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1 Introduction

Users of non-standard methods in mathematics have always been interested in the
following question: what does non-standard analysis offer the mathematical com-
munity? The issues raised by this question are neverending and there is a whole
spectrum of possible answers.

The paper [HK] offered an explanation from the point of view of logic, explaining
how the principles used in the superstructure approach to nonstandard analysis are
related to standard mathematical practice. One difficulty is that the mathemati-
cal community is not agreed on what “standard mathematical practice” is. [HK]
used mathematical logic to provide a formal framework where these issues can be
discussed.

The question posed above was approached from a different point of view in
the series of papers beginning with [K1] and continuing with [FK1], [CK], [FK2],
[K2] and [K3]. This series of papers develops the notion of a neometric space,
and the whole program is explained in the survey paper [K6] in this volume. The
approach may be intuitively described as follows. Start from a part of mathematics,
probability theory, where nonstandard methods have clearly offered new insights
and enriched the field with new and interesting results. Then isolate and present
in “standard terms” those features of nonstandard practice that have made this
success possible. The results appeared in [FK1] and [FK2] where the notions of
neocompact sets and neometric families were presented, and the basic mathematical
theory around these new concepts was developed.

A few words about these two papers will help to explain our reason for writing
the present paper. In [FK1], entitled “Existence Theorems in Probability Theory”,
we developed a standard theory which captured the key elements from nonstandard
analysis that made it possible to prove new existence theorems in stochastic anal-
ysis (see [AFHL], [K4] and [K5]). Using neocompact sets and neometric spaces we
introduced a new class of probability spaces called “Rich Probability Spaces” and
then proceeded to show that in those spaces the results obtained using nonstandard
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methods are true. The main new ingredient is that these results, in the new setting,
are proved within standard mathematical practice. We just asked our readers to
accept the existence of such spaces and then proceed to see what could be done
with them.

In [FK2] we showed that rich spaces exist, a result that requires nonstandard
analysis, and presented the theory of neometric spaces within the most general pos-
sible nonstandard framework, which we called the huge neometric family. There we
explained how the properties of internal sets in nonstandard hulls give rise to neo-
compact sets and how the saturation property of the nonstandard universe translates
into countable compactness for the neometric family.

A mathematician accustomed to working with nonstandard methods, and in par-
ticular within probability theory using liftings and standard parts, may be surprised
by the way the results are presented in those papers. Our aim in this paper is to
shed some light on the origins of our ideas. We are going to present “a nonstandard
theory which explains the standard theory that came out of observing nonstandard
practice.” Moreover, the results here can be used as a translation tool between
traditional nonstandard arguments and the new theory of neometric spaces.

The idea centers around a fundamental fact from nonstandard analysis: se-
quences indexed by N, the natural numbers, can be extended to sequences indexed
by ∗N, the hyperintegers. This is the reason for the name long sequence. This
elementary procedure allows us to capture many important facts from nonstandard
practice.

We shall refer to the survey paper [K6] in this volume for the definitions and
basic facts concerning the general notion of a neometric family, and in particular
the huge neometric family.

Long sequences are introduced in Section 2 of this paper, and the theory is devel-
oped further and applied to the huge neometric family in Section 3. Needless to say,
we assume the reader is familiar with the superstructure approach to nonstandard
analysis (see [L], [AFHL] and [C]). Acquaintance with [FK1] and [FK2] is highly
desirable to get the complete picture of the subject.

This research was partially financed by Colciencias, the University of los Andes,
the National Science Foundation, and the Vilas Trust Fund at the University of
Wisconsin-Madison.

2 Long Sequences

One way to bring nonstandard analysis to bear in proofs by convergence is to use
sequences indexed by the hyperintegers rather than the integers. We shall call such
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sequences long sequences. The paper [K2] made extensive use of long sequences,
without using this name. In this section we develop some relations between long
sequences and neometric spaces.

We fix an ℵ1-saturated nonstandard universe and let (H,B, C) be its huge neo-
metric family as defined in [K6].

Definition 2.1 A function 〈xn〉 mapping N into a set S will be called a sequence
in S, and a (possibly external) function 〈xJ〉 mapping ∗N into S will be called a
long sequence in S.

As a warmup, before establishing the connection between long sequences and
neocompact spaces, we prove some basic facts about sets of hyperintegers and long
sequences. We frequently use the following consequences of ω1-saturation (e.g. see
[SB]):

Lemma 2.2 (i) The infinite hyperintegers have coinitiality ω1, that is, every count-
able set of elements of ∗N−N has an infinite lower bound.

(ii) For every internal set S and every sequence 〈Xn〉 in S, there exists an in-
ternal long sequence 〈YJ〉 in S such that Yn = Xn for all n ∈ N. 2

Definition 2.3 We say that a statement φ(J) holds a.e., or that φ(J) holds for all
sufficiently small infinite J , if there is an infinite hyperinteger K such that φ(J)
is true for all infinite hyperintegers J ≤ K.

The following lemma is often used to verify that a statement holds a.e.

Lemma 2.4 (i) (Overspill principle) If S is an internal subset of ∗N, then J ∈ S
a.e. if and only if n ∈ S for all but finitely many n ∈ N.

(ii) (Countable completeness) The set of all S ⊂ ∗N such that J ∈ S a.e. is a
countably complete filter.

Proof: (i) is in any book on nonstandard analysis. (ii) If J ∈ S a.e. and S ⊂ T ,
then obviously J ∈ T a.e. Suppose J ∈ Sn a.e. for all n ∈ N, and let S =

⋂

n Sn.
Then for each n ∈ N there is an infinite hyperinteger Kn such that J ∈ Sn for all
infinite J ≤ Kn. By ω1-saturation there is an infinite hyperinteger K such that
K ≤ Kn for all n ∈ N. Then J ∈ S for all infinite J ≤ K, so J ∈ S a.e. 2

The overspill principle will often be used in the following form.
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Corollary 2.5 Let 〈XJ〉 be an internal long sequence in ∗R and let b ∈ ∗R.
(i) XJ ≤ b a.e. if and only if Xn ≤ b for all but finitely many n ∈ N.
(ii) XJ ≈ 0 a.e. if and only if

lim
n→∞

st(Xn) = 0.

Proof: (i) Apply the overspill principle to the internal set S = {J ∈ ∗N : XJ ≤
b}. (ii) follows from (i) and countable completeness. 2

We now turn to long sequences in neometric spaces in the huge neometric family
(H,B, C). For the remainder of this paper, M and N will always belong to H. The
following is the key new concept we introduce in this paper.

Definition 2.6 If 〈xJ〉 is a long sequence in M and 〈XJ〉 is an internal long se-
quence in M̄ such that xJ = oXJ for all finite J and all sufficiently small infinite
J , we say that 〈XJ〉 lifts 〈xJ〉. By an M-sequence we shall mean a long sequence
〈xJ〉 in M which has a lifting. A (short) sequence 〈xn〉 of elements of M will be
said to be M-extendible if it is the restriction to N of some M-sequence 〈xJ〉, and
〈xJ〉 will be called an M-extension of 〈xn〉.

By ω1-saturation, for every sequence 〈xn〉 inM there is an internal long sequence
〈XJ〉 such that Xn lifts xn, and hence Xn ∈ monad(M) for each n ∈ N. If in addition
we have XJ ∈ monad(M) a.e., then the sequence 〈xn〉 is M-extendible and its M-
extension is the M-sequence given by xJ = oXJ a.e. If 〈xn〉 is an M-extendible
sequence, we use the convention that 〈xJ〉 denotes an M-extension of 〈xn〉.

The next proposition shows that the notion of an M-extendible sequence is a
generalization of the notion of a convergent sequence.

Proposition 2.7 (i) If
lim

n→∞
xn = b

in M, then 〈xn〉 is M-extendible and 〈xJ〉 = b a.e.
(ii) If 〈xn〉 is M-extendible and 〈yn〉 is a sequence in M such that

lim
n→∞

ρ(xn, yn) = 0,

then 〈yn〉 is M-extendible.

Proof: (i) Let Xn lift xn, let Y lift b, and extend 〈Xn〉 to a long sequence 〈XJ〉.
By overspill, XJ ≈ Y and hence oXJ = b ∈ M a.e. Therefore 〈xJ〉 = 〈oXJ〉 is an
M-extension of 〈xn〉 and xJ = b a.e.
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(ii) Let 〈xJ〉 be anM-extension of 〈xn〉 and let 〈XJ〉 lift 〈xJ〉. For each n ∈ N, let
Yn lift yn, and by ω1-saturation let 〈YJ〉 be an internal long sequence in M̄ extending
〈Yn〉. Then

lim
n→∞

oρ̄(Xn, Yn) = 0,

so by overspill, XJ ≈ YJ a.e. It follows that 〈YJ〉 lifts an M-sequence 〈yJ〉 which
extends 〈yn〉, whence 〈yn〉 is M-extendible. 2

Given a product M×N of two spaces M,N ∈ H, 〈zJ〉 is an (M×N )-sequence
if and only if there is an M-sequence 〈xJ〉 and an N -sequence 〈yJ〉 such that
zJ = (xJ , yJ) a.e. Thus if 〈xn〉 is M-extendible and 〈yn〉 is N -extendible, then
the sequence of pairs 〈zn〉 = 〈(xn, yn)〉 is M×N -extendible, and zJ = (xJ , yJ) a.e.

The following shows that the M-extension of a sequence is unique a.e.

Proposition 2.8 (i) Let 〈xJ〉 and 〈yJ〉 be M-sequences. Then

lim
n→∞

ρ(xn, yn) = 0

if and only if xJ = yJ a.e.
(ii) (Uniqueness of the M-extension) Let 〈xJ〉 and 〈yJ〉 be two M-extensions of

the same sequence 〈xn〉 in M. Then xJ = yJ a.e.

Proof: (i) Let 〈XJ〉 lift 〈xJ〉 and 〈YJ〉 lift 〈yJ〉. By overspill, the following are
equivalent:

lim
n→∞

ρ(xn, yn) = 0.

lim
n→∞

oρ̄(Xn, Yn) = 0.

ρ̄(XJ , YJ) ≈ 0 a.e.

xJ = yJ a.e.

(ii) is a special case of (i). 2

Proposition 2.9 If 〈xn〉 is M-extendible, then for each c ∈ M, the sequence
〈ρ(xn, c)〉 is bounded in R.

Proof: Let 〈XJ〉 be a lifting of an M extension 〈xJ〉 of 〈xn〉. Suppose ρ(xn, c) is
not bounded. Let c̄ lift c. Then for each k ∈ N there are arbitrarily large n ∈ N
such that ρ(xn, c) > k, and hence ρ̄(Xn, c̄) ≥ k. By overspill, for each infinite
K ∈∗ N there is an infinite J ≤ K such that ρ̄(XJ , c̄) is infinite. This contradicts
the hypothesis that 〈XJ〉 is a lifting of 〈xJ〉. 2
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3 The Huge Neometric Family

We now give conditions for neocompactness, neoclosedness, neocontinuity, and neosep-
arability in the huge family H in terms of long sequences. The first proposition is
crucial.

Proposition 3.1 Let 〈xJ〉 be anM-sequence. Then for all sufficiently small infinite
K, the set {xJ : J ≤ K} is basic in M and the set

{xJ : J ≤ K and J is infinite }

is neocompact in M.

Proof: Let 〈XJ〉 lift 〈xJ〉 with respect to M. Then for all sufficiently small
infinite K, oXJ = xJ for all J ≤ K. For any such K, let

B = {XJ : J ≤ K}, C = {xJ : J ≤ K},

D = {xJ : J ≤ K and J is infinite }.

Then B is internal and C = oB, so C is basic. Moreover,

D = o(
⋂

n
(B − {Xm : m ≤ n})),

so D is neocompact. 2

We need the notion of a countably determined set, which was introduced by
Henson [He] and played an important role in [K2].

Definition 3.2 A set D ⊂ M̄ is countably determined if there is a countable
sequence 〈Dn〉 of internal subsets of M̄ such that D is an infinite Boolean combina-
tion of the Dn’s. Equivalently, there is a countable sequence 〈Dn〉 of internal subsets
of M̄ and a set S of subsets of N such that

D =
⋃

F∈S

(
⋂

n∈F

Dn). (1)

In fact, this representation can be chosen so that for any distinct F, G ∈ S, the
intersections

⋂

n∈F Dn and
⋂

n∈G Dn are disjoint from each other.

Note that every internal, Π0
1, and Σ0

1 set is countably determined.

6



Theorem 3.3 A set C ⊂M is neocompact if and only if
(a) The monad of C is countably determined, and
(b) Every (short) sequence 〈xn〉 in C has an M-extension to a long sequence

〈xJ〉 in C.

Proof: First assume that C is neocompact. By Basic Fact 2.3 in [K6], there
exists a sequence of internal sets 〈Cn〉 such that

monad(C) =
⋂

m
((Cm)1/m).

So the monad of C is countably determined. Let 〈xn〉 be a (short) sequence in
C. 〈xn〉 has a lifting 〈XJ〉. For each n and m, Xn ∈ (Cm)1/m. By overspill and
countable completeness,

XJ ∈
⋂

m
((Cm)1/m) a.e.,

so 〈XJ〉 lifts an M-extension 〈xJ〉 in C.
Now assume that the monad of C is countably determined and that every (short)

sequence 〈xn〉 in C has an M-extension to a long sequence 〈xJ〉 in C. Then the
monad of C can be represented in the form ( 1) with any two distinct intersections
being disjoint. We claim that

monad(C) =
⋂

{B : for some finite s ⊂ N, B = (
⋃

n∈s
Cn) ⊃ monad(C)}.

This will show that the monad of C is a Π0
1 set, and hence that C is neocompact.

Clearly monad(C) is included in the right side. Suppose X belongs to the right side.
Let G = {n ∈ N : X /∈ Cn}. Since X belongs to the right side, for each n there
exists

Yn ∈ monad(C)−
⋃

{Ck : n ≥ k ∈ G}.

Let yn = oYn. Then 〈yn〉 is a (short) sequence in C, so by hypothesis it has an
M-extension 〈YJ〉 in C. We have YJ ∈ monad(C) for all J . By overspill,

YJ /∈
⋃

{Ck : k ∈ G} a.e.

Take an infinite J with this property. Then for some F ∈ S, YJ ∈
⋂

n∈F Cn. More-
over, for all n ∈ F , YJ ∈ Cn and hence n /∈ G and X ∈ Cn. Therefore

X ∈
⋂

n∈F

Cn ⊂ monad(C).

This proves our claim and completes the proof. 2
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Just as Basic Fact 2.3 in [K6] shows that the monad of a neocompact set is
countably determined, Basic Fact 2.4 in [K6] shows that the monad of a neoseparable
set is countably determined.

The following corollary is a good illustration of how our neometric theory is
closely related to the classical theory of metric spaces. Notice what happens if you
replace “M-extendible” by “relatively compact”.

Corollary 3.4 A sequence 〈xn〉 in M is M-extendible if and only if there is a
neocompact set C ⊂M such that xn ∈ C for all n ∈ N.

Proof: If 〈xn〉 has an M-extension 〈xJ〉, then by Proposition 3.1 the set C =
{xJ : J ≤ K} is neocompact for some infinite K, and {xn : n ∈ N} ⊂ C ⊂M. If C
is neocompact and {xn : n ∈ N} ⊂ C ⊂M, then 〈xn〉 is M-extendible by Theorem
3.3. 2

In applications of long sequences, it is important to know which sequences are
M-extendible. We can use Corollary 3.4 to characterize theM-extendible sequences
in various particular neometric spaces which have been studied in [K1], [FK1] and
[FK2]. The next example characterizes the extendible sequences in a nonstandard
hull.

Example 3.5 A sequence 〈xn〉 isH(M̄, c)-extendible if and only if ρ(xn, d) is bounded
where d ∈ H(M̄, c).

Proof: By Proposition 2.9, for any H(M̄, c)-extendible sequence 〈xn〉 and any
d ∈ H(M̄, c), the sequence 〈ρ(xn, d)〉 is bounded. Suppose 〈xn〉 is a sequence in
H(M̄, c) such that ρ(xn, d) has a finite bound b. Each xn belongs to the closed ball
B = {y ∈ H(M̄, c) : ρ(y, d) ≤ b}. B is the standard part of an internal set and is
therefore basic in H(M̄, c). Thus by Corollary 3.4, 〈xn〉 is H(M̄, c)-extendible. 2

Let’s now consider standard neometric spaces. We shall see that the only M-
extendible sequences on a standard neometric space M ∈ S are the trivial ones,
that is, the relatively compact sequences.

By definition, a sequence 〈xn〉 in a complete metric space M is relatively com-
pact if there is a compact set C ⊂M which contains each xn, or equivalently, every
subsequence of 〈xn〉 has a convergent subsequence. Thus a sequence in Euclidian
space Rm is relatively compact if and only if it is bounded. By Corollary 3.4, in
every neometric space M, every relatively compact sequence is M-extendible.

Example 3.6 Let M be a standard neometric space. Then a sequence 〈xn〉 in M
is M-extendible if and only if 〈xn〉 is relatively compact.
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Proof: This follows from Corollary 3.4 and Basic Fact 2.5 in [K6]. 2

For the following examples let Ω be a Loeb probability space. The paper [K1]
gave characterizations of the M-extendible sequences when M is a complete separa-
ble metric space and M is either the space L0(Ω,M) of Loeb measurable functions
with the metric of convergence of probability or the space Lp(Ω,M) where p ∈ [1,∞).
In fact, these results were the original inspiration for the long sequences approach
to neometric spaces.

If x ∈ L0(Ω,M), the Borel probability measure on M induced by x is denoted
by law(x). The space of all Borel probability measures on M with the Prohorov
metric is denoted by Meas(M). (See, for example [EK]).

Example 3.7 ([K1], Theorem 3.2 and Lemmas 7.2 and 7.4). Let Ω be a Loeb
probability space and M be a complete separable metric space.

(i) A sequence 〈xn〉 is L0(Ω,M)-extendible if and only if 〈law(xn)〉 is relatively
compact in Meas(M).

(ii) Let p ∈ [1,∞). A sequence 〈xn〉 is Lp(Ω,M)-extendible if and only if
〈law(xn)〉 is relatively compact in Meas(M) and (ρ(xn(·), a))p is uniformly integrable
for each a ∈ M .

The next result gives another characterization of neocompact sets in the case
that M is neoseparable.

Proposition 3.8 Suppose M is neoseparable. A set C ⊂ M is neocompact if and
only if C is neoclosed in M and (b) of Theorem 3.3 holds, that is, every sequence
〈xn〉 in C has an M-extension 〈xJ〉 in C.

Proof: Neocompactness implies neoclosed and (b) by Basic Fact 1.1 in [K6] and
Theorem 3.3. Assume that (b) holds and that C is neoclosed but not neocompact.
By Basic Fact 2.6 in [K6], C has a countable covering {On : n ∈ N} by neoopen
sets in M which has no finite subcover. Let Cn = C − (

⋃

k≤n Ok). Then 〈Cn〉 is
a decreasing chain of nonempty neoclosed sets in M, and

⋂

n Cn is empty. Choose
xn ∈ Cn. Then xn ∈ C, and by (b) we can extend 〈xn〉 to a long sequence 〈xJ〉 in C.
By Proposition 3.1 we may choose an infinite K so that the set S = {xJ : J ≤ K} is
basic. Then 〈S∩Cn〉 is a decreasing chain of neocompact subsets of C. By countable
compactness of the huge neometric family, the intersection

⋂

n
(S ∩ Cn) = S ∩ (

⋂

n
Cn)

is nonempty, and this is a contradiction. 2
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Theorem 3.9 Let C ⊂M. If C is neoclosed in M then
(c) For every M-sequence 〈xJ〉 such that xn ∈ C for all n ∈ N, we have xJ ∈ C

a.e.
If the monad of C is countably determined, then C is neoclosed in M if and only

if this condition holds.

Proof: Suppose first that C is neoclosed in M. Let 〈xn〉 be a sequence in C and
〈xJ〉 be an M-extension of 〈xn〉. By Proposition 3.1 there is an infinite K such that
the set D = {xJ : J ≤ K} is basic in M. Then C ∩ D is neocompact in M, and
xn ∈ C ∩ D for all n ∈ N. By Theorem 3.3, 〈xn〉 has an M-extension to a long
sequence 〈yJ〉 in C ∩ D. By uniqueness of the M-extension, yJ = xJ a.e. Then
xJ ∈ C a.e., and (c) is proved.

Now suppose that the monad of C is countably determined and (c) holds. Let
D be neocompact in M. Then the monad of D is countably determined. Since

monad(C ∩D) = monad(C) ∩monad(D),

monad(C ∩ D) is countably determined. Let 〈xn〉 be a sequence in C ∩ D. By
Theorem 3.3, 〈xn〉 has an M-extension to a long sequence 〈xJ〉 in D. By condition
(c), xJ ∈ C a.e. Then 〈xJ〉 is a long sequence in C ∩ D. We have shown that
conditions (a) and (b) of Theorem 3.3 hold for C ∩D. By Theorem 3.3, C ∩ D is
neocompact in M, so C is neoclosed in M. 2

Corollary 3.10 Suppose C ⊂M, C is neoclosed, and 〈xJ〉 is an M-sequence such
that

lim
n→∞

ρ(xn, C) = 0.

Then xJ ∈ C a.e.

Proof: For each n ∈ N we may choose yn ∈ C such that ρ(xn, yn) ≤ 2ρ(xn, C).
Then

lim
n→∞

ρ(xn, yn) = 0,

so by Propositions 2.7 and 2.8, 〈yn〉 is M-extendible and xJ = yJ a.e. Theorem 3.9
shows that yJ ∈ C a.e., and therefore xJ ∈ C a.e. 2

Observe that from the above theorem it follows right away that every neoclosed
set in the huge neometric family is closed. Basic Fact 1.7 in [K6] says that this
is true in all neometric families. Now, let’s take a look at a characterization of
neocontinuity in terms of M-sequences.
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Theorem 3.11 Let C ⊂M be neoclosed, and let f : C → N . If f is neocontinuous
from M to N , then

(d) For any M-sequence 〈xJ〉 in C, 〈f(xJ)〉 is an N -sequence.
If the monad of the graph of f is countably determined, then f is neocontinuous

from M to N if and only if this condition holds.

Proof: This generalizes a result from [K2]. Suppose first that f is neocontinuous
from M to N . Let 〈xJ〉 be an M-sequence in C. By Proposition 3.1 there is
an infinite K such that the set D = {xJ : J ≤ K} is basic in M. By Basic
Fact 2.7 in [K6] there is an internal function F such that oF (X) = f(oX) for all
X ∈ monad(D). Since 〈XJ〉 and F are internal, 〈F (XJ)〉 is internal. For all J ≤ K,
oF (XJ) = f(oXJ) = f(xJ). Therefore 〈F (XJ)〉 is a lifting of 〈f(xJ)〉 with respect
to N , so 〈f(xJ)〉 is an N -sequence. This proves the first half.

Now suppose the monad of the graph of f is countably determined, and assume
(d). Let D ⊂ C be neocompact. Then monad(D) is countably determined, so

monad(f |D) = monad(f) ∩ (monad(D)× N̄)

is countably determined. Let 〈xn, f(xn)〉 be a sequence in the graph of f |D. By
Theorem 3.3, 〈xn〉 has an M-extension 〈xJ〉 in D. By hypothesis, 〈f(xJ)〉 is an
N -sequence. Then 〈xJ , f(xJ)〉 is an (M × N )-extension of 〈xn, f(xn)〉 in f |D.
Therefore by Theorem 3.9, f |D is neocompact in M× N , so f is neocontinuous
from M to N . 2

Corollary 3.12 Let C ⊂ M, and let f : C → N be neocontinuous from M to
N . If a sequence 〈xn〉 in C is M-extendible, then 〈f(xn)〉 is N -extendible to an
N -sequence 〈yJ〉, and f(xJ) = yJ a.e. 2

Finally, we give a necessary condition for neoseparability in terms of long se-
quences. An open question is whether this condition, together with the condition
that the monad of the set is countably determined, is sufficient for neoseparability.

Proposition 3.13 Let C be neoseparable in M, and let 〈xJ〉 be an M-sequence
such that xJ ∈ C a.e. Then for each k ∈ N, xn ∈ C1/k for all but finitely many
n ∈ N.

Proof: Let monad(C) =
⋂

n
⋃

m (Cm)1/n. Suppose that there is a k ∈ N and an
infinite subset p ⊂ N such that xn /∈ C1/k for all n ∈ p. By taking a subsequence,
we may assume without loss of generality that xn /∈ C1/k for all n ∈ N. Let 〈XJ〉 lift
〈xn〉. Then XJ ∈

⋂

n
⋃

m (Cm)1/n a.e., and hence XJ ∈
⋃

m (Cm)1/k a.e. However, for
all n ∈ N we have Xn /∈ ⋃

m (Cm)1/k because o(
⋃

m (Cm)1/k) ⊂ C1/k. Then for each
n,m ∈ N we have Xn /∈ (Cm)1/k, and by overspill, XJ /∈ (Cm)1/k a.e. By countable
completeness, XJ /∈ ⋃

m (Cm)1/k a.e., contrary to our previous assumption. 2
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