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Abstract

Epistemic justifications of solution concepts often refer to type structures that are sufficiently

rich. One important notion of richness is that of a complete type structure, i.e., a type structure

that induces all possible beliefs about types. For instance, it is often said that, in a complete type

structure, the set of strategies consistent with rationality and common belief of rationality are

the set of strategies that survive iterated dominance. This paper shows that this classic result

is false, absent certain topological conditions on the type structure. In particular, it provides an

example of a finite game and a complete type structure in which there is no state consistent with

rationality and common belief of rationality. This arises because the complete type structure

does not induce all hierarchies of beliefs—despite inducing all beliefs about types. This raises

the question: Which beliefs does a complete type structure induce? We provide several positive

results that speak to that question. However, we also show that, within ZFC, one cannot show

that a complete structure induces all second-order beliefs.

JEL Codes C70, C72, C79, D81, D89

1 Introduction

Iterated deletion of strongly dominated strategies has a long tradition in game theory. Bernheim

(1984) and Pearce (1984) asserted that—up to issues of correlation—the iteratively undominated

(IU) strategies are the strategies consistent with rationality and common belief of rationality. In

many ways, this step seems intuitive and obvious. Brandenburger and Dekel (1987) and Tan and

Werlang (1988) are early treatments that provide a formal statement of this claim. (See, also,

Battigalli and Siniscalchi (2002) and Arieli (2010), among many others.) Each of these papers

provide epistemic conditions for IU.

This paper argues that, in rather subtle ways, we have an incomplete understanding of the

epistemic conditions for IU. The gap in our understanding arises because we have failed to appreciate
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subtleties of an epistemic framework that has become standard in the literature. We give a series

of results aimed at improving our understanding of that framework and, in turn, IU.

To provide foundations for IU, we must first specify a framework in which players reason about

the strategies others play. Modern treatments follow Harsanyi (1967), by using a type structure

to implicitly model players’ beliefs. They assume that the type structure is complete—that it

contains all possible beliefs. This is, in a sense, a requirement that the type structure is “rich.” In

Section 2, we review why a richness condition is crucial for an epistemic characterization of IU.

The main theorem shows that, for any non-trivial finite game, there exists a complete type

structure in which no strategy is consistent with rationality and common belief of rationality

(RCBR). (See Theorems 6.1-6.2.) This can occur because a complete type structure need not

induce all possible hierarchies of beliefs—despite the fact that it induces all possible beliefs about

types.1 Put differently, when a type structure induces all possible hierarchies of beliefs, the IU

strategies are consistent with RCBR and so there is some state at which there is RCBR. In fact,

the same holds if the type structure induces all hierarchies of beliefs that arise from finite structures.

(See Theorem 8.1.) But the same conclusion need not follow for a type structure that induces all

possible beliefs about types.

This then raises the question: Which hierarchies of beliefs are induced by a complete type

structure? We show that a complete structure induces all finite-order beliefs that can arise in

countable type structures. Moreover, in economically relevant environments, they also induce

finite-order beliefs that arise from (what we will call) atomic type structures. (See Proposition

9.2.) But, importantly, we stop short of showing that they induce all finite-order beliefs. In fact,

we show a powerful negative result: Within ZFC, one cannot prove that complete type structures

induce all second-order beliefs. (See Theorem 9.4.)

One message of this paper is that topological assumptions on the set of types implicitly impose

substantive assumptions on players’ reasoning. Typically, the literature assumes that the type sets

are Polish (or, even, compact metrizable) and the belief maps are continuous.2 When possible, this

paper will refrain from making such assumptions with an aim at understanding the extent to which

such assumptions involve substantive import.

The paper proceeds as follows. Section 2 reviews the literature and gives an informal preview of

the results. Sections 3-5 provides the underlying framework and key epistemic conditions. Section

6 shows the main theorem: The existence of a complete type structure, where there is no RCBR

state. Sections 7-8 are aimed at understanding this result. Section 7 describes how types induce

hierarchies of beliefs. Section 8 shows that the RCBR predictions coincide with IU in a type

structure that induces a sufficiently rich set of hierarchies of beliefs. The implication is that a

complete type structure need not induce all hierarchies of beliefs. Section 9 addresses the question

of which finite-order beliefs are induced by a complete type structure. Finally, Section 10 concludes

1The fact that such a complete structure can exist was not known prior to this paper.
2There is even such an implicit assumption in the so-called “topology-free” approach to type structures, see e.g.,

Heifetz and Samet (1998, 1999). When the underlying set of uncertainty is Polish, the literature typically constructs
a “large type structure” whose type sets turn out to be Polish and belief maps turn out to be continuous.
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with conceptual discussions. Proofs not in the main text can be found in the appendices.

2 Heuristic Treatment

The purpose of this section is two-fold. First, it reviews the known foundations for IU. In doing

so, it provides a discussion of important philosophical and/or substantive underpinnings of extant

results. Second, it provides an informal statement of the central results. While it postpones formal

definitions and proofs to Sections 3–9, it references the formal counterparts to come.

2.1 The Framework

Let G∗ be a two-player game, where Ann’s strategy set is Sa = {U,M,D} and Bob’s strategy

set is Sb = {L,C,R}. Figure 2.1 describes the payoffs. Observe that each of Ann’s strategies is

undominated. Bob’s strategy R is the only dominated strategy. The IU strategy set is {U,M} ×
{L,C}.

L C R

U

M

D

4,4 1,1 0,0

1,1 5,5 0,0

0,1 0,1 6,0

B

A

Figure 2.1Game G

What are the implications of the requirement that each player is rational, each player believes

the other player is rational, etc.? To say if a strategy is rational for Ann, we must specify what

Ann believes about the strategy Bob employs. For instance, U is rational for Ann if she assigns

probability 1 to L; but, it is irrational for Ann if she assigns probability 0 to L. Likewise, whether

Ann believes Bob is rational depends on her belief both about what Bob plays and what he beliefs

about her own play. (After all, whether a strategy is rational or irrational for Bob also depends on

Bob’s beliefs.) And so on. So, to talk about the implications of rationality and common belief of

rationality, we need to enrich the description of the game—to describe Ann’s and Bob’s hierarchies

of beliefs about the play of the game.

We follow the literature and use a type structure (Harsanyi, 1967) to implicitly model these

hierarchies of beliefs. There are two ingredients: First, for each player c, there is a set of (belief)

types. Second, for each player c, there is a belief map; the belief map βc takes each type of a

player c to a belief about the strategies and types of the other player. Figure 2.2 gives an example

of a type structure T ∗ for the game G∗. In T ∗, there is one type of Ann, viz. ta, and one type of

Bob, viz. tb. Type ta assigns probability 1 to (L, tb) and type tb assigns probability 1 to (U, ta). So,

type ta assigns probability 1 to “Bob plays L and assigns probability 1 to me playing U , etc.”
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Figure 2.2Type Structure T ∗

Taken together, (G∗, T ∗) (Figures 2.1-2.2) describe the strategic situation, i.e., the rules of the

game, payoff functions, and the players’ beliefs about the strategies played. This description is

called an epistemic game. More concretely, an epistemic game consists of a game G and a type

structure associated with G; that type structure implicitly describes hierarchies of beliefs about

the strategies played. Note, the type structure is part of the definition of an epistemic game and

so part of the description of the strategic situation.

The epistemic game induces a set of states, i.e., a set of strategy-type pairs for each player.

A state describes how the game is played and what the players’ believe. For instance, in (G∗, T ∗),
there is a state (M, ta, R, tb). At that state, Bob plays R and Bob believes “Ann plays U and holds

the beliefs associated with ta.” Note, at this state, Bob chooses a dominated strategy. So, this can

be seen as an ‘irrational’ state. We will focus on states that capture strategic reasoning. With this

in mind, we restrict attention to states satisfying rationality and common belief of rationality.

Rationality is the requirement that a player maximize her subjective expected utility, given her

belief about how the other plays the game. Thus, rationality is a property of a strategy-type pair.

For the epistemic game associated with Figures 2.1-2.2, (sa, ta) is rational if sa is a best response

given the belief associated with ta; since ta assigns probability 1 to (L, tb), (sa, ta) is rational if

and only if sa = U. Likewise, (sb, tb) is rational if and only if sb = L. Thus, the set of rational

strategy-type pairs for Ann is

R1
a = {(U, ta)}

and the set of rational strategy-type pairs for Bob is

R1
b = {(L, tb)}.

Now turn to the requirement of belief in rationality. Since types are associated with beliefs,

this is a requirement on types of a player. A type believes an event E if it assigns probability one

to E. Here, βa(ta) assigns probability one to R1
b . So, the set of strategy-type pairs of Ann that are

“rational and ‘believe Bob is rational’ ” is R2
a = R1

a = {(U, ta)}. Likewise, the set of strategy-type

pairs for Bob that are “rational and ‘believe Ann is rational’ ” is R2
b = R1

b .

Proceeding inductively, we can see that the set of strategy-type pairs for Ann consistent with

rationality and mth-order belief of rationality (RmBR) is Rm+1
a = R2

a. And, likewise,
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Figure 2.3Type Structure T ∗∗

Rm+1
b = R2

b . Thus, the set of states at which there is rationality and common belief of

rationality (RCBR) is R∞a ×R∞b = R2
a ×R2

b . So, in the epistemic game (G∗, T ∗), the prediction

of RCBR is {U} × {L}. This is a subset of the IU strategy set.

2.2 A Connection Between IU and RCBR Predictions

In the epistemic game (G∗, T ∗) (Figures 2.1-2.2), the RCBR prediction was contained in the set of

IU strategies. This is true more generally.

Result 2.1 (Brandenburger and Dekel, 1987) Fix an epistemic game. The set of strategies

consistent with RCBR is contained in the IU strategy set.

The epistemic game in Figures 2.1-2.2 highlighted the fact that the RCBR prediction may be

a strict subset of the IU strategies. It raises the question of whether—for a given game G—all the

IU strategies are consistent with RCBR. Indeed they are. We can find a type structure so that the

set of states consistent with RCBR is exactly the IU strategy set.

Result 2.2 (Brandenburger and Dekel, 1987) Fix a game. There is an associated epistemic

game so that the set of strategies consistent with RCBR is the IU strategy set.

To illustrate Result 2.2, consider the epistemic game (G∗, T ∗∗), where T ∗∗ is as in Figure 2.3.

Now Ann has three types and Bob has two types. Type ta of Ann (resp. ua, va) assigns probability

1 to Bob playing L (resp. C, R). So, the set of rational strategy-type pairs for Ann is

R1
a = {(U, ta), (M, ua), (D, va)}
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and the set of rational strategy-type pairs for Bob is

R1
b = {(L, tb), (C, ub)}.

Each of Ann’s types ta and ua assign probability 1 to R1
b ; however, va does not. Thus, R2

a =

{(U, ta), (M, ua)} is the set of strategy-type pairs at which Ann is rational and believes Bob is

rational. Likewise, each type of Bob believes R1
a; thus, R2

b = R1
b . Continuing along these lines, the

set of states at which there is RCBR is

{(U, ta), (M, ua)} × {(L, tb), (C, ub)}.

Thus the RCBR predictions, namely {U,M} × {L,C}, coincide with the set of IU strategies.

2.3 Interpretation

Taken together, Results 2.1-2.2 provide a basic connection between IU and the RCBR predictions:

Fix a game G and its associated set of IU strategies, viz. S∞. For any epistemic game associated

with G, the set of RCBR predictions is contained in S∞. Conversely, there is an epistemic game

associated with G so that S∞ is the set of RCBR predictions.

The interpretation of this result is more subtle than may, at first, be apparent. To understand

why, note that, under the epistemic game theory approach, beliefs are part of the description of the

strategic situation. When we write down an epistemic game (G, T ), we specify what beliefs players

do versus do not consider possible. From the perspective of the players, other type structures

are simply irrelevant: They may have types that the players do not themselves consider possible.

Or they may not include types the players do consider possible. (Formally, each type structure

represents an event E about hierarchies of beliefs that is commonly believed by the players. From

the perspective of players who commonly believe an event E, type structures that capture common

belief of F 6= E are irrelevant. See Battigalli and Friedenberg (2012a) for a more complete discussion

of the interpretation.)

With this in mind, from the perspective of the players themselves, some of the IU strategies may

not be RCBR predictions. As such, Results 2.1-2.2 are best understood from the perspective of an

analyst who does not know the players’ beliefs. In that case, the analyst will seek the predictions

of RCBR across all epistemic games associated with G. This set of predictions is exactly the set of

IU strategies.

2.4 Justifying IU from the Perspective of Players

This paper is concerned with justifying IU from the perspective of the players themselves. In

particular, it asks: Can the players themselves see all the IU strategies as the result of a certain

thought process? If we have found a situation where that is indeed the case, we will say that we
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have found an epistemic justification of IU.3

The epistemic game in Figures 2.1-2.2 suggest that, to provide a positive answer, we will need to

restrict the class of type structures we analyze. What is the desired restriction on type structures?

To get at an answer, refer to the epistemic game given by Figures 2.1-2.2. Why did we not get all

of the IU strategies? Note, there was no type of Ann that assigns strictly positive probability to

Bob playing C. So there is no type of Ann for which M is a best response, i.e., M is inconsistent

with rationality. Even if there were such a type of Ann, there is no type of Bob for which C is

a best response. So, Ann cannot both assign positive probability to Bob playing C and believe

that Bob is rational. And so on. This suggests that, to justify IU (from the players’ perspective),

we need a requirement that “players consider enough beliefs possible.” Put differently, we need a

requirement that the type structure is “rich.”

Tan and Werlang (1988) studied a specific rich type structure. In particular, they restricted

attention to the canonical construction of the so-called universal type structure, in Mertens and

Zamir (1985). This is a particular construction of a type structure that induces all hierarchies of

beliefs about the play of the game. The result is:

Result 2.3 [Tan and Werlang, 1988] Fix an epistemic game associated with a universal type struc-

ture.

(i) The set of strategies consistent with RmBR is the set of (m+ 1)-undominated strategies.

(ii) The set of strategies consistent with RCBR is the set of IU strategies.

Tan and Werlang stated the result without proof. In the course of attempting to prove the result,

the literature identified properties of the canonical construction (of a universal type structure) that

suffice for a proof. Thus, the literature was able to modify the richness condition—expanding it

beyond the single universal type structure of Mertens and Zamir (1985).

The key property (due to Brandenburger, 2003) is completeness. A type structure is complete

if the belief maps, viz. βa and βb, are onto. Thus, for every belief a player can hold (about the

strategies and types of the other players), there is a type of the player which induces that belief.

That is, the type structure induces all possible beliefs about types. Call an epistemic game complete

if the associated type structure is complete. Now:

Result 2.4 [Folk Result; Proposition 5.5] Fix a complete epistemic game.

(i) The set of strategies consistent with RmBR is the set of (m+ 1)-undominated strategies.

(ii) If, in addition, the type sets are compact and the belief maps are continuous, then the set of

strategies consistent with RCBR is the set of IU strategies.4

3It is important to note that, for the purpose of this paper, we use the phrase “epistemic justification” only if we
have justified IU from the perspective of the players themselves. It is certainly reasonable to also use the phrase for
a justification from the perspective of an analyst—i.e., for the situaiton discussed in Section 2.2. We use the term in
a limited way; no confusion should result.

4This “folk result” is a special case of Proposition 6 in Battigalli and Siniscalchi (2002).
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2.5 Technical Assumptions May Be Substantive Assumptions

Result 2.4(ii) says that we can justify the entire IU set as an output of players’ reasoning: IU is

an output of RCBR in a type structure that is complete with compact type spaces and continuous

belief maps. So, compactness, continuity, completeness, and RCBR comprise so-called epistemic

conditions for IU. The universal type structure is compact, continuous and complete.

How should these conditions be interpreted? RCBR is a condition on players’ reasoning. Like-

wise, we can interpret the completeness condition as an output of players’ reasoning. It is the

condition that all possible beliefs (about types) are present—and so all beliefs (about types) are

“considered” by the players. But, compact type sets and continuous belief maps are technical

conditions. As technical conditions, they are not easily interpretable.

This raises the question: Why do we find compactness and continuity in the statement of Result

2.4(ii)? If the answer is “for technical convenience,” then these requirements can be ignored. But,

if the answer is “because they are necessary for the result,” then they are integral components of

the epistemic conditions for IU. In the latter case, arguably, we have not yet understood conditions

on players’ reasoning that give IU—precisely, because compactness and continuity restrict players’

reasoning in a way that is not transparent.

In Section 6, we show that these seemingly technical requirements cannot be dispensed with.

The result will apply to a wide class of games, called non-trivial games. For now, note, the game

in Figure 2.1 is non-trivial. Moreover, games that have both no dominant strategy and no ties will

be a special case of non-trivial games.

Result 2.5 [Theorem 6.1] For each non-trivial game, there is an associated complete epistemic

game so that the following holds:

(i) The set of strategies consistent with RmBR is the set of (m+ 1)-undominated strategies.

(ii) There is no state at which there is RCBR.

To better understand Result 2.5, return to the game in Figure 2.1. The result says that there is an

associated complete epistemic game, in which there is no state at which there is RCBR. So, while

at first glace, a complete type structure may appear rich—in so far as it contains all possible beliefs

about types—it may not be rich enough to deliver the IU strategy set (or even some state at which

there is RCBR). Let us review why such a complete structure can exists.

Note, for the game in Figure 2.1, iterated dominance gives:

Set of Strategies that Survive

Round 1 {U,M,D} × {L,C}
Round 2 {U,M} × {L,C}
Round 3 {U,M} × {L,C}
Round 4 . . .
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Sa

Ta

U M D

T[U, 1]

T[U, 2]

T[U, 3]

Figure 2.4

Now, refer to Result 2.4(i): It says that a strategy sa survives m rounds of deletion if and only if

(in a complete type structure) the set of types ta so that (sa, ta) satisfies “rationality and (m−1)th-

order belief of rationality” is nonempty. Write T[sa,m] for this set. Note, in our example then, for

any complete type structure, we have:

T[U, 1] 6= ∅ T[M, 1] 6= ∅ T[D, 1] 6= ∅
T[U, 2] 6= ∅ T[M, 2] 6= ∅ T[D, 2] = ∅
T[U, 3] 6= ∅ T[M, 3] 6= ∅ T[D, 3] = ∅

. . . . . . . . .

The question we then have is: If a strategy sa survives IU, is it the case that there is a type ta

so that ta believes “Bob is rational,” “Bob is rational and ‘Bob believes I am rational,’ ” etc.?

This is equivalent to, if a strategy sa survives IU, is it the case that there is a type ta so that

ta ∈ T[sa, 1],T[sa, 2], . . .? That is, if sa survives IU, is
⋂
m T[sa,m] nonempty?

Refer to Figure 2.4. The strategy U survives IU and so we are looking for a type in
⋂
m T[U,m].

The sets T[U,m] are shrinking, i.e., T[U,m + 1] ⊆ T[U,m]. In fact, because the type structure is

complete, the sets T[U,m] must be strictly shrinking, i.e., T[U,m + 1] ( T[U,m].5 In principle,

then, we might have that the intersection is empty.

Result 2.4(ii) tells us that, when the type sets are compact and the belief maps are continuous,

we must have a non-empty intersection—the reason this is the case is that, then, the sets T[U,m] are

closed subsets of a compact set. But, Result 2.5(ii) says that we can construct some complete type

structure so that the intersection of these sets is empty. In particular, we construct a complete

type structure that has Polish (but not compact) type sets and continuous belief maps, but for

which the intersection is empty. (This will be Theorem 6.1 below.) As a by-product, we also get an

example of a complete type structure that has compact types sets and discontinuous belief maps,

but for which the intersection is empty. (This is Theorem 6.2 below.)

5This is not particular to the example—it must hold in any non-trivial game. This is essentially the proof of
Proposition 3.1 in Friedenberg (2010).
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2.6 Revisiting the Epistemic Conditions for IU

Return to Result 2.4: For any complete epistemic game, the set of strategies consistent with RmBR

is the set of (m + 1)-undominated strategies. The implication is that a complete type structure

induces a rich enough set of beliefs from the perspective of delivering the (m + 1)-undominated

strategies. However, Result 2.5 indicates that it need not induce a rich enough set of beliefs from the

perspective of delivering the IU strategies. This raises two interrelated questions: First, how should

we interpret this lack of richness of a complete structure? And, second, what richness condition

would be sufficient from the perspective of delivering the IU strategies?

To address this question, let us return to what is known about the relationship between complete

type structures and the hierarchies of beliefs that they induce.

Result 2.6 (Friedenberg, 2010; Theorem 3.1) Let T be a complete type structure.

(i) If T has Polish type sets, then T induces all finite-order beliefs.

(ii) If T has compact type sets and continuous belief mappings, then T induces all hierarchies of

beliefs.

Result 2.4(i) is typically shown for a complete epistemic game with Polish type sets.6 In fact,

Result 2.5(i) constructs a complete type structure with Polish type sets. So, by Result 2.6(i), each

of these results are concerned with type structures that induce all finite-order beliefs. Result 2.4(ii)

says that completeness, compactness and continuity deliver IU and Result 2.6(ii) says that those

structures also induce all hierarchies of beliefs.

This leads to two natural conjectures that address our questions: First, if an epistemic game

induces all hierarchies of beliefs, then the RCBR predictions coincide with IU. Second, the complete

type structure constructed for Result 2.5 does not induce all hierarchies of beliefs. Both conjectures

will be true. In fact, we will show a stronger result:

Result 2.7 [Theorem 8.1] Fix an epistemic game (G, T ).

(i) Suppose T induces all finite-order beliefs that are induced by finite type structures. Then, the

set of strategies consistent with RmBR is the set of (m+ 1)-undominated strategies.

(ii) Suppose T induces all hierarchies of beliefs that are induced by finite type structures. Then

the set of strategies consistent with RCBR is the set of IU strategies.

Results 2.5-2.6-2.7 imply that there exists a complete type structure that induces all finite-order

beliefs, but does not induce all hierarchies of beliefs that arise from finite type structures. (See

Proposition 8.3.) As an implication, there exists a complete type structure that induces all finite-

order beliefs, but does not induce all hierarchies of beliefs. So, while type structures implicitly

model hierarchies of beliefs, properties of type structures (e.g., “all possible beliefs about types”)

6Though, an implication of Proposition 5.5 to come is that the Polish assumption is not necessary.
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may not transfer over, in a natural way, to properties of hierarchies of beliefs (e.g., “all hierarchies

of beliefs”).

This raises the question: Which hierarchies of beliefs are induced by a complete type structure

(i.e., beyond the specific type structure constructed for Result 2.5)? We address a somewhat

weaker question: Which finite-order beliefs are induced by a complete type structure? We show

that a complete type structure necessarily induces finite-order beliefs associated with countable type

structures. (See Theorem 9.2.) However, importantly, we stop short of showing that it induces

all finite-order beliefs. Instead, we establish a negative result: One cannot prove in ZFC that

every complete continuous type structure induces all possible finite-order beliefs. (See Theorem

9.4.) While there exists complete continuous type structures that do induce all possible finite-order

beliefs, within ZFC, one cannot rule out the possibility that there are complete continuous type

structures that do not induce all possible finite-order beliefs.

3 The Game

We begin with mathematical preliminaries used throughout the paper. Given a metrizable set Ω,

we endow Ω with the Borel sigma-algebra. The set of Borel probability measures on Ω is P(Ω);

endow P(Ω) with the topology of weak convergence. Endow the product of metrizable spaces with

the product topology. Given metrizable sets Ω and Φ and a measurable map f : Ω → Φ, define

f : P(Ω)→ P(Φ) so that f(µ) is the image measure of f under µ.

Throughout the paper, we fix a finite two-player simultaneous-move game G = (Sa, Sb, πa, πb).

The players are a and b.7 Write c for an arbitrary player from a, b and write d for the other

player. Player c has a finite strategy set Sc and a payoff function πc : Sc × Sd → R. Extend πc to

P(Sc)× P(Sd) in the usual way, i.e. πc(σc, σd) =
∑

(sc,sd)∈Sc×Sd
σc(sc)σd(sd)πc(sc, sd).

Definition 3.1 Fix Ya × Yb ⊆ Sa × Sb. A strategy sc ∈ Yc is strongly dominated with respect

to Yc × Yd if there exists σc ∈ P(Sc) with σc(Yc) = 1 and πc(σc, sd) > πc(sc, sd) for every sd ∈ Yd.
Otherwise, say sc is undominated with respect to Yc × Yd .

Note the convention: If Yc 6= ∅ but Yd = ∅, then each sc ∈ Yc is strongly dominated with respect to

Yc × Yd.
Set S0

c = Sc and inductively define

Sm+1
c = {sc ∈ Smc : sc is undominated with respect to Smc × Smd }.

The set Sma × Smb is the set of m-undominated strategy profiles. Define S∞c =
⋂∞
m=1 S

m
c . The

set S∞a × S∞b is the set of iteratively undominated (IU) strategy profiles. Note, the set of IU

strategy profiles is non-empty.

7The restriction to two players is immaterial, up to issues of correlation.
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4 Type Structures and Epistemic Games

Following Section 2.1, we model the players hierarchies of beliefs implicitly, via a type structure.

This section first defines a type structure for an abstract set of parameters that the players may

be uncertain about. It then applies that definition to capture the type structure of interest.

Abstract Type Structures We are concerned with situations where each player c is uncertain

about a set of parameters. Let Xc be a metrizable parameter set for player c. Call Xc non-

degenerate if |Xc| ≥ 2.

Definition 4.1 An (Xa, Xb)-based type structure is some T = (Xa, Xb;Ta, Tb;βa, βb), where

(i) Tc is a metrizable type set for player c, and

(ii) βc : Tc → P(Xc × Td) is a measurable belief map for player c.

Section 7 formalizes how an (Xa, Xb)-based type structure induces hierarchies of beliefs about

(Xa, Xb). Refer to T = (Xa, Xb;Ta, Tb;βa, βb) as a “type structure,” when the underlying set of

parameters (Xa, Xb) is clear from the context.

We will be interested in type structures that satisfy certain properties.

Definition 4.2 Fix an (Xa, Xb)-based type structure, viz. T = (Xa, Xb;Ta, Tb;βa, βb).

(i) Say T is compact (resp. Polish) if Ta and Tb are compact (resp. Polish).

(ii) Say T is continuous if βa and βb are continuous.

(iii) Say T is complete if βa and βb are onto.

Definition 4.2 provides conditions that a type structure may or may not satisfy. The last condition—

i.e., completeness—is a substantive requirement. It says that, for every belief µc ∈ P(Xc×Td) that

a player may hold, there is a type of the player that holds that belief. Thus, it is a requirement that

the type structure is “rich.” (Completeness is due to Brandenburger, 2003.) The other conditions—

i.e., compactness, Polishness, and continuity—appear to be technical requirements. A main goal

of this paper is to show that, in conjunction with completness, these technical requirements have

substantive import.

Mertens and Zamir (1985), Brandenburger and Dekel (1993), and Heifetz and Samet (1998) each

provided canonical constructions of a so-called (Xa, Xb)-based “universal type structure.” When

Xa, Xb are compact (resp. Polish), these universal type structures are each compact (resp. Polish),

continuous, and complete. But there are other type structures—i.e., type structures that differ

from these constructions—that are also compact (resp. Polish), continuous, and complete.
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Epistemic Games We are concerned with the situation in which each player faces uncertainty

about the strategy the other player employs. So, player a’s (resp. b’s) basic set of uncertainty is

Xa = Sb (resp. Xb = Sa). With this in mind:

Definition 4.3 An epistemic game is a pair (G, T ) where T is a (Sb, Sa)-based type structure.

Because the game G is fixed throughout the paper, we often conflate an epistemic game with its

associated type structure.

5 Epistemic Conditions: RCBR

An epistemic game (G, T ) induces a set of states—namely, Sa × Ta × Sb × Tb. That is, a state is

a quadruple (sa, ta, sb, tb) that describes the play of the game and the players’ beliefs. We focus on

the states that satisfy rationality and common belief of rationality, as defined below.

Say sc is optimal under σc ∈ P(Sd) if πc(sc, σd) ≥ πc(rc, σd) for all rc ∈ Sc.

Definition 5.1 A strategy-type pair (sc, tc) is rational if sc is optimal under marg Sd
βc(tc).

Definition 5.2 Say a type tc believes Ed ⊆ Sd × Td if Ed is Borel and βc(tc)(Ed) = 1.

Write

B c(Ed) = Sc × {tc : tc believes Ed},

for the set of strategy-type pairs that believe Ed.

Set R0
c = Sc × Tc and take R1

c for the set of rational strategy-type pairs of player c. For each

m ≥ 1, set Rm+1
c = Rm

c ∩ B c(R
m
d ). Likewise, set R∞c =

⋂
m Rm

c .

Definition 5.3 The sets of states at which there is rationality and mth-order belief of ratio-

nality (RmBR) is Rm+1
a ×Rm+1

b . The sets of states at which there is rationality and common

belief of rationality (RCBR) is R∞a × R∞b .

Note, the set of states at which there is RCBR—i.e., R∞a × R∞b —depends on the type structure.

(The examples in Figures 2.2-2.3 illustrated this point.)

We are interested in the RCBR predictions, i.e., proj Sa
R∞a × proj Sb

R∞b . As Result 2.1 stated,

these predictions are necessarily a subset of the IU strategy set. Lemma 5.4 formalizes that result.8

Lemma 5.4 Fix an epistemic game (G, T ).

(i) For each m, proj Sa
Rm
a × proj Sb

Rm
b ⊆ Sma × Smb .

(ii) proj Sa
R∞a × proj Sb

R∞b ⊆ S∞a × S∞b .

8Proofs not found in the main text can be found in the appendices.
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The example in Figure 2.2 illustrated that, for a given epistemic game, the RCBR predictions may

be a strict subset of the IU strategy set. But, as Result 2.4 stated, the RCBR predictions coincide

with IU when the epistemic game has a complete, compact and continuous type structure.

Proposition 5.5 (Folk-Result) Fix an epistemic game (G, T ) where T is complete.

(i) For each m ≥ 1, proj Sa
Rm
a × proj Sb

Rm
b = Sma × Smb .

(ii) If T is compact and continuous, then proj Sa
R∞a × proj Sb

R∞b = S∞a × S∞b .

Part (i) says that, in a complete type structure, the set of strategies consistent with RmBR is

the set of strategies that survive (m + 1) rounds of eliminating dominated strategies. Part (ii)

says that if, in addition, the complete type structure is compact and continuous, then the set of

strategies consistent with RCBR is the set of IU strategies. A goal of this paper is to explore

whether compactness and continuity are required for the conclusion of part (ii). The next section

shows that, indeed, they are.

6 A Negative Result

Call G non-trivial if, for each player c and each strategy sc, there is some σd ∈ P(Sd) so that sc

is not optimal under σd. Note, G is non-trivial if and only if no player has a very weakly dominant

strategy (Marx and Swinkels, 1997). If G is non-trivial, Sa and Sb are both non-degenerate. When

G is non-trivial, we have two negative results that each establish Result 2.5.

Theorem 6.1 Let G be non-trivial. There exists a Polish, continuous, and complete (Sb, Sa)-based

type structure T so that

(i) For each m ≥ 0, proj Sa
Rm
a × proj Sb

Rm
b = Sma × Smb .

(ii) R∞a = ∅ and R∞b = ∅.

Theorem 6.2 Let G be non-trivial. There exists a compact and complete (Sb, Sa)-based type struc-

ture T so that

(i) For each m ≥ 0, proj Sa
Rm
a × proj Sb

Rm
b = Sma × Smb .

(ii) R∞a = ∅ and R∞b = ∅.

The two theorems differ in the topological properties of the associated complete type structure.

Theorem 6.1 constructs a complete type structure that is continuous. Theorem 6.2 constructs a

complete type structure that is compact. In both cases, Part (i) coincides with Proposition 5.5(i).

But, Part (ii) is different. We first prove Theorem 6.1 and then discuss how Theorem 6.2 can be

derived as (almost) a corollary. (Some technical steps in the proof of Theorem 6.2 are stated as

lemmas; see Appendix C for their proofs.)
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Proof of Theorem 6.1. Recall, the idea from Section 2. The set T[sc,m] was the set of types tc

so that (sc, tc) ∈ Rm
c . When G is non-trivial and the type structure is complete, the sets T[sc,m]

are shrinking, i.e., T[sc,m + 1] ( T[sc,m]. The goal is to construct a complete type structure so

that the intersection of these sets is empty.

To construct this type structure, it will be useful to express the m-undominated strategies as

an output of an mth-order best response maps: For each m ≥ 0, let

BRm+1
c : {σd ∈ P(Sd) : σd(S

m
d ) = 1} → 2Sc \ {∅}.

map each probability measure σd ∈ P(Sd) with σd(S
m
d ) = 1 into the set of strategies that are

optimal under that measure. We refer to an element of the range of BRm
c as an mth-order best

response set. Write Smc for the range of the mth-order best response map, i.e., the collection of

all mth-order best response sets. Back to Figure 2.1. There, S1a is the set of all non-empty subsets

of Sa and, for each m ≥ 2, Sma = {{U}, {M}, {U,M}}. Note the following properties of Smc :

Properties 6.3

(i) If Qc ∈ Smc , then Qc ⊆ Smc

(ii) If sc ∈ Smc , then there exists some Qc ∈ Smc so that sc ∈ Qc.

Conditions (i)-(ii) say that the sets Smc characterize the set of m-undominated strategies. That is,

the union over the sets in Smc is the set of m-undominated strategies.

In constructing the type structure for Theorem 6.1, we will “match up” subsets of types with

mth-order best response sets. Specifically, for each Qc ∈ Smc , we will have a subset of types T [Qc,m].

We will later show that we can choose the belief maps so that T [Qc,m] is the set of all types tc so

that (i) the set of strategies optimal under marg Sd
βc(tc) is Qc and (ii) tc believes Rm−1

d .

Let Ta = Tb = NN. So, each element of Ta (resp. Tb) is some (n0, n1, n2, . . .), where each nk is a

natural number. Take as an open basis of NN the family of “cones,” i.e.,

{{(n0, n1, n2, . . .) ∈ NN : (n0, . . . , nk) = (o0, . . . , ok)} : k ∈ N and o0, . . . , ok ∈ N}.

With this, each Tc is Polish, but not compact.

It will be useful to index the sets in the range of the 1st-order best response map, i.e., setting

S1c = {Qc,0, . . . , Qc,K}. Then, for each integer k with K > k ≥ 0 set

T [Qc,k, 1] = {(n0, n1, n2, . . .) ∈ NN : n0 = k}

and set

T [Qc,K , 1] = {(n0, n1, n2, . . .) ∈ NN : n0 ≥ K}.

Figure 6.1 illustrates the sets T [{U}, 1] and T [{D}, 1], for the game in Figure 2.1. In the illustra-

tion, each type ta ∈ NN corresponds to a path that contains one point in each row. The set S1a is
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the set of non-empty subsets of Sa. List elements of S1a according to the following order:

{U}, {M}, {U,M}, {D}, {U,D}, {M,D}, {U,M,D}

and note that, in the illustration, the heading of the kth column is the kth set Qa,k in this list. For

example, {D} = Qa,3 is the heading of column 3. So, T [{D}, 1] is the set of all points in n ∈ NN

such that n0 = 3, and corresponds to the set of all paths that select one red dot in each row. Thus,

the 0th row of a type can be seen as “tracking an associated 1st-order best response set.”

Next, for each m ≥ 1, set

T [Qc,k,m+ 1] =

{(n0, n1, n2, . . .) ∈ T [Qc,k,m] : n1 ≥ m+ 1} if Qc,k ∈ Smc
∅ if Qc,k 6∈ Smc .

So, referring to our example, T [{D},m] = ∅, for all m ≥ 2. Figure 6.2 illustrates the sets T [{U}, 2]

and T [{U}, 3]. Note, then, the first row can be seen as “tracking whether a 1st-order best response

set is an mth-order best response set,” for m ≥ 2.

We have the following properties:

Properties 6.4 For each Qc ∈ S1c , the sets T [Qc, 1],T [Qc, 2], . . . satisfy the following:

(i) T [Qc,m+ 1] ⊆ T [Qc,m].

(ii)
⋂
m T [Qc,m] = ∅.
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(iii) T [Qc,m] is clopen in Tc.

(iv) If T [Qc,m] 6= ∅, T [Qc,m] is a topological space homeomorphic to NN.

(v) If T [Qc,m] 6= ∅, T [Qc,m]\T [Qc,m+ 1] is a topological space homeomorphic to NN.

Let P 0
c = Sc × Tc and, for each m ≥ 1, define

Pmc =
⋃
{Qc × T [Qc,m] : Qc ∈ Smc }

Thus, Pmc tracks the mth-order best response sets in the space of strategies-cross-types, by pairing

each set Qc ∈ Smc with the types T [Qc,m]. As such:

Lemma 6.5 For each m ≥ 0, proj Sa
Pma × proj Sb

Pmb = Sma × Smb .

Proof. For m = 0 the claim is immediate. Take m ≥ 1. If sc ∈ proj Sc
Pmc , then there exists

Qc ∈ Smc so that sc ∈ Qc. By Property 6.3(i), sc ∈ Smc . Conversely, fix sc ∈ Smc . Then, by Property

6.3(ii), there exists Qc ∈ Smc so that sc ∈ Qc. It follows that sc ∈ proj Sc
Pmc .

We will construct βc so that, for each m ≥ 0, T [Qc,m + 1] maps onto the set of all probability

measures ψd ∈ P(Sd × Td) with ψd(P
m
d ) = 1 and Qc = BR 1

c(marg Sd
ψd). To be more precise,

extend the mth-order best response maps so that its domain is the space of strategies cross types:

Specifically, for each m ≥ 0 set

BRm+1
c : {ψd ∈ P(Sd × Td) : ψd(P

m
d ) = 1} → 2Sc \ {∅}

so that BRm+1
c (ψd) is the set of all strategies that are optimal under marg Sd

ψd. As such, (BRm+1
c )−1(Qc)

is the set of probability measures ψd so that (i) ψd(P
m
d ) = 1, and (ii) Qc is the set of strategies

optimal under marg Sd
ψd. The following Lemma formalizes the plan set forth at the start of this

paragraph:

Lemma 6.6 There exists a continuous onto mapping βc so that, for each m ≥ 1 and each Qc ∈ S1c ,

(βc)
−1((BRmc )−1(Qc)) = T [Qc,m]. (1)

Lemma 6.6 generates a complete and continuous type structure that satisfies a particular prop-

erty. (Below, we will return to prove the Lemma.) Because the type structure satisfies this property,

it generates two important consequences, formulated by Lemmata 6.7-6.8 below. First, in this type

structure, the set of states at which there is R(m−1)BR coincides with Pma ×Pmb ; as a consequence,

the predictions of R(m−1)BR are the m-undominated strategies. Second, the set of states at which

there is RCBR is empty.

Lemma 6.7 Suppose βa and βb are such that, for each m ≥ 1 and each Qc ∈ S1c , Equation (1)

holds. Then, for each m ≥ 1:
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(i) Rm
a × Rm

b = Pma × Pmb , and

(ii) proj Sa
Rm
a × proj Sb

Rm
b = Sma × Smb .

Proof. Part (ii) follows from part (i) and Lemma 6.5. So, we focus on part (i). The proof is by

induction on m. For m = 0 the claim is immediate. Assume the result holds for m ≥ 1. We will

show it also holds for m+ 1.

Suppose (sc, tc) ∈ Pm+1
c . Then, there exists some Qc ∈ Sm+1

c so that (sc, tc) ∈ Qc ×T [Qc,m+

1]. By Equation (1), Qc = BRm+1
c (βc(tc)). Since sc ∈ Qc, it follows that sc is optimal under

marg Sd
βc(tc). Moreover, since βc(tc) is in the domain of BRm+1

c , it follows from the induction

hypothesis that βc(tc) believes Pmd = Rm
d . Moreover, by the induction hypothesis and Property

6.4(iii), each R1
d, . . . ,R

m
d is Borel. Thus, tc believes each R1

d, . . . ,R
m
d and so (sc, tc) ∈ Rm+1

c .

Conversely, suppose (sc, tc) ∈ Rm+1
c . Then, using the induction hypothesis, βc(tc) believes

Rm
d = Pmd . It follows that sc ∈ BRm+1

c (marg Sd
βc(tc)). Write Qc = BR c

m+1(marg Sd
βc(tc)) and

note that sc ∈ Qc ∈ Sm+1
c . Moreover, tc ∈ (βc)

−1((BRm+1
c )−1(Qc)) and so, by Equation (1),

tc ∈ T [Qc,m+ 1]. That is, (sc, tc) ∈ Qc × T [Qc,m+ 1] ⊆ Pm+1
c , as required.

Lemma 6.8 Suppose βa and βb are such that, for each m ≥ 1 and each Qc ∈ S1c , Equation (1)

holds. Then R∞a × R∞b = ∅.

Proof. For each Qc ⊆ Sc,
⋂
m T [Qc,m] = ∅. Thus,

⋂
m P

m
c = ∅. So, by Lemma 6.7(i), R∞c = ∅.

To place Lemma 6.8 in the context of Section 2, observe that (by Lemma 6.7(i)) T[sc,m] is the

union over all T [Qc,m] with sc ∈ Qc. By construction, for each Qc,
⋂
m T [Qc,m] = ∅. So,⋂

m T[sc,m] = ∅. Now we return to prove Lemma 6.6.

Proof of Lemma 6.6. Consider the collection of sets of types

Tc = {T [Qc,m]\T [Qc,m+ 1] : Qc ∈ S1c and m ≥ 1}

and the collection of sets of probabilities

Pc = {(BRmc )−1(Qc)\(BRm+1
c )−1(Qc) : Qc ∈ S1c and m ≥ 1}.

Note, Tc partitions Tc into pairwise disjoint sets and Pc partitions P(Sd×Td) into pairwise disjoint

sets. (See Lemmata C.1-C.2.) Step 1 shows that we can find a continuous mapping from each

element of Tc to its “matching set” in Pc. Step 2 uses the fact that these collections form a

partition to construct a continuous onto map βc satisfying Equation (1).

Step 1: Fix Qc ∈ S1c and some m ≥ 1. Note, T [Qc,m]\T [Qc,m + 1] 6= ∅ if and only if

(BRmc )−1(Qc)\(BRm+1
c )−1(Qc) 6= ∅. (See Lemma C.6, which makes use of the fact that the

game is nontrivial.) Moreover, by Properties 6.4(iii)-(v), if T [Qc,m]\T [Qc,m + 1] 6= ∅, then

18



T [Qc,m]\T [Qc,m+ 1] is a topological space homeomorphic to NN that is clopen in Tc. Similarly,

(BRmc )−1(Qc)\(BRm+1
c )−1(Qc) is a Polish space. (See Lemma C.4.) So, if T [Qc,m]\T [Qc,m+1] 6=

∅, there is a continuous mapping, viz. β
[Qc,m]
c , from T [Qc,m]\T [Qc,m+1] onto (BRmc )−1(Qc)\(BRm+1

c )−1(Qc).

(See Kechris, 1995, Theorem 7.9 )

Step 2: Take βc to be the union of the maps β
[Qc,m]
c . Note, this is well-defined since Tc partitions

Tc. Using the fact that Pc partitions P(Sd×Td) and each of the maps β
[Qc,m]
c is onto, it follows that

the map βc is onto. Again using the fact that Pc partitions P(Sd × Td), it follows that Equation

(1) is satisfied. Finally, continuity follows from Lemma C.7.

Proof of Theorem 6.2. By Theorem 6.1, there exists a complete type structure

T ∗ = (Sb, Sa, T
∗
a , T

∗
b , β

∗
a, β
∗
b ),

so that T ∗a , T
∗
b are Polish, β∗a, β

∗
b are continuous, and the sets R∗,ma , R∗,mb satisfy conditions (i)-

(ii) of Theorem 6.1. Note, T ∗a and T ∗b are uncountable: Since the game is non-trivial, each Sc is

non-degenerate. As such, any complete type structure has uncountable type sets.

We now construct a new type structure. The type sets are given by T ∗∗a = T ∗∗b = {0, 1}N. Note,

each T ∗∗c is a compact metric space. Observe that, since T ∗c and T ∗∗c are both uncountable Polish

spaces, they each have the cardinality of the continuum (Kechris, 1995, Corollary 6.5). So, by the

Borel isomorphism theorem (see Kechris, 1995, Theorem 15.6), there is a Borel bijection αc : T ∗c →
T ∗∗c . Write id d : Sd → Sd for the identity map. Note that id d × αd : P(Sd × T ∗d ) → P(Sd × T ∗∗d )

is a Borel bijection. (See Lemmata A.1-A.2.) Let β∗∗c = (id d × αd) ◦ β∗c ◦ α−1c . It follows that

T ∗∗ = (Sb, Sa;T
∗∗
a , T ∗∗b ;β∗∗a , β

∗∗
b ) is a compact and complete type structure.

Write R∗∗,mc for the set of strategy-type pairs of c at which, in T ∗∗, there is R(m − 1)BR. By

the construction and induction,

(id c × αc)−1(R∗∗,mc ) = R∗,mc and (id c × αc)(R∗,mc ) = R∗∗,mc .

Thus, the sets R∗∗,ma , R∗∗,mb also satisfy conditions (i)-(ii) of Theorem 6.2.

7 Type Structures and Hierarchies of Beliefs

Proposition 5.5 says that, in a complete, compact, and continuous type structure, the predictions

of RCBR coincide with the IU strategy set. Theorems 6.1-6.2 say that, if either compactness or

continuity is dropped, the conclusion may not hold. In fact, there may be no RCBR predictions.

Section 8 will show that this occurs because the constructed complete type structure does not

induce all hierarchies of beliefs or, even, all hierarchies of beliefs induced by finite type structures.

To get there, we must first specify a relationship between type structures and hierarchies of beliefs.

This is the goal of the current section.
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Fix parameter sets (Xa, Xb). For each player c, set Z1
c = Xc and inductively define Zm+1

c =

Zmc ×P(Zmd ). The set Zmc is the mth-order space of uncertainty for c. So, an mth-order belief

for c will be an element of P(Zmc ). Observe that Zmc (resp. P(Zmc )) is metrizable.

Fix a type structure T = (Xa, Xb;Ta, Tb;βa, βb). To illustrate how T induces hierarchies of

beliefs about (Xa, Xb), we will first inductively define auxiliary maps ρmc : Xc × Td → Zmc so that

ρ1c(xc, td) = xc and ρm+1
c (xc, td) = (ρmc (xc, td), ρ

m
c
◦ βc).

(Recall from page 11: ρm
c

maps each µc ∈ P(Xc × Td) to the image of µc under ρmc .) We use

these maps to define the m-th order belief mapping δmc : Tc → P(Zmc ) as δmc = ρm
c
◦ βc. Type tc’s

mth-order belief is δmc (tc). Define the hierarchies of beliefs mapping δc : Tc →
∏∞
m=1 P(Zmc ) so

that, for each tc, δc(tc) = (δ1c (tc), δ
2
c (tc), . . .). Type tc’s hierarchy of beliefs is δc(tc).

We now make two remarks: First, we point out why the maps above are well-defined. Second,

we illustrate why, conceptually, the mapping δc captures hierarchies of beliefs.

Remark 7.1 Lemma A.1 inductively establishes that each ρmc : Xc × Td → Zmc and ρm
c
◦ βc : Tc →

P(Zmc ) is measurable. So these maps are well-defined. As such, each δmc is well-defined.

Remark 7.2 To better illustrate these definitions, let us show how δ1c is computed. Note that

ρ1
c
◦ βc : Tc → P(Z1

c ), i.e., ρ1
c
◦ βc maps each type to a probability measure on the 1st-order space of

uncertainty for c, viz. Z1
c = Xc. So, for each type tc and each Borel set Ec ⊆ Z1

c = Xc,

((ρ1
c
◦ βc)(tc))(Ec) = (βc(tc))((ρ

1
c)
−1(Ec)) = βc(tc)(Ec × Td).

By setting δ1c (tc) = (ρ1
c
◦βc)(tc), we specify tc’s first order belief; in particular, we have δ1c (tc)(Ec) =

βc(tc))(Ec × Td), as desired.

We will be interested in type structures that induce a rich set of hierarchies of beliefs. With

this in mind, we will think about mapping one type structure to a second type structure, so that

we preserve hierarchies of beliefs.

Definition 7.3 Fix two (Xa, Xb)-based type structures, viz. T = (Xa, Xb;Ta, Tb;βa, βb) and T ∗ =

(Xa, Xb;T
∗
a , T

∗
b ;β∗a, β

∗
b ).

(i) Say that T ∗ is finitely terminal for T if, for each m and each type tc ∈ Tc, there is a type

t∗c ∈ T ∗c with (δ∗,1c (t∗c), . . . , δ
∗,m
c (t∗c)) = (δ1c (tc), . . . , δ

m
c (tc)).

(ii) Say that T ∗ is terminal for T if, for each type tc ∈ Tc, there is a type t∗c ∈ T ∗c with

δ∗c (t
∗
c) = δc(tc).

Definition 7.3 says that the type structure T ∗ is finitely terminal for T if, for each type tc in T
and each m, there is a type t∗c in T ∗ whose hierarchy agrees with tc up to level m. (Note, here, t∗c

can depend both on the tc and m.) More informally, T ∗ is finitely terminal for T if it induces all
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finite-order beliefs associated with types in T . It is terminal for T if it induces all hierarchies of

beliefs associated with types in T .

We will be interested in a type structure T ∗ that is finitely terminal (resp. terminal) for class(es)

of type structures. Definitions 7.4-7.5 below capture two prominent cases.

Definition 7.4 Call an (Xa, Xb)-based type structure T ∗ finitely terminal (resp. terminal) if

it is finitely terminal (resp. terminal) for each (Xa, Xb)-based type structure T .

Definition 7.5 Call an (Xa, Xb)-based type structure T ∗ finitely terminal for all finite struc-

tures (resp. terminal for all finite structures) if it is finitely terminal (resp. terminal) for each

(Xa, Xb)-type structure T = (Xa, Xb;Ta, Tb;βa, βb) with Ta and Tb finite.

Definition 7.4 says that, if T ∗ is finitely terminal (resp. terminal), then it induces all finite-order

beliefs (resp. hierarchies of beliefs) associated with some type structure.9 Definition 7.5 says that,

if T ∗ is finitely terminal for all finite structures (resp. terminal for all finite structures), then it

induces all finite-order beliefs (resp. hierarchies of beliefs) associated with type structures that have

finite type sets. (Finite type structures capture the idea that there is a finite event (in the space of

hierarchies of beliefs) that is commonly believed by the players.)

Note, if a type structure is terminal then it is finitely terminal; but, Proposition 8.3 (to come)

will show that there is a finitely terminal type structure that is not terminal. The universal type

structures constructed in Mertens and Zamir (1985), Brandenburger and Dekel (1993), and Heifetz

and Samet (1998) are each terminal.

8 A Positive Result

This section demonstrates that, if the RCBR predictions differ from IU, then it must be because the

type structure is not terminal. In particular, we will see that, if the RCBR predictions differ from

IU, it is not terminal for all finite type structures—i.e., it does not induce all hierarchies of beliefs

induced by finite type structures. To show this, we will show that, if a type structure is terminal

for all finite type structures, the RCBR predictions coincide with the IU strategy set. Specifically:

Theorem 8.1 Fix an epistemic game (G, T ).

(i) If T is finitely terminal for all finite structures, then proj Sa
Rm
a × proj Sb

Rm
b = Sma × Smb for

each m ≥ 0.

(ii) If T is terminal for all finite structures, then proj Sa
R∞a × proj Sb

R∞b = S∞a × S∞b .

Theorem 8.1 formalizes Result 2.7. It provides a novel epistemic justification for IU. Part (i) says

that, if the type structure induces all finite-order beliefs associated with finite type structures,

9Here we use the phrase “terminal” in the spirit of Böge and Eisele’s (1979) original usage. Some authors reserve
the phrase “terminal” for a type structure that satisfies a stronger embedding property. (See, e.g., Meier, 2006.) No
confusion should result.
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then, for each m, the RmBR predictions are characterized by the (m+ 1)-undominated strategies.

Part (ii) says that, if the type structure induces all hierarchies of beliefs associated with finite type

structures, then the RCBR predictions are characterized by the IU strategies. (See Section 10.D

for an important discussion of the interpretation.)

A terminal type structure is terminal for all finite structures. As a consequence, we have:

Corollary 8.2 Fix an epistemic game (G, T ).

(i) If T is finitely terminal, then proj Sa
Rm
a × proj Sb

Rm
b = Sma × Smb , for each m ≥ 0.

(ii) If T is terminal, then proj Sa
R∞a × proj Sb

R∞b = S∞a × S∞b .

Note, Proposition 5.5(ii) is a special case of Corollary 8.2(ii). (Because the game is finite, a complete,

compact, and continuous type structure is terminal. See Friedenberg 2010.) We will later see that

Proposition 5.5(i) is a special case of 8.1(i). In particular, a complete type structure is finitely

terminal for all finite structures. See Theorem 9.2 to come.

Taken together, Theorems 6.1-8.1 imply that there are complete type structures that are finitely

terminal but not terminal for all finite structures. So, in particular, there are complete structures

that induce all finite-order beliefs but do not induce all hierarchies of beliefs.

Proposition 8.3 Suppose G is such that Sa and Sb are non-degenerate. Then there exists an

(Sb, Sa)-based complete type structure T that is finitely terminal but not terminal for all finite

structures.

Proof. Since Sa and Sb are non-degenerate, there is a non-trivial game G′ with strategy sets

Sa and Sb. (Note, G may or may not be non-trivial itself.) So, by Theorem 6.1, there exists an

(Sb, Sa)-based complete type structure T = (Sb, Sa;Ta, Tb;βa, βb) so that (i) Ta, Tb are Polish and

(ii) R∞a ×R∞b = ∅. Since Ta, Tb are Polish, T is finitely terminal. (See Theorem 3.1 in Friedenberg,

2010.) Since R∞a × R∞b = ∅, T is not terminal for all finite structures. (See Corollary 8.2.)

An implication of Proposition 8.3 is that, for any game G with Sa and Sb are non-degenerate,

there exists an (Sb, Sa)-based complete type structure T that is finitely terminal but not terminal.

Remark 8.4 Proposition 8.3 holds more generally. In particular:

If Xa, Xb are Polish and non-degenerate, there exists an (Xa, Xb)-based complete type

structure that is finitely terminal but not terminal for all finite structures.

This is shown as Proposition D.5 in the Appendix.
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9 Completeness and Finite Terminality

Proposition 5.5(i) stated that, in a complete type structure, the predictions of RmBR coincide with

the (m+ 1)-undominated strategies. This section begins by providing a rationale for that result: A

complete type structure is necessarily finitely terminal for all finite type structures. Theorem 9.2

will show that a complete type structure is finitely terminal for a broader set of type structures.

However, we stop short of showing that a complete type structure is finitely terminal. Instead,

Theorem 9.4 establishes a negative result: A complete type structure need not induce all finite-

order beliefs—in fact, it need not even induce all second order beliefs.

It will be useful to begin with mathematical preliminaries. First, write c for the cardinality of

the continuum; so |[0, 1]| = c. Next, we record some basic facts about probability measures on a

metrizable space Ω. An atom of µ is a Borel set E with µ(E) > 0 and µ(F ) = µ(E) for each

Borel F ⊆ E. Call a probability measure µ ∈ P(Ω) atomic if every Borel set of positive measure

contains an atom. If some countable set has measure one, then µ is atomic. If Ω is Polish, µ is

atomic if and only if there is a countable set of measure one. If µ has countable support (i.e., there

is a countable closed set of measure one), then µ is atomic; but there may also be atomic measures

with uncountable support.

Definition 9.1 Fix a type structure T = (Xa, Xb;Ta, Tb;βa, βb).

(i) Call T countable if Ta and Tb are at most countable.

(ii) Call T atomic if, for each c, each type tc ∈ Tc, and each m, δmc (tc) is atomic.

Note, every type structure with finite type sets is countable. Moreover, if Xa, Xb are at most

countable, then a countable type structure is atomic.10 (See Corollary E.3.) Also note that a type

structure may be atomic even if its beliefs are not atomic—that is, even if it is not the case that

each βc(tc) is atomic.11

9.1 Positive Result

In the spirit of Definition 7.5, an (Xa, Xb)-based type structure T ∗ finitely terminal for all

countable (resp. atomic) structures if it is finitely terminal for each countable (resp. atomic)

(Xa, Xb)-type structure T = (Xa, Xb;Ta, Tb;βa, βb).

Theorem 9.2 Fix a complete (Xa, Xb)-based type structure T = (Xa, Xb;Ta, Tb;βa, βb).

(i) The type structure T is finitely terminal for all countable structures.

10This is not true more generally. For instance, take Xa = Xb = [0, 1], Ta = {ta}, Tb = {tb}, and βa(ta) non-atomic.
Then δ1a(ta) is not atomic.

11For instance, take Xa = Xb = {x}, Ta = {ta}, Tb = [0, 1], and βa(ta) non-atomic. Here, δ1a(ta) is atomic.

23



(ii) If Xa and Xb have cardinality at most c, then the type structure T is finitely terminal for all

atomic structures.12

Corollary 9.3 If Xa and Xb are Polish, then every (Xa, Xb)-based complete type structure is

finitely terminal for all atomic structures.

Proof. By Theorem 9.2(ii) and the fact that every Polish space has cardinality at most c.

These results raise the question: Do Theorem 9.2 and Corollary 9.3 hold if we replace “finitely

terminal” with “terminal”? We do not know and leave it as an open question.

9.2 Negative Result

ZFC (Zermelo-Fraenkel set theory with choice) is the default axiom system in most of the mathe-

matical literature. Our negative is a result about what cannot be proved in ZFC.

To state the result, it will be convenient to introduce the following terminology: Call T ∗ 2-

terminal if, for each (Xa, Xb)-based type structure T = (Xa, Xb;Ta, Tb;βa, βb), each player c, and

each tc ∈ Tc, there is a type t∗c ∈ T ∗c so that δ∗,2c (t∗c) = δ2c (tc). So, informally, T ∗ is 2-terminal if it

induces all second-order beliefs.

Theorem 9.4 Suppose Xa and Xb are non-degenerate and have cardinality at most c. If ZFC

is consistent, then one cannot prove in ZFC that every complete continuous (Xa, Xb)-based type

structure is finitely terminal, or even 2-terminal.

So, in particular, if Xa, Xb are non-degenerate Polish spaces and ZFC is consistent, then one cannot

prove in ZFC that every complete continuous (Xa, Xb)-based type structure is finitely terminal.

Here, we provide a sketch of the proof. First, we show that any atomic type structure is not

2-terminal. We then use that fact to show that one cannot prove in ZFC that every complete

continuous (Xa, Xb)-based type structure is finitely terminal.

Lemma 9.5 If either Xa or Xb is non-degenerate, then no atomic (Xa, Xb)-based type structure

is 2-terminal.

Proof. Suppose Xa is non-degenerate and fix xa 6= ya in Xa. We will construct an (Xa, Xb)-based

type structure T and use that type structure to show that no atomic (Xa, Xb)-based type structure

is 2-terminal.

Take Ta to be the Polish space [0, 1] and take Tb = {tb}. Let βa(ta)({(xa, tb)}) = ta and

βa(ta)({(ya, tb)}) = 1 − ta. Fix xb ∈ Xb and let βb(tb) be the measure µ on Xb × [0, 1] such that

µ({xb} × [u, v]) = (v − u) for each 0 ≤ u ≤ v ≤ 1.

12The Appendix shows a stronger version of this result, where the hypothesis that |Xa|, |Xb| ≤ c is replaced by a
much weaker hypothesis.
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Note, for each ta ∈ Ta, δ1a(ta) is the measure with support {xa, ya} that gives {xa} measure ta.

Moreover, ρ2b(xb, ta) = (xb, δ
1
a(ta)). Therefore,

(ρ2b)
−1({(xb, δ1a(ta))}) = {(xb, ta)}.

It follows that, for each z ∈ Z2
b = Xb × P(Xa), (ρ2b)

−1({z}) has cardinality at most 1 and, so, has

measure 0. With this,

δ2b (tb)({z}) = βb(tb)((ρ
2
b)
−1({z})) = 0.

Hence δ2b (tb) is not atomic.

Fix an (Xa, Xb)-based atomic type structure T ∗. Observe that, for each t∗b ∈ T ∗b , δ∗,2b (t∗b) is

atomic. So δ∗,2b (t∗b) 6= δ2b (tb). Hence T ∗ is not 2-terminal for T , and hence not 2-terminal.

In light of Lemma 9.5, it suffices to show the following: In ZFC, one cannot rule out the

possibility that there is a complete atomic type structure. That is, in ZFC, one cannot prove that

no complete type structure is atomic. To show this, we will make use of the fact that the following

set-theoretic property is unprovable in ZFC.

Definition 9.6 Say that c is atomlessly measurable if the Lebesgue measure on [0, 1] can be

extended to a probability measure on ([0, 1], 2[0,1]).

As explained in Fremlin (2008), if c is atomlessly measurable then it is very large in the sense that

there are many weakly inaccessible cardinals below c.

Lemma 9.7 (Fremlin 2008)

(i) If ZFC is consistent, then one cannot prove in ZFC that c is atomlessly measurable.

(ii) If c is not atomlessly measurable and X has cardinality c, then every probability measure on

(X, 2X) has a countable set of measure one.

An implication of part (ii) is the following (shown in the appendix):

Lemma 9.8 Suppose Xa, Xb are discrete topological spaces of cardinality ≤ c. If c is not atomlessly

measurable, then there is a complete continuous atomic (Xa, Xb)-based type structure.

Proof of Theorem 9.4. Assume ZFC is consistent. Let R be the statement that every complete

continuous type structure is 2-terminal, and let S be the statement that c is atomlessly measurable.

We wish to show that R is not provable in ZFC. By the deduction theorem in logic, if R is provable

in ZFC and the implication R⇒ S is provable in ZFC, then S is provable in ZFC. But by Lemma

9.7(i), S is not provable in ZFC. So it suffices show that R⇒ S is provable in ZFC.

We now work in ZFC and prove R ⇒ S. Suppose R holds. Let Xa, Xb be discrete topological

spaces of cardinality c. Suppose T is a complete continuous (Xa, Xb)-based type structure. By R,
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T is 2-terminal. Then by Lemma 9.5, T is not atomic. Hence there is no complete continuous

atomic (Xa, Xb)-based type structure. Therefore, by Lemma 9.8, S holds.

Theorem 9.4 raises the question: Can one prove, in ZFC, that there exists a complete continuous

type structure that is not finitely terminal? We don’t know the answer and leave it as an open

question.

10 Discussion

10.A Justifying IU From the Perspective of the Players We pointed out that Results

2.1-2.2 draw a connection between the RCBR predictions and IU. We argued that the connection

was best understood from the perspective of an analyst that does not know the players’ type

structure and, so, seeks predictions across all type structures. In this paper, we follow a tradition

in the literature and seek to justify RCBR from the perspective of the players’ themselves.

We view our study of IU as a baseline—a first step in providing foundations for other dom-

inance concepts. Two notable concepts that have received substantial attention are foundations

for extensive-form rationalizability (due to Pearce 1984) and iterated admissibility (i.e., iterated

deletion of weakly dominated strategies). The known foundations for these concepts rely on suit-

ably “rich” type structures. (See Battigalli and Siniscalchi, 2002, Brandenburger, Friedenberg and

Keisler, 2008, Lee, 2016.) In particular, an analyst that applies the given epistemic conditions across

all type structures may well have new predictions (i.e., predictions inconsistent with extensive-form

rationalizability or iterated admissibility). (See Battigalli and Siniscalchi, 2002, Battigalli and

Friedenberg, 2012b, and Brandenburger, Friedenberg and Keisler, 2008.) In fact, recent work by

Catonini and De Vito (2018) uses Theorem 6.1 to prove a negative result on weak dominance.

Moreover, in the spirit of our Theorem 8.1, Catonini and De Vito (2018)-Catonini and De Vito

(2019) also prove positive results by studying “richness” conditions associated with terminality.

It is worth noting that continuity plays an important role in the literature on weak dominance.

In particular, compare the output of Theorem 10.1 in Brandenburger, Friedenberg and Keisler

(2008) versus the output of Theorems 3.2-3.4 in Keisler and Lee (2011). There is a striking dif-

ference: In the former case, there is no prediction whereas in the latter case the output is the set

of strategies that survive iterated weak dominance (i.e., maximal simultaneous deletion of weakly

dominated strategies). Yet, the input is remarkably similar, differing only based on a complete

and continuous type structure versus a complete and discontinuous type structure. This raises the

question: How do these type structures differ in terms of players’ reasoning (i.e., hierarchies of

beliefs)? This is an open question. The hope is that the ideas here are a step toward answering

this question.

10.B Revisiting Epistemic Justifications for IU In Section 2.4, we pointed out that an

epistemic justification for IU requires a “richness” requirement—i.e., that the players consider
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enough beliefs possible. We followed the literature and focused on the case where the richness

condition is associated with either a universal type structure or a complete type structure.

One might ask whether there is not an alternate route given by Result 2.2. That result tells us

that, for a given game and IU set thereof, we can tailor the type structure to be “rich enough,” and,

thereby, get the IU strategies as an output of RCBR. Yet, this does not give a satisfactory answer

to the question at hand. To understand why, note that to get the type structure (as constructed

by Brandenburger and Dekel, 1987), we begin with a particular game and use properties of the IU

set to construct the type structure in question. In particular, the constructed type structure will

typically be different for two games with the same strategy set but different payoff functions. In

fact, it can be different for two games, with the same IU set, but whose payoff functions differ on

the IU set. These differences in construction rely on differences in how the IU concept is applied

to different games. Thus, if we took this richness condition to be the type structure constructed

in Result 2.2, we would be justifying IU by making reference to IU itself. More informally, we

would be rigging the assumptions to deliver the desired conclusions.13 For this reason, we follow

the literature and do not take this route.

10.C Topologies and Substantive Assumptions about Reasoning This paper highlights

the fact that topological assumptions on the type structure may implicitly impose important sub-

stantive assumptions on players’ reasoning. This message is reminiscent of—but distinct from—the

goal of the so-called “topology-free approach to type structures.” (See, e.g., Heifetz and Samet,

1998, 1999 and subsequent work.) To better understand the message here, it will be useful to

contrast it with that literature.

That literature begins with a primitive set of uncertainty, e.g., Xa and Xb, that may or may not

be a topological space. It then explicitly imposes a sigma-algebra on the set of beliefs on this set,

e.g., on P(Xa) and P(Xb). The sigma-algebra on P(Xb) reflects the second-order events that Ann

can reason about; for instance, Ann can reason about events of the form “Bob assigns probability at

least p to Eb ⊆ Xb.” In the specific case where Xb is Polish, the sigma-algebra (on P(Xb)) coincides

with the Borel sigma-algebra.14 This, in turn, has implications for constructing type structures.

For instance, absent topological assumptions on (Xa, Xb), there may be a hierarchy of beliefs that

cannot be induced by any type structure. (See, Heifetz and Samet, 1999.) However, even in that

case, there is a type structure that is terminal (i.e., that can induce any hierarchy of beliefs that is

induced in some type structure). (See Heifetz and Samet, 1998.)

Here, we are primarily concerned with primitive sets of uncertainty that are topological—e.g.,

Xa, Xb are non-degenerate finite sets endowed with the discrete topology. Instead of using an

explicit model of (Xa, Xb)-based hierarchies of beliefs, we begin with the type structure model.

Standard measurability requirements alone are sufficient for type structures to induce hierarchies

13Notice, if we allowed ourselves to justify a solution concept in this way, we would decide (based on intuition)
which behavior is “desirable” for a given game, and tailor an epistemic condition for that game so that by definition
it delivers the “desirable” behavior. There would be no discipline to the epistemic programme.

14Provided P(Xb) is endowed with the weak topology.
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of beliefs about (Xa, Xb). It is not clear that the presence or absence of topological assumptions on

the type structure should have meaning. However, the results here show that they do—at least, in

conjunction with completeness: Complete type structures need not induce all hierarchies of beliefs;

however, they do, if the type structure is compact and continuous. Moreover, within ZFC, it cannot

be proven that every complete type structure induce all finite-order beliefs; however, they do, if we

focus on type structures that have analytic type sets. (See Friedenberg, 2010.)

To sum up, this paper focuses on the type structure model itself and shows that adding topolog-

ical assumptions to that model implicitly impose substantive assumptions about players’ reasoning.

So, in particular, two seemingly “equivalent” models may, in fact, induce different hierarchies of

beliefs. The results serve as a warning to the analyst who uses the type structure model, in that

seemingly irrelevant modeling assumptions may have important implications. With this in mind,

the message here is more closely related to that in Brandenburger and Keisler (2006), Friedenberg

(2010), Friedenberg and Meier (2010), and Kets (2010).

10.D Terminal for all Finite Structures and Foundations for IU Theorem 8.1 provides

an epistemic justification for IU based on the concept of “terminal for all finite structures.” The

universal type structure is a special case of a type structure that is terminal for all finite structures.

Thus, Result 2.3 (Tan and Werlang, 1988) is a special case of Theorem 8.1.

Does there exist an (Xa, Xb)-based type structure that is terminal for all finite structures but

which is not the universal type structure? If the answer were “no,” then the epistemic justification

provided by Theorem 8.1 would coincide with those provided by Result 2.3 (Tan and Werlang, 1988).

Corollary F.3 shows this is not the case: For any (finite) game G, there exists an associated type

structure that is terminal for all finite structures but not terminal for all countable structures—a

fortiori not terminal.

The proof constructs a type structure that is terminal for all finite structures. The construction

is analogous to constructions in Heifetz and Samet 1998 and Yildiz 2015, amongst others. It rules

out all hierarchies of beliefs that are not contained in a finite-belief closed subset of the universal

type structure. So, in particular, it rules out hierarchies of beliefs that are associated with the

so-called staircase construction—i.e., where, for each m ≥ 1, there is some event that is mth-order

belief but not (m+ 1)th-order belief.15 Thus, in a sense, each type in the constructed structure has

a hierarchy of belief that is “determined” by some finite-order belief.

10.E Relationship to Dufwenberg and Stegeman (2002) The negative result is reminis-

cent of—but distinct from—a negative result in Dufwenberg and Stegeman (2002). They provide

an example of an infinite game, with a compact metric strategy space and a discontinuous payoff

function. That discontinuity leads to the m-undominated strategy sets, viz. Smc , to be half-closed

intervals and the intersection of those sets to be empty. Here, we begin with a finite strategy set,

so there are no discontinuities in the payoff functions. Thus, there is an iteratively undominated

15See Geanakoplos and Polemarchakis, 1982, Rubinstein, 1989, Aumann and Brandenburger, 1995, and Kajii and
Morris, 1997 for prominent examples of such type structures.
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strategy s∗c . Theorem (ii) looks at a given complete type structure with compact metric type spaces

and discontinuous belief functions and asks whether s∗c is consistent with RCBR. The answer is no.

The key is that, within that type structure, the sets T[s∗c ,m]—i.e., the set of types tc so that (s∗c , tc)

is consistent with R(m − 1)BR—have empty intersection. This can only occur because those sets

are not closed.

Appendix A Mathematical Preliminaries

Lemma A.1 Let Ω and Φ be metrizable and f : Ω→ Φ be measurable. Then f is measurable.

Proof. Note, an open sub-basis for P(Φ) is given by the family of sets of the form

U(ν,G, ε) = {ν ∈ P(Φ) : ν(G) > ν(G)− ε},

for ν ∈ P(Ω), G open in Φ, and ε > 0. (See Billingsley, 1968, page 236.) It suffices to show that,

for each set U = U(ν,G, ε) in this open sub-basis, f−1(U) is Borel in P(Ω).

Fix U = U(ν,G, ε). Let r = ν(G)−ε and note that f−1(G) is Borel in Ω. With this, µ ∈ f−1(U)

if and only if f(µ) ∈ U if and only if f(µ)(G) > r if and only if µ(f−1(G)) > r. So, by Lemma

15.16 in Aliprantis and Border (2007), f−1(U) is Borel in P(Ω).

Lemma A.2 Let Ω and Φ be Polish and f : Ω → Φ be measurable and bijective. Then f is

bijective.

Proof. The follows from the proof of Theorem 14.14 (2)-(3) in Aliprantis and Border (2007).

Appendix B Proofs for Section 5

Lemma 5.4 and Proposition 5.5 are well-known in environments with stronger topological structure.

We show here that the stronger topological structure is not important.

Remark B.1 A strategy sc ∈ Yc is undominated given Ya × Yb if and only if there exists some

σd ∈ P(Sd) with (i) πc(sc, σd) ≥ πc(rc, σd), for all rc ∈ Yc, and (ii) σd(Yd) = 1.

Proof of Lemma 5.4. Part (ii) is immediate from part (i). We show part (i) by induction on m.

m = 1 : If (sc, tc) ∈ R1
c then sc is optimal under marg Sd

βc(tc). So, by Remark B.1, sc is undom-

inated.

m ≥ 2 : Assume the result for m. If (sc, tc) ∈ Rm+1
c then sc is optimal under marg Sd

βc(tc)

and βc(R
m
d ) = 1. It follows that marg Sd

βc(tc)(proj Sd
Rm
d ) = 1. So, by the induction hypothesis,

marg Sd
βc(tc)(S

m
d ) = 1. Now the claim follows from Remark B.1.
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Proof of Proposition 5.5. Part (i) follows from Theorem 8.1(i) and Theorem 9.2 (i). Part (ii)

follows from Corollary 8.2(ii) and Friedenberg (2010).

Appendix C Proofs for Section 6

The following lemmas were used in the proof of Lemma 6.6 , which was in turn used in the proof

of Theorem 6.2. We follow the notation introduced in Section 6.

Lemma C.1 The collection

{T [Qc,m]\T [Qc,m+ 1] : Qc ∈ S1c and m ≥ 1}

partitions Tc.

Proof. Clearly, elements of the collection are pairwise disjoint. It suffices to show that each

tc is contained in T [Qc,m]\T [Qc,m + 1], for some Qc ∈ S1c and some m ≥ 1. Certainly, each

tc ∈ T [Qc, 1], for some Qc. Moreover, using the fact that
⋂
m T [Qc,m] = ∅ (Property 6.4(ii)),

it follows that there is some m∗ so that tc 6∈ T [Qc,m
∗] and, so, there exists some m so that

tc ∈ T [Qc,m]\T [Qc,m+ 1].

Lemma C.2 The collection of sets of probabilities

{(BRmc )−1(Qc)\(BRm+1
c )−1(Qc) : Qc ∈ S1c and m ≥ 1}.

partitions P(Sd × Td).

Proof. Clearly, elements of the collection are pairwise disjoint. It suffices to show that each ψd is

contained in (BRmc )−1(Qc)\(BRm+1
c )−1(Qc) for some Qc ∈ S1c and some m ≥ 1. To show this, note

that each ψd ∈ (BR1
c)
−1(Qc) for some Qc. Moreover, using Property 6.4(ii), it can be seen that⋂

m P
m
d = ∅. So, no ψd can believe each Pmd , i.e., there must be somem∗ so that ψd 6∈ (BRm∗c )−1(Qc).

So, for each ψd, there exists some m with ψd contained in (BRmc )−1(Qc)\(BRm+1
c )−1(Qc).

Lemma C.3 Fix some Qc ∈ S1c and some m ≥ 1. The set (BRmc )−1(Qc) is closed.

Proof. Note,

(BRmc )−1(Qc) = {ψd : BR1
c(ψd) = Qc} ∩ {ψd : ψd(P

m−1
c ) = 1}.

A standard application of the Portmanteau Theorem (Kechris, 1995, Theorem 17.20(i)-(ii)) gives

that the set {ψd : BR1
c(ψd) = Qc} is closed. It follows from Property 6.4(iii) that Pm−1c is

clopen. So, the Portmanteau Theorem (Kechris, 1995, Theorem 17.20(i)-(v)) gives that the set

{ψd : ψd(P
m−1
c ) = 1} is closed. This establishes the result.

Lemma C.4 Fix Qc ∈ S1c and m ≥ 1. The set (BRmc )−1(Qc)\(BRm+1
c )−1(Qc) is a Polish space.
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Proof. It suffices to show that (BRmc )−1(Qc)\(BRm+1
c )−1(Qc) is a Gδ set, i.e., a countable inter-

section of open sets. If so, then the claim follows from Kechris (1995, Theorem 3.11).

Note,

(BRmc )−1(Qc)\(BRm+1
c )−1(Qc) = (BRmc )−1(Qc) ∩ [P(Sd × Td)\{ψd : ψd(P

m
c ) = 1}].

By Lemma C.3 and Proposition 3.7 in Kechris (1995), (BRmc )−1(Qc) is a Gδ set. The Portmanteau

Theorem (Kechris, 1995, Theorem 17.20(i)-(v)) gives that the set {ψd : ψd(P
m
c ) = 1} is closed,

i.e., P(Sd × Td)\{ψd : ψd(P
m
c ) = 1} is open. So, (BRmc )−1(Qc)\(BRm+1

c )−1(Qc) is a countable

intersection of open sets, as required.

Lemma C.5 For each m ≥ 0 and each sc ∈ Smc , there exists a type tc so that (sc, tc) ∈ Pmc \Pm+1
c .

Proof. Throughout, fix sc ∈ Smc . We break the proof into two cases.

m = 0 : Since the game is non-trivial, there exists some σd so that sc is not optimal under σd,

i.e., sc /∈ BR 1
c(σd). For any tc ∈ T [BR 1

c(σd), 1], (sc, tc) ∈ P 0
c \P 1

c .

m ≥ 1 : Using Property 6.3, there exists some Qc ∈ Smc so that sc ∈ Qc. It follows from the

construction that there is some tc ∈ T [Qc,m]\T [Qc,m+ 1]. So, (sc, tc) ∈ Pmc \Pm+1
c .

Lemma C.6 For each Qc ∈ S1c and m, T [Qc,m]\T [Qc,m+1] is nonempty if and only if (BRmc )−1(Qc)\(BRm+1
c )−1(Qc)

is nonempty.

Proof. Note, by construction, T [Qc,m]\T [Qc,m + 1] is nonempty if and only if T [Qc,m] is

nonempty or, equivalently, if and only if Qc ∈ Smc . So, it suffices to show that Qc ∈ Smc if and only

if (BRmc )−1(Qc)\(BRm+1
c )−1(Qc) is nonempty.

First, suppose that Qc ∈ Smc . Then, there exists some σd ∈ P(Sd) so that BR 1
c(σd) = Qc and

σd(S
m−1
d ) = 1. We will show that we can find some ψd with BRmc (ψd) = Qc but ψd(P

m
d ) 6= 1. This

will establish the result.

Note, by Lemma C.5, there exists a mapping g : Sd → Td so that, for each sd ∈ Smd , g(sd) ∈
Pm−1d \Pmd . Construct ψd so that ψd({sd, g(sd)}) = σd({sd}), for all sd. Then marg Sd

ψd = σd,

ψd(P
m−1
d ) = 1, and ψd(P

m
d ) 6= 1, as required.

Now suppose that ψd ∈ (BRmc )−1(Qc)\(BRm+1
c )−1(Qc). Then, BR 1

c(marg Sd
ψd) = Qc and

ψd(Q
m−1
d ) = 1. Using Lemma 6.5, marg Sd

ψd(S
m−1
d ) = 1. This establishes that Qc ∈ Smc .

Lemma C.7 Fix Polish spaces Ω and Φ. Let {Ω1,Ω2, . . .} be a partition of Ω and {Φ1,Φ2, . . .} be

a partition of Φ so that each Ωn and Φn is clopen. Suppose, for each n, there is a continuous map

fn : Ωn → Φn. Let f : Ω→ Φ be such that f(ω) = fn(ω) if ω ∈ Ωn. Then, f is continuous.

Proof. Since Ω is Polish, it suffices to show that, if ωk converges to ω in Ω, then f(ωk) converges

to f(ω) in Φ. To show this, note that there exists some n so that so that ω ∈ Ωn and f(ω) ∈ Φn.

Since Ωn is clopen, ωk ∈ Ωn, for k large. So, by construction, f(ωk) ∈ Φn for k sufficiently large.

Using the fact that f is continuous on Ωn, it follows that f(ωk) converges to f(ω), as required.
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Appendix D Proofs for Section 8

This Appendix first proves Theorem 8.1 and then turns to prove Remark 8.4.

D.1 Proof of Theorem 8.1.

Let us give the idea of the proof. We begin with an argument from Brandenburger and Dekel (1987):

There is an epistemic game (G, T ) with a finite type structure T so that the RCBR prediction is

the set of IU strategies.16 (See Lemma D.1.) The key is that the RmBR set is preserved when going

from T to any type structure T ∗ that is finitely terminal for T . (See Lemma D.2.) Taken together,

this implies that, if a type structure is finitely terminal (resp. terminal) for all finite structures,

then the RmBR (resp. RCBR) prediction contains the IU strategy set. (See Lemma D.4.)

Lemma D.1 There exists an (Sb, Sa)-based type structure T with |Ta| ≤ |Sa| and |Tb| ≤ |Sb| so

that

(i) For each m, proj Sa
Rm
a × proj Sb

Rm
b = Sma × Smb .

(ii) proj Sa
R∞a × proj Sb

R∞b = S∞a × S∞b .

To prove Lemma D.1, it will be useful to introduce some notation. Because the game is finite,

we can find an M <∞ so that SMa ×SMb = SM−1a ×SM−1b = S∞a ×S∞b . Fix one such M . For each

sc ∈ S1
c , let

m(sc) =

m if sc ∈ Smc \Sm+1
c

M if sc ∈ S∞c .

Now construct a mapping pc : S1
c → P(Sd) so that, for each sc ∈ S1

c , (i) sc is optimal under

pc(sc), and (ii) pc(sc) assigns probability 1 to S
m(sc)−1
d . (See Remark B.1.) Note, two features

of this construction. First, if sc ∈ S2
c , pc(sc)(S

1
d) = 1. Second, if sc ∈ S∞c , then pc(sc)(S

∞
d ) =

pc(sc)(S
M−1
d ) = 1.

Proof of Lemma D.1. Construct a type structure T as follows: Take each Tc = S1
c . For each

sc ∈ Tc = S1
c , let βc(sc) ∈ P(Sd × S1

d) so that (i) for each sd ∈ S1
d , βc(sc)(sd, sd) = pc(sc)(sd), and

(ii) for each sd 6∈ S1
d , βc(sc)({sd} × S1

d) = pc(sc)(sd).

It suffices to show the following:

(i) If sc ∈ Smc , then (sc, sc) ∈ Rmc .

(ii) If (sc, tc) ∈ Rmc , then sc ∈ Smc .

16The result of Brandenburger and Dekel (1987) pertains to “common knowledge of rationality” and not to RCBR,
as stated here. The proof of Lemma D.1 follows the proof of Theorem 10.1(ii) in Brandenburger and Friedenberg
(2008).
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The proof is by induction on m.

m = 1: Part (i) is immediate. For Part (ii), fix (sc, tc) ∈ R1
c . By construction, sc is optimal under

marg Sd
βc(tc) = pc(tc). So sc ∈ S1

c .

m ≥ 2: To show Part (i), fix sc ∈ Sm+1
c . By the induction hypothesis, (sc, sc) ∈ Rmc . So, it

suffices to show that sc ∈ Tc believes Rm−1d . Toward that end note that pc(sc)(S
m−1
d ) = 1. So,

by construction, βc(sc)(sd, td) > 0 if and only if sd = td. Then, by the induction hypothesis,

βc(sc)(R
m−1
d ) = 1.

To show Part (ii), fix (sc, tc) ∈ Rm+1
c . By construction, sc is optimal under marg Sd

βc(tc) =

pc(tc). Moreover, since βc(tc)(R
m
d ) = 1, the induction hypothesis gives that pc(tc)(S

m
d ) = 1. Thus,

pc(tc)(S
n
d ) = 1 for each n = 0, . . . ,m. From this, sc ∈ Sm+1

c .

Lemma D.2 Fix (Sb, Sa)-based type structures

T = (Sb, Sa;Ta, Tb;βa, βb) and T ∗ = (Sb, Sa;T
∗
a , T

∗
b ;β∗a, β

∗
b ),

with Ta, Tb are finite. If δmc (tc) = δ∗,mc (t∗c) and (sc, tc) ∈ Rmc , then (sc, t
∗
c) ∈ R

∗,m
c .

In the proof of Lemma D.2, we will make use of the following:

Remark D.3 Types induce so-called coherent hierarchies of beliefs. In particular, for each tc ∈ Tc
and each m ≥ n ≥ 1, marg Zn

c
δmc (tc) = δnc (tc).

Proof of Lemma D.2. It suffices to show the following:

(i) If δmc (tc) = δ∗,mc (t∗c), then (sc, tc) ∈ Rmc only if (sc, t
∗
c) ∈ R

∗,m
c .

(ii) (ρ∗,m+1
d )−1(ρm+1

d (Rm
c )) ⊆ R∗,mc .

The proof is by induction on m.

m = 1 : Begin with part (i). Suppose δ1c (tc) = δ∗,1c (t∗c). Note, δ1c (tc) = marg Sd
βc(tc) and δ∗,1c (t∗c) =

marg Sd
β∗c (t∗c). So, (sc, tc) ∈ R1

c if and only if (sc, t
∗
c) ∈ R∗,1c .

For part (ii), fix (sc, t
∗
c) ∈ (ρ∗,2d )−1(ρ2d(R

1
c)). Then, there exists some tc such that (sc, tc) ∈ R1

c

and ρ∗,2d (sc, t
∗
c) = ρ2d(sc, tc). So, δ∗,1c (t∗c) = δ1c (tc). Then, by part (i) (established for m = 1),

(sc, t
∗
c) ∈ R∗,1c .

m ≥ 2 : Assume the result holds for m and we will show that it also holds for m+ 1.

To prove part (i), suppose δm+1
c (tc) = δ∗,m+1

c (t∗c) and (sc, tc) ∈ Rm+1
c . By Remark D.3, δmc (tc) =

δ∗,mc (t∗c). So, by part (i) of the induction hypothesis, (sc, t
∗
c) ∈ R∗,mc . As such, it suffices to show

that t∗c believes R∗,md .
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Since (sc, tc) ∈ Rm+1
c , βc(tc)(R

m
d ) = 1. Note, Rm

d ⊆ Sd×Td is finite and, so, ρm+1
c (Rm

d ) is Borel.

As such,

δm+1
c (tc)(ρ

m+1
c (Rm

d )) = βc(tc)((ρ
m+1
c )−1(ρm+1

c (Rm
d ))) ≥ βc(tc)(Rm

d ) = 1.

Using the fact that δ∗,m+1
c (t∗c) = δm+1

c (tc),

δ∗,m+1
c (t∗c)(ρ

m+1
c (Rm

d )) = 1.

So,

β∗c (t∗c)((ρ
∗,m+1
c )−1(ρm+1

c (Rm
d ))) = 1.

By part (ii) of the induction hypothesis, (ρ∗,m+1
c )−1(ρm+1

c (Rm
d )) ⊆ R∗,md , so that β∗c (t∗c)(R

∗,m
d ) = 1,

as desired.

To prove part (ii), fix (sc, t
∗
c) ∈ (ρ∗,m+2

d )−1(ρm+2
d (Rm+1

c )). There exists some tc ∈ Tc so that

(sc, tc) ∈ Rm+1
c and ρ∗,m+2

d (sc, t
∗
c) = ρm+2

d (sc, tc). So, δ∗,m+1
c (t∗c) = δm+1

c (tc). By part (i) established

for m+ 1, (sc, t
∗
c) ∈ R∗,m+1

c .

Lemma D.4 Fix an epistemic game (G, T ∗), where T ∗ is finitely terminal for all finite structures.

(i) For each m, Sma × Smb ⊆ proj Sa
R∗,ma × proj Sb

R∗,mb .

(ii) If T ∗ is terminal for all finite structures, then S∞a × S∞b ⊆ proj Sa
R∗,∞a × proj Sb

R∗,∞b .

Proof. Suppose T ∗ = (Sb, Sa;T
∗
a , T

∗
b , β

∗
a, β
∗
b ) is finitely terminal for all finite type structures.

Observe, by Lemma D.1, there is a type structure T = (Sb, Sa;Ta, Tb, βa, βb) with finite type spaces

so that

• For each m, proj Sa
Rm
a × proj Sb

Rm
b = Sma × Smb .

• proj Sa
R∞a × proj Sb

R∞b = S∞a × S∞b .

Part (i): Fix sc ∈ Smc . There exists some tc ∈ Tc so that (sc, tc) ∈ Rm
c . Since Ta and Tb are finite

and T ∗ is finitely terminal for all finite structures, there is some t∗c ∈ T ∗c with δ∗,mc (t∗c) = δmc (tc).

By Lemma D.2, (sc, t
∗
c) ∈ R∗,mc .

Part (ii): Suppose T ∗ is terminal for all finite structures. Fix sc ∈ S∞c . There exists some tc ∈ Tc
so that (sc, tc) ∈ R∞c . Since Ta and Tb are finite and T ∗ is terminal for all finite structures, then

there exists t∗c ∈ T ∗c with δ∗c (t
∗
c) = δc(tc). By Lemma D.2, (sc, t

∗
c) ∈ R∗,∞c .

Proof of Theorem 8.1. Immediate from Lemmas 5.4 and D.4.
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D.2 Complete and Not Finitely Terminal

We now turn to prove the claim in Remark 8.4:

Proposition D.5 Suppose Xa and Xb are Polish and non-degenerate. Then there exists an (Xa, Xb)-

based Polish complete type structure T that is finitely terminal but not terminal for all finite struc-

tures.

Proof. We begin by constructing a game G: Let Sa = Xb and Sb = Xa. Since each Xd is

non-degenerate, there are distinct strategies s′c, s
′′
c ∈ Sc = Xd. Construct πc as follows:

πc(sc, sd) =


1 if (sc, sd) ∈ {(s′c, s′′d), (s′′c , s′d)}

2 if (sc, sd) ∈ ({s′c, s′′c} × Sd)\{(s′c, s′′d), (s′′c , s′d)}

0 otherwise.

Note, for each c and each m ≥ 1, Smc = {s′c, s′′c} and Smc = {{s′c}, {s′′c}, {s′c, s′′c}}.
Since, for m ≥ 1, the sets Smc and Smc are each finite, there exists a a Polish and complete

type structure T = (Sb, Sa;Tb, Tb;βa, βb) so that, in the epistemic game (G, T ), R∞a × R∞b = ∅.
(This amounts to repeating the proof of Theorem 6.1 line-by-line.) By Theorem 3.1 in Friedenberg

(2010), T is finitely terminal. It remains to show that T is not terminal for all finite structures.

To do so, we show: If (G, T ∗) is an epistemic game where T ∗ is terminal for all finite struc-

tures, then R∗,∞a × R∗,∞b 6= ∅. For that, we note that there exists an epistemic game (G, T̂ ) =

(Sb, Sa; T̂b, T̂b; β̂a, β̂b) with |T̂a| = |S1
a| = 2 and |T̂b| = |S1

b | = 2 so that R̂∞a × R̂∞b = S∞a × S∞b .

(Repeat the proof of Lemma D.1 which takes each Tc = S1
c .) Then the proof of Lemma D.4 applies

and we obtain that S∞a × S∞b ⊆ R∗,∞a × R∗,∞b .

Appendix E Proofs for Section 9

We divide this appendix into three parts. First, we record a mathematical fact that will be useful.

Second, we show the positive result mentioned in the main text; in fact, we generalize the result.

Third, we complete the proof of the negative result.

E.1 Preliminary Results

We begin with preliminary results that will be of use throughout this Appendix.

Lemma E.1 If βc(tc) has a countable set of measure one then, for each m, δmc (tc) is atomic.

Proof. Let tc ∈ Tc so that there is a countable set E ⊆ Xc × Td with βc(tc)(E) = 1. Then, the

image ρmc (E) is countable and E ⊆ (ρmc )−1(ρmc (E)). So,

δmc (tc)(ρ
m
c (E)) = βc(tc)((ρ

m
c )−1(ρmc (E))) ≥ βc(tc)(E) = 1.
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As such, δmc (tc) is atomic.

Corollary E.2 Let T be a type structure such that, for each c and each tc, βc(tc) has a countable

set of measure one. Then T is atomic.

Corollary E.3 If Xa, Xb are at most countable, then every countable (Xa, Xb)-based type structure

T is atomic.

We will need the following concept:

Definition E.4 Fix two (Xa, Xb)-based type structures, viz.

T = (Xa, Xb;Ta, Tb;βa, βb) and T ∗ = (Xa, Xb;T
∗
a , T

∗
b ;β∗a, β

∗
b ).

Say (τa, τb) is a type morphism from T to T ∗ if each τc : Tc → T ∗c is a measurable map with

(id c × τd) ◦ βc = β∗c × τc,

where id c × τd : Xc × Td → Xc × T ∗d satisfies (id c × τd)(xc, td) = (xc, τd(td)).

Lemma E.5 Fix two (Xa, Xb)-based type structures, viz. T = (Xa, Xb;Ta, Tb;βa, βb) and T ∗ =

(Xa, Xb;T
∗
a , T

∗
b ;β∗a, β

∗
b ). If (τa, τb) is a type morphism from T to T ∗, then δc(tc) = δ∗c (τ(tc)) for

each tc ∈ Tc.

Lemma E.5 is standard (see, e.g., Heifetz and Samet, 1998, Proposition 5.1) and so the proof is

omitted.17

E.2 Positive Result

Lemma E.6 Fix (Xa, Xb)-based type structures T and T ∗. If δmd (td) = δ∗,md (t∗d) then, for each

xc ∈ Xc, ρ
m+1
c (xc, td) = ρm+1

c (xc, t
∗
d).

Proof. Let δmd (td) = δ∗,md (t∗d) and note, by Remark D.3, (δ1c (tc), . . . , δ
m
c (tc)) = (δ∗,1c (t∗c), . . . , δ

∗,m
c (t∗c)).

Now observe that

ρm+1
c (xc, td) = (ρmc (xc, td), δ

m
d (td))

= (xc, δ
1
d(td), . . . , δ

m
d (td))

= (xc, δ
∗,1
d (t∗d), . . . , δ

∗,m
d (t∗d)) = ρ∗,(m+1)

c (xc, t
∗
d),

as required.

17Heifetz and Samet (1998) define hierarchies of beliefs somewhat differently than here. That said, their proof can
be replicated in this formalism.
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In the proof below, we will apply Lemma E.6 both to the case where T and T ∗ are distinct type

structures and to the case where they are the same type structure.

Proof of Theorem 9.2(i). Fix (Xa, Xb)-based type structures T and T ∗, where T is countable

and T ∗ is complete. We will show that, for each tc ∈ Tc, there exists t∗c ∈ T ∗c so that δ∗,mc (t∗c) =

δmc (tc). Then, by Remark D.3, (δ∗,1c (t∗c), . . . , δ
∗,m
c (t∗c)) = (δ1c (tc), . . . , δ

m
c (tc)), as required. The proof

is by induction on m.

m = 1 : Fix a type tc ∈ Tc. By completeness, there exists a type t∗c ∈ T ∗c so that margXc
β∗c (t∗c) =

margXc
βc(tc). It follows that for each Borel E ⊆ Z1

c = Xc,

δ∗,1c (t∗c)(E) = margXc
β∗c (t∗c)(E) = margXc

βc(tc)(E) = δ1c (tc)(E),

as required.

m ≥ 2 : Assume the result holds for m. By the induction hypothesis, there is a mapping τmd :

Td → T ∗d so that δ∗,md (τmd (td)) = δmd (td). By Lemma E.6, for each xc ∈ Xc, ρ
m+1
c (xc, td) =

ρ
∗,(m+1)
c (xc, τ

m
d (td)). Write [td] := (τmd )−1({τmd (td)}). (So, each t′d ∈ [td] induces the same mth-

order belief as td.) Write T̂d = {[td] : td ∈ Td}.
Fix a type tc. Construct ψ ∈ P(Xd× T ∗d ) to be the image measure of id × τmd under βc(tc). By

completeness, there exists a type t∗c ∈ T ∗c with β∗c (t∗c) = ψ. We will show that δ∗,m+1
c (t∗c) = δm+1

c (tc).

Fix some Borel G ⊆ Zm+1
c . Since Td is countable,

δm+1
c (tc)(G) = βc(tc)((ρ

m+1
c )−1(G))

=
∑
td∈Td

βc(tc)(Fc[td]× {td}),

where Fc[td] := (ρm+1
c )−1(G) ∩ (Xc × {td}). Observe that, if τmd (td) = τmd (t′d), then Fc[td] = Fc[t

′
d];

this follows from Lemma E.6. As such,

δm+1
c (tc)(G) =

∑
[td]∈T̂d

βc(tc)(Fc[td]× [td]).

By construction,

δm+1
c (tc)(G) =

∑
[td]∈T̂d

βc(tc)(Fc[td]× [td]) =
∑
td∈Td

ψc(Fc[td]× {τkd (td)}).
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Applying Lemma E.6 again, Fc[td] = (ρ∗,m+1
c )−1(G) ∩ (Xc × {τkd (td)}). Thus,

δm+1
c (tc)(G) =

∑
td∈Td

ψc(Fc[td]× {τkd (td)})

= ψc((ρ
∗,m+1
c )−1(G) ∩ (Xc × τkd (Td)))

= ψc((ρ
∗,m+1
c )−1(G))

= δ∗,m+1
c (t∗c)(G),

as desired.

We will prove a stronger version of Theorem 9.2(ii). To do so, we will need to introduce the

following terminology.

Definition E.7 Call a cardinal κ is large if κ is uncountable and there is a set X and a probability

measure ν on (X, 2X) such that

(i) |X| = κ,

(ii) ν(E) ∈ {0, 1} for each subset E of X, and

(iii) ν(F ) = 0 for each finite subset F of X.

Call a cardinal λ small if λ is not large.

Theorem E.8 Fix a complete (Xa, Xb)-based type structure T . If |Xa| and |Xb| are small, T is

finitely terminal for all atomic structures.

Note, c is small (Fremlin, 2008) and so Theorem E.8 implies Theorem 9.2(ii). More generally, it

cannot be proved in ZFC that large cardinals exist—but if they do exist, the first large cardinal is

much greater than c, and even much greater than the first uncountable inaccessible cardinal. (See

Fremlin 2008.)

Remark E.9 In the literature, a cardinal κ is called measurable if a set X of cardinality κ has a

κ-additive probability measure ν on (X, 2X) such that Definition E.7 (i)–(iii) hold. The existence

of an uncountable measurable cardinal cannot be proved in ZFC. A cardinal κ is large in the sense

of Definition E.7 if and only if κ is ≥ the first uncountable measurable cardinal. So κ is small if

and only if there is no uncountable measurable cardinal below κ.

Say T is finitely terminal for all countable atomic structures if it is finitely terminal for all

countable structures and it is finitely terminal for all atomic structures. To show Theorem E.8, it

suffices to show the following:

Lemma E.10 Fix an (Xa, Xb)-based type structure T . If |Xa| and |Xb| are small, then T is

finitely terminal for all atomic structures if and only if T is finitely terminal for all countable

atomic structures.
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Proof of Theorem E.8. The result follows from Theorem 9.2(i) and Lemma E.10.

With the above in mind, it suffices to show Lemma E.10. To do so, it will be useful to begin with

the following:

Lemma E.11 (See Fremlin (2008)).

• c is small.

• If κ is small and λ ≤ κ, then λ is small.

• If κ is small, then cκ is small.

Lemma E.12 Suppose |Xa| and |Xb| are small. Then, for each c and each m, |Zmc | is small.

Proof. The proof is by induction on m. The case of m = 1 is immediate from the fact that |Xa|
and |Xb| are small. Assume the result holds for m. Then, by the induction hypothesis, |Zma | and

|Zmb | are small. Each probability measure µ ∈ P(Zmc ) is a mapping from a subset of the power

set of Zmc into [0, 1]; so |P(Zmc )| ≤ cκ, where κ = 2|Z
m
c | ≤ c|Z

m
c |. By Lemma E.11, κ is small, so

|P(Zmc )| is small. Thus,

|Zm+1
c | = |Zmc × P(Zmd )| = max(|Zmc |, |P(Zmd )|),

and so |Zm+1
c | is also small.

Lemma E.13 Let Ω be a metrizable space. The following are equivalent:

(i) Every discrete subset of Ω has small cardinality.

(ii) For every µ ∈ P(Ω), every atom of µ contains a point mass of µ.

(iii) If µ ∈ P(Ω), µ is atomic if and only if µ(D) = 1 for some countable D ⊆ Ω.

Proof. It is easily seen that (iii) implies (ii). It is also easily seen that the reverse direction of (iii)

always holds: if µ(D) = 1 for some countable D ⊆ Ω then µ is atomic.

(ii) implies (i): Assume that (i) fails, so there is a discrete subset E of Ω of large cardinality.

Then there is a Borel probability measure µ on Ω such that µ(F ) = 0 for every finite F ⊆ E,

µ(E) = 1, and E is an atom of µ. Then E is an atom that does not contain a point mass, so (ii)

fails.

(i) implies (iii): Suppose (i) holds. Let µ be an atomic Borel probability measure on Ω. Then

µ has a separable support. (See Billingsley, 1968, Theorem 2, page 235.) This means that there is

a closed separable set C ⊆ Ω such that µ(C) = 1. Let D be a countable dense subset of C, and for

each n > 0 let Dn be the union of all 1
n -balls centered at elements of D. Then C ⊆ Dn for each

n > 0, and
⋂
nDn = D. Therefore µ(D) = 1.
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Corollary E.14 If the cardinality of Ω is small, then µ ∈ P(Ω) is atomic if and only if µ(D) = 1

for some countable D ⊆ Ω.

To prove Lemma E.10, we will take the union of pairwise disjoint type structures.

Definition E.15 A family of (Xa, Xb)-based type structures {T i : i ∈ I} is pairwise disjoint if,

for each player c and each i, j ∈ I, T ic is disjoint from T jc .

Definition E.16 Let {T i : i ∈ I} be a pairwise disjoint family of countable (Xa, Xb)-based type

structures. The disjoint union, viz. T ∗ =
⊔
i∈I T i, is some T ∗ = (Xa, Xb;T

∗
a , T

∗
b ;β∗a, β

∗
b ) so that:

(i) T ∗c =
⋃
i∈I T

i
c ;

(ii) T ∗c has the discrete topology; and

(iii) β∗c : T ∗c → P(Xc × T ∗d ) is such that, for each i ∈ I, tic ∈ T ic , and Borel set E ⊆ Xc × T id,

(β∗c (tic))(E) = (βic(t
i
c))(E).

So defined, T ∗ =
⊔
i∈I T i is itself a type structure.18

Lemma E.17 Let {T i : i ∈ I} be a family of pairwise disjoint family of countable (Xa, Xb)-based

type structures and let T ∗ =
⊔
i∈I T i be the disjoint union of {T i : i ∈ I}.

(i) For each i ∈ I and each tc ∈ T ic , δic(tc) = δ∗c (tc).

(ii) If the index set I is countable and T i is atomic for each i ∈ I, then T ∗ is countable.

Proof. Part (ii) follows immediately from part (i). With this in mind, we show part (i). To do

so, fix some T i = (Xa, Xb;T
i
a, T

i
b ;β

i
a, β

i
b) and write id i

c : T ic → T ∗c for the identity maps. Note,

(id i
a, id

i
b) is a type morphism from T i to T ∗. Then the claim follows from Lemma E.5.

Lemma E.18 Fix an atomic (Xa, Xb)-based type structure T = (Xa, Xb;Ta, Tb;βa, βb), where |Xa|
and |Xb| are small. For each type tc ∈ Tc and each m, there exists a countable atomic (Xa, Xb)-based

type structure T = (Xa, Xb;T a, T b;βa, βb) and a type tc ∈ T c so that δ
m
c (tc) = δmc (tc).

Proof. The proof is by induction on m.

18The same would hold if we replaced the requirement that each T i is countable with the requirement that each
T i has type sets endowed with the discrete topology.
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m = 1 : Fix some type tc ∈ Tc. Construct T as follows. Take T c = {tc} and T d 6= ∅ finite. Set

βc(tc) so that, for each Borel Ec ⊆ Xc,

βc(tc)(Ec × T d) = βc(tc)(Ec × Td).

Choose βd so that each βd(td) is atomic.

Note, for each Borel Ec ⊆ Xc

δ
1
c(tc)(Ec) = βc(tc)(Ec × T d) = βc(tc)(Ec × Td) = δ1c (tc)(Ec).

So δ
1
c(tc) = δ1c (tc). Moreover, since T is atomic, δ

1
c(tc) = δ1c (tc) is atomic. By construction, each

βd(td) is atomic and, so, by Lemma E.1, each δ
1
d(td) is atomic.

m ≥ 2 : Assume the result holds for each player, each type in T , and m. We will show that the

same holds for m+ 1.

Fix a type tc ∈ Tc and note, by assumption, δm+1
c (tc) is atomic. Since |Xa|, |Xa| are small,

|Zm+1
c | is small and, so, each discrete subset of Zm+1

c is small. So, by Lemma E.13, there is a finite

or countable set of distinct points E ⊆ Zm+1
c so that (i) δm+1

c (tc)(E) = 1, and (ii) δm+1
c (tc)({z}) > 0

for each z ∈ E. Note, E is the set of point masses of δmc (tc) and so depends on both tc and m. It

will be convenient to describe E as

E = {zk : k ∈ K}

for some finite or countable index set K.19

For each k ∈ K,

αk := δm+1
c (tc)({zk}) = βc(tc)((ρ

m+1
c )−1({zk}) > 0.

So, for each k ∈ K there exists a point (xkc , t
k
d) ∈ Xc×Td with ρm+1

c (xkc , t
k
d) = zk. By the induction

hypothesis, for each k ∈ K, there is a countable atomic type structure

T k = (Xa, Xb;T
k
a, T

k
b ;β

k
a, β

k
b )

and a type t
k
d ∈ T

k
d with δ

k,m
d (t

k
d) = δmd (td). By renaming points, we can take the family of

type structures {T k : k ∈ K} to be pairwise disjoint. Thus, we can construct the disjoint union

T ∗ =
⊔
k T

k
. By Lemma E.17(ii), T ∗ is a countable atomic type structure. Note, by construction,

we choose the list of t
k
d, k ∈ K to be distinct (i.e., even if two indices are associated with the same

types in T ) and so they are distinct types in T ∗d .

Construct a new type structure, viz. T , as follows: Take a new point tc /∈ T ∗c and set T c =

T ∗c ∪ {tc}. Set T d = T ∗d . Endow T c and T d with the discrete topology. Choose the maps βc and

βd so that the identity maps form a type morphism from T to T ∗. For tc, let βc(tc) be an atomic

19The superscript just denotes an enumeration and does not refer to (m+ 1).
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probability measure on Xc × T d such that

βc(tc)({(xkc , t
k
d)}) = αk

for each k ∈ K. By Lemma E.1, each δ
m
c (tc) is atomic. Since T ∗ is countable and atomic and each

δ
m
c (tc) is atomic, it follows that T is countable and atomic.

It remains to show that δ
m+1
c (tc) = δm+1

c (tc): Note, since the identity maps are a type morphism

from T to T ∗, we have

δ
m
d (t

k
d) = δ

k,m
d (t

k
d) = δmd (tkd).

So,

ρm+1
c (xkc , t

k
d) = ρm+1

c (xkc , t
k
t ) = zk.

It follows that

δ
m+1
c (tc)({zk}) = βc(tc)((ρ

m+1
c )−1({zk})) ≥ βc(tc)({(xkc , t

k
d)}) = αk.

Using the fact that
∑

k α
k = 1, it follows that δ

m+1
c (tc)({zk}) = αk for each k ∈ K. So, δ

m+1
c (tc) =

δm+1
c (tc), as desired.

Proof of Lemma E.10. Fix an (Xa, Xb)-based type structure, viz. T ∗, that is finitely terminal

for all countable atomic structures. Let T be an atomic (Xa, Xb). By Lemma E.18, T ∗ is finitely

terminal for T .

E.3 Negative Result

Proof of Lemma 9.8. Let Ta = Tb = [0, 1] and endow Ta and Tb with the discrete topology.

Then for each player c, Xc×Td is discrete and has cardinality c. By Lemma 9.7(ii), each probability

measure in P(Xc × Td) has a countable set of measure one, and thus is atomic and is determined

by a countable sequence of elements of Xc × Td × [0, 1], corresponding to a sequence of points and

measures of points. Therefore, P(Xc × Td) has cardinality (2ℵ0)ℵ0 = 2ℵ0 = c. Hence there are

bijective functions βc from Tc onto P(Xc × Td). Let T = (Xa, Xb;Ta, Tb;βa, βb). Since each Tc is

discrete, each βc is continuous; as such, T is a continuous type structure. Since each βc is onto, T
is a complete type structure.

It remains to show that T is atomic. By the preceding paragraph, for each βc(tc), there is a

countable set E ⊆ Xc × Td such that βc(tc)(E) = 1. So, by Corollary E.2, T is atomic.

Appendix F Variants of Terminality: Existence

Heifetz and Samet’s (1998) construction of a so-called universal type structure shows that there

exists an (Xa, Xb)-based type structure that is terminal. Theorem 8.1 raises the question: Does

there exist an (Xa, Xb)-based type structure that is terminal for all finite structures but not the
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universal type structure? If the answer were “no,” then the epistemic conditions provided by

Theorem 8.1 would coincide with those provided by Tan and Werlang (1988) (Result 2.3). This

appendix shows that this is not the case. In particular, when (Xa, Xb) are finite, there exists an

(Xa, Xb)-based type structure that is not terminal but is terminal for all finite type structures. To

state the result, it will be useful to introduce some terminology.

Definition F.1 Fix a type structure T = (Xa, Xb;Ta, Tb;βa, βb).

(i) Call T finite if Ta and Tb are finite.

(ii) Call T simple if, for each c, each type tc ∈ Tc, and each m, δmc (tc) has finite support.

Note that a probability measure has finite support if and only if some finite set has measure one.

Every probability measure with finite support is atomic, so every simple type structure is atomic.

In the spirit of Definition 7.5, call an (Xa, Xb)-based type structure T ∗ finitely terminal for

all simple (resp. finite simple) structures if it is finitely terminal for each simple (resp. finite

and simple) (Xa, Xb)-type structure T = (Xa, Xb;Ta, Tb;βa, βb).

Proposition F.2 Fix (Xa, Xb).

(i) There is a simple (Xa, Xb)-based type structure that is terminal for all finite structures.

(ii) If |Xa| and |Xb| are small, there is an atomic (Xa, Xb)-based type structure that is terminal

for all countable structures.

From this, we can conclude:

Corollary F.3 Fix (Xa, Xb).

(i) There is an (Xa, Xb)-based type structure that is terminal for all finite structures but not

terminal for all countable structures.

(ii) If |Xa| and |Xb| are small, there is an (Xa, Xb)-based type structure that is terminal for all

countable structures but not terminal.

Corollary F.3 follows from Proposition F.2 and the fact that there exists some type structure that

induces a countable support (resp. full support) second-order belief. (This can be constructed or

taken to follow from Heifetz and Samet, 1999.)

To prove Proposition F.2, we begin with a preliminary result:

Proposition F.4 Fix (Xa, Xb).

(i) There is a simple (Xa, Xb)-based type structure that is terminal for all finite simple structures.

(ii) There is an atomic (Xa, Xb)-based type structure that is terminal for all countable atomic

structures.
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The idea of the proof is clear: Construct an (Xa, Xb)-based type structure that is the disjoint union

of all countable atomic (Xa, Xb)-based type structures. But this does not work because the class

of all countable atomic type structures is a proper class. Instead, we construct a type structure

that is the disjoint union of a set of countable atomic type structures that contains a copy of each

countable atomic type structure.

Proof of Proposition F.4. Let N = {T i : i ∈ I} be the set of all finite simple (resp. countable

atomic) (Xa, Xb)-based type structures T i = (Xa, Xb;T
i
a, T

i
b ;β

i
a, β

i
b) whose type spaces are subsets

of N and are endowed with the discrete topology. This set of type structures is not pairwise disjoint,

but we can replace it by a pairwise disjoint set in the following way: For each T i ∈ N , let

T̂ i = (Xa, Xb; T̂
i
a, T̂

i
b ; β̂

i
a, β̂

i
b),

where T̂ ic = T ic×{i} and β̂ic(E×{i}) = βic(E) for each Borel E ⊆ Xc×T id. Write N̂ for the set of all

such T̂ i. Note that N̂ = {T̂ i : i ∈ I} is a pairwise disjoint set of countable atomic (Xa, Xb)-based

type structures. Moreover, for each T̂ i ∈ N̂ (resp. T i ∈ N ), there is a type morphism from T̂ i to

T i (resp. T i to T̂ i).
Let T ∗ =

⊔
i∈I T̂ i. Note that, for each (tc, i) ∈ T̂ ic ⊆ T ∗c (resp. tc ∈ T ic), δ∗c ((tc, i)) = δ̂ic((tc, i)) =

δic(tc). (This follows from Lemma E.17(i) and Lemma E.5.) Since each T i is simple (resp. atomic),

T ∗ is simple (resp. atomic). Moreover, T ∗ is terminal for each T i ∈ N .

Finally, fix an (Xa, Xb)-based type structure T that is finite and simple (resp. countable and

atomic), but necessarily in N . There exists a type morphism from T to some T i ∈ N . By Lemma

E.5, T i is terminal for T . As such, T ∗ is terminal for T .

Proposition F.2(ii) follows immediately from Proposition F.4(ii) and Lemma E.10. To show

Proposition F.2(i), we need the following analogue of Lemma E.10.

Lemma F.5 An (Xa, Xb)-based type structure is finitely terminal for all simple structures if and

only if it is finitely terminal for all finite simple structures.

The remainder of this Appendix to devoted to showing Lemma F.5.

Lemma F.6 If βc(tc) has a finite set of measure one then, for each m, δmc (tc) is simple.

Proof. Let tc ∈ Tc so that there is a finite set E ⊆ Xc × Td with βc(tc)(E) = 1. Then, the image

ρmc (E) is finite and E ⊆ (ρmc )−1(ρmc (E)). So,

δmc (tc)(ρ
m
c (E)) = βc(tc)((ρ

m
c )−1(ρmc (E))) ≥ βc(tc)(E) = 1.

Hence, δmc (tc) is simple.

Lemma F.7 Fix a finite index set I and a family of pairwise disjoint family of finite and simple

(Xa, Xb)-based type structures {T i : i ∈ I}. Then, for each i ∈ I and each tc ∈ T ic , δic(tc) = δ∗c (tc).
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Proof. Immediate from Lemma E.17(i)

Lemma F.8 Fix a simple (Xa, Xb)-based type structure T = (Xa, Xb;Ta, Tb;βa, βb). For each

type tc ∈ Tc and each m, there exists a finite and simple (Xa, Xb)-based type structure T =

(Xa, Xb;T a, T b;βa, βb) and a type tc ∈ T c so that δ
m
c (tc) = δmc (tc).

Proof. The proof is the same as the proof of Lemma E.18 except that the word “countable” is

replaced with “finite,” “atomic” is replaced with “simple,” the index set K if finite, Lemma E.1

is replaced with Lemma F.6 and Lemma E.17 is replaced with Lemma F.7. Note, in this case, we

need not require that |Xc| is small: If T is simple, there is necessarily a finite set of points in Zmc

that gets probability one under δmc (tc), irrespective of whether or not |Zmc | is small.

Proof of Lemma F.5. Suppose T is an (Xa, Xb)-based type structure that is finitely terminal

for all finite simple type structures. If T ∗ be an (Xa, Xb)-based simple type structure, then T is

finitely terminal for T ∗. (See Lemma F.8.)
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