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In this ground-breaking series of papers, longstanding open problems in both model
theory and set theory are solved. The authors indicate that these papers are part of an
ongoing program. In this review we give a snapshot of the current state of the program.

For the past fifty years, one of the dominant themes in model theory has been
Shelah’s classification program, which seeks to classify first order theories according to
how ‘tame’ the models of the theory are. The set of stable theories has been classified
in a coherent way using the Morley rank and other concepts, and is well understood.
A major goal of current research in model theory is to achieve a similar understanding
of the unstable theories.

In the paper [H. Jerome Keisler, Ultraproducts which are not saturated, Journal of
Symbolic Logic vol. 32 (1967), 23–46] I introduced a pre-ordering E on all complete
first order theories, that measures the degree of reluctance of ultrapowers of models
of a theory to be saturated. In that paper I posed the problem of determining the
structure of this ordering, and asked whether it would give a fruitful classification of
first order theories. This problem has turned out to be extraordinarily difficult, and
little progress had been made until the recent work of Malliaris and Shelah.

The papers under review show that the ordering E gives a new and unexpected
classification of the simple theories. They also solve a major problem in set theory that
had been open since the 1940’s by showing that p = t. It is quite surprising that this is
actually a consequence of ZFC rather than an independence result, and that it comes
out of a model-theoretic study of the E ordering.

Here is a brief review of the situation before about 2010. We use T,U, . . . for complete
first order theories with countable signatures, D for an ultrafilter over an infinite set I,
and λ for the cardinality of I. By the fundamental theorem of  Loś, every ultrapower
of a model of T is a model of T . We say that D saturates T (or is good for T ) if the
ultrapower MI/D is λ+-saturated for every model M of T . Two important properties
of filters are regularity and goodness. A filter F over I is regular if there is a set
E ⊆ F of cardinality λ such that each i ∈ I belongs to only finitely many e ∈ E. F
is good if every monotonic function f : [λ]<ℵ0 → F has a multiplicative refinement
g : [λ]<ℵ0 → F (that is, g(u) ⊆ f(u) and g(u ∩ v) = g(u) ∩ g(v)). In the early 1960’s
I introduced good filters, and showed that a regular ultrafilter D is good if and only if
D saturates every T , and that the GCH implies that regular good ultrafilters exist. In
1972, Kunen proved the existence of regular good ultrafilters in ZFC.

In the 1967 paper referenced above, T E U is defined to mean that for every infinite
cardinal λ, every regular ultrafilter over a set of power λ that saturates U also saturates
T . T/ U means T E U and not U E T . The relation E is a pre-ordering of the class of
all complete theories, and induces a partial ordering on the set of E-equivalence classes
of theories. The following results are from that paper. If D is regular and MI/D is
λ+-saturated for some model of T , then D saturates T . There is a theory T that is
E-minimal in the sense that T E U for all U , and a theory U that is E-maximal in the
sense that T E U for all T . If T is E-minimal, then T does not have the finite cover
property (fcp) and is not E-maximal.
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Shelah proved the following results in the 1970’s; details can be found in Chapter VI
of the book [Saharon Shelah, Classification Theory, North-Holland 1990]. The minimal
E-equivalence class is the set all theories that do not have the fcp, and every such
theory is stable. The next lowest E-equivalence class is the set of stable theories with
the fcp. If T is stable and U is unstable then T /U . Every theory with the strict order
property is E-maximal. There was little further progress for the next several decades.

Because of these early results, people suspected that the ordering E would be coarse,
and that there may only be a small finite number of E-equivalence classes. The recent
papers by Malliaris and Shelah contain the following results about E, which completely
change the picture.

(1) There is a minimum E-equivalence class of unstable theories. It contains the
theory Trg of the random graph.

(2) If T is not low or not simple, then Trg /T . Thus every theory that is E-equivalent
to Trg is low, simple, and unstable.

(3) There is an infinite sequence of theories (U0, U1, . . . , Un, . . . ) such that

Trg / . . . / Un / . . . / U1 / U0,

and for each n, every theory that is E-equivalent to Un is low and simple.
(4) Suppose there is a supercompact cardinal. If T is simple and U E T , then U is

simple.
(5) There is a minimum E-equivalence class of non-simple theories. It contains the

theory T ∗feq, which is the model completion of the theory of an infinite family of
independent parametrized equivalence relations.

(6) Every SOP2 theory is E-maximal.

It follows from (1)–(3) that the set of E-equivalence classes of simple unstable theories
has a E-minimum element, and is infinite and not well-ordered by E.

Result (1) is from the paper [Malliaris, Hypergraph sequences as a tool for saturation
of ultrapowers, Journal of Symbolic Logic vol. 77 (2012), pp. 195-223]. Result (2) is
from the paper [Malliaris and Shelah, A dividing line within simple unstable theories,
Advances in Mathematics vol. 249 (2013), pp. 250-288]. Result (3) is partly in the
second and partly in the third paper under review. (4) is in the second paper under
review. (5) and (6) are in the first paper under review.

In order to obtain the results (1)–(6), Malliaris and Shelah introduced new model-
theoretic notions involving the realization and omitting of types, and new set-theoretic
properties of ultrafilters. The latter are often “refinement properties”—weakenings
of goodness that require only that certain monotonic functions have multiplicative
refinements. Powerful methods were developed to construct ultrafilters, and to relate
properties of ultrafilters to properties of ultrapowers. The following paragraphs will
describe some of these methods in broad terms, skipping many details. From now on,
D will always denote a regular ultrafilter.

A basic method in the proofs of results (2)–(4) is the construction of a regular
ultrafilter over a set I from a (not necessarily regular) ultrafilter on a complete Boolean
algebra B. Let D∗ be an ultrafilter on B. Say that D is built from D∗ if there is
a surjective homomorphism j : P(I) → B such that j−1({1B}) is a good regular filter
over I, and D = j−1(D∗). A general result, called “separation of variables”, shows
that an ultrafilter D∗ on B has a refinement property called moral for T if and only if
every D built from D∗ saturates T . This is useful because one often has more freedom
in constructing ultrafilters on B than over I.

Given cardinal numbers θ ≤ µ < λ, B2λ,µ,θ is the completion of the Boolean algebra

freely generated by elements xf where f is a function whose domain is a subset of 2λ

of size < θ, subject to the conditions that xf ≤ xg when f ⊆ g, and xf ∩ xg = 0 when
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f, g are incompatible. It is shown that for every ultrafilter D∗ on B2λ,µ,θ, there is a

surjective j such that j−1({1B}) is a good regular filter over I, and hence there exists
a regular D that is built from D∗

(2) is related to a refinement property that has been around since the 1960’s: D
is OK if every monotone function f : [λ]<ℵ0 → D, such that f(u) = f(v) whenever
|u| = |v|, has a multiplicative refinement g : [λ]<ℵ0 → D. In the above (2012) paper,
Malliaris introduced a refinement property called flexibility, which was later found to
be equivalent to being OK. She showed that if D saturates a theory that is not low or
not simple, then D is flexible. Let ω ≤ µ < λ ≤ 2µ and let B = B2λ,µ,ω. In the above
(2013) paper, it is shown that no ultrafilter D that is built from an ultrafilter on B is
flexible, and that there is an ultrafilter D∗ in B that is moral for Trg. Hence any D
that is built from D∗ saturates Trg, and any theory that is saturated by D is low and
simple. Then for any theory U that is not low or not simple, not Trg E U . We also
have Trg E U by (1), so Trg / U .

(3) Let Tm,k be the model completion of the theory with one symmetric irreflexive
(k+ 1)-ary relation with no complete subgraphs on m+ 1 vertices. Hrushovski showed
that Tm,k is a low simple theory when m > k ≥ 2. For each n, let Un be the disjoint
union of the theories Tk+1,k for k ≥ 2n+2. It is shown that (3) holds for these particular
theories Un.

To do this, the notion of a perfect ultrafilter is introduced. Being (λ, µ)-perfect is a
refinement property of an ultrafilter D∗ on the complete Boolean algebra B = B2λ,µ,ω.
Suppose α is an ordinal, 2 ≤ k < `, µ = ℵα, and λ = ℵα+`. The following results
are proved. There exists a (λ, µ)-perfect ultrafilter D∗ on B. For every (λ, µ)-perfect
ultrafilter D∗ on B and every m > `, D∗ is moral for Tm+1,m. But for every ultrafilter
D∗ on B, D∗ is not moral for Tk+1,k. So taking ` = k + 1, we get D∗ that is moral
for Tm+1,m for all m > k + 1, but not for Tk+1,k. Then any D that is built from D∗
will saturate Tm+1,m for all m > k + 1, but will not saturate Tk+1,k. From the proof
of (2) above, every theory that D saturates will be low and simple. It is easily seen
that a regular ultrafilter will saturate Un if and only if it saturates Tk+1,k for every
k ≥ 2n+ 2. The result (3) follows.

(4) Assume that σ is an uncountable supercompact cardinal. It is shown that there
is a regular ultrafilter D that saturates the simple theories and only the simple theories.
This easily implies (4). D will be built from a σ-complete ultrafilter D∗ on B2λ,µ,σ.
This is rather unexpected because a σ-complete ultrafilter can never be regular. We
saw from the proof of (2) that an ultrafilter that is built from an ultrafilter on B2λ,µ,ω

cannot be flexible, and hence cannot saturate a simple theory that is not low. This
obstacle is avoided here by assuming that there is a supercompact cardinal σ and
working with B2λ,µ,σ.

Now assume that µ, λ are finite successor cardinals of σ with µ < λ. (The papers
under review used a more general setting, carrying along a quadruple λ ≥ µ ≥ θ ≥ σ
of cardinals satisfying a condition called suitability). Let B = B2λ,µ,σ. The model-
theoretic property of a theory being (λ, µ, σ)-explicitly simple is introduced. It gets
weaker as µ increases. Intuitively, µ is a bound on the complexity of amalgamation. A
key result is that when λ = µ+, (λ, µ, σ)-explicit simplicity is equivalent to simplicity.

(λ, µ, σ)-optimality is a refinement property for σ-complete ultrafilters on B that
is a large-cardinal analogue of being (λ, µ)-perfect. The following results are proved.
Every (λ, µ, σ)-optimal ultrafilter is moral for every (λ, µ, σ)-explicitly simple theory.
There exists a σ-complete filter D0

∗ on B generated by µ+ sets such that no σ-complete
ultrafilter D∗ ⊇ D0

∗ is moral for a non-simple theory. Every such D0
∗ can be extended

to a (λ, µ, σ)-optimal ultrafilter D∗ ⊇ D0
∗. Hence for any theory T , D∗ is moral for T

if and only if T is simple. So any D that is built from D∗ will be as required.
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(5) is related to another refinement property of ultrafilters, called goodness for equal-
ity. D is said to be good for equality if for every set A and every set X ⊆ AI of
power |X| ≤ λ, there exists a mapping d : X → D such that for all x, y ∈ X, if the set
{i ∈ d(x) ∩ d(y) : x(i) = y(i)} is non-empty then it belongs to D. In the (2012) paper
mentioned above, Malliaris showed that if D saturates a theory that is not simple and
is not SOP2, then D is good for equality, and that if D is good for equality then D
saturates T ∗feq. The result (6) implies that if D saturates an SOP2 theory then D is
good and hence also saturates T ∗feq. Thus (6) implies (5).

(6) In the proof of (6), ultrapowers of the model 〈N, <〉 play a key role. Such
ultrapowers were also key in Shelah’s discovery of the two lowest E-equivalence classes.
A linear ordering 〈X,<〉 has a (κ1, κ2)-cut if κ1, κ2 are regular cardinals and X can be
partitioned into two sets Y,Z such that y < z for all y ∈ Y and z ∈ Z, Y has cofinality
κ1, and Z has coinitiality κ2. The cut spectrum of D below a cardinal µ is the set

C(D,µ) = {(κ1, κ2) : κ1 + κ2 < µ and 〈N, <〉I/D has a (κ1, κ2)- cut}.
Ultrapowers of trees also play a key role. Here a tree T is a set of sequences partially
ordered by initial segment that is well-ordered below any element of T . D is said to
have µ-treetops if for every tree T , every strictly increasing sequence in T I/D of
length < µ has an upper bound.

Note that if D is good then D has λ+-treetops. Since Th(〈N, <〉) is E-maximal, it is
easy to see that D is good iff C(D,λ+) = ∅. It is shown that if D has λ+-treetops then
C(D,λ+) = ∅, so D is good iff D has λ+-treetops. The idea for doing this as follows.
It is clear that there is a greatest cardinal pD such that C(D, pD) = ∅, and a greatest
cardinal tD such that D has tD-treetops. Then pD ≥ tD if and only if C(D, tD) = ∅.
The main step is to show that C(D, tD) = ∅ for every D. Then pD ≥ tD. So if D has
λ+-treetops, then λ+ ≤ tD ≤ pD and hence C(D,λ+) = ∅. As explained later, pD and
tD are related to the cardinals p and t.

It is also shown that if D saturates some SOP2 theory, then D has λ+-treetops. The
result (6) follows.

There is an extensive discussion of the converse of (6), which is open:

(7) Conjecture: Every E-maximal theory is SOP2.

T ∗feq is not SOP2, by [Shelah and Usvyatsev, More on SOP1 and SOP2, Annals of
Pure and Applied Logic 155 (2008), 16–31]. So Conjecture (7) would imply that T ∗feq
is not E-maximal, and hence that there are at least two E-equivalence classes of non-
simple theories. As evidence for Conjecture (7), it is shown in the forthcoming paper
[Malliaris and Shelah, Model theoretic applications of cofinality spectrum problems,
arXiv:1503.08338.math.LO] that under the GCH, T is SOP2 if and only if T is maximal
with respect to a related ordering E∗.

We now turn to the set-theoretic result p = t. We first review the classical definitions
of p and t. We write A ⊆∗ B if A\B is finite. The pseudo-intersection number p is
the least cardinal of a subset X ⊆ [N]ℵ0 such that the intersection of every finite subset
of X is infinite, but there is no infinite set A such that A ⊆∗ B for all B ∈ X. The
tower number t is the least cardinal of a subset X ⊆ [N]ℵ0 such that X is linearly
ordered by ⊆∗ but there is no infinite set A such that A ⊆∗ B for all B ∈ X. It is
easily seen that p ≤ t ≤ 2ℵ0 .

The idea for proving that p = t is to show that an analogue of C(D, tD) = ∅ holds
in a more general setting, called a cofinality spectrum problem (CSP). A CSP is a
tuple

s = (M,M1,M
+,M+

1 ,∆)

such that M+ ≺ M+
1 , M,M1 are reducts of M+,M+

1 , ∆ is a set of formulas with
parameters in M1 that define discrete linear orderings with first and last elements,
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and (M+
1 ,∆) has enough set theory for trees in a natural sense. An example is the

ultrapower CSP, in which

M = 〈N, <〉,M1 = MI/D,M+ = 〈H(θ),∈〉,M+
1 = (M+)I/D

for some sufficiently large cardinal θ.
Given a CSP s, the cut spectrum C(s, µ) and the cardinals ps, ts are defined in the

expected way. The general theorem is that C(s, ts) = ∅ for every CSP s.
The equation p = t is proved as follows. Let G be a generic subset of ([N]ℵ0 ,⊇∗). In

the generic model V [G] of set theory, one can find a CSP s such that

t ≤ ts,M = M+ = (H(ℵ1),∈), and M1 = M+
1 = Mω/G is the generic ultrapower.

Therefore in V [G], C(s, t) = ∅. It is shown that in V [G], p < t implies that ps ≤ p, and
hence ps ≤ t. This contradicts C(s, t) = ∅, so p = t holds in V [G]. Finally, this implies
that p = t holds in V .

The methods developed in these papers are likely to stimulate more research in model
theory and set theory. An enticing possibility is that the general results on cofinality
spectrum problems will have broader applications. Some definitions in the papers are
quite complicated, and there will be a search for simpler alternatives. Many questions
about the E-ordering remain open. The results on the E-ordering and on explicit
simplicity will re-open work on the classification of simple theories.
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