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Abstract

The standard definition of limz→∞ F (z) = ∞ is an ∀∃∀ sentence.
Mostowski showed that in the standard model of arithmetic, these quan-
tifiers cannot be eliminated. But Abraham Robinson showed that in the
nonstandard setting, this limit property for a standard function F is equiv-
alent to the one quantifier statement that F (z) is infinite for all infinite
z. In general, the number of quantifier blocks needed to define the limit
depends on the underlying structure M in which one is working. Given
a structure M with an ordering, we add a new function symbol F to the
vocabulary of M and ask for the minimum number of quantifier blocks
needed to define the class of structures (M, F ) in which limz→∞ F (z) = ∞
holds.

We show that the limit cannot be defined with fewer than three quanti-
fier blocks when the underlying structureM is either countable, special, or
an o-minimal expansion of the real ordered field. But there are structures
M which are so powerful that the limit property for arbitrary functions
can be defined in both two-quantifier forms.

1 Introduction

An important advantage of the nonstandard approach to elementary calculus is
that it eliminates two quantifiers in the definition of a limit. For example, the
standard definition of

lim
z→∞

F (z) = ∞

requires three quantifier blocks,

∀x ∃y ∀z [y ≤ z ⇒ x ≤ F (z)].

Mostowski showed that in the standard model of arithmetic, these quantifiers
cannot be eliminated. But Abraham Robinson showed that in the nonstandard
setting, this limit property is equivalent to the one quantifier statement

∀z [z ∈ I ⇒ F (z) ∈ I],

where F is a standard function and I is the set of infinite elements. Because of
the quantifiers, beginning calculus students cannot follow the standard definition
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but have no trouble with the nonstandard definition. Since all the basic notions
in the calculus depend on limits, students often find the nonstandard approach
to the calculus to be easier to understand than the standard approach (see [Ke2],
[Su]).

In general, the number of quantifier blocks needed to define the limit depends
on the underlying structure M in which one is working. Given a structure M
with an ordering, we add a new function symbol F to the vocabulary of M and
ask for the minimum number of quantifier blocks needed to define the class of
structures (M, F ) in which limz→∞ F (z) = ∞ holds.

We show that in the standard setting the limit cannot be defined with fewer
than three quantifier blocks when the underlying structure M is not too power-
ful. We obtain this result in the case that M is countable, and in the case that
M is an o-minimal expansion of the real field R = (R,≤, +, ·).

As is usual in the literature, we consider the quantifier hierarchy which takes
into account both n-quantifier forms. For each n, one can ask whether a property
is Πn, Σn, both Πn and Σn (called ∆n), or Boolean in Πn. Each of Σn and Πn
implies Boolean in Πn, which in turn implies ∆n+1. The standard definition of
limit is Π3.

In Section 4 we will see that the limit property can never be Boolean in
Π1 sentences. However, if M = (R,≤,N, g) where g maps R onto RN, then the
limit property is ∆2. What happens here is that there is a standard definition of
limit which uses one less quantifier block than the usual definition, but needs a
function which codes sequences of real numbers by real numbers, and is therefore
beyond the scope of an elementary calculus course.

In Section 5 we show that when M is countable, the limit property is not
Σ3. In Section 6 we prove that the limit property is not Σ3 when M is the real
ordering with an embedded structure with universe N. In Section 7 we prove
that the limit property is not Σ3 when M is a saturated or special structure,
even when one adds a predicate for the set of infinite elements. This shows
that Robinson’s result for standard functions does not carry over to arbitrary
functions.

In Section 8 we consider infinitely long sentences. In an ordered structure M
with universe set R and at least a constant symbol for each natural number, the
limit property can be expressed naturally by a countable conjunction of count-
able disjunctions of Π1 sentences. We show that the limit property cannot be
expressed by a countable disjunction of countable conjunctions of Σ1 sentences.

In Section 9 we prove our main result: If M is an o-minimal expansion of
the real ordered field , then the limit property is not Boolean over Π2. We leave
open the question of whether one can improve this result by showing that the
limit property is not Σ3.

We also consider the similar but simpler property of a function being bounded.
The standard definition of boundedness is Σ2, or alternatively, a countable dis-
junction of universal sentences. We show that when M is countable, special, or
an o-minimal expansion of the real ordered field, the boundedness property is
not Π2. When M has universe set R, boundedness cannot be expressed by a
countable conjunction of existential sentences.
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2 Preliminaries

We introduce a general framework for the study of quantifiers required for defin-
ing limits.

We assume throughout that M is an ordered structure with no greatest
element. That is, M is a first order structure for a vocabulary L(M) that
contains at least the order relation ≤, and ≤ is a linear ordering with no greatest
element. We will consider structures K = (M, f) where f : M→M is a unary
function. The vocabulary of (M, f) is L(M) ∪ {F} where F is an extra unary
function symbol. For a formula ϕ(~x, ~y) of L(M) ∪ {F}, the notation ϕ(f, ~x, ~y)
means that (M, f) |= ϕ(~x, ~y).

We use the notation |X| for the cardinality of X, ≡ for elementary equiva-
lence, ≺ for elementary substructure, and ∼= for isomorphic.

Quantifier-free formulas are called Π0 formulas and also called Σ0 formulas.
A Πn+1 formula is a formula of the form ∀~x θ where θ is a Σn-formula. A Σn+1

formula is one a formula of the form ∃~x θ where θ is a Πn-formula. The negation
of a Πn formula is equivalent to a Σn formula, and vice versa. A formula is said
to be Boolean in Πn if it is built from Πn formulas using ∧,∨,¬. Any formula
which is Boolean in Πn is equivalent to both a Πn+1 formula and a Σn+1 formula.

Definition 2.1 In the language L(M) ∪ {F}, BDD is the Σ2 sentence which
says that f is bounded,

BDD = ∃x∀y F (y) ≤ x.

LIM is the Π3 sentence which says that limx→∞ f(x) = ∞,

LIM = ∀x∃y∀z[y ≤ z ⇒ x ≤ F (z)].

We will say that a sentence θ of L(M) ∪ {F} is Πn over M if there is a
Πn sentence of L(M)∪ {F} which is equivalent to θ in every structure (M, f).
Similarly for Σn. We say that θ is ∆n over M if it is both Πn and Σn over M.
We will say that θ is Boolean in Πn over M, or Bn over M, if there is a
sentence of L(M)∪ {F} which is Boolean in Πn and is equivalent to θ in every
structure (M, f). With this terminology, there are two quantifier hierarchies of
sentences over M,

∆1 ⊂ Π1 ⊂ B1 ⊂ ∆2 ⊂ Π2 ⊂ B2 ⊂ ∆3 ⊂ Π3,

∆1 ⊂ Σ1 ⊂ B1 ⊂ ∆2 ⊂ Σ2 ⊂ B2 ⊂ ∆3 ⊂ Σ3.

By the quantifier level of a sentence over M we mean the lowest class in
these hierarchies to which a sentence belongs over M. Note that the level of a
sentence over an expansion of M is at most its level over M.

In this paper we will consider the following problem.
Problem Find the quantifier level of BDD and LIM over a given structure

M.
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For any M, BDD is at most Σ2 and LIM is at most Π3 over M.
We remark that whenever M is an expansion of an ordered field, the limit

property limx→0 f(x) = c will be at the same quantifier level as LIM . This can
be seen by the change of variables z = 1/x. Similar remarks can be made for
other limit concepts in the calculus.

3 Results of Mostowski and Robinson

In order to compare the results in this paper to earlier results of Mostowski
and Robinson, we define the quantifier level of a sentence over a structure M
relative to a set F ⊆ MM, where MM is the set of all functions from M into
M. We way that a sentence θ of L(M) ∪ {F} is Πn over M relative to F if
there is a Πn sentence of L(M)∪{F} which is equivalent to θ in every structure
(M, f) with f ∈ F . Similarly for Σn. Thus a sentence is Πn over M in our
original sense iff it is Πn over M relative to MM.

Note that if a sentence is Πn over M, then it is Πn over M relative to every
set F ⊆MM, and similarly for Σn. Thus for ever M and F , BDD is at most
Σ2 over M relative to F , and LIM is at most Π3 over M relative to F .

In the paper [Mo2], Mostowski showed that several limit concepts, including
BDD and LIM , have the highest possible quantifier level over the standard
model of arithmetic. In fact, over this particular structure, he obtains the
stronger result that BDD and LIM have the highest possible quantifier level
relative to the set of primitive recursive functions.

Theorem 3.1 (Mostowski [Mo2]). Let F be the set of all primitive recursive
functions, and let N be the standard model of arithmetic with a symbol for every
function in F .

(i) BDD is not Π2 over N relative to F .
(ii) LIM is not Σ3 over N relative to F .

The proof of Theorem 2 in [Mo2] shows that for every Σ2 formula θ(y) in
L(N ) there is a primitive recursive function g(x, y) such that θ(y) defines the
set of y for which g(·, y) is bounded. By the Arithmetical Hierarchy Theorem
of Kleene [Kl] and Mostowski [Mo1], θ may be taken to be Σ2 but not Π2 over
N , and (i) follows.

Similarly, the proof of Theorem 3 in [Mo2] shows that for every Π3 formula
ψ(y) in L(N ) there is a primitive recursive function h(x, y) such that ψ(y)
defines the set of y for which limx→∞ h(x, y) = ∞, and (ii) follows by taking ψ
to be Π3 but not Σ3 over N .

Abraham Robinson’s characterization of infinite limits with one universal
quantifier uses an elementary extension of M.

Definition 3.2 In an elementary extension ∗M of M, an element is infinite
(over M) if it is greater than every element of M. By a hyperextension
of M we mean a structure (∗M, I) where ∗M is an elementary extension of
M with at least one infinite element, and I is a unary predicate for the set of
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infinite elements. A function ∗f : ∗M→ ∗M is standard if there is a function
f : M→M such that (∗M, ∗f) is an elementary extension of (M, f).

Theorem 3.3 (A. Robinson) Let (∗M, I) be a hyperextension of M. Then
BDD and LIM are Π1 over (∗M, I) relative to the set standard functions.

In fact, Robinson shows that for every standard function ∗f : ∗M → ∗M,
(∗M, ∗f) satisfies

BDD ⇔ ∀x[F (x) = 0 ⇒ ¬I(x)],

LIM ⇔ ∀x[I(x) ⇒ I(F (x))].

In the nonstandard treatment of elementary calculus, one works in a hyper-
extension of the system R of real numbers or the system N of natural numbers.
The extra predicate I for infinite elements eliminates one quantifier block in the
definition of boundedness and two quantifier blocks in the definition of limit.
The question we address here is whether one can also eliminate these quanti-
fiers in the original first order language L(M) ∪ {F}. That is, are there any
“quantifier shortcuts” for the statements BDD or LIM in M? This question
is completely standard in nature, but is motivated by Robinson’s results in
nonstandard analysis.

4 Cases with Low Quantifier Level

In this section we show that when the underlying structure M is sufficiently
powerful, the properties BDD and LIM are equivalent to sentences in both
two quantifier forms. All that is needed is a symbol for a particular function
which is first order definable in the real field with a predicate for the natural
numbers. This gives a warning that some restrictions are needed on M in order
to show that BDD and LIM are higher than ∆2 over M. We also show that
BDD and LIM can never be B1 over M.

Theorem 4.1 Let M = (R,≤,N, g) be the ordered set of real numbers with
a predicate for the natural numbers and a function g : R × N → R such that
x 7→ g(x, ·) maps R onto RN, that is, for each y ∈ RN there exists x ∈ R such
that y = g(x, ·).

(i) BDD is ∆2 over M.
(ii) LIM is ∆2 over M.

Proof. The language L(M) has the vocabulary {N,≤, G}.
(i) BDD is itself a Σ2 sentence. In every structure (M, f), the negation of

BDD is equivalent to the Σ2 sentence

∃x(∀n ∈ N) n ≤ F (G(x, n)).

(ii) In every structure (M, f), LIM is equivalent to the Σ2 sentence

∃x(∀n ∈ N)∀y[G(x, n) ≤ y ⇒ n ≤ F (y)],
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and the negation of LIM is equivalent to the Σ2 sentence

(∃m ∈ N)∃x(∀n ∈ N)[n ≤ G(x, n) ∧ F (G(x, n)) ≤ m].

It is well known that in the above theorem, the function g can be taken to be
definable by a first order formula in the structure (R,≤, +, ·,N). One way to do
this is to let π : N×N→ N be a definable pairing function, and for irrational x,
let h(x, ·) ∈ NN be the continued fraction expansion of x, and take g(x, n) = z
iff ∀mh(z,m) = h(x, π(m,n)).

We now show that for an arbitrary M, LIM and BDD cannot be Boolean
in Π1.

Theorem 4.2 Let M be an ordered structure with no greatest element.
(i) BDD is not Boolean in Π1 over M.
(ii) LIM is not Boolean in Π1 over M.

Proof. Let ϕ be a sentence of L(M) ∪ {F} which is Boolean in Π1. Since
conjunctions and disjunctions of Π1 sentences are equivalent to Π1 sentences,
and similarly for Σ1, ϕ is equivalent to a sentence

(α1 ∨ β1) ∧ · · · ∧ (αn ∨ βn)

where each αi is Σ1 and each βi is Π1. We may assume that αi and βi have the
form

αi = ∃~x∃~y [F (~x) = ~y ∧ αi(~x, ~y)],

βi = ∀~x∀~y [F (~x) = ~y ⇒ βi(~x, ~y)]

where αi and βi are quantifier-free formulas of L(M). (This can be proved by
induction on the number of occurrences of F ).

Let us say that a pair of tuples (~a,~b) inM decides ϕ if for any f, g : M→M
such that f(~a) = g(~a) = ~b, ϕ holds in either both or neither of the models
(M, f), (M, g).

Claim: There is a pair (~a,~b) which decides ϕ.
Proof of Claim: The proof is by induction on n. The claim is trivial for

n = 0, where the empty conjunction is taken to be always true. Suppose n > 0
and the claim holds for n− 1. Then there is a pair (~a,~b) which decides

(α1 ∨ β1) ∧ · · · ∧ (αn−1 ∨ βn−1).

A pair (~c, ~d) is called compatible with (~a,~b) if bi = dj whenever ai = cj , that is,
there exists a function f with f(~a,~c) = (~b, ~d).

Case 1. There is a pair (~c, ~d) compatible with (~a,~b) such that αn(~c, ~d). Then
f(~c) = ~d implies αn.

Case 2. Case 1 fails but there is a pair (~c, ~d) compatible with (~a,~b) such that
¬βn(~c, ~d). Then f(~a,~c) = (~b, ~d) implies ¬(αn ∨ βn).
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Case 3. For every pair (~c, ~d) compatible with (~a,~b),

¬αn(~c, ~d) ∧ βn(~c, ~d).

Then f(~a) = ~b implies βn.
In each case, (~a ∪ ~c,~b ∪ ~d) decides ϕ, completing the induction.
Now let (~a,~b) decide ϕ. There are functions f, g such that f(~a) = g(~a) = ~b,

but BDD holds in (M, f) and fails in (M, g). Therefore ϕ cannot be equivalent
to BDD over M. A similar argument holds for LIM .

5 Countable Structures

In this section we consider the case that the universe of M is countable. In that
case, we apply Mostowski’s Theorem 3.1 to show that BDD and LIM have
the highest possible quantifier level. We first observe that Mostowski’s proof of
Theorem 3.1 also gives a relativized form of the result.

Theorem 5.1 Let α be a finite tuple of finitary functions on N, let F(α) be the
set of all functions which are primitive recursive in α, and let N be the standard
model of arithmetic with an extra symbol for each function in the set F(α).

(i) BDD is not Π2 over N relative to F(α).
(ii) LIM is not Σ3 over N relative to F(α).

Corollary 5.2 Let N be an expansion of the standard model of arithmetic with
the natural ordering <.

(i) BDD is not Π2 over N .
(ii) LIM is not Σ3 over N .

Theorem 5.3 Suppose M is an ordered structure with no greatest element and
the universe of M is countable.

(i) BDD is not Π2 over M.
(ii) LIM is not Σ3 over M.

Proof. We may assume that the vocabulary ofM is finite, since only finitely
many symbols occur in a Σ3 formula. We may also assume that the universe of
M is the set N of natural numbers. Let <M be the ordering of M (which may
be different from the natural order < of N). Since M has no greatest element,
there is a function h : N → N such that h(n) <M h(n + 1) for each n, and
∀x∃nx ≤M h(n). For each x let λ(x) be the least n such that x ≤M h(n).

We prove (ii). The proof of (i) is similar. We observe that for each func-
tion g : N → N, limx→∞ h(g(λ(x))) = ∞ with respect to <M if and only if
limx→∞ g(x) = ∞ with respect to <. If LIM is not Σ3 over an expansion of
M, then it is not Σ3 over M. We may therefore assume that M has symbols
for <, +, ·, h, and λ.

Now suppose that LIM is Σ3 over M, that is, there is a Σ3 sentence
∃~x ∀~y ∃~z ϕ(~x, ~y, ~z) of L(M) ∪ {F} which is equivalent to LIM in all structures
(M, f). To complete the proof we will get a contradiction.
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Let ψ(~x, ~y, ~z) be the formula obtained from ϕ(~x, ~y, ~z) by replacing each term
F (u) by h(F (λ(u))). By our observation above, for any function g : N→ N, we
have limx→∞ g(x) = ∞ with respect to < if and only if (M, g) satisfies the Σ3

sentence ∃~x∀~y ∃~z ψ(~x, ~y, ~z). This contradicts Corollary 5.2 and completes the
proof.

We also give a second argument, which will be useful later. Instead of
Corollary 5.2, this argument uses the following analogous fact from descriptive
set theory (see [Kec, Exercise 23.2):

In NN, the set L of functions g with limx→∞ g(x) = ∞ is Π3 but not Σ3 in
the Borel hierarchy.

We have
L =

⋃

~x∈N

⋂

~y∈N

⋃

~z∈N

{g : (M, g) |= ψ(~x, ~y, ~z)}).

For each (~x, ~y, ~z), the set {g : (M, g) |= ψ(~x, ~y, ~z)} depends only on finitely
many values of g and thus is clopen in NN. It follows that L is Σ3 in NN,
contrary to the preceding paragraph.

The next corollary follows by the Löwenheim-Skolem theorem.

Corollary 5.4 Let M be an ordered structure with no greatest element.
(i) There is no Π2 sentence of L(M) ∪ {F} which is equivalent to BDD in

all models of Th(M).
(ii) There is no Σ3 sentence of L(M) ∪ {F} which is equivalent to LIM in

all models of Th(M).

A result in this direction was previously obtained by Kathleen Sullivan in
[Su]. She showed that there is no Σ2 sentence of L(M) ∪ {F}, and no Π2

sentence of L(M) ∪ {F}, which is equivalent to LIM in all models of Th(M).

6 The Real Line

The sentence LIM is a Π3 sentence in the vocabulary with the single relation
symbol≤. It is therefore natural to ask whether LIM is Σ3 over the real ordering
(R,≤). In this section we show that the answer is no. Given a structure N with
universe N, we let (R,≤,N ) be the structure formed by adding to (R,≤) a
symbol for N and the relations of N .

Theorem 6.1 Let N be a structure with universe N.
(i) BDD is not Π2 over (R,≤,N ).
(ii) LIM is not Σ3 over (R,≤,N ).

Proof. We prove (ii). The proof of (i) is similar. We may assume that
N has a countable vocabulary. Let Q be the set of rational numbers, and let
λ(x) = min{n ∈ N : x ≤ n}.

Claim 1: (Q,≤,N ) is an elementary substructure of (R,≤,N ).
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Proof of Claim 1. We note that for any two increasing n-tuples ~a,~b in R
such that ~a∩N = ~b∩N and λ(~a) = λ(~b), there is an automorphism of (R,≤,N )
which sends ~a to ~b. Claim 1 now follows from the Tarski-Vaught test ([CK],
Proposition 3.1.2).

Define the function α : NN → RR by (α(g))(x) = g(λ(x)), and let β(g) be
the restriction of α(g) to Q.

Claim 2: For each function g ∈ NN, (Q,≤,N , β(g)) is an elementary sub-
structure of (R,≤,N , α(g)).

To see this, note that by Claim 1, (Q,≤, (N , g)) is an elementary substruc-
ture of (R,≤, (N , g)). It is easily seen that λ is definable in (R,≤,N), and hence
α(g) is definable in (R,≤, (N , g)). Claim 2 follows.

Let L be the set of g ∈ NN such that (M, α(g)) |= LIM . We note that
limn→∞ g(n) = ∞ in NN if and only if g ∈ L, and hence that L is not Σ3 in NN.
Now suppose that LIM is Σ3 over (R,≤,N ), and take a Σ3 sentence

θ = ∃~x∀~y ∃~z ϕ(~x, ~y, ~z)

of L(R,≤,N )∪{F} which is equivalent to LIM in all structures (R,≤,N , f). By
Claim 2, for each g ∈ NN, (R,≤,N , α(g)) satisfies θ if and only if (Q,≤,N , β(g))
satisfies θ. Therefore

L =
⋃

~x∈Q

⋂

~y∈Q

⋃

~z∈Q

({g : ϕ(β(g), ~x, ~y, ~z)}).

For each (~x, ~y, ~z), the set ({g : ϕ(β(g), ~x, ~y, ~z)}) depends only on finitely many
values of g and thus is clopen in NN. Since Q is countable, it follows that L is
Σ3 in NN. This contradiction proves (ii).

We remark that the above theorem also holds, with the same proof, when R
is replaced by any dense linear ordering with a cofinal copy of N.

7 Saturated and Special Structures

In this section we show that BDD and LIM have the highest possible quantifier
level if the underlying structure M is saturated, or more generally, special.
This happens even if one adds a symbol for the set I of infinite elements to
the vocabulary. Thus Robinson’s Theorem 3.3 for standard functions cannot be
extended to the set of all functions on a special structure.

We recall some basic facts (See [CK], Chapter 5). By definition, a structure
M is κ-saturated if every set of fewer than κ formulas with parameters in
M which is finitely satisfiable in M is satisfiable in M. M is saturated if
it is |M|-saturated. M is special if it is the union of an elementary chain of
λ+-saturated structures where λ ranges over all cardinals less than |M|.

Let us call a cardinal κ nice if κ =
∑

λ<κ 2λ. For example, every inaccessible
cardinal is nice, every strong limit cardinal is nice, and every cardinal λ+ = 2λ

is nice.
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Facts 7.1 (i) If ω ≤ |M| < κ and κ is nice then M has a special elementary
extension of cardinality κ.

(ii) Any two elementarily equivalent special models of the same cardinality
are isomorphic.

(iii) Reducts of special models are special.
(iv) If M is special, then (M,~a) is special for each finite tuple ~a in M.

Theorem 7.2 Suppose M is an ordered structure with no greatest element, M
is special, |M| is nice, and |L(M)| < |M|.

(i) BDD is not Π2 over M.
(ii) LIM is not Σ3 over M.

Proof. We prove (ii). The proof of (i) is similar. Let T be the set of all
Σ3 consequences of Th(M) ∪ {LIM}. Consider a finite subset T0 ⊆ T . The
conjunction of T0 is equivalent to a Σ3 sentence θ, and Th(M)∪{LIM} |= θ. By
Corollary 5.4, we cannot have Th(M) ∪ {θ} |= LIM , and therefore we cannot
have Th(M) ∪ T0 |= LIM . By the Compactness Theorem, there is a model
(M0, g) of Th(M) ∪ T ∪ {¬LIM}. Now let U be the set of all Π3 sentences
which hold in (M0, g). By the Compactness Theorem again, there is a model
(M1, f) of Th(M) ∪ U ∪ {LIM}. Then every Σ3-sentence holding in (M1, f)
holds in (M0, g). Let κ = |M|. Since |L(M)| < κ and κ is nice, it follows
from Fact (i) that we may take (M0, g) and (M1, f) to be special models of
cardinality κ. By Fact (ii), M0 and M1 are isomorphic to M, so we may take
M1 = M0 = M. Then LIM holds in (M, f) and fails in (M, g), but every Σ3
sentence holding in (M, f) holds in (M, g). This proves (ii). The proof of (i) is
similar.

Given a hyperextension (∗M, I) of M, we will say that a function g : ∗M→
∗M is standard if (∗M, g) is an elementary extension of (M, f), or in other
words, if (∗M, g, I) is a hyperextension of (M, f). Robinson’s Theorem 3.3
shows that BDD and LIM are Π1 for standard functions over any hyperexten-
sion (∗M, I) of M.

Our next theorem will show that Robinson’s result does not carry over to
nonstandard functions. In fact, we will show that Theorem 7.2 holds even when
a symbol for the set I of infinite elements is added to the vocabulary. Thus for
nonstandard functions, one cannot lower the quantifier level of BDD or LIM
by adding a symbol for I.

Lemma 7.3 Let M be an ordered structure with no greatest element, such that
every element of M is a constant symbol of L(M). Suppose that (∗M, I) a
hyperextension of M of cardinality κ = |∗M| such that |L(M)| < κ, κ is nice,
(∗M, f, g) is special, and every Πn sentence of L(M) ∪ {F} true in (∗M, f) is
true in (∗M, g). Then every Πn sentence of L(M) ∪ {F, I} true in (∗M, f, I)
is true in (∗M, g, I). Similarly for Σn.

Proof. The result for Σn follows from the result for Πn by interchanging
f and g. Let κ = |∗M|. By the Keisler Sandwich Theorem ([CK], Proposition
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5.2.7 and Exercise 5.2.7), there is a chain

(M0, h0) ⊆ (M1, h1) ⊆ · · · (Mn, hn)

such that
(M0, h0) ≡ (M, f), (M1, h1) ≡ (M, g),

and for each m < n− 1,

(Mm, hm) ≺ (Mm+2, hm+2).

By Fact (i) we may take each (Mm, hm) to be a special structure of cardinality
κ. For each m ≤ n let Im be the set of elements of Mm greater than each
element of M. We then have

(M0, h0, I0) ⊆ (M1, h1, I1) ⊆ · · · (Mn, hn, In).

Since each element of M has a constant symbol in L(M), it follows from Fact
(i) that

(M0, h0, I0) ∼= (∗M, f, I) and (M1, h1, I1) ∼= (∗M, g, I).

By remark (iv), (Mm, hm,~a) is still special for each m and finite tuple ~a in
Mm. Then by Fact (ii), for each m < n − 1 and finite tuple ~a in Mm, there
is an isomorphism from (Mm, hm) onto (Mm+2, hm+2) which fixes ~a and each
element of M. This isomorphism also sends Im onto Im+2, so

(Mm, hm, Im,~a) ∼= (Mm+2, hm+2, Im+2,~a).

Using the Tarski-Vaught criterion for elementary extensions ([CK], Proposition
3.1.2), it follows that

(Mm, hm, Im) ≺ (Mm+2, hm+2, Im+2).

By the Keisler Sandwich Theorem again, every Πn-sentence true in (M0, h0, I0)
is true in (M1, h1, I1), and hence every Πn-sentence true in (∗M, f, I) is true
in (∗M, g, I).

Theorem 7.4 Let M be an ordered structure with no greatest element, and
let (∗M, I) be a hyperextension of M such that ∗M is special and |∗M| is
uncountable and nice.

(i) BDD is not Π2 over (∗M, I).
(ii) LIM is not Σ3 over (∗M, I).

Proof. We prove (ii). The proof of (i) is similar. By the proof of Theorem
7.2, there are functions f, g such that (∗M, f) and (∗M, g) are special, LIM
holds in (∗M, f) and fails in (∗M, g), and every Σ3 sentence true in (∗M, f) is
true in (∗M, g). By Facts (i) and (ii), we may take f and g so that (∗M, f, g)
is special. Then by the preceding lemma, every Σ3 sentence true in (∗M, f, I)
is true in (∗M, g, I). Therefore LIM is not Σ3 over (∗M, I).
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8 Infinitely Long Sentences

In this section we consider the quantifier levels of BDD and LIM in the infini-
tary logic Lω1ω formed by adding countable conjunctions and disjunctions to
first order logic. See [Ke1] for a treatment of the model theory of this logic.

Definition 8.1 Let Q be a set of sentences of Lω1ω in the vocabulary L(M).
∧

Q denotes the set of countable conjunctions of sentences in Q.
∨

Q denotes
the set of countable disjunctions of sentences in Q. BQ denotes the set of finite
Boolean combinations of sentences in Q.

For example,
∨∧

B
∧

Π1 is the set of sentences of the form
∨

m

∧

n θmn

where each θmn is a finite Boolean combination of countable conjunctions of
universal first order sentences.

We say that M has cofinality ω if M has a countable increasing sequence
a0, a1, . . . which is unbounded, that is, ∀x

∨

n x ≤ an. Every countable M and
every structure M with universe R has cofinality ω. In this section our main
focus will be uncountable M with cofinality ω.

Suppose that M has universe R and a constant symbol for each natural
number. Then BDD is

∨

Π1 over M, because

(M, f) |= LIM ⇔
∨

n

∀z F (z) ≤ n.

LIM is
∧∨

Π1 over M, because

(M, f) |= LIM ⇔
∧

m

∨

n

∀z [n ≤ z ⇒ m ≤ F (z)].

LIM is also
∧

Σ2 over M, because

(M, f) |= LIM ⇔
∧

m

∃y∀z [y ≤ z ⇒ m ≤ F (z)].

The next theorem shows that if M has cofinality ω, then BDD is not
∧

Σ1

over M and LIM is not
∨ ∧

Σ1 over M. Thus if the outer quantifiers ∃ and
∀ are replaced by

∨

and
∧

, then Theorem 5.3 holds for uncountable structures
M of cofinality ω. In fact, we get a stronger result with B

∧

Π1 in place of Σ1.

Theorem 8.2 Suppose that M has cofinality ω.
(i) BDD is not

∧

B
∧

Π1 over M.
(ii) LIM is not

∨∧

B
∧

Π1 over M.

Proof. We prove (ii). The proof of (i) is similar.
Let an be an unbounded strictly increasing sequence in M. Since each

sentence of Lω1ω has countably many symbols, we may assume without loss of
generality that the vocabulary L(M) is countable. We may also assume that
L(M) has a constant symbol, say n, for each an, and a symbol for the function

12



λ(x) = min{an : x ≤ an}. As in the proof of Theorem 5.3, we let α : NN →MM

be the function defined by (α(g))(x) = g(λ(x)), and let L be the set of g ∈ NN
such that (M, α(g)) |= LIM .

Claim: For each first order quantifier-free formula ϕ(F, ~x) in the vocabulary
L(M) ∪ {F}, the set

{g ∈ NN : (M, α(g)) |= ∃~z ϕ(F, ~z)}

is Σ1 in the Borel hierarchy.
Proof of Claim: We may assume without loss of generality that ∃~z ϕ(F, ~z)

has the form
∃~x∃~y [F (~x) = ~y ∧ ψ(~x, ~y)]

where ψ(~x, ~y) is a first order quantifier-free formula of L(M). Since (α(g))(x) =
(α(g))(λ(x)) for all g and x, (M, α(g)) satisfies ∃~z ϕ(F, ~z) if and only if it satisfies

∨

~p

∨

~q

[F (~p) = ~q ∧ ∃~x [λ(~x) = ~p ∧ ψ(~x, ~q)]].

Let
U = {(~p, ~q) : M |= ∃~x [λ(~x) = ~p ∧ ψ(~x, ~q)]}.

Then (M, α(g)) satisfies ∃~z ϕ(F, ~z) if and only if g(~p) = ~q for some (~p, ~q) ∈ U .
For each pair (~p, ~q), the set {g : g(~p) = ~q} is clopen in NN, so the union of these
sets over U is Σ1 in the Borel hierarchy, as required.

Now suppose to the contrary that there is a
∨∧

B
∧

Π1 sentence

θ =
∨

m

∧

n

ϕmn(F )

which is equivalent to LIM in all models (M, f), where ϕmn(F ) is B
∧

Π1 in
the vocabulary L(M) ∪ {F}.

We observe that any finite conjunction or disjunction of
∧

Π1 sentences is
equivalent to a

∧

Π1 sentence, and the negation of a
∧

Π1 sentence is equivalent
to a

∨

Σ1 sentence. It follows that θ is equivalent to a sentence

∨

m

∧

n

[

∧

p

∀~zϕmnp(F, ~z) ∨
∨

q

∃~z ψmnq(F, ~z)

]

where each ϕmnp(F, ~z) and ψmnq(F, ~z) is a first order quantifier-free formula of
L(M) ∪ {F}.

Using the claim, it follows that

L =
⋃

m

⋂

n

(

⋂

p

Amnp ∪
⋃

q

Bmnq

)

where each Amnp and Bmnq is clopen in NN. By renumbering and rearranging,
we can get

L =
⋃

m

⋂

n

⋃

q

(Amnq ∪Bmnq).

Therefore L is Σ3 in NN. This is a contradiction, and proves (ii).
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9 O-minimal Structures

In this section we show that BDD has the highest possible quantifier level, and
that LIM is not Boolean in Π2, in the case that M is an o-minimal expansion
of the ordered field of real numbers. We leave open the question whether LIM
can be Σ3. We will use two lemmas from [FM] concerning fast and indiscernible
functions.

An ordered structure is o-minimal if every set definable with parameters
is a finite union of intervals and points. There is an extensive literature on
the subject (e.g. see [VDD1], [VDD2]). An example of an o-minimal structure
is the ordered field of reals with analytic functions restricted to the unit cube
and with the (unrestricted) exponential function. It is easily seen that if M is
o-minimal, then every ordered reduct of M is o-minimal, and the expansion of
M formed by adding a symbol for each definable relation is o-minimal.

Throughout this section we let M be an o-minimal expansion of the real
ordered field R = (R,≤,+, ·). “Definable” will always mean first order definable
in M with parameters from M.

When working with o-minimal structures, one often restricts attention to
definable functions. It is easily seen that LIM is Π2 over an o-minimal structure
M relative to the set of definable functions, since LIM fails for a definable
function f if and only if ∃x∃y∀z[x ≤ z ⇒ f(z) ≤ y]. However, here we consider
arbitrary functions on M.

Definition 9.1 A strictly increasing sequence s of positive integers is M-fast
if for each definable function f : R→ R, there exists N ∈ N such that f(s(k)) <
s(k + 1) for all k > N . For convenience we also require that s(0) = 0.

Lemma 9.2 ([FM], 3.3) If L(M) is countable then there exists an M-fast se-
quence.

Given ~u,~v ∈ Nn and N ∈ N, we write ~u =N ~v if min(ui, N) = min(vi, N) for
i = 1, . . . , n, and ~u ∼ ~v if ~u,~v are order isomorphic, that is, ui ≤ uj iff vi ≤ vj
for i, j = 1, . . . , n. We write ~u ∼N ~v if ~u =N ~v and ~u ∼ ~v. Note that ∼N is an
equivalence relation on Nn with finitely many classes.

Given anM-fast sequence s and a tuple ~u ∈ Nn, we write s(~u) for (s(u1), . . . , s(un)).

Lemma 9.3 ([FM], 3.6). Suppose s is M-fast, h : Rn → R is definable, and
g : Nn → R is the function given by ~u 7→ h(s(~u)). Then there exists N ∈ N such
that

g(~u) ≤ g(~v) ⇔ g(~w) ≤ g(~z)

whenever ~u =N ~v and (~u,~v) ∼N (~w, ~z).

In [FM], the function g is called almost indiscernible. We will call N an
indiscernibility bound for h.

Corollary 9.4 Suppose s is M-fast, A ⊆ Rn is definable, and

B = {~u ∈ Nn : A(s(~u))}.
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There exists N ∈ N such that B(~u) ⇔ B(~v) whenever ~u,~v ∈ Nn and ~u ∼N ~v.

Proof. The characteristic function h of A is definable. Let N be an indis-
cernibility bound for h, and let g be as in Lemma 9.3. Suppose ~u,~v ∈ Nn and
~u ∼N ~v. Let k ∈ N be greater than N and each ui and vi. By replacing the
ui by k + ui whenever N ≤ ui, we obtain a tuple ~w such that ~w ∼N ~u and
(~u, ~w) ∼N (~v, ~w). By Lemma 9.3, g(~u) ≤ g(~w) iff g(~v) ≤ g(~w), and g(~u) ≥ g(~w)
iff g(~v) ≥ g(~w). It follows that g(~u) = g(~v), so B(~u) ⇔ B(~v).

By an indiscernibility bound for a formula ψ of L(M) with parameters from
M we mean an indiscernibility bound for the characteristic function of the set
defined by ψ. It is clear that if N is an indiscernibility bound for ψ, then any
M ≥ N is also an indiscernibility bound for ψ.

Theorem 9.5 Suppose that M is an o-minimal expansion of (R,≤, +, ·). Then
BDD is not Π2 over M.

Proof. We may assume that M has a countable vocabulary. By Lemma
9.2 there is an M-fast sequence s. Suppose to the contrary that there is a Π2

sentence ∀~xϕ(F, ~x) of L(M)∪{F} which is equivalent to BDD in all structures
(M, f). We may assume that ∀~xϕ(F, ~x) has the form

∀~x∃~y ∃~z [F (~x, ~y) = ~z ∧ θ(~x, ~y, ~z)]

where θ is a quantifier-free formula in which F does not occur, |~z| = |~x|+ |~y| =
j + k, and

F (~x, ~y) = (F (x1), . . . , F (xj), F (y1), . . . , F (yk)).

(This can be proved by induction on the number of occurrences of F in ϕ). Let
f : R → R be the function such that f(x) = x if x = s(4i) for some i ∈ N,
and f(x) = 0 otherwise. For each m ∈ N let fm : R → R be the function such
that fm(x) = f(x) for x ≤ s(m) and fm(x) = 0 for x > s(m). Then each fm is
bounded but f is unbounded. Therefore ∀~xϕ(fm, ~x) holds for each m ∈ N, but
∀~xϕ(f, ~x) fails. (Recall that ∀~xϕ(f, ~x) means that (M, f) satisfies ∀~xϕ(F, ~x).)
Hence there exists a tuple ~a such that ¬ϕ(f,~a).

The notation ~w1 < ~w < ~w2 means that each coordinate of ~w is strictly
between each coordinate of ~w1 and ~w2, that is, ~w is in the open box with
vertices ~w1 and ~w2. We will deal with variables which are outside the range of
s by putting them into an open box with vertices in the range of s.

By Corollary 9.4, there is an N ∈ N which is an indiscernibility bound for
each formula of the form

∃~w [~w1 < ~w < ~w2 ∧ θ(~a, ~y, ~z)]

where ~w ⊆ ~y. We also take N so that s(N) > max(~a).
By hypothesis, we have

∃~y ∃~z [fN (~a, ~y) = ~z ∧ θ(~a, ~y, ~z)].
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Choose ~b in M such that

∃~z [fN (~a,~b) = ~z ∧ θ(~a,~b, ~z)].

Then θ(~a,~b, fN (~a,~b)).
We wish to find ~e in M such that θ(~a,~e, f(~a,~e)). This will show that ϕ(f,~a),

contrary to hypothesis, and complete the proof that BDD is not Π2 over M.
We cannot simply take ~e = ~b, because b could have a coordinate bi such that
f(bi) 6= fN (bi). This happens when bi = s(4m) where 4m > N , so that f(bi) =
bi but fN (bi) = 0.

Claim: For each ~u ∈ Nn there exists ~v ∈ Nn such that ~v ∼N ~u, f(s(~v)) =
fN (s(~v)), and if uj = ui + 1 then vj = vi + 1.

Proof of Claim: Take ~v such that ~v ∼N ~u, and vi is not a multiple of 4
when vi > N , and vj = vi + 1 when uj = ui + 1. Then vi = ui below N , and
f(s(vi)) = f(s(ui)) = fN (s(vi)) = fN (s(ui)) = 0 when ui > N . It follows that
f(s(~v)) = fN (s(~v)).

We may rearrange ~b into a k-tuple (~c, ~d) such that the terms of ~c belong to
the range of s and the terms of ~d do not. Then fN (~d) = ~0 is a tuple of 0’s. Let
(~t, ~w) be the corresponding rearrangement of ~y. Then |~c| = |~t| = n. Let ~d1, ~d2

be the vertices of the smallest open box containing ~d with coordinates in the
range of s. That is, ~d1 < ~d < ~d2 and the coordinates of ~d1, ~d2 are consecutive
in the range of s. Then

∃~w [~d1 < ~w < ~d2 ∧ θ(~a,~c, ~w, fN (~a,~c),~0)]

holds in M. We have (~c, ~d1, ~d2) = s(~u) for some ~u ∈ Nn. Take ~v as in the claim
and let (~e0, ~d3, ~d4) = s(~v). Then by indiscernibility,

∃~w [~d3 < ~w < ~d4 ∧ θ(~a,~e0, ~w, fN (~a,~e0),~0)].

Note that s(N) > max(~a), so f(~a) = fN (~a). Now let ~e = (~e0, ~e1) where
~e1 is a witness for ~w in the above formula. Since the coordinates of ~d3 and
~d4 are consecutive in the range of s, the coordinates of ~e1 must be outside the
range of s, where f and fN are 0. It follows that f(~a,~e) = fN (~a,~e). Therefore
θ(~a,~e, f(~a,~e)), and hence BDD is not Π2 over M.

Corollary 9.6 Suppose that M is an o-minimal expansion of (R,≤,+, ·). Then
(i) BDD is not

∧

Π2 over M.
(ii) LIM is not

∧

Π2 over M.

Proof. This follows from the proof of Theorem 9.5. For (i), we suppose that
there is a

∧

Π2 sentence
∧

i ∀~xϕi(F, ~x) which is equivalent to BDD in all struc-
tures (M, f), choose i ∈ N such that ∀~xϕi(f, ~x) fails, and get a contradiction
as in the proof of Theorem 9.5.

For part (ii), we first observe that all the functions f : M→M used in the
proof of (i) satisfy the Π1 sentence

∀x [F (x) = x ∨ F (x) = 0].
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Call this sentence β(F ). It follows that β(F ) ∧ BDD(F ) is not
∧

Π2 over M.
We also note that

β(F ) ⇔ β(x− F (x))

and
β(f) ⇒ [BDD(F ) ⇔ LIM(x− F (x))].

Now suppose that LIM(F ) is
∧

Π2 over M. Then β(F ) ⇒ LIM(x− F (x)) is
also

∧

Π2 over M. Hence β(F )∧BDD(F ) is
∧

Π2 over M, a contradiction.

Theorem 9.7 Suppose that M is an o-minimal expansion of (R,≤, +, ·). Then
LIM is not

∨

B2 over M.

Proof. We may assume that M has a countable vocabulary. By Lemma
9.2 there is an M-fast sequence s. Suppose to the contrary that there is a

∨

B2
sentence ψ which is equivalent to LIM in all structures (M, f). Then ¬ψ is
equivalent to a

∧

B2 sentence. Since finite conjunctions and disjunctions of Π2

sentences are equivalent to Π2 sentences, and similarly for Σ2, ¬ψ is equivalent
to a sentence

∧

m

(αm ∨ βm)

where each αm is Σ2 and each βm is Π2. We may assume that αm and βm have
the form

αm = ∃~x∀~y ∀~z [F (~x, ~y) = ~z ⇒ αm(~x, ~y, ~z)],

βm = ∀~x∃~y ∃~z [F (~x, ~y) = ~z ∧ βm(~x, ~y, ~z)]

where αm and βm are quantifier-free formulas of L(M).
We now define a family of functions from N into N which we will later use

to build functions from R into R. We begin with a sequence h : N → N with
the following properties:

(a) For each m ∈ N, h(m) ≤ m and h(m) is either 0 or a power of 2.
(b) Each power of 2 occurs infinitely often in the sequence h,
(c) If h(m) > 0, them m is halfway between two powers of 2.

Note that h(i) is “usually” 0, and that whenever i < j and h(i) > 0, h(j) > 0,
we have h(h(i)) = 0 and 2i ≤ j. For each finite or infinite sequence of natural
numbers σ, let hσ be the function obtained from h by putting hσ(i) = 0 if
h(i) = 2n and i > σ(n), and putting hσ(i) = h(i) otherwise. Thus when n is in
the domain of σ, h−1

σ {2n} is the finite set h−1{2n} ∩ {0, . . . , σ(n)}. When σ is
finite and n is outside its domain, h−1

σ {2n} is the infinite set h−1{2n}.
For each σ, define the function fσ : R→ R by putting fσ(s(i)) = s(hσ(i)) if

hσ(i) > 0, and fσ(x) = x for all other x. Note that for each infinite sequence
σ we have limx→∞ fσ(x) = ∞, so LIM holds in (M, fσ). But for each finite
sequence σ we have lim infx→∞ fσ(x) < ∞, so LIM fails in (M, fσ).

We will now build an infinite sequence σ = (σ(0), σ(1), . . .) such that (M, fσ)
satisfies ¬ψ. This will give us the desired contradiction, since (M, fσ) satisfies
LIM . We will simultaneously build a sequence of tuples ~am,m ∈ N, and a
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strictly increasing “growth sequence” g(0) < g(1) < · · · . We will form an
increasing chain

σ[0] ⊂ σ[1] ⊂ · · ·

of finite sequences, and take σ to be their union. This chain will have the
property that each term of σ[m] \ σ[m − 1] will be ≥ g(m − 1). Whenever
possible, σ[m] will be chosen so that αm holds in (M, fσ[m]), and ~am will be a
witness for the initial existential quantifiers of αm.

For convenience we let σ[−1] denote the empty sequence and put g(−1) = 1.
Suppose m ∈ N and we already have σ[i], ~ai, and g(i) for each i < m. We have
two cases.

Case 1. There is a finite sequence η ⊃ σ[m − 1] such that αm holds in
(M, fη), and each term of η \ σ[m − 1] is ≥ g(m − 1). In this case we take
σ[m] to be such an η, and take ~am to be a tuple in R which witnesses the initial
existential quantifiers of αm in (M, fσ[m]), that is,

∀~y ∀~z [fσ[m](~am, ~y) = ~z ⇒ αm(~am, ~y, ~z)].

Case 2. Otherwise. In this case we take σ[m] to be an arbitrary finite
sequence such that σ[m] ⊃ σ[m−1] and each term of σ[m]\σ[m−1] is ≥ g(m−1),
and let ~am be an arbitrary tuple in R.

We now define g(m). By Corollary 9.4, there is an N ∈ N which is an
indiscernibility bound for each formula of the form

∀~w[~w1 < ~w < ~w2 ⇒ αm(~am, ~y1, ~w, ~z1, ~w)]

where ~w ⊆ ~y, ~y1 is the part of ~y outside ~w, and ~z1 is the corresponding part of
~z.

Let p be the number of variables in the sentences αi, βi, i ≤ m. Take g(m)
so that:

(d) g(m) ≥ N , g(m) ≥ 2p, g(m) > g(m− 1), g(m) > max(σ[m]),
(e) s(g(m)) > max(~am),
(f) The condition stated before Claim 2.

Finally, we define σ to be the union σ =
⋃

m σ[m]. To complete the proof we
prove two claims, Claim 1 concerning αm and Claim 2 concerning βm. Condition
(f) will not be used in Claim 1, but will be needed later for Claim 2.

Claim 1: Suppose αm holds in (M, fσ[m]) (Case 1 above). Then αm holds
in (M, fσ).

Proof of Claim 1: We show that

∀~y ∀~z [fσ(~am, ~y) = ~z ⇒ αm(~am, ~y, ~z)].

Suppose not. Then there is a tuple ~b in M such that

¬∀~z [fσ(~am,~b) = ~z ⇒ αm(~ai,~b, ~z)].
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As in the proof of Theorem 9.5, we may rearrange ~b into a k-tuple (~c, ~d) such
that the terms of ~c belong to the range of s and the terms of ~d do not. Then
fσ(~c) is also in the range of s, and fσ(~d) = ~d. Let (~t, ~w) be the corresponding
rearrangement of ~y. Let ~d1, ~d2 be the vertices of the smallest open box containing
~d with coordinates in the range of s. Then

¬∀~w [~d1 < ~w < ~d2 ⇒ αm(~am,~c, ~w, fσ(~am,~c), ~w)].

Let ~u be the sequence in N such that (~c, ~d1, ~d2) = s(~u). Since the terms of σ
beyond σ[m] are greater than g(m), we have hσ(i) = hσ[m](i) for all i ≤ g(m)
and fσ(x) = fσ[m](x) for all x ≤ s(g(m)). For i > g(m) we have either hσ(i) =
hσ[m](i), or hσ(i) = 0 and hσ[m](i) > 0. Recall that g(m) ≥ 2p ≥ 2|~u|, where p
is the number of variables in αm ∨ βm. It follows that the sequence hσ[m] has
enough zeros to insure that there is a sequence ~v in Np such that:

(g) For each i, (~u, 2i) ∼g(m) (~v, 2i),
(h) vi = ui whenever hσ(i) > 0,
(i) If ui = ui + 1 then vi = vi + 1,
(j) hσ[m](~v) = hσ(~u).

Therefore (~v, hσ[m](~v)) ∼g(m) (~u, hσ(~u)). Let (~e0, ~d3, ~d4) = s(~v). Then by (d),
(e), (g), and indiscernibility, we have

¬∀~w [~d3 < ~w < ~d4 ⇒ αm(~am, ~e0, ~w, fσ[m](~am, ~e0), ~w)].

We may therefore extend ~e0 to a tuple ~e = (~e0, ~e1) such that

~d3 < ~e1 < ~d4 ∧ ¬αm(~am, ~e, fσ[m](~am, ~e0), ~e1).

The coordinates of ~d1 and ~d2 are consecutive in the range of s, so by (i) the coor-
dinates of ~d1 and ~d2 are consecutive in the range of s. Therefore the coordinates
of ~e1 are outside the range of s, so fσ[m](~e1) = ~e1. Then

¬αm(~am, ~e, fσ[m](~am, ~e).

This contradicts the fact that

∀~y ∀~z [fσ[m](~ai, ~y) = ~z ⇒ αm(~am, ~y, ~z)].

and completes the proof of Claim 1.

We now state the postponed condition (f) for the growth sequence g. Recall
that p is the number of variables in the sentences αi, βi, i ≤ m.

(f) For each ~u ∈ Np there exists ~v ∈ Np with the following properties:
(f1) max(~v) < g(m),
(f2) If uj = ui + 1 then vj = vi + 1,
(f3) (~v, hσ[m](~v)) ∼m (~u, hσ[m](~u)).
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There is a g(m) with these properties because the equivalence relation ∼m

has only finitely many classes.

Claim 2: The sentence ¬ψ holds in (M, fσ).
Proof of Claim 2. We must show that for each m ∈ N, αm ∨ βm holds in

(M, fσ). Since LIM fails in (M, fσ[m]), αm ∨ βm holds in (M, fσ[m]). In Case
1 above, by definition αm holds in (M, fσ[m]), and by Claim 1, αm holds in
(M, fσ).

In Case 2, αm fails in (M, fσ[r]) for each r ≥ m, and therefore βm holds in
(M, fσ[r]) for each r ≥ m. In this case we prove that βm holds in (M, fσ). We
fix a tuple ~a in M and prove

∃~y ∃~z [fσ(~a, ~y) = ~z ∧ βm(~a, ~y, ~z)].

By Corollary 9.4 there is an M ∈ N which is an indiscernibility bound for each
formula of the form

∃~w[~w1 < ~w < ~w2 ∧ βm(~a, ~y1, ~w, ~z1, ~w)]

where ~w ⊆ ~y, ~y1 is the part of ~y outside ~w, and ~z1 is the corresponding part of
~z.

Take r large enough so that r ≥ m and r ≥ M , and s(r) > max(~a). Since
βm holds in (M, fσ[r]), we have

∃~y ∃~z [fσ[r](~a, ~y) = ~z ∧ βm(~a, ~y, ~z)].

We may therefore choose ~b in M so that

βm(~a,~b, fσ[r](~a,~b)).

As in the proof of Theorem 9.5, we may rearrange ~b into a tuple (~c, ~d) such
that the terms of ~c belong to the range of s and the terms of ~d do not. Then
fσ[r](~d) = ~d. Let (~t, ~w) be the corresponding rearrangement of ~y, and let ~d1, ~d2

be the vertices of the smallest open box containing ~d with coordinates in the
range of s. Then

∃~w [~d1 < ~w < ~d2 ∧ βm(~a,~c, ~w, fσ[r](~a,~c), ~w)].

Let ~u be the tuple in N such that s(~u) = (~c, ~d1, ~d2). Then there is a tuple ~v in N
such that conditions (f1)–(f3) hold with r in place of m. Here p is the number
of variables in αi, βi, i ≤ r, so βm has at most p variables, and ~u can be taken
with length p.

Let s(~v) = (~e0, ~d3, ~d4). Since r ≥ M , by (f3) and indiscernibility we have

∃~w [~d3 < ~w < ~d4 ∧ βm(~a,~e0, ~w, fσ[r](~a,~e0), ~w)].

Take ~e1 in M such that

~d3 < ~e1 < ~d4 ∧ βm(~a,~e0, ~e1, fσ[r](~a,~e0), ~e1).
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By (f2), every coordinate of ~e1 is outside the range of s, so fσ[r](~e1) = ~e1.
Putting ~e = (~e0, ~e1), we have

βm(~a,~e, fσ[r](~a,~e)).

It remains to prove that fσ(~a,~e) = fσ[r](~a,~e). Suppose i ≤ g(r) and
hσ[r](i) = 2j . If j is in the domain of σ[r], then hσ(i) = 2j because σ(j) =
σ[r](j). Otherwise σ(j) ≥ g(r), hence i ≤ g(r) < σ(j) and h(i) = 2j , and again
hσ(i) = 2j . If hσ[r](k) = 0 then hσ(k) = 0. Therefore hσ(k) = hσ[r](k) for all
k ≤ g(r).

By (f1), max(~v) < g(r). Therefore hσ(~v) = hσ[r](~v), and hence fσ(~v) =
fσ[r](~v). Since we also have max(~a) < s(r), it follows that fσ(~a,~e) = fσ[r](~a,~e).
Therefore

βm(~a,~e, fσ(~a,~e)),

and we have the required formula

∃~y ∃~z [fσ(~a, ~y) = ~z ∧ βm(~a, ~y, ~z)].

This establishes Claim 2 and completes the proof.

We conclude with a problem which we state as a conjecture.

Conjecture 9.8 Suppose that M is an o-minimal expansion of (R,≤,+, ·).
Then LIM is not Σ3 over M.

10 Conclusion

Given an ordered structureM, the quantifier level of a sentence θ of L(M)∪{F}
over M is the lowest class in the hierarchies ∆1 ⊂ Π1 ⊂ B1 ⊂ ∆2 ⊂ Π2 . . . and
∆1 ⊂ Σ1 ⊂ B1 ⊂ ∆2 ⊂ Σ2 . . . which contains a sentence equivalent to θ in
all structures (M, f). We investigate the quantifier levels of the Σ2 sentence
BDD, which says that f is bounded, and the Π3 sentence LIM , which says that
limz→∞ f(z) = ∞, over a given ordered structure M. This work is motivated
by Mostowski’s result that BDD is not Π2 and LIM is not Σ3 relative to
the primitive recursive functions over the standard model of arithmetic, and
Abraham Robinson’s result which characterizes BDD and LIM for standard
functions by Π1 sentences in a language with an added predicate for the set of
infinite elements.

We show that BDD and LIM can never be B1 over a structure M, but
if M is an expansion of the real ordered field with a symbol for N and each
definable function, then BDD and LIM are at the lowest possible level ∆2 over
M. We show that BDD is at its highest possible level, Σ2 but not Π2, and that
LIM is at its highest possible level, Π3 but not Σ3, in the following cases: M
is countable, M is the real ordering with an embedded structure on the natural
numbers, and M is special of nice cardinality with an extra predicate for the
infinite elements.
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When M has universe R, we obtain analogous results with the outer quanti-
fiers replaced by countable disjunctions and conjunctions. In that case we show
that BDD cannot be expressed by a countable conjunction of existential sen-
tences, and LIM cannot be expressed by a countable disjunction of countable
conjunctions of existential sentences.

The most interesting case is where M is an o-minimal expansion of the real
ordered field. In that case we show that BDD is at the maximum level, and
that LIM is not B2. Moreover, BDD and LIM are not

∧

Π2, and LIM is not
∨

B2. We leave open the question of whether LIM is at its maximum level, not
Σ3, in that case.
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