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Abstract

It is shown that a measurable function from an atomless Loeb proba-
bility space (Ω,A, P ) to a Polish space is at least continuum-to-one val-
ued almost everywhere. It follows that there is no injective mapping
h : [0, 1] → Ω such that h([a, b]) is Loeb measurable for each 0 ≤ a < b ≤ 1
and P (h([0, 1])) > 0. Thus, when an atomless Loeb measurable algebra
on an internal set of cardinality continuum is imposed on the unit interval
[0, 1] through a bijection, it cannot contain the Borel algebra.
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tions

1 Introduction

The Loeb measure construction introduced in [L] is a method from nonstan-
dard analysis which is a valuable tool for proving standard results in mathe-
matics (see, for example, [AFHL], [A] and [K1]). Recently, a number of special
measure-theoretic properties of Loeb spaces were discovered and formulated in
conventional terms. One is the neocompact approach developed in [FK1], [FK2],
[K2] and [K3] which extracted the essential features of a nonstandard existence
proof using Loeb spaces and provided a general procedure for going from ap-
proximate to limit. The others include a new theory of correspondences in [S2]
and [S3] and a systematic study of the fundamental probabilistic concept of
independence in [S1], [S4] and [S5] using Loeb product spaces.

A natural question which arises when the Loeb construction is used to obtain
standard results is: what is a Loeb space? In applications one usually only needs
to work with hyperfinite Loeb probability spaces in a nonstandard universe
which is a countably indexed ultrapower. In that case, a hyperfinite set has the
external cardinality of the continuum (the cardinality of the continuum will be
denoted by c), so there is a bijection between the hyperfinite set and the unit
interval [0, 1]. Using this bijection, one can impose the Loeb measure structure
on [0, 1]. Thus, a Loeb measure can simply be viewed as a measure on the unit
interval. In this setting, the special measure-theoretic properties of Loeb spaces
can be restated as properties of some measure on the most familiar underlying
space [0, 1].

Once a Loeb measure structure is imposed on the unit interval [0, 1] through
a bijection, one may want to know its relationship with the Lebesgue measure
structure. In particular, whether the imposed Loeb measurable algebra on [0, 1]
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could contain the Borel algebra, or more strongly, whether the imposed Loeb
measure structure on [0, 1] could be an extention of the Lebesgue measure struc-
ture. An affirmative answer would alleviate the anxiety caused by unfamiliar
notions in Loeb measure theory, such as internal sets, hyperfinite sets, or rich
probability spaces. However, the results in this paper show that the answer to
the above question is negative.

Note that if an imposed Loeb measurable algebra on [0, 1] contains the Borel
algebra, then the relevant bijection from the original Loeb space must be Loeb
measurable. Motivated by this observation, we consider the behavior of a general
Loeb measurable mapping f from an atomless Loeb probability space (Ω,A, P )
to a Polish space, and show that almost all points with respect to the image
measure have at least continuum many preimages. Of course, this includes
the particular case X = [0, 1]. As a consequence, for any injective mapping
h : [0, 1] → Ω in the other direction, if h([a, b]) is Loeb measurable for each
0 ≤ a < b ≤ 1 then P (h([0, 1])) = 0. In the case that the mapping is a bijection,
this shows that the answer to the previous question is negative.

For the convenience of the reader, the results are rigorously stated in Section
2 and the proofs are given in a separate Section 3. As usual, we work in an
ℵ1-saturated nonstandard universe (see [HL] for this basic definition).

2 The results

The following proposition shows that a measurable mapping f from an atom-
less Loeb probability space to a Polish space X is almost everywhere at least
continuum-to-one valued.

Proposition 1 Let f be a Loeb measurable mapping from an atomless Loeb
probability space (Ω,A, P ) to a Polish space X with distribution ν on X. Then,
the inverse image set f−1(x) of x has external cardinality at least the continuum
for ν-almost all x ∈ X.

The result cannot be improved by replacing “ν-almost all x ∈ X” by “all
x ∈ X”. In fact, starting from the above mapping f and any ν-null set B in X,
one can construct a Loeb measurable mapping g with distribution ν such that
for any x ∈ B, g−1(x) is at most a singleton. This mapping g can be obtained
by modifying the values of f on the P -null set f−1(B).

Proposition 1 covers the case of a mapping from a Loeb space to [0, 1]. In the
other direction, we now consider injective mappings from [0, 1] to an atomless
Loeb space. The next proposition shows that if the image set of each subinterval
is Loeb measurable under such a mapping h, then the image of h must be a P -
null set.

Corollary 2 Let (Ω,A, P ) be a Loeb probability space, and let h : [0, 1] → Ω be
an injective mapping such that h([a, b]) is Loeb measurable whenever 0 ≤ a ≤
b ≤ 1. Then P (h([0, 1])) = 0.
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If our nonstandard universe is a countably indexed ultrapower, then any
hyperfinite set has the same external cardinality as [0, 1]. Thus, there are 2c

many possible bijections between a hyperfinite set and [0, 1] in this case. Given
any probability space (Ω,A, P ), any bijection f from Ω to the unit interval [0, 1]
imposes a probability space ([0, 1], I, µ) on [0, 1] where

I = f(A) = {f(A) : A ∈ A}, µ(f(A)) = P (A).

Let us say that such a probability space ([0, 1], I, µ) is isomorphic to (Ω,A, P ).
Given the abundance of such bijections, the result in the following corollary,
which says that the induced isomorphic measure structures on [0,1] can never
contain the Borel structure, is somewhat surprising.

Corollary 3 Let ([0, 1], I, µ) be a probability space which is isomorphic to an
atomless Loeb probability space (Ω,A, P ). Then I cannot contain the Borel
σ-algebra B.

It is interesting to point out that given any atomless probability space
(Ω,A, P ), if there is an isomorphic probability space on [0, 1] which contains
the Borel algebra, then there is actually an isomorphic probability space on
[0, 1] which is an extension of the Lebesgue measure structure. To see this,
suppose that there is a probability space ([0, 1], I, µ) isomorphic to (Ω,A, P )
through a bijection f : Ω → [0, 1] such that the σ-algebra I = f(A) contains
the Borel algebra B. Then, ([0, 1],B, µ|B) is an atomless Borel probability space.
The classical isomorphism theorem on Borel sets and Borel measures (see [P])
implies the existence of a Borel isomorphism h between the measure µ|B and
the Lebesgue measure λ on [0, 1]. Let g be the composition of f and h. Then,
the measure structure on [0, 1] imposed by g extends the Lebesgue measure
structure.

3 The proofs

We begin with a lemma.

Lemma 4 Let G be an internally measurable mapping from an atomless, inter-
nal probability space (Ω, Ā, P̄ ) to ∗X, where X is a Polish space. Assume that
G(Ω) is near standard in ∗X for every ω ∈ Ω. Let g(ω) = ◦G(ω) for all ω ∈ Ω.
Let µ be the distribution on X induced by the mapping g on the Loeb probability
space (Ω,A, P ). Then, for any x in the support of µ, the external cardinality of
g−1(x), the inverse image of the singleton {x}, is at least the continuum.

Proof Let d be a metric on X and On the open ball B(x, 1/n) for every
n ≥ 1. Since x is in the support of µ, µ(On) = P (g−1(On)) > 0. Thus, we
can find an internally measurable subset An of Ω such that An ⊆ g−1(On) with
P̄ (An) > µ(On)/2. Hence, for any natural number n ≥ 1,

(1) the internal cardinality |An| of An is greater than n,
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(2) d(x,G(An)) < 1/n.
By ℵ1-saturation, the sequence An, n ∈ N can be extended to internally mea-
surable subsets of Ω, An, n ∈ ∗N. By overspill, one can find an infinite γ ∈ ∗N
such that for all 1 ≤ n ≤ γ, Properties (1) and (2) hold. This means that
|Aγ | > γ and d(x,G(Aγ)) < 1/γ, which implies that Aγ ⊆ g−1(x). Hence the
external cardinality of g−1(x) is at least the continuum. �

Proof of Proposition 1
Let F be an internal lifting of f . Take an increasing sequence of internally

measurable sets Bn in Ω such that P̄ (Bn) > 1− 1/2n and ◦F (ω) = f(ω) for all
ω ∈ Bn.

Let P̄n be the atomless, internal probability measure on Bn defined by nor-
malizing P̄ restricted to Bn and let Pn be the relevant Loeb measure. Let µn

be the distribution on X induced by f |Bn . Then, Lemma 1 implies that for all
x in the support Sn of µn, the external cardinality of (f |Bn)−1(x) is at least the
continuum.

Let S = ∪∞n=1Sn. Then

ν(S) ≥ ν(Sn) = P (f−1(Sn)) ≥ Pn((fBn)−1(Sn)) · P (Bn)

= µn(Sn) · P (Bn) = P (Bn),

which implies that ν(S) = 1. Hence, for all x in S, the external cardinality of
f−1(x) is at least the continuum. �

Proof of Corollary 2
If there were such an h, and f was the extension of h−1 which sends the

complement of h([0, 1]) to 0, then f would be a Loeb measurable function with
distribution ν such that the inverse image set f−1(x) is a singleton for any x in
the set (0, 1]. But then

ν ((0, 1]) = P
(

f−1((0, 1])
)

= P (h((0, 1])) = P (h([0, 1])) > 0,

which contradicts Proposition 1. �

Proof of Corollary 3
Suppose that I does contain the Borel σ-algebra B. Then the bijection f

is Loeb measurable. The distribution ν of f is simply the restriction µB of µ
to B. Proposition 1 implies that f−1(x) cannot be a singleton for ν-almost all
x ∈ [0, 1], which contradicts the bijective hypothesis on f . �

The results were obtained while the authors were attending the Symposium
on Reuniting the Antipodes – Constructive and Nonstandard Views of the Con-
tinuum at Venice, Italy on May 16-23, 1999. The authors are very grateful
to Robert Anderson for helpful conversations and also to the organizers of the
Venice conference, Ulrich Berger, Horst Osswald and Peter Schuster for the in-
vitation to the conference. The research was supported in part by the National
Science Foundation and the Vilas Trust Fund.
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