative compactness of {Stnxn} means that TtN xN is near-
standard for all infinite N. Then

◦TtN xN = ◦(TtTr0TtN−t−r0xN) = StSr0
◦(TtN−t−r0xN) ∈ St(Sr0Ē) ⊆ StE

since TtN−t−r0xN ∈ ∗E (by absorbtion) and so ◦(TtN−t−r0xN) ∈ Ē.
For the compactness of A take an = Snxn ∈ A and by (]]) we have ◦aN ∈ A

for all infinite N, which shows that A is sequentially compact, hence compact.
For invariance let a ∈ A. There is xn ∈ E with a = Snxn for all n and so

a = TNxN and

Sta = ◦TtTNxN=◦ (TN+txN) ∈ A

by (]]) with tn = n + t, giving StA ⊆ A. Conversely

a = ◦a =◦ (TtTN−txN) = St
◦(TN−txN) ∈ StA

again by (]]), with tn = n− t, giving A ⊆StA.
Finally the attraction property is proved exactly as in the previous theorem.

Remarks (1) We could also have given a further equivalent condition
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(b+) (i) There is a bounded absorbing set E;
(ii) For any bounded set B, any sequence (xn) in B, and tn → ∞, the
set {Stnxn} is relatively compact.

It is clear that (b+) implies (b); and for (b)⇒(b+) simply note that if
B is bounded then taking r with SrB ⊆ E gives Srxn ∈ E for all n and
{Stnxn} = {Stn−rSrxn} is relatively compact (we may assume that tn ≥ r for
all n).

(2) It can also be shown that the attractor A has the description

A = ◦(ns(M) ∩
⋃

τ−infinite

Tτ
∗E)

and an alternative proof can be given starting from this definition of A.
The following notion of a of a subflow and the corollary below will be useful

in later discussion.

Definition 2.6 Let (St)t≥0 be a semiflow on a metric space M. By a subflow
of (St)t≥0 we mean the restriction of (St)t≥0 to a closed subspace N of M such
that St(N ) ⊆ N for each t ≥ 0.

Corollary 2.7 Assume the hypotheses of Theorem 2.4 or (b) of Theorem 2.5.
Then every subflow of (St)t≥0 has a global attractor.

Proof. F = E ∩ N is a bounded absorbing set for the subflow, and any
subset of N that is relatively compact in M is relatively compact in N , so the
preceding theorems apply to the restriction of the flow St to the subspace N .

Before moving on to questions concerning attractors for stochastic systems,
we give a simple proof of Sell’s theorem [26] showing the existence of a global
attractor for the deterministic 3D Navier–Stokes equations. Here nonstandard
techniques are useful in verifying the hypotheses in order to apply Theorem
2.4.

3 Attractors for 3D Navier-Stokes equations

3.1 The 3D Navier–Stokes equations

In this section we consider the time homogeneous deterministic Navier–Stokes
equations







du(t) = [ν∆u(t) − 〈u(t),∇〉u(t) + f(u(t))−∇p(t)] dt

div u = 0
(4)
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in a bounded domain D ⊆ R3 with boundary of class C2. Recall from the
introduction that the term f(u(t)) denotes external forces while p(t) is the
pressure. The function u = u(t, x) is the velocity of a fluid at the point x ∈ D
at time t, and in the above equation u(t) = u(t, ·) denotes the whole velocity
field at time t. This can be regarded as a functional equation, and we adopt
the conventional Hilbert space approach to it as follows. Let H be the closure
of the set

{u ∈ C∞
0 (D,R3) : div u = 0}

in the L2 norm |u| = (u, u)1/2, where u = 〈u1, u2, u3〉 and

(u, v) =
3

∑

j=1

∫

D
uj(x)vj(x)dx.

The letters u, v, w will be used for elements of H. The subspace V is the
closure of the set {u ∈ C∞

0 (D,R3) : div u = 0} in the stronger norm |u|+ ‖u‖
where ‖u‖ = ((u, u))1/2 and

((u, v)) =
3

∑

j=1

(

∂u
∂xj

,
∂v
∂xj

)

.

H and V are Hilbert spaces with scalar products (·, ·) and ((·, ·)) respectively,
and | · | ≤ c‖ · ‖ for some constant c.

By A we denote the self adjoint extension of the projection of −∆ in H.
Classical theory shows that there is an orthonormal basis {ek : k ∈ N} of
eigenfunctions of A with corresponding eigenvalues λk > 0 such that λk ↗∞.
For u ∈ H we write uk = (u, ek), and write Prm for the projection of H on the
subspace Hm spanned by {e1, . . . , em}. Since each ek ∈ V, then Hm ⊆ V. If

u =
∑

ukek ∈ V then ‖u‖2 =
∑

λku2
k, so that the constant c above is λ

1
2
1 .

A trilinear form b is defined by

b(u, v, w) =
3

∑

i,j=1

∫

D
uj(x)

∂vi

∂xj
(x)wi(x)dx = (〈u,∇〉v, w)

whenever the integrals make sense. Note the following well-known properties
of the trilinear form b, where c is a real constant.

b(u, v, w) = −b(u,w, v),

b(u, v, v) = 0,

|b(u, v, w)| ≤ c‖u‖ ‖v‖ ‖w‖

|b(u, v, w)| ≤ c|u|
1
4 ||u‖

3
4 |v|

1
4 ‖v‖

3
4 ‖w‖ (5)
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The last inequalities are two of the many continuity properties of b that are
used in the study of the Navier–Stokes equations, and are proved in [27] for
example.

From (5) we have the following crucial lemma (a slight extension of the
Crucial Lemma (Lemma 2.7.7) of the book [8]).

Lemma 3.1 (Crucial Lemma) If u, v ∈ ∗V with ||u|| and ||v|| both finite,
and z ∈ V then

∗b(u, v,∗ z) ≈ b(u, v, z)

where u = ◦u and v = ◦v (with u, v ∈ V.)

Proof. The finiteness of ||u|| and ||v|| means that |u− ∗u| ≈ 0 ≈ |v−∗v|.
We have b(u, v, z) = ∗b(∗u, ∗v, ∗z) and

|∗b(u, v,∗ z)− ∗b(∗u, ∗v, ∗z)| ≤|∗b(u− ∗u, v,∗ z)|+|∗b(∗u, v − ∗v, ∗z)|

Using (5) gives

|∗b(u− ∗u, v,∗ z)| ≤c|u− ∗u|
1
4 ||u− ∗u‖

3
4 |v|

1
4 ‖v‖

3
4 ‖z‖ ≈ 0

and similarly |∗b(∗u, v − ∗v, ∗z)| ≈ 0 which gives the result.

3.2 Functional formulation of the Navier–Stokes equa-
tions

In the above framework, the deterministic Navier–Stokes equations may be
formulated as the following differential equation in V′ (the dual of V):

du = [−νAu−B(u) + f(u)]dt, (6)

where B(u) = b(u, u, ·). Note that the pressure has disappeared, because
∇p = 0 in V′ (using div v = 0 in V and an integration by parts). Although
equation (6) is regarded as an equation in V′, it turns out that solutions can
be found that live in H (and in fact in V for almost all times).

The equation (6) is really an integral equation, with the integral being the
Bochner integral. Thus, when we write

u(t1) = u(t0) +
∫ t1

t0
[−νAu(t)−B(u(t)) + f(u(t))]dt

we mean that for all v ∈ V we have

(u(t1), v) = (u(t0), v) +
∫ t1

t0
[−ν(Au(t), v)− (B(u(t)), v) + (f(u(t)), v)]dt

as an equation in R.
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The existence of solutions to these equations was established by Leray in
the 1930’s using the method of finite dimensional (“Galerkin”) approximations,
a method that is still one of the principal tools in use. An efficient proof of
existence was given in [3] using nonstandard methods, using a hyperfinite-
dimensional approximation in HN for an infinite N , and thereby avoiding
the need for specialized compactness results. In all cases the solutions are so
called weak solutions, and the question of uniqueness of these is still open.
(By contrast, so called strong solutions that live in V for all time can only be
shown to exist for short time scales, but for these uniqueness is known.)

3.3 Attractors for 3D Navier–Stokes equations

The problem with the very definition of an attractor for the 3D Navier–Stokes
equations is a consequence of the problem of uniqueness. If uniqueness was
known then a semigroup could be defined on H by setting Stv = u(t) where
u(·) is the unique solution with initial condition u(0) = v. To overcome this
possible non-uniqueness, Sell’s radical approach in [26] was to take a space of
weak solutions W defined below as the arena of activity rather than the space
H. We will show how nonstandard techniques provide a simple proof of Sell’s
existence theorem for an attractor in this setting. The solutions constructed by
the Galerkin method have certain other properties that can be derived heuris-
tically from the equations themselves (and the same is true for the solutions
constructed in [3]). This leads to Sell’s definition of a weak solution [26].

Definition 3.2 (Sell [26]) Let f : H → H such that |f(u)| ≤ c + d|u| with
d < νλ1. A weak solution to the Navier–Stokes equations (6) is a
function u : [0,∞) → H such that

(W1) u ∈ L∞(0,∞;H) ∩ L2(0, T ;V) for all T

(W2) for all t ≥ t0 ≥ 0

u(t) = u(t0) +
∫ t

t0
[−νAu(s)−B(u(s)) + f(u(s))]ds (7)

as a Bochner integral equation in V′.

(W3) for almost all t0 > 0 and all t > t0

|u(t)|2 ≤ |u(t0)|2 exp(−k1(t− t0)) + k2 (8)

where k1 = νλ1 − d and k2 = c2k−2
1 .

(W4) for almost all t0 > 0 and all t > t0

|u(t)|2 + 2ν
∫ t

t0
||u(s)||2 ds ≤ |u(t0)|2 + 2

∫ t

t0
(f(u(s)), u(s))ds (9)

11



Denote by W = W(f) the set of all weak solutions for a given f as above.
A norm is defined on W by

|u| =
(∫ ∞

0
|u(t)|2 exp(−t)dt

) 1
2

=
(∫ ∞

0
|u(t)|2µ(dt)

) 1
2

where µ(dt) = exp(−t)dt

Thus W is a subspace of the complete metric space M of measurable functions
ξ : [0,∞) → H with norm

|ξ| =
(∫ ∞

0
ξ(t)2 exp(−t)dt

) 1
2

=
(∫ ∞

0
ξ(t)2µ(dt)

) 1
2

where µ(dt) = exp(−t)dt. That is, M = L2(0,∞;H; µ), which is actually a
separable Hilbert space.

Remarks

1. It is well known that a weak solution is weakly continuous in H; this
follows from (7).

2. Sell [26] has f ∈ H so that c = |f | and d = 0, giving k1 = νλ1 and k2 =
|f |2(νλ1)−2 so (W3) is consistent with Sell’s corresponding condition.

3. Sell [26] adds the condition that Dtu ∈ Lp
loc[0, V

′) for p = 4
3 . This follows

however from the fact that

Dtu = −νAu−B(u) + f

together with:

|Au|V ′ = ||u||

|B(u)|V ′ ≤ c|u|
1
2 ||u||

3
2

the latter inequality using (5).

4. Sell also defines a wider set of generalised weak solutions in order to
have a complete metric space. Here however completeness is not needed;
we will see below how the attractor we construct for the class W is also
an attractor for the wider class of generalised weak solutions.

5. The above norm is equivalent to the metric used by Sell in [26], and has
the same bounded sets.

6. It is well known (see for example [28]) that if f : H → H such that
|f(u)| ≤ c0 + d1|u| and d1 < νλ1 then for any initial condition u0 ∈ H
there is a weak solution u ∈ W(f) with u(0) = u0.
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3.4 The semiflow and a global attractor

A semiflow St is defined on W as follows.

Definition 3.3 (Sell [26]) For u ∈ W and t ≥ 0 define Stu ∈ L∞(0,∞;H)
by

Stu(s) = u(t + s)

for s ≥ 0. That is, Stu is obtained by translating u to the left by t and retaining
only the portion defined for positive time.

It is clear that St maps W into W and has the semigroup property. It is
easy to see that each St is continuous (in fact Lipschitz continuous) because if
u, u′ ∈ W then

|St(u− u′)|2 =
∫ ∞

0
|(u− u′)(t + s)|2 exp(−s)ds

= exp(t)
∫ ∞

t
|(u− u′)(s)|2 exp(−s)ds

≤ exp(t).|u− u′|2

Theorem 3.4 (Sell [26]) Suppose that f : H → H is continuous with
|f(u)| ≤ c0 + d1|u|, where d1 < νλ1. Then there is a global attractor A for
the set W = W(f) of weak solutions to the Navier–Stokes equations with forc-
ing term f , and any subflow also has a global attractor.

Proof. We check that the hypotheses of Theorem 2.4 are satisfied for the
metric space W . The result will then follow from Theorem 2.4.

The set E = {u ∈ W : |u|2 ≤ k2 + 1} is a bounded absorbing set. This
follows easily from the energy inequality (8) in the definition of W , which
shows that for any u ∈ W

|Stu|2 ≤ |u|2 exp(−k1t) + k2.

So if B = {u ∈ W : |u| ≤ k} = B(k), say, we have

StB ⊆ E

whenever t ≥ 2(k1)−1 log k.
To check the compactness property of the maps St, we show that if B is

bounded then S1B is relatively compact. Here the technology of nonstandard
analysis proves useful, particularly Loeb measure and integration theory.

Let B = B(k); it is sufficient to show that each u ∈ ∗S1
∗B is nearstandard

to a point u ∈ W . Let u = ∗S1v with v ∈ ∗B. That is

u(τ) = v (τ + 1)
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for τ ≥ 0. Then (using τ and σ to denote nonstandard times)
∫ 1

0
|v(τ)|2dτ ≤ e

∫ 1

0
|v(τ)|2 exp(−τ)dτ ≤ ek2

and so there is some τ0 ∈ ∗(0, 1) with |v(τ0)| finite and with ∗(8) and ∗(9)
holding for all τ ≥ τ0. (In fact we may take τ0 with |v(τ0)| ≤ ek2 + 1.)

Writing k3 = |v(τ0)|2 + k2 this means that

|v(τ)|2 ≤ k3 < ∞

for all τ ≥ τ0. So
|u(τ)| ≤

√

k3 (10)

for all τ ≥ 0. Thus u(τ) is weakly nearstandard for each τ ≥ 0 and we can
define the weak standard part ◦u(τ) ∈ H. If τ1 ≈ τ2 then from (7) we have,
taking v = en for finite n

un(τ2)− un(τ1) =
∫ t1

t0
[−νλnun(τ)− (∗B(u(τ)), ∗en) + (∗f(u(τ)), ∗en)]dτ ≈ 0

since the integrand is S-integrable (see below). Thus ◦u(τ2) = ◦u(τ1), so for real
t ≥ 0 we may define u(t) = ◦u(τ) for any τ ≈ t, and u(t) is weakly continuous.
We will see that u ∈ W and u ≈ u in the norm of W .

From ∗(9) for τ0 we see that
∫ τ

τ0
||v(σ)||2 dσ is finite for all finite τ and

so ||v(τ)|| is finite for a.a. finite τ ≥ τ0 (with respect to the Loeb measure
dLτ). Thus, for a.a. finite τ ≥ 0, ||u(τ)|| is finite so that u(τ) is strongly
nearstandard and

|◦u(τ)| = ◦|u(τ)| (11)

Take any standard finite time T . We will show that u has properties (W3)
and (W4) of Definition 3.2 on [0, T ]. Let Y be the set of all τ ∈ ∗[0, T ] with
the following properties:

(i) ||u(τ)|| is finite;
(ii) ∗(8) and ∗(9) hold in ∗[0, T ] with t0 = τ. That is, for all τ1 ∈ ∗[τ, T ]

|u(τ1)|2 ≤ |u(τ)|2 exp(−k1(τ1 − τ)) + k2

and

|u(τ1)|2 + 2ν
∫ τ1

τ
||u(σ)||2 dσ ≤ |u(τ)|2 + 2

∫ τ1

τ
(∗f(u(σ)), u(σ))dσ

Then Y has Loeb measure T and so the set D = st(Y) is a subset of [0, T ]
with full measure (because st−1(D) ∩ ∗[0, T ] ⊇ Y ). Now we see that (8) and
(9) hold in [0, T ] for all t0 ∈ D. Take any such t0 = ◦τ with τ ∈ Y. Then for
t ∈ (t0, T ] we have

|u(t)|2 = |◦u(t)|2 ≤ ◦|u(t)|2 ≤ ◦ (

|u(τ)|2 exp(−k1(t− τ)) + k2
)

= ◦|u(τ)|2 exp(−k1(t− t0)) + k2

= |u(t0)|2 exp(−k1(t− t0)) + k2

14



using (11) to give ◦|u(τ)| = |◦u(τ)|= |u(t0)|.
Similar reasoning shows that for t ∈ (t0, T ]

|u(t)|2 + 2ν
∫ t

t0
||u(s)||2 ds ≤ |u(t0)|2 + 2 ◦

∫ t

τ
(∗f(u(σ)), u(σ))dσ

Now note that (∗f(u(σ)), u(σ)) is S-integrable on [t0, t] since it is bounded, and
so

◦
∫ t

τ
(∗f(u(σ)), u(σ))dσ =

∫ t

τ

◦(∗f(u(σ)), u(σ))dLσ =
∫ t

τ
(◦(∗f(u(σ))), ◦u(σ))dLσ

=
∫ t

τ
(f(◦u(σ)), u(◦σ))dLσ =

∫ t

t0
(f(u(s)), u(s))ds

where we have used (11) and the continuity of f . This establishes (9) on [0, T ].
Next we show that u satisfies the equation (7). Let v ∈ V. We know that

for all t ≥ t0 ≥ 0

(u(t), ∗v) = (u(t0), ∗v) +
∫ t

t0
[−ν((u(σ), ∗v))− (∗B(u(σ)), ∗v) + (∗f(u(σ)), ∗v)]dσ

(12)
We have ◦(u(t), ∗v) = (u(t), v) and ◦(u(t0), ∗v) = (u(t0), v) . For the integral,
we need to show that each integrand is S-integrable on [t0, t], using Lindstrøm’s
lemma for the first two terms. For the first term we have

∫ t

t0
((u(σ), ∗v))2dσ ≤

∫ t

t0
||u(σ)||2dσ.

∫ t

t0
||∗v||2dσ < ∞

so ((u(σ), ∗v)) is S-integrable. For the second term we have, using (5), |(∗B(u(σ)), ∗v)| ≤
c|u(σ)| 12 ||u(σ)|| 32 ||v|| and so

∫ t

t0
|(∗B(u(σ)), ∗v)|

4
3 dσ ≤ (c||v||)

4
3 k

1
3
3

∫ t

t0
||u(σ)||2dσ < ∞

where we have used (10), showing that (∗B(u(σ)), ∗v) is S-integrable. The final
term is S-integrable since it is bounded. So the theory of Loeb integration gives

(u(t), v)− (u(t0), v) = ◦[(u(t), ∗v)− (u(t0), ∗v)]

= ◦
[∫ t

t0
[−ν((u(σ), ∗v))− (∗B(u(σ)), ∗v) + (∗f(u(σ)), ∗v)]dσ

]

=
∫ t

t0
[−ν◦((u(σ), ∗v))− ◦(∗B(u(σ)), ∗v) + ◦(∗f(u(σ)), ∗v)]dLσ

=
∫ t

t0
[−ν((u(◦σ), v))− (B(u(◦σ)), v) + (f(u(◦σ)), v)]dLσ

=
∫ t

t0
[−ν((u(s), v))− (B(u(s)), v) + (f(u(s)), v)]ds

15



where the penultimate equality is because for a.a. σ, ||u(σ)|| is finite and hence
(a) u(σ) is weakly nearstandard in V and so ((u(σ), ∗v)) ≈ (◦u(σ), v);
(b) (∗B(u(σ)), ∗v) ≈ (B(◦u(σ)), v) using Lemma 3.1; and similarly (∗f(u(σ)), ∗v) ≈

(f(u(◦σ)), v)
(c) ◦u(σ) = u(◦σ)
(d) (∗f(u(σ)), ∗v) ≈ (f(u(◦σ)), v) using the continuity of f and (11).

The final equality holds because the standard part mapping ◦ : ∗[t, t0] → [t, t0]
is measure preserving.

We are now done provided we can show that |u−∗u| ≈ 0. We have |u(τ)|, |∗u(τ)|
≤ c1 for all τ and for a.a. τ ∈ ∗[0, T ] we have ||u(τ)|| and ||∗u(τ)|| finite so
that ◦|u(τ) − ∗u(τ)| = |◦u(τ) − ◦(∗u(τ))| for such τ. The weak continuity of u
means that ◦(∗u(τ)) = u(◦τ) for all τ and since ◦u(τ) = u(◦τ) also we obtain,
for finite T,

∫ T

0
|u(τ)− ∗u(τ)|2 exp(−τ)dτ ≈

∫ T

0

◦|u(τ)− ∗u(τ)|2◦ exp(−τ)dLτ

=
∫ T

0
|◦u(τ)− ◦(∗u(τ))|2 exp(−◦τ)dLτ = 0

Thus
∫ T

0
|u(τ)− ∗u(τ)|2 exp(−τ)dτ ≤ T−1

for all finite T and by overflow we have the same for some infinite time T. This
is enough to show that |u− ∗u| ≈ 0 and so u ≈ u as required.

Remarks (1) This proof is very close in many respects to the original non-
standard proof of existence of weak solutions to the Navier–Stokes equations
given in the paper [3]. In that paper the existence of solutions was established
by constructing internal solutions to the Galerkin approximation in dimension
N where N is infinite. The process of taking standard parts and showing that
this gives a standard weak solution is almost identical to the above proof that
◦u(t) is a solution.

(2) In [26] Sell proves the existence of a global attractor for a wider class of
generalized weak solutions – these are solutions that may have a singularity at
t = 0 but are weak solutions away from 0. If u is a generalized weak solution
then Stu ∈ W for any t > 0, so it is clear that A is a global attractor for this
larger class of solutions.

(3) If the definition of a weak solution (Definition 3.2) is tightened by adding
to the list (W1)-(W4) further equalities or inequalities that are preserved under
St then we will have a subflow provided the resulting set is closed in W , and
this will then have a global attractor. In Part II when discussing solutions
to the stochastic Navier–Stokes equations we will need to impose additional
conditions on the set of weak stochastic solutions in just this way.

16



3.5 Two-sided solutions

A neat characterisation of the global attractor above is given by considering
two-sided solutions. In [26] Sell remarked that each solution u in the global
attractor A is the restriction to non-negative time of a solution defined for all
time – which we call a two-sided solution. Here we use the ideas in the previous
section to show the converse – so that A is precisely the set of restrictions of
two-sided solutions. First we must make the necessary definitions.

Definition 3.5 Let f : H → H such that |f(u)| ≤ c + d|u| with d < νλ1.
A two-sided weak solution to the Navier–Stokes equations (6) is a
function v ∈ L∞(−∞,∞;H) ∩ L2(−T, T ;V) for all T with the properties
(W2)-(W4) of Definition 3.2 holding for all t0 ∈ (−∞,∞).

Denote by W̄ = W̄(f) the set of all weak solutions for a given f as above.
A norm is defined on W̄ by

|v| =
(∫ ∞

−∞
|v(t)|2 exp(−|t|)dt

) 1
2

=
(∫ ∞

−∞
|v(t)|2µ(dt)

) 1
2

where µ(dt) = exp(−|t|)dt

Thus W̄ is a subset of the Hilbert space M̄ = L2(−∞,∞;H; µ̄) where µ̄(dt) =
exp(−|t|)dt. It will be useful to define the right-shift operator Rt on M̄ for
any t ∈ R by

(Rtv)(s) = v(s− t)

for any function v ∈ M̄ . For future reference notice that for t > 0

St((Rtv) � [0,∞)) = v � [0,∞) (13)

Now we have:

Theorem 3.6 Let f : H → H such that |f(u)| ≤ c + d|u| with d < νλ1. The
set W̄ = W̄(f) of all two-sided weak solutions is bounded and compact, and
the global attractor A for one-sided solutions (Theorem 3.4) is given by

A = W̄ � [0,∞)

Proof. From (8) it follows that for any v ∈ W̄

|u(t)| ≤
√

k2

for all t. This is because v ∈ L∞(−∞,∞;H), so we can find arbitrarily large
negative t0 with |v(t0)| ≤ |v|∞ and (8) holding, so that for a given t we can
make |v(t0)|2 exp(−k1(t − t0)) arbitrarily small. So W̄ is bounded – in fact
|v| ≤ 2|v|∞ ≤ 2

√
k2.
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Notice also that if v ∈ W̄ then Rt ∈ W̄ also, and v � [0,∞) ∈ E. So if
u = v � [0,∞) then from (13)

u = St((Rtv) � [0,∞)) ∈ StE

and thus u ∈ A, showing that W̄ � [0,∞) ⊆ A.
For the converse, take u ∈ A so that ∗u ∈ T τ

∗E for some infinite τ . Let
∗u = T τv with v ∈ ∗E and consider the left translate v̄ : ∗[−τ,∞) → ∗H of v
given by

v̄(σ) = v(σ + τ)

Then |v̄(τ0)| is finite for almost all τ0 ∈ ∗[−τ,−τ + 1] and from this it follows
using ∗(8) that

◦|v̄(τ)| ≤
√

k2

for all finite times τ . So we may define v(t) = ◦v̄(t) for real times t, and then

|v(t)| ≤
√

k2

for all t.
Adapting the proof of Theorem 3.4 shows that v ∈ W and for t ≥ 0 we

have
v(t) = ◦v̄(t) = ◦v(t + τ) = ◦Tτv(t) = ◦(∗u(t)) = u(t)

so
u = v � [0,∞)

showing that A ⊆ W̄ � [0,∞).
The proof that W̄ is compact follows the same lines as the proof that S1B

is relatively compact in the proof of Theorem 3.4, and is omitted.

3.5.1 Another approach

In the paper [6] an alternative way to overcome the problem of lack of unique-
ness in order to define a notion of attractor for 3D Navier–Stokes equations.
The idea was to work with internal solutions to the Galerkin approximation
on HN for some fixed infinite N . Here we have uniqueness of solutions, so
there is a well defined internal semigroup Tτ defined on HN . This was used
to define various multi-valued semiflows on H by means of somewhat ad hoc
standard part operations, leading to existence of compact attractors in H, but
in a rather weak sense – so as is to be expected, the results are less pleasing
than in dimension 2. Rather more satisfactory results were obtained for an
approach that used small initial pieces of trajectories of solutions as phase
space – this is an idea that is intermediate between the above and that of Sell.
For full details, and further variations on this theme, see [6].
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PART II: STOCHASTIC SYSTEMS

4 Stochastic attractors for Navier–Stokes equa-
tions

For stochastic systems the problem of defining attractors stems from the con-
tinual injection of noise into the system as it evolves – so it is unreasonable to
expect there to be any set that attracts the random paths as t →∞. However,
there are several ways to formulate the idea of an attractor for a system of
stochastic differential equations in a way that circumvents this problem. One
is to consider measure attractors (see [7],[25] for example); another is to work
with the notion of stochastic attractor developed by Crauel & Flandoli [10]
— but only in 2D. In the case of 3D stochastic Navier–Stokes equations these
approaches are not available because of the possible nonuniqueness. Here it
makes sense to consider extending the approach of Sell [26] discussed in Section
3 that was used for 3D deterministic Navier–Stokes equations.

We will briefly review results that have been achieved using the first two of
these approaches for the 2D equations, and then present new results concerning
the extension of Sell’s approach to 3D stochastic Navier–Stokes equations.
In each case, to avoid unnecessary additional complications, the drift and
noise coefficients f, g in (1) are taken to be time-independent, so the equations
considered are

du = [−νAu−B(u) + f(u)]dt + g(u)dwt (14)

Here, as noted in the introduction u is a stochastic process, so in the functional
formulation we have

u : [0,∞)× Ω → H

where Ω is the domain of an underlying probability space. The equation (14)
is an infinite dimensional stochastic differential equation (SDE), or SPDE,
with w = w(t, ω) a Wiener process that models noise and provides the ran-
dom forcing term g(u)dwt. The theory of SDEs and SPDEs requires that the
underlying probability space (Ω,F ,P ) has some extra structure – namely a
filtration (Ft)t≥0 satisfying the usual conditions, such that w is adapted; that
is w(t, ·) is Ft-measurable for each t. A solution u(t, ω) is also required to be
adapted.

4.1 Measure attractors

This approach is currently applicable only to d = 2 since it is necessary that
the equation (14) has a unique solution. The functional formulation of the
2D stochastic Navier–Stokes equations outlined in Sections 3.1 and 3.2 applies
equally in the 2D setting. To ensure that for each initial condition u ∈ H there
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is a unique solution u(t, ω) = v(t, ω; u) with u(0) = u (so v(0, ω; u) = u) it is
assumed that f, g satisfy an appropriate Lipschitz condition. A semigroup St

is now defined on M1(H), the set of Borel probability measures on H, where
Stµ = µt is defined for µ ∈M1(H) by

∫

H
ϑ(u)dµt(u) =

∫

H
[E P ϑ(v(t, ·; u))] dµ(u)

for all bounded weakly continuous functions θ : H → H.
An attractor for the dynamical system (M1(H), St) is called a measure

attractor. The existence of measure attractors for the sNS equations was first
investigated by Schmallfuß, in [25] for example. The paper [7] with Capiński
establishes existence of a measure attractor for (14) under quite general con-
ditions:

Theorem 4.1 Suppose that f, g are Lipshitz and satisfy an appropriate growth
condition1. Then there is a measure attractor A ⊂ M1(H) for the stochastic
Navier–Stokes equations (14). That is

(a) A is weakly compact;
(b) StA = A for all t;
(c) for each open set O ⊇ A, and for each r > 0

StBr ⊆ O

for all sufficiently large t, where Br = {µ ∈ X :
∫

|u|2dµ(u) ≤ r}

The methods in [7] do not make essential use of Loeb spaces although at
some points they can be employed to assist the construction.

4.2 Stochastic attractors

For a stochastic system such as (14) the idea of a stochastic attractor developed
by Crauel & Flandoli [10] takes into account the fact that at all times new
noise is introduced into the evolution of each path of any solution to (14).
A stochastic attractor is defined to be a random set A(ω) that, at time
0, attracts trajectories “starting at −∞” (compared to the usual idea of an
attractor being a set “at time ∞” that attracts trajectories starting at time
0).

This idea is spelled out below, and involves the introduction of a one param-
eter group θt : Ω → Ω of measure preserving maps, which should be thought of
as a shift of the noise to the left by t. In proving the existence of a stochastic
attractor for the system (14) the nonstandard framework makes it particularly
easy to consider −∞.

1For example, a sufficient condition is that |f(u)|−1 ≤ c+δ1‖u‖ and |g(u)|H,H ≤ c+δ2‖u‖
for some δ1, δ2 > 0 with 2δ1+δ2

2 .trQ < 2ν, where Q is the covariance of the H-valued Wiener
process w.
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Making this precise, suppose that ϕ is a stochastic flow of solutions to (14).
That is, ϕ is a measurable function

ϕ : [0,∞)×H× Ω → H

such that ϕ(·, ·, ω) is continuous for a.a. ω, and for each fixed initial condition
u0 the process u(t, ω) = ϕ(t, u0, ω) is a solution to (14) with u(0, ω) = u0.

The notion of a semigroup in the usual definition of a deterministic at-
tractor, along with the notion of an attractor itself, is now replaced by the
following.

Definition 4.2 (i) The flow ϕ is a crude cocycle if for each s ∈ R+ there
is a full set Ωs such that for all ω ∈ Ωs

ϕ(s + t, x, ω) = ϕ(t, ϕ(s, x, ω), θsω)

holds for each x ∈ H and t ∈ R+.
(ii) A cocycle is perfect if Ωs does not depend on s.
(iii) Given a perfect cocycle ϕ, a global stochastic attractor is a random

compact subset A(ω) of H such that for almost all ω

ϕ(t,A(ω), ω) = A(θtω), t ≥ 0,

lim
t→∞

dist(ϕ(t, B, θ−tω),A(ω)) = 0

for each bounded set B ⊂ H.

Note that the existence of a perfect cocycle is necessary for the possibility
of having a stochastic attractor. Constructing a perfect cocycle is difficult for
infinite dimensional systems, particularly for those that are truly stochastic
(as compared to random dynamical systems in which paths may be treated
individually).

4.2.1 Existence of a stochastic attractor for the Navier–Stokes equa-
tions

A stochastic attractor was constructed for the stochastic Navier–Stokes equa-
tion with d = 2 by Crauel & Flandoli [10], but their version of (14) reduced to
a random equation that could be solved pathwise, giving essentially a pathwise
construction of the random attractor A(ω). The first example of a stochastic
attractor for a truly stochastic version of the Navier–Stokes equations was con-
structed in [9] using Loeb space methods, seemingly in an essential way. In the
following, for simplicity the Wiener process was taken to be one dimensional.

Theorem 4.3 (Capiński & Cutland[9]) (a) Suppose that (g(u)−g(v), u−v) =
0 and (g(u), u) = 0.2 With appropriate Lipschitz and growth conditions on

2For example g(u) = 〈h,∇〉u for some h ∈ H.
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f, g, there is an adapted Loeb space carrying a stochastic flow of solutions to
the system (14) that is a perfect cocycle, and there is a stochastic attractor
A(ω) (compact in the strong topology of H) for this system.

(b) If g has the additional property that ((g(v), v)) = 0 for v ∈ V the
stochastic attractor is bounded and weakly compact in V.

The proof of this result is quite long and complicated, and uses heavily the
fact that solutions to (14) may be obtained as standard parts of Galerkin ap-
proximations of dimension N , infinite. A delicate extension of the Kolmogorov
continuity theorem as adapted to a nonstandard setting by Lindstrøm [1] is at
the heart of the construction of the perfect cocycle. An outline of the main
steps and ideas of the proof is given in Chapter 2 of [13].

4.3 Sell’s approach for stochastic systems

As explained in detail in Section 3, Sell’s radical approach [26] to the problem
of attractors for the deterministic Navier–Stokes equations for d = 3, bearing
in mind the possible nonuniqueness of solutions, was to replace the phase space
H by a space W of entire solutions to the Navier–Stokes equations equipped
with the semigroup St on W defined by

(Stu)(s) = u(t + s).

For the 3-dimensional stochastic case, Sell’s idea was used by Flandoli &
Schmalfuß in the paper [15] for the Navier–Stokes equations with a special
form of multiplicative noise, using a mild solution concept. The equation
considered allowed essentially a pathwise solution, and then a random attractor
was obtained by combining Sell’s approach with the idea of pulling back in time
to −∞, as developed by Crauel & Flandoli [10]. In a later paper [16] Flandoli
& Schmalfuß consider in the same framework the Navier–Stokes equations with
an irregular forcing term, but no feedback.

An alternative way to extend Sell’s approach to the stochastic Navier–
Stokes equations was developed in [14], and for systems of the form (14) with
a very general multiplicative noise. The only assumption on the coefficients f, g
is that they are continuous and fulfil a mild growth condition. For simplicity
the Wiener process w is taken to be a 1-dimensional Brownian motion but this
is not an essential restriction.

The idea is to consider a set X of solutions to (14) on a filtered probability
space Ω =

(

Ω,F , (Ft)t≥0 ,P
)

and consider a semigroup (St)t≥0 acting on X in
the same way as Sell’s semigroup on deterministic solutions. For this to make
sense however some additional structure must be assumed for the underlying
probability space Ω, because a simple time shift of an adapted process will not
be adapted. Thus we now assume that the space Ω is equipped with a family
of measure preserving maps θt : Ω → Ω for t ≥ 0 with the following properties:
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(θ1) θ0 = identity and θt ◦ θs = θt+s;

(θ2) θtFs = Ft+s for all s, t ≥ 0;

(θ3) w(t + s, θtω)− w(t, θtω) = w(s, ω) for all s ≥ 0.

Note that the property (θ3) tells us that for a fixed t the increments of the
process w(t + s, θtω) are the same as those of the process w(s, ω). Thus θt can
be thought of as a shift of the noise to the right by t.

The family (θt) allows the following definition of a semiflow Sr of stochastic
processes.

Definition 4.4 (Semiflow of Processes) (a) Suppose that u = u(t, ω) is an
adapted stochastic process defined for t > 0. Then for any r ≥ 0 the adapted
process v = Sru is defined by

v(t, ω) = u(r + t, θrω).

(b) By the semiflow (St)t≥0 on a filtered space Ω we mean that there is a
measure preserving family (θt)t≥0 obeying (θ1)− (θ3) from which St is defined
as above.

Note that for any process u the process Stu lives on the same space as u.
For any theory of attractors involving the semiflow St and a set of solutions
X of solutions to (14) on a filtered probability space Ω there are a number
of difficulties to be addressed in the 3D situation, stemming largely from the
possible non-uniqueness of solutions. First, in most standard existence proofs
for (14) the space Ω that carries the solution has to be constructed carefully,
and both it and the Wiener process depend on the solution itself. Here however
we need a single space that carries solutions for all initial conditions (including
those that are random); moreover, we need not just one solution for each initial
condition but a sufficiently rich supply of solutions. This in itself requires a
rather large probability space. Moreover, the space Ω must be rich enough to
carry all processes that are in some sense infinite limits under the action of St.
In the paper [14] the underlying space was an adapted Loeb space that was
shown to meet all these requirements. (At a deeper level this is a consequence
of the fact that Loeb spaces are universal – which can be described informally
as saying that anything that happens anywhere happens on a Loeb space).

The need for a very large underlying probability space Ω raises a second
set of problems. The resulting set of solutions X on Ω is also large and
consequently it is unrealistic to expect an attractor A that is compact; in fact
various noncompactness results were proved in [14]. However, the attractor
A in [14] has a compact set of laws, but this is somewhat unsatisfactory.
Similarly for the attracting property: in [14] this was established only for an
ad hoc family of open neighbourhoods of A.
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In the remaining sections of this paper we to show that the attractor A
in [14] has stronger compactness and attraction properties that are described
naturally using the framework of neometric spaces, in which we develop the
notion of a neoattractor – which is neocompact and has the attraction property
for all neo-open neighbourhoods of A. This is the subject of the next section.

5 Neometric spaces and Neoattractors

Before developing the theory of neoattractors, later to be applied to the stochas-
tic Navier–Stokes equations, we recall the basic definitions involved in the
theory of neometric spaces, as developed in the papers [17] and [18] in the
setting of a nonstandard universe. For the sake of completeness we provide in
Appendix 2 a brief summary of the theory of neometric spaces.

5.1 Neometric spaces

Roughly speaking, a neometric space M is a metric space with extra structure
given by its parent, which is a ∗metric space M. We start by defining the
standard part of an element of the parent space.

Given a ∗metric space (M, δ) (which is internal), the standard part ◦x of
an element x ∈ M is defined by

◦x = {y ∈ M : δ(x, y) ≈ 0}.

Note that this is a generalisation of the notion of the standard part of a near-
standard element of a standard metric space. For a subset C ⊆ M, the stan-
dard part of C is the set ◦C = {◦x : x ∈ C}. For each point z ∈ M, the
nonstandard hull around z is the set

H(M, z) = {◦x : δ(x, z) is finite}

with the metric ρ(◦x, ◦y) = st(δ(x, y)). Each nonstandard hull is a complete
metric space.

Definition 5.1 By a neometric space we will mean a closed subspace M
of the nonstandard hull of a ∗metric space M around some point z. M is called
the parent of M.

Note that this notion is relative to a particular nonstandard universe. Each
neometric space is a complete metric space. Hereafter, M,N , . . . will stand
for neometric spaces, and M, N, . . . will be their parents.

The monad of a subset A ⊆M is the set

monad(A) = {x ∈ M : ◦x ∈ A}.
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Note that this is an extension of the idea of the monad of a point in a standard
metric space. For any set A ⊆ M, A = ◦(monad(A)). The monad operation
commutes with arbitrary unions, intersections, and complements.

A point x ∈ M is near-standard inM, in symbols x ∈ ns(M), if x belongs
to the monad of M, that is, ◦x ∈M. (Thus ns(M) is an alternative notation
for monad(M).) Note that the monad of M is contained in the nonstandard
hull around a point.

We adopt the usual convention of identifying a point x of a standard met-
ric space M with the standard part of its internal counterpart, ◦(∗x). With
this convention, each standard complete metric space M in the original su-
perstructure is a closed subset of a nonstandard hull of ∗M , and thus is a
neometric space. This is important for applications; for example, the product
of a neometric space with the real line is a neometric space.

Definition 5.2 By a Π0
1 set we mean the intersection of a countable collection

of internal subsets of M.
A set A ⊆ M is said to be countably determined if there is a countable

family of internal sets B1, B2, . . . such that A is a finite or infinite Boolean
combination of B1, B2, . . ..

Thus any Π0
1 set is countably determined. It is clear that the family of

countably determined sets in M is closed under complements, and under finite
and countable unions and intersections.

The neocompact subsets of a neometric space are analogues of compact
sets.

Definition 5.3 Let M be a neometric space.
A set C ⊆ M is neocompact (in M) if C is the standard part of some

Π0
1 set A ⊆ ns(M).

Note that if N ⊆M, then a set C ⊆ N is neocompact in N if and only if it
is neocompact inM. It is easily seen that finite unions of neocompact sets, and
finite Cartesian products of neocompact sets, are neocompact; ℵ1-saturation
shows that countable intersections of neocompact sets are also neocompact. In
a standard separable metric space, the neocompact sets are the same as the
compact sets.

We now introduce the neoclosed sets.

Definition 5.4 Let X ⊆ M. A set C ⊆ X is neoclosed in X if C ∩ D
is neocompact for every neocompact set D ⊆ X in M. The complement of a
neoclosed set in X is called neoopen in X.

Note that if X ⊆M and C is neoclosed in M, then C ∩X is neoclosed in
X. However, C ∩X is not necessarily neoclosed in M. If X is itself neoclosed
in M then a set D ⊆ X is neoclosed in X if and only if it is neoclosed in M.

Whereas neocompact is weaker than compact (Proposition 9.2(a)), neo-
closed is stronger than closed.
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Examples 5.5 (a) ([17], Proposition 4.14.) For each neocompact set C
and positive real number r, the set C≤r = {x : ρ(x,C) ≤ r} is neoclosed in M.

(b) ([17], Lemma 4.7) For each x ∈ M and r ∈ (0,∞), the open ball
{y : ρ(x, y) < r} is neoopen in M.

The analogue of the continuous functions is as follows.

Definition 5.6 A function f : M → N is said to be neocontinuous if for
every neocompact set C in M, the restriction f � C = {(x, f(x)) : x ∈ C} of
f to C is neocompact in M×N .

Neocontinuous is a stronger notion than continuous, but many naturally
occurring continuous functions are actually neocontinuous.

Examples 5.7 (a) ([18], p. 145.) The distance function ρ is neocontinuous
from M×M to R.

(b) The projection function is neocontinuous from M×N to M.

5.2 Neo-attractors

Let M be a neometric space and let X ⊆ M. By a neo-semiflow on X
we mean a function S : [0,∞) ×M → M such that St(·) is neocontinuous
for each particular t ∈ [0,∞), and for all x ∈ X and s, t ∈ [0,∞), we have
St(x) ∈ X, S0(x) = x, and Ss+t(x) = Ss(St(x)).

We assume throughout this section that S is a neo-semiflow on X. Since
St is a neocontinuous function for each t ∈ [0,∞), it follows from Proposition
9.7 that StC is neocompact whenever C is neocompact.

In the example in Section 7 and and thereafter, S will actually be a neo-
continuous semiflow on X, that is, a neo-semiflow which is a neocontinuous
function from [0,∞)×M into M. However, in this section it is enough for S
to be a neo-semiflow.

Definition 5.8 A neo-attractor for S on X in M is a set A ⊆ X such that:
(a) A is neocompact in M.
(b) StA = A for all t ∈ [0,∞).
(c) For each bounded set B ⊆ X and neoopen set O ⊇ A in X, StB ⊆ O

eventually (that is, there exists r ∈ [0,∞) such that StB ⊆ O for all t ∈
[r,∞).)

It is clear that if X 6= Ø then every neo-attractor is nonempty, because
condition (c) fails when A = O = Ø.

Proposition 5.9 There is at most one neo-attractor for S on X.
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Proof. Suppose A,A′ are neo-attractors for S on X in M, and let x ∈
A \ A′. Since A is neocompact, A is bounded. The set O = X \ {x} is a
superset of A′ which is neoopen in X, so StA ⊆ O for some t ∈ [0,∞). But
x ∈ A = StA, which contradicts x /∈ O.

Note that the above uniqueness result holds even if condition (a) of Defi-
nition 5.8 is weakened to the condition that A is bounded.

Definition 5.10 An absorbing set for S on X is a set E ⊆ X such that
StB ⊆ E eventually for each bounded set B ⊆ X.

Lemma 5.11 Let B and E be bounded absorbing sets for S on X. If limk→∞ tk =
∞, then

⋂

k∈N
StkE =

⋂

t≥0

StE =
⋂

t≥0

StB.

Proof. It suffices to prove that the first set is contained in the third. Since
B is absorbing and E is bounded, there exists b ≥ 0 such that SuE ⊆ B
for all u ≥ b. Let t ∈ [0,∞). Take k ∈ N such that tk − t ≥ b. Then
StkE = StStk−tE ⊆ StB, so

⋂

k∈N StkE ⊆
⋂

t≥0 StB.

Lemma 5.12 Let E be a bounded absorbing set for S on X, and let A =
⋂

t≥0 StE. Then StA ⊆ A for each t ∈ [0,∞).

Proof. Take b ≥ 0 so that SuE ⊆ E for all u ≥ b. For any t, u ∈ [0,∞),

A ⊆ Su+bE, St+bE ⊆ E,

so
StA ⊆ StSu+bE = SuSt+bE ⊆ SuE.

Since this holds for all u ∈ [0,∞), it follows that StA ⊆ A.

The next theorem is a neometric generalization of Theorem 2.4. It shows
that A is a neo-attractor in the case that the absorbing set E is neocompact.

Theorem 5.13 Let S be a neo-semiflow on X with a neocompact absorbing
set E. Then the set A =

⋂

u∈[0,∞) SuE is a neo-attractor for S on X.

Proof. We have A ⊆ E ⊆ X. Since E is neocompact, StE is neocom-
pact for each t ≥ 0. Then by Lemma 5.11, A is a countable intersection of
neocompact sets, and thus A is neocompact.

Take b ≥ 0 such that SuE ⊆ E for all u ≥ b. Now let O be a neoopen
set in X such that A ⊆ O. To prove that StB ⊆ O eventually for each
bounded set B ⊆ X it suffices to show that StE ⊆ O eventually. Suppose not.
Then there is a sequence tk, k ∈ N such that for each k, StkE \ O 6= ∅ and
tk+1 ≥ tk +b. Each set StkE is neocompact, and since X \O is neoclosed in X,
StkE \ O is neocompact. Moreover, t = tk+1 − tk ≥ b, so StE ⊆ E and hence
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Stk+1E = StkStE ⊆ StkE. Therefore {StkE \ O} is a decreasing chain. Then
by Lemma 5.11 and countable compactness, A \ O =

⋂

k∈N(StkE \ O) 6= ∅,
contradicting A ⊆ O.

Let t ∈ [0,∞). We have StA ⊆ A by Lemma 5.12. It remains to prove
that A ⊆ StA. Choose r ∈ (b,∞). For each n ∈ N let Cn = Sn·rE. Then
Cn is neocompact. Since SrE ⊆ E, Cn+1 = Sn·rSrE ⊆ Sn·rE = Cn, so {Cn}
is a decreasing chain. Since r > 0, n · r → ∞ as n → ∞. By Lemma 5.11,
A =

⋂

n∈NCn. By Proposition 9.9,

StA = St

(

⋂

n∈N
Cn

)

=
⋂

n∈N
(StCn).

Moreover, for each n ∈ N, A ⊆ Sn·r+tE = StSn·rE = StCn. Thus A ⊆ StA.

Definition 5.14 Let S be a neo-semiflow on X. By a neo-subflow of S we
mean the restriction S � Z of S to a neoclosed set Z in X such that StZ ⊆ Z
for each t ≥ 0.

Corollary 5.15 Assume the hypotheses of Theorem 5.13. Then every neo-
subflow of S has a neo-attractor.

The next theorem gives a weaker sufficient condition for S to have a neo-
attractor on X, which is analogous to the necessary and sufficient condition
for the deterministic case in Theorem 2.5. We first prove a lemma.

Lemma 5.16 Let E be a bounded absorbing set for S on X, and let A =
⋂

t≥0 StE. Suppose that E is neoclosed in X and, whenever limn→∞ tn = ∞,
B = {x1, x2, . . .} ⊆ E, and xn ∈ StnE for each n ∈ N, there is a neocompact
set C such that B ⊆ C ⊆ X.

Then whenever limn→∞ tn = ∞, B = {x1, x2, . . .}, and xn ∈ StnE for each
n ∈ N, there is a neocompact set D such that B ⊆ D ⊆ A ∪B.

Proof. Suppose limn→∞ tn = ∞, B = {x1, x2, . . .}, and xn ∈ StnE for
each n ∈ N. Take b such that SuE ⊆ E for all u ≥ b. For each k ∈ N, let
Bk = {xn : tn ≥ k + b}. Then B \Bk is finite. Now fix k for the moment. For
each xn ∈ Bk, xn ∈ StnE = SkStn−kE so we may choose yn ∈ Stn−kE ⊆ E such
that xn = Sk(yn). Write Ck = {yn : xn ∈ Bk} ⊆ E, so that Bk = SkCk ⊆ SkE.
By hypothesis there is a neocompact set Dk such that Ck ⊆ Dk ⊆ X. Since E
is neoclosed in X, we may take Dk ⊆ E (or else replace Dk by Dk∩E which is
neocompact). Then Bk ⊆ SkDk ⊆ SkE. SkDk is neocompact by Proposition
9.7, and since B \Bk is finite, (SkDk) ∪B is neocompact.

Carrying out this for all k gives the set D =
⋂

k∈N((SkDk) ∪ B) which is
neocompact. By Lemma 5.11, A =

⋂

k∈N SkE. Therefore B ⊆ D ⊆ A ∪B.
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Theorem 5.17 Let S be a neo-semiflow on X. Assume that:
(a) monad(X) is countably determined,
(b) For each u ≥ 0 there is an internal function Tu : M → M such that

◦(Tu(x)) = Su(◦x) for all x ∈ monad(X), and
(c) There is a bounded absorbing set E for S such that whenever limn→∞ tn =

∞, B = {x1, x2, . . .} ⊆ E, and xn ∈ StnE for each n ∈ N, there is a neocom-
pact set C ⊆ X such that B ⊆ C.

Then the set A =
⋂

u∈[0,∞) SuE is a neo-attractor for S on X.
Moreover, any neo-subflow S � Z of S such that monad(Z) is countably

determined has a neo-attractor.

Proof. It is easily seen that if condition (c) holds for E, then it also holds
for D ∩X where D is any closed ball containing E. We may therefore assume
that E = D∩X for some closed ball D inM. Then monad(E) = monad(X)∩D
for some Π0

1 set D, and therefore monad(E) is countably determined. Moreover,
D is neoclosed in M, so E is neoclosed in X.

We will use Theorem 9.3 to show that A is neocompact. Let B = {xn :
n ∈ N} ⊆ A. Then xn ∈ SnE for each n ∈ N. By hypothesis (c) and Lemma
5.16, there is a neocompact set C such that B ⊆ C ⊆ A ∪B = A.

We now show that monad(A) is countably determined. By Lemma 5.11,
we have A =

⋂

n∈N SnE. It follows from (b) that

monad(SnE) =
⋂

m∈N
((Tn monad(E))1/m).

Then using Lemma 9.1, we see that monad(SnE) is countably determined for
each n ∈ N, and therefore

monad(A) = monad(
⋂

n∈N
SnE) =

⋂

n∈N
monad(SnE)

is countably determined. Then by Theorem 9.3, A is neocompact.
We next prove that A = StA for each t ∈ [0,∞). We have StA ⊆ A by

Lemma 5.12. Let x ∈ A. Then for each n ∈ N, x ∈ St+nE = StSnE, so
there exists yn ∈ SnE such that x = St(yn). For each k ∈ N, let Bk = {yn :
k ≤ n ∈ N}. By (c) and Lemma 5.16, there is a neocompact set Ck such
that Bk ⊆ Ck ⊆ A ∪ Bk. Then x ∈ StCk. We may choose the sets Ck to be
a decreasing chain. Then the set C =

⋂

k∈NCk is neocompact, and C ⊆ A.
By Proposition 9.9, StC =

⋂

k∈N StCk. Then x ∈ StC ⊆ StA. It follows that
A = StA.

Now let O be a neoopen set in X such that A ⊆ O. To prove that StD ⊆ O
eventually for each bounded set D ⊆ X it suffices to show that StE ⊆ O
eventually. Suppose not. Then there is a sequence {tk} such that limk→∞ tk =
∞ and StkE \ O 6= ∅ for each k ∈ N. Choose xk ∈ StkE \ O. For each k ∈ N
let Bk = {xn : n ≥ k}. By (c) and Lemma 5.16, there is a neocompact set Ck

29



such that Bk ⊆ Ck ⊆ A ∪ Bk. Since O is neoopen in X and Bk ∩ O = ∅, we
may take Ck disjoint from O. We may also take the sets Ck to be a decreasing
chain. By countable compactness, the intersection C =

⋂

k∈NCk is nonempty.
But C ⊆ A and C ∩ O = ∅, contradicting A ⊆ O. This shows that A is a
neo-attractor for S on X.

Finally, the hypotheses (a)–(c) also hold for any subflow S � Z such that
monad(Z) is countably determined.

Here is a sufficient condition for A being a neo-attractor which will be used
in the next section.

Corollary 5.18 Let S be a neo-semiflow on X. Assume conditions (a) and
(b) of Theorem 5.17, and

(c’) There is a bounded absorbing set E for S and a decreasing chain of
internal sets Cn, n ∈ N such that

⋂

n Cn ⊆ monad(X), and for each n ∈ N,
St(E) ⊆ ◦Cn eventually.

Then Theorem 5.17 (c) holds for E, so A =
⋂

u∈[0,∞) SuE is a neo-attractor
for S on X.

Proof. Suppose limn→∞ tn = ∞, B = {x1, x2, . . .} ⊆ E, and xn ∈ StnE for
each n ∈ N. We may assume without loss of generality that C1 = M. For each
k let nk be the greatest n ≤ k such that Stk(E) ⊆ ◦Cn. Then limk→∞ nk = ∞.
Take xk ∈ Cnk such that ◦xk = xk. Let B = {xk : k ∈ N}. Then B \Cn is finite,
so Dn = Cn ∪ B is a decreasing chain of internal sets with

B ⊆
⋂

n∈N
Dn ⊆ monad(X).

Then D = ◦ ⋂

n∈NDn is neocompact and B ⊆ D ⊆ X.

6 Process attractors for 3D stochastic Navier-
Stokes equations

In the paper [14] a set X of solutions to the stochastic Navier–Stokes equations
(14) was defined and it was shown that there is a set A ⊆X that is an attractor
in some sense — but falling short of the requirements of the definition in Part
I for deterministic settings (Definition 2.2). In particular A is not compact.
The main result of the present paper is that A is however a neo-attractor –
which seems to be the strongest kind of notion likely to be applicable in this
framework. Here we outline the results of [14] in preparation for the next
section, where we will see how they fit into the framework of neometric spaces.

The equations considered are

du = [−νAu−B(u) + f(u)]dt + g(u)dwt (15)
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in the functional formulation so that

u : [0,∞)× Ω → H

and for simplicity (though it is not essential) the process w is taken to be
a 1-dimensional Wiener process. The only conditions imposed on the time-
independent coefficients f, g are as follows, where c0, d1, d2 are positive real
constants.

(H1) f : H → H and |f(u)| ≤ c0 + d1|u|.
(H2) g : H → H and |g(u)| ≤ c0 + d2|u|.
(H3) f and g are continuous.
(H4) 2d1 + 3d 2

2 < 2νλ1.
The general theory of stochastic Navier–Stokes equations expounded in [8]

shows that the equation (15) can be solved with only the assumptions (H1)–
(H3). The additional growth restriction (H4) on f, g is needed here to obtain
the attractor.

6.1 The space Ω and the semiflow

The particular space Ω that we use is a filtered Loeb space similar to that
used in [8] for the construction of solutions to the stochastic Navier–Stokes
equations. Loeb spaces constitute a special class of probability spaces that
are very rich – in a sense that can be made precise (see for example [22]).
The richness is needed to be able to solve the general stochastic Navier–Stokes
equations in dimension 3, and it was needed in [14] to show that the single
space ΩΩ has solutions to (15) with the same (prescribed) Wiener process wt

for any random initial condition.
For the rest of the paper we fix the following adapted Loeb space. Set

Ω = ∗(C0(R)), the internal space of ∗continuous functions ω : ∗R → ∗R with
ω(0) = 0, and let Q be the internal ∗Wiener measure on Ω.

Thus the canonical process

W (τ, ω) = ω(τ)

is a two-sided ∗Wiener process under Q. This gives the internal filtered prob-
ability space

Ω̄ = (Ω,G, (Gτ )τ∈∗R, Q),

where Gτ = ∗σ({W(τ ′) : τ ′ ≤ τ}) and G =
∨

τ∈∗R Gτ .
A family of internal measure preserving maps Θτ : Ω → Ω is defined for

τ ∈ ∗R by
(Θτ (ω))(σ) = ω(σ − τ)− ω(−τ).

That is, Θτ is a shift of the path ω to the right by τ and then adjusted to be
0 at 0.

Now let P = QL be the Loeb measure obtained from Q with the cor-
responding Loeb σ-algebra F = L(G), giving the Loeb probability space
(Ω, L(G), QL) = (Ω,F , P), and denote the P -null sets by N .
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Definition 6.1

(a) The filtered probability space Ω is

Ω = (Ω,F , (Ft)t≥0, P ),

where the right continuous filtration (Ft)t≥0 is defined by

Ft =
⋂

t<◦τ

σ(Gτ ) ∨N .

(b) The Wiener process w(t, ω) on Ω is defined by

w(t, ω) = ◦W (t, ω). (16)

(c) The family of measure preserving transformations (θt)t≥0 is given by

θt = Θt.

That is, the restriction of the family (Θτ ) to non-negative standard times.

It is well known that (16) defines an almost surely continuous Wiener pro-
cess on Ω. It is clear that the family θt satisfies conditions (θ1), (θ2), (θ3).

With the space Ω and the family (θt)t≥0 now fixed, the semiflow of processes
St defined by Definition 4.4 is also fixed for the rest of the paper.

6.2 Solutions to the stochastic Navier–Stokes equations

We define below a particular class X of weak solutions to the stochastic Navier–
Stokes equations (15). Each element u of X is an adapted stochastic process
(with u(t, ω) ∈ H for all t, ω). The properties required for membership of
X are among those that can be deduced heuristically from (15) using elemen-
tary stochastic calculus. The definition incorporates some truncation functions
ψn, ϕn, defined from the following real C2 function ψ : [0,∞) → [0, 1] which is
designed to be concave on [0, 1] and constant (with value 1) on [1,∞).

Definition 6.2 (Truncation functions) (a)

ψ(x) =
{

(x− 1)3 + 1 if 0 ≤ x ≤ 1
1 if x ≥ 1

(b) For each n ∈ N,
ψn(x) = ψ(x/n2).

(c) For each n ∈ N a function ϕn(u) is defined for u in any Hilbert space
(finite or infinite dimensional) by

ϕn(u) = u2ψn(u2),

where we write u2 to mean |u|2 to ease the notation.
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The way the functions ϕn figure in the definition of X is to guarantee a
kind of uniform integrability of solutions in the time variable, which crops up in
the paper [14] in the guise of S-integrability from Loeb integration theory: an
internal random vector u(ω), |u|2 is S-integrable if and only if ◦E(ϕn(u)) → 0
as n →∞.

Now for the definition of the class of solutions X.

Definition 6.3 (a) Given positive real constants k1, k2, k3, α, β, denote by X
the class of adapted stochastic processes u : (0,∞)×Ω → H with the following
properties.

(X1) For a.a. ω the path u(·, ω) belongs to the following spaces:

L∞loc(0,∞;H) ∩ L2
loc[0,∞;H) ∩ L2

loc(0,∞;V) ∩ C(0,∞;Hweak).

(X2) For all t1 ≥ t0 > 0

u(t1) = u(t0) +
∫ t1

t0
[−νAu(t)−B(u(t)) + f(u(t))]dt +

∫ t1

t0
g(u(t))dwt.

(X3) For a.a. t0 > 0 and all t1 ≥ t0,

E(|u(t1)|2) ≤ E(|u(t0)|2) exp(−k1(t1 − t0)) + k2. (17)

(X4) For a.a. t0 > 0 and all t1 ≥ t0,

E
(

supt0≤s≤t1 |u(s)|2 +
∫ t1

t0
‖u(s)‖2ds

)

≤ αE(|u(t0)|2)+β(t1− t0). (18)

(X5) For a.a. t0 > 0 and all t1 ≥ t0 and n ∈ N,

E(ϕn(u(t1))) ≤ E(ϕn(u(t0)) exp(−k3(t1 − t0))) + n−
1
2 (αE(|u(t0)|2) + β).

(19)

(X6) E
∫ 1

0 |u(t)|2dt < ∞.

(b) Denote by Xk the set of u ∈ X with

(X6k) E
∫ 1

0 |u(t)|2dt ≤ k.

Remarks
1. The class X depends on the constants k1, k2, k3, α, β; there is a natural

choice of these – see Theorem 6.10 below.
2. The sets Xk increase with k.
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3. The above conditions tell us nothing about u(t, ω) at t = 0 and there
may be a singularity there. In this sense the class X is a class of generalized
weak solutions to the stochastic Navier–Stokes equations (cf. [26], p.12).

4. The meaning of “loc” in the path properties (X1) is as follows: Lp
loc(0,∞)

means Lp[1/n, n] for all n, whereas Lp
loc[0,∞) means Lp[0, n] for all n.

5. The conditions (X5) follow naturally from the Foias equation for the
stochastic Navier-Stokes equations (see [5]), which may be deduced heuristi-
cally from the equation (15). The choice of the functions ϕn makes (X5) a
uniform integrability condition for |u(t)|2 on any [t0,∞).

6. The semiflow St maps X into X.

The paths of any solution u ∈ X lie in the space M = L2(0,∞;H; µ) where
µ(dt) = exp(−t)dt, defined in Section 3.1. Thus

X ⊆ L2(Ω,M).

The following lemma relates the sets Xk to bounded sets.

Lemma 6.4 ([14] Lemma 4.2) If B ⊆ X, then B is bounded in L2(Ω,M)
if and only if B ⊆ Xk for some k ∈ N.

The notion of an attractor that was discussed in [14] is as follows. Here we
call it a process attractor to avoid confusion with the notion of Part I (Defi-
nition 2.2). It involves laws of processes, and needs the following definitions
concerning the laws of solutions viewed as probability distributions on the
space of paths M .

Definition 6.5 Let u(t, ω) be a process with paths in M .
(a) law(u) is the probability law on M induced by u; i.e.

law(u)(Z) = P(u(·, ω) ∈ Z)

for Borel Z ⊆ M .
(b) laww(u) = law(u,w), the probability law induced on M ×C0 by the pair

of processes (u(t, ω), w(t, ω)), where C0 = C0[0,∞).

For the space of probability laws M1(S) on a separable metric space S a
fundamental metric is the Prohorov metric, which we denote by d0; this makes
M1(S) separable. Here we are thinking of S = M and S = M × C0.

There is a natural projection mapping π : M1(M ×C0) →M1(M) defined
by

π(λ)(Z) = λ(Z × C0).

In the current situation the laws on the space M that we are interested are
laws of L2 random variables, so it is appropriate to define a stronger metric to
reflect this.
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Definition 6.6 (a) M1,2(M) = {µ ∈M1(M) : Eµ(|u|2) < ∞}.
(b) the metric d on M1,2(M) is defined by

d(µ1, µ2) = d0(µ1, µ2) +
∣

∣Eµ1(|u|2)− Eµ2(|u|2)
∣

∣ .

(c) M1,2(M × C0) = {λ ∈M1(M × C0) : π(λ) ∈M1,2(M)}.
(d) the metric d on M1,2(M × C0) is defined by

d(λ1, λ2) = d0(λ1, λ2) +
∣

∣Eµ1(|u|2)− Eµ2(|u|2)
∣

∣ ,

where µi = π(λi) (i = 1, 2).

The following lemma is easy to check (where ρ is the L2 metric on L2(Ω,M)).

Lemma 6.7 (a) The function law maps L2(Ω,M) into M1,2(M) and is con-
tinuous with respect to the metrics ρ and d.

(b) The function laww maps L2(Ω, M) into M1,2(M×C0) and is continuous
with respect to the metrics ρ and d.

(c) The mapping π : M1(M × C0) →M1(M) defined by

π(λ)(Z) = λ(Z × C0)

is continuous with respect to the metric d.

Using these notions we have:

Definition 6.8 (a) A set of laws A ⊆ laww(X) is a law-attractor for the
semiflow St on X if:

(i) (Invariance) ̂StA = A for all t ≥ 0.

(ii) (Attraction) For any open set O ⊃ A and d-bounded set B ⊆ laww(X),

̂StB ⊆ O

eventually (i.e. for some t0 = t0(O,B), this holds for all t ≥ t0).

(iii) (Compactness) A is compact in the metric d.

(b) A process attractor for the semiflow St on X is a set of processes A ⊆ X
such that:

(i) laww(A) is a law-attractor (in particular laww(A) is compact in the met-
ric d, and so A is bounded).

(ii) (Invariance) StA = A for all t ≥ 0.
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(iii) (Attraction) For any bounded set B ⊆ X and compact set K ⊆ L2(Ω,M),

limt→∞ρ(StB, K) ≥ ρ(A,K).

(iv) A is closed in the space L2(Ω,M).

A smaller class X̂ ⊆ X of solutions defined at 0 is as follows.

Definition 6.9 Denote by X̂ the class of stochastic processes u : [0,∞)×Ω →
H with u ∈ X (that is, the restriction of u to (0,∞) lies in X) with the
following additional properties:

(X̂1) For a.a. ω, the path u(·, ω) is in

L∞loc[0,∞;H) ∩ L2
loc[0,∞;H) ∩ L2

loc[0,∞;V) ∩ C[0,∞;Hweak).

(X̂2) For all t1 ≥ t0 ≥ 0,

u(t1) = u(t0) +
∫ t1

t0
[−νAu(t)−B(u(t)) + f(u(t))]dt + g(u(t))dwt.

(X̂3) E(|u(t)|2) is bounded on [0,∞).

Note that (X̂1) implies (X1), (X̂2) implies (X2), and (X̂3) implies (X6).
(In [14] the symbol Y was used for the subspace X̂.)

The main theorem of the paper [14] is:

Theorem 6.10 ([14] Theorems 4.3, 9.12) There are constants k1, k2, k3,
α, β (which are given explicitly in terms of the parameters c0,d1, d2, λ1 and ν
of the system) such that

(a) for every L2 F0-measurable initial condition there is a solution u ∈ X̂;
(b) there is a process attractor A for the semiflow St on X and A ⊂ X̂.

7 Neo-attractors for 3D stochastic Navier-Stokes
equations

In order to show that the set A given by Theorem 6.10 is in fact a neo-attractor
we will prove that the conditions of Corollary 5.18 hold for the set X, the
semiflow (St)t≥0 and an absorbing set E ⊆ X in the context of L2(Ω,M)
as a neometric space. For this it is necessary to give some properties of the
neometric spaces Lp(Ω,M), and then to describe a little more of the detail of
the paper [14].
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7.1 The neometric spaces Lp(Ω,M)

The definitions we review here are applicable to any complete separable met-
ric space (M, d), although we will only need them for the specific space M =
L2(0,∞;H; µ) that figures in previous section (and defined in Section 3.1).
Among the most important examples of neometric spaces are the spaces Lp(Ω,M),
where p ∈ {0} ∪ [1,∞). The parent of the space M = Lp(Ω,M) is

M =(SL0(Ω,M), ρ̄p)

where SL0(Ω,M) is the set of all ∗measurable functions x : Ω → ∗M ,

ρ̄0(x, y) = ∗ inf{ε : Q[∗d(x(ω), y(ω)) ≥ ε] ≤ ε},

and when p ≥ 1,

ρ̄p(x, y) =
[∫

(∗d(x(ω), y(ω)))p dQ
]1/p

.

It is convenient that for all p, the parent spaces are ∗metric spaces on the same
set SL0(Ω,M), even though the ∗metrics ρ̄p are different. We have

ns(M) = nsp(Ω,M)
= {x ∈ ns0(Ω,M) : (∗d(x(ω), z))p is S-integrable for all z ∈ M}

where

ns0(Ω,M) = {x ∈ SL0(Ω,M) : x(ω) ∈ ns(M) for a.a. ω}.

In the following proposition we list some facts we need about these neo-
metric spaces.

Proposition 7.1 Let M, N be complete separable metric spaces and letM1(M)
be the space of Borel probability measures on M with the Prohorov metric.

(a) ([18], Propositions 5.7 and 6.10.) For each p ∈ {0} ∪ [,∞), the
law function is neocontinuous from Lp(Ω,M) to M1(M).

(b) ([18], Theorem 5.14.) For each compact set C in M1(M), the set

{x ∈ L0(Ω,M) : law(x) ∈ C}

is neocompact in L0(Ω,M).
(c) ([18], Theorem 6.7.) If p ∈ [1,∞), a set C ⊆ Lp(Ω,M) is neocom-

pact in Lp(Ω, M) if and only if it is neocompact in L0(Ω, M) and uniformly
p-integrable.

(d) ([17], Proposition 9.4) For each p ∈ {0} ∪ [1,∞), the set of all
adapted stochastic processes is neoclosed in Lp(Ω,M).

(e) ([17], Lemma 5.19.) For every continuous function f : M → N ,
the function x(·) → f(x(·)) is neocontinuous from L0(Ω,M) to L0(Ω, N).
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From now on all discussion is in the context of the neometric
space M = L2(Ω,M) where M = L2(0,∞;H; µ) as in Section 6.

We now show that S = (St)t≥0 is a neo-semiflow on X ⊂ M = L2(Ω,M).
In fact, it is a neocontinuous semiflow on X as well as on the larger neometric
spaceM =L2(Ω,M). To do this we define an internal semiflow that represents
S. The semiflow St on X extends naturally to give

S : [0,∞)× L2(Ω,M) → L2(Ω,M)

which has a natural internal internal counterpart

T : ∗[0,∞)× SL0(Ω,M) → SL0(Ω,M)

given by
(Tτu)(σ, ω) = u(σ + τ, Θτω)

The next proposition is routine, where we define

NS = ns2(Ω,M) = ns(M)

with M = L2(Ω,M).

Proposition 7.2 For finite τ > 0 and for u ∈ NS

◦(Tτu) = S◦τ ◦u. (20)

Thus S is a neocontinuous semiflow on M and on X.

Proof. Neocontinuity follows from Proposition 9.8

7.2 Internal approximate solutions

In [14] the solutions u ∈ X are represented by internal approximate solutions
living in the hyperfinite dimensional space HN ⊂ ∗H. These are carried on
the internal filtered probability space Ω̄ = (Ω,G, (Gτ )τ≥0, Q). The following
extracts from [14] the key properties of approximate solutions.

Definition 7.3 (a) For each k ∈ N and n ∈ ∗N the internal set Xk,n is a set
of ∗-adapted (with respect to (Gτ )τ≥0) processes

u : ∗[0,∞)× Ω → HN

such that

(X1) uτ (ω) has paths ∗a.s. in ∗M and u ∈ ∗L2(Ω, ∗M) i.e.

E
(∫ ∗∞

0
|uτ (ω)|2 exp(−τ)dτ

)

< ∗∞.
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(X2n) u is a 1
n-approximate solution (that is, u has properties that approximate

the conditions (X2)-(X5) of Definition 6.3 to order 1
n)

(X3k,n) u is bounded by k + 1
n ; that is

E
∫ 1

0
|uτ |2dτ ≤ k +

1
n

(b) For each k ∈ N, define
Xk =

⋂

n∈N
Xk,n.

(c) The set of internal approximate solutions is

X =
⋃

k∈N
Xk.

The importance of X the lies in the following result from [14].

Theorem 7.4 ([14] Theorem 9.2) (a) For each k ∈ N,

◦(Xk ∩ NS) = Xk,

and hence
(b)

◦(X ∩ NS) = X.

Corollary 7.5 (a) For each k ∈ N, the monad of Xk is a Π0
1 set. The monad

of X is countably determined, and in fact is a countable union of Π0
1 sets.

(b) Each Xk is neoclosed;
(c) X is neoclosed

Proof. (a) For each k, n ∈ N, (Xk,n)1/n is internal, and monad(Xk) =
⋂

n∈N((Xk,n)1/n). We also have monad(X) =
⋃

k∈Nmonad(Xk).
(b) By Proposition 9.6 using (a).
(c) Let D be neocompact (in the neometric space M = L2(Ω,M) ) ; then

D is bounded and so D ∩ X ⊆ Xk for some k so that D ∩ X = D ∩ Xk is
neocompact.

The internal semiflow Tτ has the following properties when restricted to X.

Proposition 7.6 ([14] Lemma 8.3) For finite τ > 0:

(a) TτX ⊆ X.

(b) Tτ (X ∩ NS) ⊆ X ∩ NS.
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Next note that there is an S-absorbing set for the internal semiflow Tτ on
X.

Lemma 7.7 ([14] Lemma 8.4) There is k0 ∈ N such that Xk0 is S-absorbing.
That is, for each k ∈ N there is an r(k) ∈ N such that

TτXk ⊆ Xk0

for all finite τ ≥ r(k). In fact we may take any k0 > k2.

Now make the following definitions.

Definition 7.8 (a) E = Xk0;
(b) En = Xk0,n (so that E =

⋂

n∈N En);
(c) E = Xk0

Theorem 7.9 E is a bounded neoclosed absorbing set for S on X.

Proof. E is an absorbing set by Proposition 7.2, Theorem 7.4, Proposi-
tion 7.6 and Lemma 7.7. E is bounded by Lemma 6.4. E is neoclosed by
Proposition 9.6, since E = ◦(E ∩ NS) and E is a Π0

1 set.

Now let
A =

⋂

t≥0

StE

The main theorem of [14] (see Theorem 6.10 above) shows that A is the
process attractor for the semiflow St on X. To see that it is a neoattractor we
show that the conditions of Corollary 5.18 are fulfilled.

.

7.3 A is a neoattractor

Most of the conditions of Corollary 5.18 follow from the previous section. For
the remaining conditions of we continue with some details from [14] From the
S-absorbing set E define the following set C, called the S-attractor for the
internal semiflow Tτ on X.

Definition 7.10 Define sets C and Cn (for n ∈ N) as follows.

(a) Cn =
⋂

0≤τ≤n TτEn.

(b) C =
⋂

n∈N Cn.

(Note: The sets Cn are those denoted ̂Cn in [14].)

Proposition 7.11 (a) The sets Cn are internal and decreasing.
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(b) C is a Π0
1 set.

(c) C ⊆ E.

Now comes a key result of [14], which uses the uniform integrability condition
on solutions in X that is coded up by the truncation functions.

Theorem 7.12 ([14] Theorem 9.4(d)) C is nearstandard; that is, C ⊆ NS.

Finally we have

Proposition 7.13 For each n ∈ N

St(E) ⊆ ◦(Cn)

eventually.

Proof. Since E is S-absorbing there is finite r0 with TτE ⊆ E for finite
τ ≥ r0; then for any finite τ ≥ 0 we have

Tn+r0+τE = TnTr0+τE ⊆ TnE ⊆ Cn.

So by Proposition 7.2 and Theorem 7.4, if t ≥ n + r0 then

StE ⊆ ◦(Cn)

Gathering this together we have

Theorem 7.14 A is a neo-attractor for the the neocontinuous semiflow (St)t≥0

on the set X of solutions to the stochastic Navier–Stokes equations (15).

Proof. We verify the hypotheses of Corollary 5.18. Hypotheses (a) and
(b) hold by Corollary 7.5 and Proposition 7.2. E is a bounded absorbing
set by Theorem 7.9. The sets Cn form a decreasing chain of internal sets by
Proposition 7.11, and C ⊆ monad(X) by Proposition 7.11 (c) and Theorem
7.12. Finally, St(E) ⊆ ◦Cn eventually by Proposition 7.13. The result now
follows from Corollary 5.18.

We remark that in [14], the set A is defined as A = ◦C, and it is then proved
that A is a process attractor and is equal to

⋂

t≥0 StE.

Below (Proposition 7.16) we show that this result is a genuine strengthening
of the main result of [14]. Close examination of the results of [14] would show
that the full strength of the results of section 5.2 is not essential to prove
Theorem 7.14. However, the following result does not follow from the results
of [14] and gives a much stronger result than proved there.

The following result shows that one still gets a neo-attractor after adding
additional inequalities that are preserved under the semiflow. It gives a scheme
for proving the existence of neoattractors for systems of stochastic Navier-
Stokes equations with additional specialised properties.

41



Theorem 7.15 Any neo-subflow S � Y of S such that the monad of Y is
countably determined has a neo-attractor.

Proof. By Theorem 5.17 and Corollary 5.18.

Finally, we show that the notion of neo-attractor for the stochastic Navier–
Stokes equations is stronger than the notion of a process attractor given in
[14] and described above, because the compactness and attraction properties
required of a process attractor are special cases of the more general properties
possessed by a neo-attractor. Thus Theorem 7.14 improves the main result of
[14].

Proposition 7.16 Suppose A is a neo-attractor for S on X. Then A is a
process attractor for S on X.

Proof. The function laww(·) : M → M1,2 is neocontinuous, so A =
laww(A) is neocompact in M1,2. Since M1,2 is separable, A is compact in the
metric d. The invariance of A follows at once from the invariance of A. For
any open set O in M1,2, O = law−1

w (O) ∩ X is neoopen in X. If A ⊆ O,
then A ⊆ O. Then for each bounded set B ⊆ laww(X), B = X ∩ law−1

w (B) is
bounded in X, and StB ⊆ O eventually, so ̂St(B) ⊆ O eventually. This shows
that A is a law-attractor for S on X.

For each compact set K ⊆ M and each r ∈ (0,∞), K is neocompact, so
K≤r is neoclosed in M and its complement Or = {x ∈ X : ρ(x,K) > r} is
neoopen in X. If ρ(A, K) > r, then A ⊆ Or, and thus StB ⊆ Or eventually for
each bounded B ⊆ X. It follows that lim inft→∞ ρ(StB, K) ≥ ρ(A, K). This
shows that A has the attraction property of a process attractor (Definition
6.8). Finally, A is closed by Proposition 9.5.

7.4 Two-sided solutions

In [14] it is proved that the attractor (now shown to be a neo-attractor) is
characterised as the restriction to nonnegative times of the set of all bounded
two-sided solutions (that is, solutions defined for all time negative and pos-
itive). If X̄ is the set of all such solutions to the stochastic Navier-Stokes
equations we have:

Theorem 7.17 ([14] Theorem 10.3)

A = X̄ � [0,∞)

We conclude by noting that

Theorem 7.18 X̄ is neo-compact.

Proof. It is shown in [14] that X̄ = ◦X̄ where X̄ is the set of internal
approximate two-sided solutions; moreover X̄ is a Π0

1 set and all members of X̄
are nearstandard. We refer the reader to [14] for details.
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8 Appendix 1: Nonstandard preliminaries

We work in an ℵ1-saturated nonstandard universe that contains a nonstandard
extension ∗J for every mathematical object J involved in our theory. In par-
ticular we have ∗R,∗N,∗ H, ∗M, ∗C0(R), ∗Wiener measure, etc. The Appendix
of [14] provides a brief introduction to those parts of nonstandard analysis that
are needed there and the reader is referred to that paper. Below we mention
the most important ideas needed for this paper; for further details see [13] for
example or any of the standard references [1],[2],[8],[21] or [23].

Here is a brief description;

8.1 The nonstandard universe

We start with a base set B which contains all the standard objects involved
in our discussion. In particular, B should contain the set of reals R and the
linear space H. The following superstructure over B, denoted by V = V (B), is
an adequate (standard) mathematical universe for our purposes (where P(A)
denotes the set of all subsets of a set A):

V0(B) = B
Vn+1(B) = Vn(B) ∪ P(Vn(B)), n ∈ N

and
V = V (B) =

⋃

n∈N
Vn(B).

Next, we use the ultrapower construction to build the nonstandard exten-
sion ∗B ⊃ B, and at the same time construct a mapping ∗ : V (B) → V (∗B)
which associates to each set A ∈ V a nonstandard counterpart ∗A ∈ V (∗B).
At level 0, we simply have ∗b = b for each b ∈ B. At level 1, for each A ⊂ B
we have A ⊂ ∗A ⊂ ∗B, with ∗A \ A consisting of “ideal” or “nonstandard”
elements. For example ∗N \ N consists of infinite (hyper)natural numbers.

In general, for each set A ∈ V, the mapping ∗ maps A injectively into ∗A.
So even for mathematical objects3 J at higher levels, ∗J can be regarded as
an extension of J .

The resulting nonstandard universe is the collection

∗V = {x : x ∈ ∗A for some A ∈ V}

consisting of all members of nonstandard counterparts of sets in V. Although
∗V ⊂ V (∗B), it is crucial to realize that ∗V is not the same as V (∗B). Sets in
∗V are known as internal sets; a set is external if it is not internal.

The key property of the nonstandard universe that makes it tractable is
the Transfer Principle which indicates precisely which properties of the super-
structure V are inherited by ∗V.

3We are taking the approach that every mathematical object is actually a set.
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Theorem 8.1 (The Transfer Principle) Suppose that ϕ is a bounded quan-
tifier statement. Then ϕ holds in V if and only if ∗ϕ holds in ∗V.

A bounded quantifier statement (bqs) is simply a statement of mathematics
that can be written in such a way that all quantifiers range over a prescribed
set. That is, we have subclauses such as ∀x ∈ A and ∃y ∈ B but not unbounded
quantifiers such as ∀x and ∃y. Most quantifiers in mathematical practice are
bounded (often only implicitly in exposition). A bqs ϕ may also contain fixed
sets M from V, which will be replaced in ∗ϕ by ∗M.

Members of internal sets are internal (this follows easily from the construc-
tion) and since the sets ∗M are also internal, it follows that the information
we obtain from the Transfer Principle is entirely about internal sets.

It is possible (and quite convenient) to take an axiomatic approach to
∗V, which simply postulates the existence of a set ∗V and a mapping ∗ :
V → ∗V that obeys the Transfer Principle. For most purposes (and certainly
the construction of Loeb measures) the further assumption of ℵ1-saturation is
needed — a property that comes with the ultrapower construction.

8.2 ℵ1-saturation

Definition 8.2 A nonstandard universe ∗V is said to be ℵ1-saturated if the
following holds:

if (Am)m∈N is a countable decreasing sequence of internal sets with each
Am 6= Ø, then

⋂

m∈NAm 6= Ø.

Theorem 8.3 A nonstandard universe ∗V constructed as a countable ultra-
power is ℵ1-saturated.

ℵ1-saturation is a kind of compactness property that is essential for the
Loeb measure construction which plays a central role in this paper.

The basic fact is that for each (internal) ∗probability space Ω = (Ω,G, Q),
the finitely additive probability measure ◦Q : G →R has a σ-additive extension.
(This is an important consequence of ℵ1-saturation.) The unique completion
of this σ-additive extension is called the corresponding Loeb space, and is
denoted by (Ω,GL, QL). For convenience, we assume here that Ω is ∗countably
additive, although most of the general theory carries over to the ∗finitely ad-
ditive case.

The theory of the Loeb measure and Loeb integration is assumed in this
paper (see [8, 12, 13] for example).

8.3 Standard parts

Given a standard Hausdorff space S ⊂ B, we have S ⊆ ∗S. If x ∈ S and
x ∈ ∗S, we say that x is the standard part of x, in symbols x = ◦ x or x ≈ x, if
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x ∈ ∗O for every open neighborhood O of x. Since S is Hausdorff, each x ∈ ∗S
has at most one standard part. An element x ∈ ∗S is said to be near-standard,
in symbols x ∈ ns(S), if X has a standard part (in S.). Thus the standard
part function maps ns(S) onto S and is the identity on S. The standard part
of a set B ⊆ ns(S) is the set ◦B = {◦x : x ∈ B}. Here is a useful immediate
consequence of the definition of standard part.
Remark 8.4 Suppose x = ◦ x in a Hausdorff space S.

(a) If O is open in S, x ∈ O implies x∈ ∗O.
(b) If C is closed in S, x∈ ∗C implies x ∈ C.

In the particular case of a standard metric space (S, ρ), x = ◦ x if and
only if ∗ρ(x, x) ≈ 0, and two points x, y ∈ ∗S are said to be infinitely close, in
symbols x ≈ y, if ∗ρ(x, y) ≈ 0.

The following fundamental result is one of the keys to the power of non-
standard analysis.

Theorem 8.5 Suppose S is a Hausdorff space and C ⊆ S. Then
(a) C is compact if and only if ∗C ⊆ns(C)
(b) C is relatively compact if and only if ∗C ⊆ns(S)

This criterion will often be used in conjunction with the fact that for a
metric space compactness is equivalent to sequential compactness, as follows.

Theorem 8.6 Suppose S is a metric space and C ⊆ S. Then C is compact if
and only if for every sequence (xn) in C, xN ∈ ns(C) for every infinite N.

The nonstandard criterion for continuity is very intuitive.

Theorem 8.7 Let f : S1 → S2 where Si are topological spaces. Then f is
continuous if and only if

∗f(x) ≈ ∗f(y) whenever x ≈ y

The book [8] gives information about the standard part mapping for various
topologies on the standard set H. The most important are as follows. Here,
∗H has an internal ∗basis {∗en}n∈∗N, and we write En = ∗en. Thus for each
N ∈ ∗N, HN = ∗span{E1, . . . , EN} ⊆ ∗H. We also write u(n) = (u, en) for
u ∈ H and u(n) = (u, En) for u ∈ ∗H.

Lemma 8.8 Let u ∈ ∗H. Then:

(a) If |u| < ∞ (i.e. |u| is finite) then u is weakly nearstandard in H, and the
weak standard part u = stweak(u) is defined by

u(n) = ◦(u(n)), n ∈ N.
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(b) If u is nearstandard in the strong topology of H then |u| < ∞ and

stweak(u) = st(u).

(c) If ‖u‖ < ∞ then u is (strongly) nearstandard in H.

In view of the consistency (b) above we use ◦u to denote the standard part
of u whenever |u| is finite.

Near-standard points and standard parts also appear in the more general
setting of an internal ∗metric space, and in particular the space SL0(Ω) of
∗random variables on a ∗measure space Ω. This is the starting point of the
theory of neometric spaces, which is outlined in Section 5 and applied in Section
7.

9 Appendix 2: Neometric spaces

We give here a brief summary of those parts of the theory of neometric spaces
that we need, as developed in the papers [17] and [18]. The fundamental
definitions have been given in Section 5 so we do not repeat them here.

We will require the following consequence of ℵ1-saturation for countably
determined sets.

Lemma 9.1 ([20]) Projections of countably determined sets in M2 are count-
ably determined in M.

The next two results give basic facts about neocompact sets and a theorem
that is useful for proving results about neocompact sets, which follows from
([18] Corollary 3.8) and ([19] Proposition 3.1, Theorem 3.3).

Proposition 9.2 (a) Every compact set is neocompact.
(b) If C is neocompact in M×N , then the projection

D = {x ∈M : (∃y ∈ N )(x, y) ∈ C}

is neocompact in M.
(c) If C is neocompact in M×N and K is a nonempty compact subset of

N , then
B = {x ∈M : (∀y ∈ K)(x, y) ∈ C}

is neocompact in M.

Theorem 9.3 The following are equivalent for a set C ⊆M:
(a) C is neocompact.
(b) The monad of C is a Π0

1 set.
(c) The monad of C is countably determined, and each countable subset of

C is contained in a neocompact subset of C.
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Proof. It is obvious that (b) implies (a). To prove (a) implies (b), we
observe that if C = ◦ ⋂

n∈NAn where each An is internal, then monad(C) =
⋂

n∈N((An)1/n).
Clearly (a) and (b) implies (c), so it remains to prove that (c) implies (b).

Assume (c). Then monad(C) is an infinite Boolean combination of sets from
a countable sequence B1, B2, . . . of internal subsets of M. Let us write x ≡n y
if x, y belong to the same sets among B1, . . . , Bn, and let

Dn = {x : (∃y ∈ monad(C)) x ≡n y}.

Then each Dn is internal because it is the finite union of ≡nequivalence classes.
It suffices to prove that

monad(C) =
⋂

n∈N

Dn.

It is clear that the left side is contained in the right side. Suppose x ∈
⋂

n∈N Dn.
Then for each n ∈ N there exists yn ∈ monad(C) such that yn ≡n x. By
hypothesis there is a neocompact set A such that

{◦yn : n ∈ N} ⊆ A ⊆ C.

Since (a) implies (b), there is a decreasing chain An of internal sets such that
monad(A) =

⋂

n∈N An. Then yn ∈ An for each n ∈ N. By ℵ1-saturation there
exists y such that y ∈ An and y ≡n x for all n ∈ N. Then y ∈ monad(A) ⊆
monad(C). Since monad(C) is an infinite Boolean combination of the sets Bn,
it follows that x ∈ monad(C).

An important consequence is the following fact, which says that neocom-
pact sets behave like compact sets. It can often be used as a shortcut in place
of overspill.

Theorem 9.4 (Countable Compactness) If Bm is a decreasing chain of
nonempty neocompact sets, then

⋂

m Bm is a nonempty neocompact set.

Proof. Let B =
⋂

m Bm. By Lemma 9.3, for each m, monad(Bm) is equal
to a nonempty Π0

1 set
⋂

n Cmn. It is easily seen that

⋂

m

(

⋂

n

Cmn

)

=
⋂

m

(monad(Bm)) = monad(B),

so B is neocompact. For each k there is a point xk which belongs to Cmn for
all m,n < k. By ℵ1-saturation, there is a point x that belongs to Cmn for all
m,n ∈ N. Therefore ◦x ∈ B, so B is nonempty.

Relationships between closed, neoclosed and neocompact are given next.

Proposition 9.5 (a) ([17], Lemma 4.6.) Every neocompact set is neo-
closed and bounded in M.

(b) ([17], Proposition 4.5.) Every neoclosed set is closed.
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Thus, whereas neocompact is weaker than compact (Proposition 9.2(a)),
neoclosed is stronger than closed.

For a set D ⊆ M, let ◦D = {◦x : x ∈ D}. Neoclosed sets can often be found
using the following proposition.

Proposition 9.6 ([18], Proposition 4.1 and Lemma 3.7) Let Dn, n ∈ N
be a decreasing chain of internal subsets of M and let D be the Π0

1 set D =
⋂

n Dn. Then
(a) ◦D ∩M is neoclosed in M.
(b)

◦D ∩M =
⋂

n

◦(Dn) ∩M =
⋂

n

◦((Dn)≤1/n) ∩M.

Here are the basic properties of neocontinuous functions.

Proposition 9.7 (See [17]) (a) Every neocontinuous function is continuous.
(b) If M is separable then every continuous function f : M → N is

neocontinuous.
(c) Compositions of neocontinuous functions are neocontinuous.
(d) Let f : M→N be neocontinuous.

(i) If C is neocompact in M, then f(C) is neocompact in N .
(ii) If D is neoclosed in N , then f−1(D) is neoclosed in M.

Neocontinuous functions can often be built using the next proposition.

Proposition 9.8 ([18], Theorems 4.16 and 4.18) . A function f : M→
N is neocontinuous if and only if for each neocompact set C in M, there is an
internal function F : M → N such that for all x ∈ monad(C), F(x) ∈ monad(N )
and ◦(F(x)) = f(◦x).

As examples using this proposition we have the distance and projection
functions noted earlier.

We will need the following consequence of countable compactness.

Proposition 9.9 Suppose f : M→N is neocontinuous and {Cn} is a count-
able decreasing chain of neocompact sets in M. Then

f

(

⋂

n∈N
Cn

)

=
⋂

n∈N
f(Cn).

Proof. We prove the nontrivial direction. Let y ∈
⋂

n∈N f(Cn) and let
D = f−1{y}. The set {y} is neocompact since it is compact, so D is neoclosed
by Proposition 9.7. Then D∩Cn is a decreasing chain of nonempty neocompact
sets. By countable compactness, there exists x ∈

⋂

n∈N(D ∩ Cn). Thus x ∈
⋂

n∈NCn and f(x) = y, as required.
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