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1 Introduction

In the paper [HK] the notions of an adapted distribution and of a saturated adapted
probability space were introduced. The adapted distribution of a random variable on
an adapted space (with values in a complete separable metric space) is the natural
analogue of the distribution of a random variable on a probability space. An adapted
space Ω is saturated if for any random variable x on Ω and pair of random variables
x̄ and ȳ on another adapted space Γ such that x and x̄ have the same adapted
distribution, there is a random variable y on Ω such that (x, y) and (x̄, ȳ) have the
same adapted distribution. For stochastic differential equations and a wide variety
of other existence problems, every existence theorem which holds on some adapted
space holds on a saturated adapted space.

The paper [FK1] introduced a new method for proving existence theorems in
probability theory, based on the notion of a neocompact set of random variables.
A set of random variables on an adapted space is said to be basic if it is either
compact or is the set of all random variables which are measurable at time t and
whose law belongs to a compact set C of measures, for some t and C. The family
of neocompact sets is the closure of the family of basic sets under finite unions and
Cartesian products, countable intersections, existential projections, and “universal
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projections with respect to a nonempty basic set”. An adapted space is said to
be rich if the family of neocompact sets is countably compact. On a rich adapted
space, the neocompact sets play a role analogous to the compact sets. They were
used in the papers [FK1] and [CK] to prove a variety of optimization and existence
theorems. The existence of rich adapted spaces for any linearly ordered set of times
was proved in [FK2].

The purpose of this paper is to find the relationship between richness and satu-
ration. Our main theorem is that richness and saturation are equivalent for adapted
spaces with a countable set of times. For example, the two notions are equivalent
for probability spaces, for discrete time adapted spaces, and for adapted spaces with
dyadic rational times. We also show that for any rich adapted space with dyadic
rational times, the associated right continuous adapted space with real times is
saturated but cannot be rich.

Our proofs will use a “quantifier elimination” theorem from the paper [K5] which
shows that in a rich or saturated space with a countable time set, the neocompact
sets can be represented in a simple form. The paper [K5], which was aimed primarily
at model theorists, introduced a very general notion called a law structure, which is
an abstraction of the distribution and the adapted distribution in probability theory.
This paper is aimed at probabilists, and applies the results of [K5] to probability
spaces and adapted spaces.

In Section 2 we introduce the notion of a law mapping on a probability space
Ω, which is a special case of the notion of a law structure from [K5]. We shall also
state the results we need from [K5]. In Section 3 we prove some general results
about law mappings. The rest of the paper deals with the particular law mappings
which correspond to the distribution of a random variable and adapted distribution
of a stochastic process. In Sections 4 through 8 we prove our main results showing
that saturation is equivalent to richness for probability spaces, adapted spaces with
finite time sets, and adapted spaces with infinite time sets. Finally, in Section 9 we
prove that every rich adapted space with rational times induces a saturated right
continuous adapted space with real times.

I wish to thank Sergio Fajardo and Siu-Ah Ng for helpful suggestions on this
article. This research was supported in part by the National Science Foundation
and the Vilas Trust Fund.

2 Law Mappings

In this section we introduce the notion of a law mapping on a probability space Ω,
and state the theorems we shall need from the paper [K5].
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Throughout this paper we let K = (K, τ), M = (M,ρ), and N = (N, σ) be
complete separable metric spaces, and let Ω = (Ω, P,G) be a probability space. For
each complete separable M , we use the corresponding script letter M to denote
the metric space M = (L0(Ω,M), ρ0) of all equivalence classes of P -measurable
functions from Ω into M . Here two functions are equivalent if they are equal P -
almost surely, and ρ0 is the metric of convergence in probability on L0(Ω,M),

ρ0(x, y) = inf{ε : P [ρ(x(ω), y(ω)) ≤ ε] ≥ 1− ε}.

We shall let MΩ be the family of all the metric spaces L0(Ω,M) where M is a
complete separable metric space, so that M,N ,K are arbitrary elements of MΩ.

A Cartesian product M ×N with the metric ρ× σ defined by

(ρ× σ)((x, y), (x̄, ȳ)) = max(ρ(x, x̄), σ(y, ȳ))

is again a complete separable metric space. The metrics ρ0 × σ0 and (ρ × σ)0 on
M×N = L0(Ω, M ×N) are different, but determine the same topology. A similar
remark holds for countable Cartesian products

∏

n Kn with the metric τ =
∏

n τn

defined by
τ(x, y) =

∑

n
min(1, τn(xn, yn))/2n.

A subset of a topological space Λ is relatively compact if it is contained in
a compact subset of Λ. Recall that a topological space is first countable if every
point has a countable neighborhood base. For example, every metrizable space is
first countable. In a first countable space, a set is closed if and only if it contains
the limit of any convergent sequence of points in the set.

For each continuous function f : M → N , we let f̂ : M → N be the function
defined by (f̂(x))(ω) = f(x(ω)). f̂ is continuous from M to N .

The space of Borel probability measures on M with the Prohorov metric

d(µ, ν) = inf{ε : µ(C) ≤ ν(Cε) + ε for all closed C ⊆ M}

is denoted by Meas(M). It is again a complete separable metric space, and conver-
gence in Meas(M) is the same as weak convergence. Each random variable x ∈ M
induces the measure law(x) ∈ Meas(M) such that (law(x))(S) = P [x−1(S)] for each
Borel S ⊆ M , and the function law : M→ Meas(M) is continuous.

Definition 2.1 A law mapping on Ω is a pair (λ, Λ) which assigns to each M∈
MΩ a first countable Hausdorff space Λ(M) and a continuous function λ : M →
Λ(M) such that:

3



1. For each x, x1, x2, . . . in M, if λ(xn) → λ(x) in Λ(M), then law(xn) → law(x)
in Meas(M).

2. If A ⊆ M, B ⊆ N , and the images λ(A) and λ(B) are relatively compact in
Λ(M) and Λ(N ), then the image λ(A×B) is relatively compact in Λ(M×N ).

3. For each continuous function f : M → N there is a continuous function
f̄ : λ(M) → λ(N ) such that the following diagram is commutative:

M -
λ

λ(M)

?

f̄

λ(N )

?

f

-

λ
N

Moreover, if f is a metric isometry of M onto N , then f̄ is a homeomorphism
from λ(M) to λ(N ).

Since λ is continuous, convergence in probability implies convergence in λ. Con-
dition (2.1.1) says that convergence in λ in turn implies convergence in law. One
consequence of condition (2.1.1) is that λ(x) = λ(y) implies law(x) = law(y). An-
other consequence is that λ(x, y) = λ(z, z) implies x = y.

In condition (2.1.3), λ(M) denotes the image ofM under the function λ, which is
a possibly proper subspace of the space Λ(M). (2.1.3) says that for each continuous
f : M → N , the function λ(x) 7→ λ(f(x)) is well-defined and continuous, and is
denoted by f̄ .

Condition (2.1.3) is often applied to projections. If f is the projection from M×N
to M , then f̄ sends λ(x, y) to λ(x) and is called the projection function from λ(M×
N ) to λ(M). There is an analogous projection function from λ(M×N ) to λ(N ).
Combining the two projections, it follows that the function λ(x, y) 7→ (λ(x), λ(y))
is a continuous surjection from λ(M×N ) to the product space λ(M)× λ(N ). In
general, this function is many-one, and the space λ(M×N ) is more complicated
than the product space λ(M)× λ(N ).

The canonical example of a law mapping on Ω, developed in Section 4, is the pair
(λ, Λ) where Λ(M) is the space Meas(M) and λ(x) = law(x). In this case, λ(x, y)
is the law of the joint random variable (x, y), and λ(x) and λ(y) are the laws of the
marginals x and y.
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We shall usually suppress the target space Λ and speak of a law mapping λ.
However, it should be kept in mind that a law mapping can be changed in an
essential way by extending or restricting the space Λ(M).

In the paper [K5] the notion of a law structure (M, λ, Λ) was introduced in
the more general setting where the family MΩ is replaced by a family M of sets
closed under finite Cartesian products. In that setting, the sets X ∈ M do not have
metrics, the function λ is not required to be continuous, condition (2.1.1) is replaced
by the weaker condition that λ(x, y) = λ(z, z) implies x = y, and condition (2.1.3)
is required only for the case that f is a projection from one finite Cartesian product
to another.

Thus whenever (λ, Λ) is a law mapping on a probability space Ω, the triple
(MΩ, λ, Λ) is a law structure in the sense of [K5].

We next introduce some properties of law mappings which were studied in [K5].
For each x ∈M and each C ⊆ N , let

λ(x, C) = {λ(x, y) : y ∈ C}, λ(C, x) = {λ(y, x) : y ∈ C}.

Definition 2.2 Let λ be a law mapping on Ω.
λ has the back and forth property if for all x, x̄ ∈M such that λ(x) = λ(x̄),

we have λ(x,N ) = λ(x̄,N ) for all N . That is, if λ(x) = λ(x̄) then for every y ∈ N
there exists ȳ ∈ N such that λ(x, y) = λ(x̄, ȳ).

λ is said to be dense if whenever x, x̄ ∈ M and λ(x) = λ(x̄), λ(x,N ) and
λ(x̄,N ) have the same closure in Λ(M×N ).

λ is said to be closed if λ(M) is closed in Λ(M) for all M∈ MΩ.
λ has the Skorokhod property if for every x ∈ M and sequence cn which

converges to λ(x) in λ(M), there exists a sequence xn in M such that λ(xn) = cn

for each n and xn converges to x in M.

We shall see in Section 4 that the Skorokhod property is closely related to the
Skorokhod representation theorem. The next proposition shows that the Skorokhod
property for a law mapping is equivalent to a condition which does not mention the
metric on M and was called the “strong open mapping property” in [K5].

Proposition 2.3 Let λ be a law mapping on Ω. Then λ has the Skorokhod property
if and only if for each M and each y ∈ N , the projection from λ(M×N ) to λ(M)
restricted to λ(M, y) is open.

Proof: The second condition is equivalent to the following:
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(1) For each x ∈ M, y ∈ N , and sequence cn converging to λ(x) in λ(M), there
is a sequence xn in M such that λ(xn) = cn for all sufficiently large n, and
λ(xn, y) converges to λ(x, y) in λ(M×N ).

The Skorokhod property implies (1) because if xn → x inM then (xn, y) → (x, y)
in M×N , and by the continuity of λ, λ(xn, y) → λ(x, y).

For the converse, assume (1). Let cn → λ(x) in λ(M). By (1) there exist
xn in M such that λ(xn) = cn for all n, and λ(xn, x) → λ(x, x). By (2.1.1) we
have law(xn, x) → law(x, x) in Meas(M × M). Therefore xn → x in M, and the
Skorokhod property is proved. 2

We state a result from [K5].

Proposition 2.4 A law mapping λ on Ω has the back and forth property if and only
if

(i) λ is and dense, and
(ii) Whenever λ(x, yn) converges to λ(x̄, ȳ) in λ(M×N ), there exists y ∈ N

such that λ(x, y) = λ(x̄, ȳ). 2

Condition (ii) in the above proposition is called completeness in [HK] and [K5].
We now review the notions of a basic set and a basic section from [K5]. Basic

sections play a central role in the study of neocompact sets.

Definition 2.5 A set B ⊆ M is basic for a law mapping λ on Ω if B is of the
form

B = {x ∈M : λ(x) ∈ B̂}

for some compact subset B̂ of Λ(M).
Let z ∈ K. A set C ⊆ M is called a basic section for λ with parameter z

on Ω if C has the form
C = {x ∈M : λ(x, z) ∈ Ĉ}

for some compact subset Ĉ of Λ(M×K).
We say that a family C of sets is countably compact if every decreasing chain

C0 ⊃ C1 ⊃ · · · of nonempty sets in C has a nonempty intersection
⋂

n Cn.

Every basic section for λ is closed in M, because the function λ is continuous.
The following proposition and theorem on basic sections were proved in [K5].

Proposition 2.6 Let λ be a law mapping on Ω.
(i) For every z ∈ K, every basic set for λ is a basic section for λ with parameter

z.
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(ii) Let y ∈ N and z ∈ K. Every basic section B ⊆ M for λ with parameter y
is a basic section for λ with parameter (y, z).

(iii) If A ⊆M and B ⊆M are basic sections for λ, then A ∩B and A ∪B are
basic sections for λ.

(iv) For each M ∈ MΩ, every finite subset A = {x1, . . . , xm} of M is a basic
section for λ with parameter z = (x1, . . . , xm) in the Cartesian power K = Mm.

(v) Suppose λ is closed and has the back and forth property. Let A ⊆ M be a
basic section for λ with parameter z. Then for each y ∈ N , the set B = λ(A, y) is
compact in Λ(M×N ). 2

Theorem 2.7 ([K1, Theorem 4.9 and Corollary 4.10]).
(i) A law mapping λ on Ω is closed if and only if the family of basic sets B ⊆M

for λ is countably compact.
(ii) A law mapping λ on Ω is closed and has the back and forth property if and

only if it is dense and for each z ∈ K, the family of basic sections B ⊆ M for λ
with parameter z is countably compact. 2

We now introduce the notion of a neocompact set over a family of sets A, which
corresponds to the notion of a neocompact formula over A in [K5]. We shall then
state a quantifier elimination theorem from [K5], which shows that the neocompact
sets can be represented in a simple form.

Definition 2.8 For each M ∈ MΩ, let A(M) be a family of subsets of M. A
neocompact set over A is a set which is built using the following rules.

(a) Every set in A(M) is neocompact over A.
(b) The union of two neocompact subsets of M over A is neocompact over A.
(c) If A ⊆ M and B ⊆ N are neocompact over A, then A × B is neocompact

over A.
(d) If 〈An : n ∈ N〉 is a countable sequence of neocompact subsets of M over A,

then the intersection
⋂

n An is a neocompact set over A.
(e) If A ⊆M×N is neocompact over A, then the existential projection

{x ∈M : (∃y ∈ N )(x, y) ∈ A}

is neocompact over A, and the analogous rule holds for each factor in a finite Carte-
sian product.

(f) If A ⊆M×N is neocompact over A and ∅ 6= C ∈ A(N ), then the universal
projection

{x ∈M : (∀y ∈ C)(x, y) ∈ A}
is neocompact over A, and the analogous rule holds for each factor in a finite Carte-
sian product.
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In [FK1] and [FK2], the family of neocompact sets over A is called the neocom-
pact family generated by (MΩ,A).

A function f : M → N is neocontinuous over A if the graph of f |C is
neocompact over A for each neocompact set C ⊆M over A.

Let z ∈ K. We say that a set C ⊆ M is a basic section over A with
parameter z if C has the form

C = {x ∈M : (x, z) ∈ D} (1)

for some D ∈ A(M× K), and that C is a neocompact section over A with
parameter z if C has the form (2) for some neocompact set D ⊆M×K over A.

Thus C is a basic section for λ as previously defined if and only if C is a basic
section over the family of basic sets for λ.

It is obvious that every neocompact set over A is a neocompact section over A.
The following proposition is a converse.

Proposition 2.9 ([FK1, Proposition 3.6]). Suppose that for each M, every finite
subset of M belongs to A(M). Then every neocompact section over A is a neocom-
pact set over A. 2

The next theorem was proved in [K5, Theorem 6.5 and Corollary 6.6].

Theorem 2.10 (Quantifier Elimination for Neocompact Formulas) Let λ be a closed
law mapping on Ω, and let A(M) be the family of basic subsets of M for λ. The
following are equivalent.

(i) λ has the back and forth and Skorokhod properties.
(ii) Each neocompact set over A is basic for λ.
(iii) Each neocompact section over A with parameter z is a basic section over A

with parameter z. 2

Corollary 2.11 Let λ be a closed law mapping with the back and forth and Sko-
rokhod properties. Let B(M) be the family of subsets of M which are either finite
or basic for λ. Then a set is neocompact over B if and only if it is a basic section
for λ.

Proof: By Proposition 2.9, every basic section for λ is neocompact over B. By
the Quantifier Elimination Theorem and Proposition 2.6, the family of basic sections
for λ is closed under the rules (a)–(f) with respect to B(M). 2

The existential quantifier step of the proof of the Quantifier Elimination Theorem
2.10 used the following result (Theorem 5.2 in [K5]), which will be useful in its own
right in this paper.
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Theorem 2.12 Let λ be a closed law mapping. The following are equivalent.
(i) λ has the back and forth property.
(ii) For every basic set A ⊆M×N for λ, the set

B = {x ∈M : (∃y ∈ N )(x, y) ∈ A} (2)

is basic for λ.
The implication (ii) ⇒ (i) holds for all law mappings.

3 Basic Sections and Neocompact Sets

In this section we shall prove some additional results about basic sections for law
mappings. Throughout this section we assume that λ is a law mapping on a proba-
bility space Ω.

Lemma 3.1 For each countable sequence 〈Cn〉 of basic sections for λ in M, there
is a single space K ∈ MΩ and z ∈ K such that each Cn is a basic section for λ with
parameter z.

Proof: We have
Cn = {x ∈M : λ(x, zn) ∈ Dn}

where zn ∈ Kn ∈ MΩ and Dn is compact in Λ(M× Kn). Let K be the product
space K =

∏

nKn. Let z = 〈zn〉 ∈ K. Fix n ∈ N. Let Ĉn be the closure of the set

{λ(u, z) : u ∈M and λ(u, zn) ∈ Dn}.

Ĉn is relatively compact and hence compact by (2.1.3) and (2.1.2). We claim that

Cn = {x ∈M : λ(x, z) ∈ Ĉn}.

By the definition of Ĉn, Cn is contained in the right side. Suppose λ(x, z) ∈ Ĉn.
Then

λ(x, z) = lim
k→∞

λ(xk, z)

for some sequence xk in M with λ(xk, zn) ∈ Dn. By (2.1.3),

λ(x, zn) = lim
k→∞

λ(xk, zn),

so λ(x, zn) ∈ Dn and x ∈ Cn. This proves the claim and shows that Cn is a basic
section for λ with parameter z. 2
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Corollary 3.2 For each M the family of basic sections for λ in M is closed under
countable intersections.

Proof: This follows from the preceding lemma and the equation
⋂

n
{x ∈M : λ(x, z) ∈ Dn} = {x ∈M : λ(x, z) ∈

⋂

n
Dn} 2

Corollary 3.3 If λ is closed and has the back and forth property, then for each
M∈ MΩ the family of basic sections for λ in M is countably compact.

Proof: By Theorem 2.7 and Lemma 3.1. 2

We shall call a set B ⊆M basic/compact for λ if it is either a basic subset of
M for λ or is a compact subset of M. We say that C is neocompact for λ if C is
neocompact over the family of basic/compact sets for λ. By Proposition 2.9, every
neocompact section over the basic/compact sets for λ is a neocompact set for λ.

Proposition 3.4 Each compact set C ⊆ M is a basic section for λ. Moreover,
a set A ⊆ M is a basic section for λ if and only if A is a basic section over the
basic/compact sets for λ.

Proof: Suppose C is nonempty, and choose a countable sequence z = 〈zn〉 which
is dense in C. Then z belongs to the countable Cartesian power K = MN, and
K ∈ MΩ. Since λ is continuous on M×K, the set

D = {λ(x, z) : x ∈ C}

is compact in Λ(M×K). It suffices to show that

C = {x ∈M : λ(x, z) ∈ D}. (3)

Clearly C is contained in the right side. Let λ(x, z) ∈ D. Then λ(x, z) = λ(y, z) for
some y ∈ C. Therefore some subsequence of zn converges to y in M. To simplify
notation suppose that limn→∞ zn = y. By (2.1.3), we have λ(x, zn) = λ(y, zn) for
each n. Moreover,

lim
n→∞

λ(x, zn) = λ(x, y)

and
lim

n→∞
λ(y, zn) = λ(y, y).

Therefore λ(x, y) = λ(y, y). Thus by (2.1.1), we have x = y ∈ C. This proves (2).
2
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In many of the applications of neocompact sets in [FK1], the compact sets were
included in the initial family A(M) which was used as the starting point in building
the neocompact sets. Proposition 3.4 shows that every compact set is a basic section
for λ. We now complete the picture by showing that the family of basic sections for
λ is closed under universal projections with respect to a compact set.

Proposition 3.5 Let C ⊆ N be a nonempty compact set. If A is a basic section in
M×N for λ then the set

B = {x ∈M : (∀y ∈ C)(x, y) ∈ A}

is also a basic section for λ.

Proof: Let {yn : n ∈ N} be a countable dense subset of C. The set A has the
form

A = {(x, y) ∈M×N : λ(x, y, z) ∈ Â}
for some z ∈ K ∈ MΩ and some compact set Â. For each n, the set

Bn = {x ∈M : λ(x, yn, z) ∈ Â} = {x ∈M : (x, yn) ∈ A}

is a basic section for λ. By Corollary 3.2, the intersection
⋂

n Bn is a basic section
for λ. We show that B =

⋂

n Bn. It is obvious that B ⊆ ⋂

n Bn. Suppose x ∈ ⋂

n Bn.
Let y ∈ C. Then some sequence 〈ykn〉 of 〈yn〉 converges to y. For each n we have
λ(x, ykn , z) ∈ Â. Since Â is compact and λ is continuous, we have λ(x, y, z) ∈ Â, so
(x, y) ∈ A and x ∈ B. 2

Theorem 3.6 Suppose λ has the back and forth and Skorokhod properties. Then a
set is neocompact for λ if and only if it is a basic section for λ. Moreover, for each
M the family of neocompact subsets of M for λ is countably compact.

Proof: By the Quantifier Elimination Theorem 2.10 and Propositions 3.4 and
3.5 the family of basic sections for λ is closed under the rules (a)–(f) where A(M)
is the family of basic/compact sets. Countable compactness follows from Corollary
3.3. 2

For the remainder of this section we let λk be a sequence of law mappings on Ω.
For each k ∈ N, we shall let ~λk be the finite product

~λk = 〈λ0, . . . , λk〉,

and let ~Λk(M) be the topological product Λ0(M)× · · · × Λk(M).
We also let λ be the countable product where λ(x) = 〈λk(x) : k ∈ N〉, and let

Λ(M) be the countable topological product
∏

k Λk(M).
We state two more results which are proved in [K5].
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Proposition 3.7 ([K1, Proposition 7.1 and Lemma 7.3]).
(i) For each k, (~λk, ~Λk) is a law mapping on Ω, and (λ, Λ) is a law mapping on

Ω.
(ii) Suppose that ~λk is a dense law mapping for each k ∈ N. Then λ is a dense

law mapping.
(iii) A set B is basic for λ if and only if B =

⋂

k Bk for some sequence of basic
sets Bk for ~λk. 2

Theorem 3.8 ([K1, Theorem 7.7 and Corollary 7.8]). Suppose that λ is closed and
has the back and forth property, and for each k, ~λk is closed and has the back and
forth and Skorokhod properties. Let Ak(M) be the family of all basic subsets of M
for ~λk, and let A(M) =

⋃

kAk(M). Then every neocompact set over A is basic for
λ, and every neocompact section over A is a basic section for λ. 2

We now improve Theorem 3.8 by replacing the basic sets by the basic/compact
sets.

Theorem 3.9 Suppose that λ is closed and has the back and forth property, and for
each k, ~λk is closed, and has the back and forth and Skorokhod properties. Let Bk(M)
be the family of all basic/compact subsets of M for ~λk, and let B(M) =

⋃

k Bk(M).
Then a set is neocompact over B if and only if it is a basic section for λ. Moreover,
for each M the family of neocompact subsets of M over B is countably compact.

Proof: By Proposition 2.9, every basic section for λ is neocompact over B. By
Theorem 3.8, the family of basic sections for λ is closed under the operations (a)–(e)
and under universal projections with respect to basic sets for ~λk. By Proposition 3.5,
for each k ∈ N the family of basic sections for ~λk is closed under universal projections
with respect to compact sets. By Proposition 3.7 (ii), every basic section for λ is
the intersection of a descending chain of basic sections Bk for ~λk, and it follows that
the family of basic sections for λ is closed under universal projections with respect
to compact sets. This shows that every neocompact set over B is a basic section for
λ. Countable compactness follows from Corollary 3.3. 2

4 Probability Spaces

In this section we study the law mapping (law,Meas) for an atomless probability
space Ω. We shall see that this law mapping has the back and forth property if
and only if Ω is rich. A measure space (Γ,G, Q) with 0 < Q(Γ) < ∞ is said to be
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atomless if for each set S ∈ G of measure Q(S) > 0 and each positive r < Q(S)
there is a subset U ⊆ S in G such that Q(U) = r. Note that if Ω = (Ω,F , P ) is
an atomless probability space and P (Γ) > 0 then the restriction of Ω to Γ is an
atomless measure space.

The following formula due to Strassen (see [EK, Theorem 1.2 on p. 96]) char-
acterizes the Prohorov metric in terms of the metric of convergence in probability
when Ω is an atomless probability space.

Lemma 4.1 Suppose Ω is atomless and M∈ MΩ. Then for all b, c ∈ Meas(M),

d(b, c) = inf{ρ0(x, y) : x, y ∈M, law(x) = b, law(y) = c}.

The next proposition rephrases some well known facts in our framework.

Proposition 4.2 Let Ω be an atomless probability space. Then law is a closed law
mapping on Ω.

Proof: By Proposition 4.1, law : M→ Meas(M) is uniformly continuous, and in
fact, d(law(x), law(y)) ≤ ρ0(x, y). Conditions (2.1.1) and (2.1.3) are easily checked,
and condition (2.1.2) follows from the characterization of relative compactness given
by Prohorov’s theorem. Thus law is a law mapping. It is well known that a prob-
ability space Ω is atomless if and only if law maps M onto Meas(M) for each M .
Therefore (law,Meas) is closed on Ω. 2

We now recall the notion of a saturated probability space from [HK].

Definition 4.3 We say that Ω = (Ω, P,G) is a saturated probability space if
for every probability space Γ and all complete separable metric spaces M and N , if

x̄ ∈ L0(Γ,M), ȳ ∈ L0(Γ, N), x ∈M,

and law(x) = law(x̄), then there exists y ∈ N such that law(x, y) = law(x̄, ȳ).

It is easily seen that every saturated probability space is atomless and has the
back and forth property. It was shown in [HK] that uncountable powers of [0, 1] and
atomless Loeb probability spaces are saturated, and thus that saturated probability
spaces exist.

It is well known that the set of simple functions (functions with finite range)
is dense in each M ∈ MΩ. Every atomless probability space satisfies the special
case of saturation where x is a simple function.
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Proposition 4.4 Let Ω be an atomless probability space, and let Γ be another prob-
ability space. Then for every simple x ∈ M and every pair of random variables
(x̄, ȳ) ∈ L0(Γ, M × N) such that law(x̄) = law(x), there exists y ∈ N such that
law(x, y) = law(x̄, ȳ).

Proof: Let Ω = (Ω,F , P ) and Γ = (Γ,G, Q). Let {m1, . . . ,mk} be the range of
x, and let Aj = {ω : x(ω) = mj} and Bj = {γ : x̄(γ) = mj}. We may assume
without loss of generality that P (Aj) > 0 for each j. Let ȳj be the restriction of ȳ
to the set Bj. Since the restriction of Ω to Aj is atomless and Q(Bj) = P (Aj), there
is a random variable yj on Aj such that law(yj) = law(ȳj). Now take y ∈ N such
that y(ω) = yj(ω) whenever ω ∈ Aj for j = 1, . . . , n. Then law(x, y) = law(x̄, ȳ). 2

The next proposition applies the Skorokhod representation theorem in probabil-
ity theory, and is the reason for our use of the name “Skorokhod property”.

Proposition 4.5 If Ω is an atomless probability space, then law has the Skorokhod
property on Ω.

Proof: Let x ∈ M, and let cn be a sequence converging to law(x) in Meas(M).
We must find a sequence xn converging to x in M such that law(xn) = cn for all n.

The Skorokhod representation theorem says that on some probability space Γ
there are random variables zn, z ∈ L0(Γ,M) such that law(zn) = cn for all n,
law(z) = law(x), and zn → z almost surely (see [EK, p. 102]). Let ∆ be a sat-
urated probability space. Then there are random variables yn, y in L0(∆,M) such
that

law(y, 〈yn〉) = law(z, 〈zn〉).

It follows that yn → y in L0(∆,M). Let un, n ∈ N be a sequence of simple random
variables converging to x in M. Since ∆ is saturated there is a sequence vn, n ∈ N
in L0(∆,M) such that

law(y, 〈vn〉) = law(x, 〈un〉).

By the preceding proposition, for each n there exists xn ∈M such that law(un, xn) =
law(vn, yn). Then law(xn) = cn for all n. Since yn and vn both converge to y, we
have ρ0(yn, vn) → 0, and thus ρ0(xn, un) → 0. Therefore xn → x in M. 2

Proposition 4.6 Let Ω be an atomless probability space. Then law is dense on Ω.

Proof: Let x, x̄ ∈ M with law(x) = law(x̄), and let y ∈ N . Let 〈xn〉 be a
sequence of simple functions converging to x in M. Then law(xn) → law(x̄). By
the Skorokhod property there is a sequence 〈x̄n〉 converging to x̄ in M such that
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law(x̄n) = law(xn) for each n. Then for each n, x̄n is simple. By Proposition 4.4
there exists ȳn ∈ N such that law(x̄n, ȳn) = law(xn, y). We have (xn, y) → (x, y)
in M×N , and therefore law(x̄n, ȳn) → law(x, y). Moreover, since x̄n → x̄ in M,
d(law(x̄n, ȳn), law(x̄, ȳn)) → 0. Therefore law(x̄, ȳn) → law(x, y), so law(x̄,N ) is
dense in the closure of law(x,N ). 2

We now review the notion of a rich probability space from [FK1]. We shall see
that richness and saturation are equivalent.

Definition 4.7 Ω is said to be a rich probability space if Ω is atomless and for
each M∈ MΩ, the family of neocompact subsets of M for law is countably compact.

From the previous sections, a set B is basic for law in M if it is of the form

{x ∈M : law(x) ∈ C}

for some compact set C ⊆ Meas(M), and is a basic section for law in M if it is of
the form

{x ∈M : law(x, z) ∈ D}

for some compact set D ⊆ Meas(M ×N) and some z ∈ N .

Theorem 4.8 Let Ω be an atomless probability space. The following are equivalent.
(i) Ω is saturated.
(ii) law has the back and forth property on Ω.
(iii) Ω is rich.
(iv) For each M ∈ MΩ the family of basic sections for law in M is countably

compact.
(v) For each M,N ∈ MΩ and basic relation C for law in M×N , the existential

projection
{x : ∃y(x, y) ∈ C}

is basic for law.

Proof: By Propositions 4.2 and 4.6, law is closed and dense on Ω.
We first prove that (i) and (ii) are equivalent. It is easily seen that (i) implies (ii).

To prove (ii) implies (i), assume (ii) and let x̄ ∈ L0(Γ,M), ȳ ∈ L0(Γ, N), x ∈ M,
and law(x) = law(x̄). Since Ω is atomless there exists (x′, y′) ∈ M×N such that
law(x′, y′) = law(x̄, ȳ). Then law(x′) = law(x), and by the back and forth property
for law on Ω there exists y ∈ N such that law(x, y) = law(x̄, ȳ).

Next we assume (i) and prove (iii). By Proposition 4.5, law has the Skorokhod
property on Ω. Then Ω is rich by Theorem 3.6, so (iii) holds.
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Since every basic section for law is neocompact, (iii) implies (iv).
Assume (iv). Since law is dense on Ω, it has the back and forth property on Ω

by Theorem 2.7. Thus (iv) implies (ii). (v) is equivalent to (ii) by Theorem 2.12. 2

We conclude this section with some examples arising in probability spaces which
are not rich. By an ordinary probability space we shall mean a probability space
of the form (Γ, µ,G) where Γ is a complete separable metric space and µ is the
completion of a Borel probability measure on the family of Borel sets G in Γ. These
spaces are the ones most commonly used in the literature. It is shown in [FK1]
shows that no ordinary probability space is rich.

Consider an atomless ordinary probability space (Γ, µ,G), and let B = {On : n ∈
N} be a countable open basis for Γ. We say that a measurable set A is independent
of a family of sets S in (Γ, µ,G) if

µ(A ∩B) = µ(A)µ(B) for all B ∈ S.

The same terminology is applied to families of characteristic functions of sets.
For each n, let xn be the characteristic function of On, considered as a random

variable on Γ with values in the two-element space {0, 1}. Every measurable set in
Γ can be approximated by sets in the basis B, and therefore no set of measure one
half in Γ can be independent of {xn : n ∈ N}.
Example 4.9 For each n, let Cn be the set of all z on Γ such that z is the charac-
teristic function of a set of measure 1/2 and z is independent of x1, . . . , xn. Then
Cn is a decreasing chain of nonempty neocompact subsets of L0(Γ, {0, 1}) for law,
but

⋂

n Cn is empty. In fact, each Cn is a basic section for law. This shows that Γ
is not rich.

Example 4.10 Now consider the product space Γ× Γ, and let x̄n(γ1, γ2) = xn(γ1).
Let u be the characteristic function of a set of measure one half in Γ, and let
ȳ(γ1, γ2) = u(γ2) on Γ × Γ. Then law(〈xn〉) = law(〈x̄n〉), but there is no y on Γ
such that law(〈xn〉, y) = law(〈x̄n〉, ȳ). This shows directly that Γ is not saturated.
The example can by modified by taking x̄n, ȳ on Γ itself, giving a direct example of
the failure of the back and forth property on Γ.

Example 4.11 Let C be the set of all pairs (x, y) such that x = 〈xn〉 is a sequence
of characteristic functions of sets, and y is the characteristic function of a set of
measure 1/2 which is independent of the the family {xn : n ∈ N}. Then C is a basic
relation for law on Γ. However, the existential projection D = {x : ∃y(〈xn〉, y) ∈ C}
is not closed in L0(Γ, {0, 1}) and therefore cannot even be a basic section for law.
In fact, if x = 〈x1, x2, . . . , xn, . . .〉 /∈ D and zk = 〈x1, . . . , xk, 0, 0, . . .〉, then zk ∈ D
and zk → x.
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5 Adapted Spaces with Finite Time Sets

We now apply our results to adapted probability spaces with finite time sets. In
this and the next two sections we shall introduce law mappings for these adapted
spaces, and prove that in this setting saturation is again equivalent to richness.

For the next four sections of this paper (through Section 8), we shall take Λ(M)
to be the space

Λ(M) = RN ×Meas(M)

with the product metric. Whenever we introduce a law mapping, it will be under-
stood that the target space is this particular space Λ(M).

Let T be a finite set of nonnegative real numbers. By a T-adapted (probabil-
ity) space we mean a structure

ΩT = (Ω, P,G∞,Gt)t∈T

where (Ω, P,G∞) is a probability space, Gt is a σ-subalgebra of G∞ for each t ∈ T,
and Gs ⊆ Gt whenever s ≤ t in T.

Throughout this section we let ΩT be a T-adapted probability space and let
M∈ MΩ. R is the metric space L0(Ω,R).

We now recall the notion of an adapted function, which was introduced in [HK].

Definition 5.1 The class of T-adapted functions on M is the least class of
functions from M into R such that:

(i) For each bounded continuous function φ : M → R, the function (φ̂(x))(ω) =
φ(x(ω)) is a T-adapted function;

(ii) If f1, . . . , fm are T-adapted functions on M and g : Rm → R is continuous,
then h(x) = g(f1(x), . . . , fm(x)) is a T-adapted function;

(iii) If f is a T-adapted function and t ∈ T, then g(x)(ω) = E[f(x)|Gt](ω) is a
T-adapted function.

Observe that each T-adapted function on M is uniformly bounded, so the ex-
pected value E[f(x)] is defined and finite for every T-adapted function f and every
x ∈M. Two processes x, y ∈M are said to have the same adapted distribution
if E[f(x)] = E[f(y)] for all T-adapted functions f .

We shall now take advantage of the separability of M to choose a countable set
of T-adapted functions on M which is dense in an appropriate sense.

A set Ψ of bounded functions f : M → R is said to be bounded pointwise
dense if every bounded Borel function g : M → R belongs to the closure of Ψ under
pointwise convergence of uniformly bounded sequences of functions.
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Suppose Ψ is bounded pointwise dense. Then Ψ separates points in M , that is,
if u 6= v in M then ψ(u) 6= ψ(v) for some ψ ∈ Ψ. Moreover, Ψ is separating in
Meas(M), that is, if b 6= c in Meas(M) then

∫

ψ db 6=
∫

ψ dc for some ψ ∈ Ψ.
For each complete separable metric space M , there exists a countable set Φ(M)

of bounded continuous functions φ : M → R which is bounded pointwise dense (see
[EK, Proposition 4.2]). For each M , we shall choose such a set Φ(M) once and for
all.

Definition 5.2 The class of T-adapted functions built from Φ(M) is the least
class of T-adapted functions on M such that:

(i′) For each function φ ∈ Φ(M), the corresponding function φ̂ : M → R is a
T-adapted function built from Φ(M);

(ii′) If f1, . . . , fm are T-adapted functions built from Φ(M) and p : Rm → R is a
polynomial with rational coefficients, then h(x) = p(f1(x), . . . , fm(x)) is a T-adapted
function built from Φ(M);

(iii′) If f is a T-adapted function built from Φ(M) and t ∈ T, then g(x)(ω) =
E[f(x)|Gt](ω) is a T-adapted function built from Φ(M).

There are only countably many T-adapted functions built from Φ(M). Let us
arrange them in a list 〈βk : k ∈ N〉. We now define the T-adapted law function.

Definition 5.3 By the T-adapted law of a random variable x ∈M we mean the
pair

lawT(x) = (〈E[βk(x)] : k ∈ N〉, law(x))

in the space RN ×Meas(M).

The reader may wonder why the second coordinate law(x) is needed. One reason
is to insure that condition (2.1.1) holds. Another reason is to insure that lawT is
closed on Ω. The image of the first term 〈E[βk(x)] : k ∈ N〉 is almost never closed in
RN, but we shall see in Proposition 6.7 that for all “atomless” T-adapted spaces the
image of lawT on M is a closed subset of RN ×Meas(M). The second coordinate
of lawT will also be needed in Lemma 7.8, which is used in the proof that saturated
adapted spaces are rich.

The T-adapted law function is defined for every T-adapted space ΩT, and it will
sometimes be useful to compare lawT(x) and lawT(y) where x and y are random
variables on two different T-adapted spaces ΩT and ΓT.

Note that for any x ∈M and sequence xn in M, if S ⊆ T and

lim
n→∞

lawT(xn) = lawT(x),
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then
lim

n→∞
lawS(xn) = lawS(x).

We now give a series of lemmas which we shall use to show that lawT is a law
mapping on Ω. The next lemma shows that the expected value of each T-adapted
function depends continuously on the T-adapted law.

Lemma 5.4 Let x, xn ∈M. The following are equivalent:
(i) limn→∞ lawT(xn) = lawT(x).
(ii) limn→∞ law(xn) = law(x) and limn→∞ E[f(xn)] = E[f(x)] for every T-

adapted function f on M.

Proof: This follows from [HK, Theorem 2.26]. 2

Lemma 5.5 Let f be a T-adapted function on M. Then f is continuous from M
into R, and uniformly continuous on law−1(C) for each compact set C ⊆ Meas(M).

Proof: We argue by induction on the steps used in constructing f . We begin
with the basis step. Let C be a compact subset of Meas(M) and let φ : M → R
be continuous and bounded by β. Let ε > 0. By Prohorov’s theorem, there is a
compact set D ⊆ M such that µ(D) ≥ 1 − ε/(2β) for each µ ∈ C. Since D is
compact there exists δ > 0 such that |φ(b) − φ(c)| < ε whenever b ∈ D, c ∈ M ,
and ρ(b, c) < δ. Taking δ < ε/(2β), we see that whenever x, y ∈ law−1(C) and
ρ0(x, y) < δ, φ̂(x) is within ε of φ̂(y) in the metric of convergence in probability.
Thus φ̂ is uniformly continuous on law−1(C). The steps of the induction from f(x)
to E[f(x)|Gt], and from f1(x), . . . , fm(x) to g(f1(x), . . . , fm(x)), are routine. 2

Corollary 5.6 The function lawT is continuous from M into RN×Meas(M), and
uniformly continuous on law−1(C) for each compact set C ⊆ Meas(M). 2

Lemma 5.7 For each set A ⊆ M, the set lawT(A) ⊆ RN ×Meas(M) is relatively
compact if and only if the set law(A) ⊆ Meas(M) is relatively compact.

Proof: If lawT(A) ⊆ C where C is compact then law(A) is contained in the
compact set π(C) where π is the projection map π : RN ×Meas(M) → Meas(M).
Suppose law(A) ⊆ D where D is compact. For each adapted function f, E[f(x)]
is bounded uniformly in x. Then by the Tychonoff product theorem, lawT(M) ⊆
B ×Meas(M) for some compact set B ⊆ RN. Therefore lawT(A) is contained in
the compact set B ×D. 2

We now show that lawT is a law mapping.

19



Proposition 5.8 For any T-adapted space ΩT, lawT is a law mapping.

Proof: The continuity of lawT was established in Corollary 5.6. Condition (2.1.1)
holds because lawT(x) is a pair whose second coordinate is law(x).

Suppose A ⊆M, B ⊆ N , and lawT(A) and lawT(B) are relatively compact. By
Lemma 5.7, law(A) and law(B) are relatively compact. It follows, e.g. by Prohorov’s
theorem, that law(A×B) is relatively compact. Then by Lemma 5.7, lawT(A×B)
is relatively compact. This proves (2.1.2) for lawT.

To prove condition (2.1.3), let h : M → N be continuous. For any adapted
function f onM, the function g(x) = f(ĥ(x)) is an adapted function onM. Suppose
that x, y ∈ M and lawT(x) = lawT(y). By Lemma 5.4, we have E[f(ĥ(x))] =
E[f(ĥ(y))]. Moreover, law(ĥ(x)) = law(ĥ(y)). Therefore lawT(ĥ(x)) = lawT(ĥ(y)).
This shows that the function h̄(lawT(x)) = lawT(ĥ(x)) is well-defined. Another
application of Lemma 5.4 shows that h̄ is continuous, so (2.1.3) holds. 2

6 Atomless Adapted Spaces

In this section we introduce atomless T-adapted spaces, and show that such spaces
have natural law mappings which are closed on Ω. In the next section we shall
see, using the notion of a saturated T-adapted space, that these law mappings are
also dense and have the Skorokhod property. The notion of an atomless T-adapted
spaces is taken from [HK]. For notational convenience we let 0 be the least element
of T.

Definition 6.1 ([HK]) Let E and F be σ-subalgebras of G∞ with E ⊆ F . F is
said to be atomless over E if for every U ∈ F of positive probability, there is a set
V ⊆ U in F such that

0 < P [V |E ] < P [U |E ]

on a set of positive probability.
A T-adapted space ΩT is said to be atomless if G0 is atomless over the trivial

σ-algebra and Gt is atomless over Gs whenever s < t in T ∪ {∞}.

We now introduce a T-adapted analogue of a simple function x such that P [x =
r] is rational for each r ∈ M. This notion will be useful in analyzing the law
mapping lawT.

A finite algebra E of subsets of Ω will be called uniform if each atom of E has
the same measure.

Let T = {t1, . . . , tk}, and put tk + 1 = ∞. By a T-partition of Ω we shall
mean a sequence E = 〈Et, t ∈ T∪ {∞}〉 of finite algebras such that Et ⊆ Gt, and for
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each j ≤ k, Etj+1 is generated by Etj and a uniform finite algebra whose atoms are
independent of Gtj . (A set S ⊆ Ω is independent of Gs if the conditional probability
P [x|Gs] is constant). We say that a random variable x ∈ M is E-measurable if it
is E∞-measurable, and T-simple if x is E-measurable for some T-partition E . Note
that if (x, y) is T-simple, then both x and y are T-simple, but the converse does
not hold in general. Also, if (x, y) and (x, z) are both T-simple, then (x, y, z) is
T-simple.

Given a T-partition E of Ω, let Ω/Et be the set of all Et-atoms and let Ω/E be
the set of all E∞-atoms. Two T-partitions E of Ω and F of Γ are equivalent if there
is a bijection h : Ω/E → Γ/F such that h(Ω/Et) = Γ/Ft for each t ∈ T, and h is
called an isomorphism from E to F . If x is E-measurable and h is an isomorphism
from E to F , h(x) is the F -measurable function y such that y(h(ω)) = x(ω) for each
ω ∈ Ω/E .

The following lemma can be proved by an inductive argument using the results
in Maharam [M]. It is a strengthening of the fact that every random variable can be
approximated by simple random variables.

Lemma 6.2 Let ΩT be atomless.
(i) Let ΓT be a T-adapted space. For each T-partition F of Γ there is an equiv-

alent T-partition E of Ω.
(ii) Let f be a T-adapted function. If E is a T-partition of Ω and x ∈ M

is E-measurable, then f(x) is E-measurable, and for each t ∈ T, E[f(x)|Gt] is Et-
measurable. If x is T-simple then f(x) is T-simple.

(iii) Let E be a T-partition of Ω and let x be E-measurable. Then lawT(x) =
lawT(y) if and only if y = h(x) for some T-partition F and isomorphism h : E → F .

(iv) For every M, the set of T-simple random variables is dense in M. In fact,
for each T-simple y ∈ N , the set of x ∈M such that (x, y) is T-simple is dense in
M. 2

Corollary 6.3 Let ΩT be atomless, and let x ∈ L0(Γ,M) be T-simple on some other
T-adapted space ΓT. Then there is a T-simple y ∈ L0(Ω,M) such that lawT(x) =
lawT(y).

Proof: Let x be E-measurable where E is a T-partition of Γ. By Lemma 6.2 (i)
there is an equivalent T-partition F of Ω and an isomorphism h from E to F . By
Lemma 6.2 (iii), y = h(x) is T-simple and lawT(x) = lawT(y). 2

Here is a back and forth property for T-simple random variables.

Corollary 6.4 Let ΩT be atomless. For each T-simple (x, y) ∈ M × N and T-
simple x̄ ∈ M such that lawT(x̄) = lawT(x), there exists ȳ ∈ N such that (x̄, ȳ) is
T-simple and lawT(x̄, ȳ) = lawT(x, y).
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Proof: Let (x, y) be E-measurable where E is a T-partition. Since lawT(x̄) =
lawT(x), there is a T-partition Ē of Ω and an isomorphism h : E → Ē such that
x̄ = h(x). Then ȳ = h(y) has the required properties. 2

The following lemma is a consequence of Lemma 4.1 for atomless probability
spaces. It will be used here as the first step in an inductive argument for T-adapted
spaces.

Lemma 6.5 Suppose Ω is an atomless probability space, M ⊆ Rn is compact, and
ε > 0. There exists δ > 0 and a finite set of polynomials p1, . . . , pm in n variables
with rational coefficients such that for every uniform finite algebra E ⊆ G, and all
E-measurable x, y ∈M such that

|E[pi(x)]− E[pi(y)]| < δ for i = 1, . . . , m, (4)

there is a permutation h of the atoms of E such that ρ0(x, h(y)) < ε. 2

Proof: By the compactness of M , there exist δ > 0 and p1, . . . , pm such that
whenever x, y ∈M and equation (4) holds, we have

d(law(x), law(y)) < ε.

Suppose x, y ∈ M satisfy equation (4). By Lemma 4.1, there exist x̄, ȳ ∈ M such
that

law(x̄) = law(x), law(ȳ) = law(y),

and
ρ0(x̄, ȳ) < ε.

Now suppose that E ⊆ G is a uniform finite algebra with k atoms E1, . . . , Ek and
that x and y are E-measurable. Then x is simple, and by Lemma 4.3 we may take
x̄ = x. To complete the proof it suffices to show that ȳ may also be taken to be
E-measurable.

Consider the set A = {z ∈ M : law(z) = law(y)}. Each z ∈ A is determined
by a uniform F ⊆ G with k atoms, and an ordering of its atoms F1, . . . , Fk. The
joint distribution law(x, z) is determined by the k× k matrix p(x, z) = (P [Ei ∩Fj]).
The set p(x, A) of all such matrices is a convex polyhedron of dimension k2, whose
vertices are permutation matrices corresponding to E-measurable processes of the
form z = h(y). For each α > 0, the probability that ρ(x(ω), z(ω)) ≥ α depends
linearly on the matrix p(x, z). Therefore this probability takes its minimum at a
vertex of p(x,A). It follows that the set of distances {ρ0(x, z) : z ∈ A} has a
minimum at a point ρ0(x, ȳ) where ȳ ∈ A is E-measurable. 2
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Lemma 6.6 Let ΩT be atomless, let M ∈ MΩ, and let D ⊆ Meas(M) be compact.
For each ε > 0 there exists δ > 0 such that whenever x, y ∈ law−1(D), (x, y) is T-
simple, and lawT(y) is within δ of lawT(x), there exists z such that (y, z) is T-simple,
lawT(z) = lawT(y), and ρ0(x, z) < ε.

Proof: Let ε >0 and D ⊆ Meas(M) be compact. By Prohorov’s theorem there
is a compact set C ⊆ M such that P [x(ω) ∈ C] > 1 − ε/3 whenever law(x) ∈ D.
Since Φ(M) separates points in M and each φn ∈ Φ(M) is bounded and continuous,
there exists δ1 > 0 and a finite subset {φ1, . . . , φm} ⊆ Φ(M) such that δ1 < ε/3 and
whenever b, c ∈ C,

|φi(b)− φi(c)| < δ1 for i = 1, . . . , m implies ρ(b, c) < ε. (5)

Using Lemma 6.5 inductively for each t ∈ T in increasing order, we can find δ > 0
and finitely many adapted functions f1, . . . , fk built from {φ1, . . . , φm} such that for
every T-partition E of Ω and E-measurable x, y ∈M, if

|E[fi(x)]− E[fi(y)]| < δ for i = 1, . . . , k, (6)

there exists an automorphism h of E such that

〈φ1(x), . . . , φm(x)〉 is within δ1 of 〈φ1(h(y)), . . . , φm(h(y))〉 (7)

in the metric of convergence in probability in Rm.
Suppose x, y ∈ law−1(D), (x, y) is T-simple, and lawT(y) is within δ of lawT(x).

Then (6) holds, and both x and y are E-measurable for some T-partition E of Ω.
Thus (7) holds for some automorphism h of E . Let z = h(y). Then (x, z) is T-simple
and lawT(y) = lawT(z). By (5) and (7), we have

x(ω) ∈ C, z(ω) ∈ C, and ρ(x(ω), z(ω)) < ε

with probability at least 1− (ε/3 + ε/3 + ε/3). Therefore ρ0(x, z) < ε. 2

We are now ready to show that lawT is closed on Ω when ΩT is atomless. The
proof will take advantage of the fact that the ordinary law was tacked on as a second
coordinate to the lawT function.

Proposition 6.7 For every atomless T-adapted space ΩT, lawT is closed on Ω.

Proof: Let (b, c) be a point in the closure of lawT(M) in RN×Meas(M). We must
find an x ∈ M such that lawT(x) = (b, c). By Lemma 6.2 (iv) there is a sequence
xn ∈M such that lawT(xn) converges to (b, c) and (x1, . . . , xn) is T-simple for each
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n. Then law(xn) converges to c, and the set D = {c} ∪ {law(xn) : n ∈ N} is
compact. Let δn be the δ corresponding to D and ε = 2−n in Lemma 6.6. Then
xn has a subsequence yn such that lawT(yn) is within δn/2 of (b, c), and hence
lawT(yn+1) within δn of lawT(yn), for each n. By Lemma 6.6 there is a sequence
zn ∈M such that (yn, zn) is T-simple, lawT(zn) = lawT(yn), and ρ0(zn, zn+1) ≤ 2−n

for each n. Then the limit z = limn→∞ zn exists in M and lawT(z) = (b, c). 2

Proposition 6.8 A T-adapted space ΩT is atomless if and only if it is universal,
that is, for every random variable x on some other T-adapted space ΓT there exists
y ∈M such that lawT(y) = lawT(x).

Proof: Atomless implies universal by Corollary 6.3 and Proposition 6.7. Univer-
sal implies atomless by [HK, Lemma 4.4 (iv)]. 2

7 Richness and Saturation

In this section we shall introduce the notion of a saturated T-adapted space from
[HK], and a notion of a rich T-adapted space which is analogous to the rich contin-
uous time adapted spaces from [FK1].

Definition 7.1 A T-adapted space ΩT is saturated if for every T-adapted space
ΓT and all complete separable metric spaces M and N , if

x̄ ∈ L0(Γ, M), ȳ ∈ L0(Γ, N), x ∈M,

and lawT(x) = lawT(x̄), then there exists y ∈ N such that lawT(x, y) = lawT(x̄, ȳ).

It is shown in [HK] that saturated T-adapted spaces exist. It is obvious that
lawT has the back and forth property for every saturated T-adapted space ΩT. Let
us now prove that such spaces also have the Skorokhod property.

Our next order of business is to prove that when ΩT is atomless, lawT has the
Skorokhod property and is dense on Ω. Our arguments will parallel the correspond-
ing methods for ordinary probability spaces in Section 4. The next result is a weak
saturation property which holds for all atomless T-adapted spaces.

Proposition 7.2 Let ΩT be atomless, and let ΓT be another T-adapted space. Then
for every T-simple x ∈M and every pair of random variables (x̄, ȳ) ∈ L0(Γ,M×N)
such that lawT(x̄) = lawT(x), there exists y ∈ N such that lawT(x, y) = lawT(x̄, ȳ).
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Proof: Let x be E-measurable for some T-partition E of ΩT. Then x̄ is F -
measurable for some T-partition F of ΓT which is equivalent to E . By Lemma
6.2, we have x̄ = h(x) for some isomorphism h : E → F . For each A ∈ E∞,
form the T-adapted space ΩA,T = (A,GA,t, PA) where PA(U) = P (A ∩ U) and
GA,t = {A ∩ U : U ∈ Gt}. Define ΓA,T similarly. Then ΩA,T is an atomless adapted
measure space, and the measures of A in ΩA,T and of h(A) in Γh(A),T are finite and
equal. By Proposition 6.8, ΩA,T is universal, so there exists yA on ΩA,T with the same
T-adapted law as the restriction of ȳ to h(A) in Γh(A),T. Let y ∈ N be the random
variable whose restriction to each A ∈ E∞ is yA. Then lawT(x, y) = lawT(x̄, ȳ). 2

Hoover obtained a generalization of the Skorokhod representation theorem for T-
adapted spaces in [H1, Corollary 10.2], which shows in our terminology that atomless
T-adapted spaces with the Skorokhod property exist. We now improve that result
by showing that all atomless T-adapted spaces have the Skorokhod property.

Proposition 7.3 Let ΩT be an atomless T-adapted space. Then lawT has the Sko-
rokhod property on Ω.

Proof: We first prove the result in the case that ΩT is a saturated T-adapted
space, and then prove the general case.

Suppose that xn is a sequence in M, x ∈M, and lawT(xn) converges to lawT(x).
lawT is closed by Proposition 6.7. By Lemma 6.2 (iv), there are sequences yk, zk,n

in M such that the pair (yk, zk,n) is T-simple for each k, n, yk → x in probability,
and zk,n → xn in probability for each n. Let D be the compact set

{law(yk), law(x), law(zk,n), law(xn) : k, n ∈ N}.

For each k and n, let Ck,n be the set

Ck,n = {u ∈M : lawT(u) ∈ {lawT(zm,n) : k ≤ m} ∪ {lawT(xn)}}.

This set is basic for lawT. Consider an ε > 0. For each k and n, the set

Bk,n = Ck,n ∩ {u ∈M : ρ0(u, x) ≤ ε}

is a basic section for lawT with parameter x. For each n, for all sufficiently large k
we have

d(lawT(zk,n), lawT(yk)) < 2d(lawT(xn), lawT(x)).

Applying Lemma 6.6 with the above compact set D, we see that for all sufficiently
large n, ρ0(yn, x) < ε/2 and for all sufficiently large k there exists u ∈M such that

lawT(u) = lawT(zk,n) and ρ0(u, yk) < ε/2.
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Then ρ0(u, x) ≤ ε, and thus u ∈ Bk,n. Therefore for all sufficiently large n the
sets Bk,n form a decreasing chain of nonempty sets as k → ∞. We assume at this
point that ΩT is saturated, so that it has the back and forth property. By Corollary
3.3, the family of basic sections in M for lawT is countably compact. Therefore for
all sufficiently large n there exists un ∈

⋂

k Bk,n. Then lawT(un) = lawT(xn) and
ρ0(un, x) ≤ ε. Letting ε → 0, we obtain a sequence vn in M such that lawT(vn) =
lawT(xn) for each n and vn → x in M. This proves the result in the case that ΩT

is saturated.
We now prove the general case. Let x ∈M, and let cn be a sequence converging

to lawT(x) in Meas(M). We must find a sequence xn converging to x in M such that
lawT(xn) = cn for all n. Let ΓT be a saturated adapted space. By the preceding
paragraph, there are random variables zn, z ∈ L0(Γ, M) such that lawT(zn) = cn for
all n, lawT(z) = lawT(x), and zn → z in L0(Γ,M). Let un, n ∈ N be a sequence of
T-simple random variables converging to x in M. Since ΓT is saturated there is a
sequence vn, n ∈ N in L0(Γ,M) such that

lawT(y, 〈vn〉) = lawT(x, 〈un〉).

By the preceding proposition, for each n there exists xn ∈M such that lawT(un, xn) =
lawT(vn, yn). Then lawT(xn) = cn for all n. Since yn and vn both converge to y, we
have ρ0(xn, un) → 0, and thus xn → x in M. 2

Proposition 7.4 For every atomless T-adapted space ΩT, lawT is dense on Ω.

Proof: The argument is the same as the proof of Proposition 4.6, but using
T-simple processes and Proposition 7.2 instead of Proposition 4.4. 2

We now turn to the notion of a rich T-adapted space. We shall consider two
different families of basic sets, the family BΩT of basic/compact sets for lawT, and a
simpler familyAΩT which is defined in one step from the ordinary law function law(x)
and the notion of a Gt-measurable function. Using this simpler family AΩT , we were
able to define rich adapted spaces in [FK1] without introducing the complicated
adapted law function lawT.

Definition 7.5 For each M ∈ MΩ, let AΩT(M) and BΩT(M) be the following
families of subsets of M.

A ∈ AΩT(M) iff A is compact or

A = {x ∈M : x is Gt −measurable and law(x) ∈ D}

for some compact set D ⊆ Meas(M) and some t ∈ T ∪ {∞}.
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A ∈ BΩT(M) iff A is basic/compact for lawT, that is, A is compact or

A = {x ∈M : lawT(x) ∈ C}

for some compact set C ⊆ RN ×Meas(M).

Recall that by Proposition 3.6, the family of basic sections over BΩT is the same
as the family of basic sections for lawT.

Definition 7.6 A T-adapted space ΩT is said to be rich if ΩT is atomless and for
each M the family of neocompact subsets of M over AΩT is countably compact.

We need the following result from [FK1].

Lemma 7.7 Suppose ΩT is rich. The function law(·) is neocontinuous over AΩT,
and each T-adapted function on M is neocontinuous over AΩT.

Proof: This follows from [FK1, Proposition 5.12 and Theorem 7.6]. 2

The next lemma is another key point where we need the ordinary law function
as the second coordinate of the T-adapted law function.

Lemma 7.8 Let ΩT be a T-adapted space, and let M∈ MΩ.
(i) AΩT(M) ⊆ BΩT(M).
(ii) If ΩT is rich, then every basic section for lawT is neocompact over AΩT.

Proof: (i) Let A ∈ AΩT(M). If A is compact then A ∈ BΩT(M) by definition.
The other possibility is that A is a set of the form

A = {x ∈M : x is Gt −measurable and law(x) ∈ D}

for some t ∈ T ∪ {∞} and some compact D ⊆ Meas(M). By Lemma 5.7 the set
lawT(law−1(D)) has a compact closure C ⊆ RN ×D. We have lawT(x) ∈ C if and
only if law(x) ∈ D, so lawT

−1(C) = law−1(D).
In the case t = ∞, we have A = law−1(D), and hence A = lawT

−1(C) ∈ BΩT(M).
Now suppose t ∈ T. Then an x ∈M is Gt-measurable if and only if

E[|φ̂(x)− E[φ̂(x)|Gt]|] = 0

for every φ ∈ Φ(M). Since
|φ̂(x)− E[φ̂(x)|Gt]|
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is a T-adapted function for each φ, it follows that

A = lawT
−1(B) ∩ law−1(D) = lawT

−1(B ∩ C)

for some closed set B ⊆ RN ×Meas(M), and again A ∈ BΩT(M).
(ii) Suppose ΩT is rich. Since countable intersections of neocompact sets are

neocompact, it follows from Lemma 7.7 that the lawT function is neocontinuous
over AΩT , where we take lawT(x) to be a random variable with a constant value in
RN ×Meas(M). Let A be a basic section in M for lawT. Then for some K, A is a
section of a set in BΩT(M×K). Suppose that A is not already compact. Then A
has the form

A = {x ∈M : lawT(x, z) ∈ Â}

for some z ∈ K and some compact set Â in RN ×Meas(M × K). Then by [FK1,
Proposition 3.9], A ∩ B is neocompact over AΩT for each neocompact set B ⊆ M
over AΩT . The projection D̂ of Â into Meas(M ×K) is compact, so A is contained
in the neocompact set

D = {x ∈M : law(x, z) ∈ D̂}

over AΩT . Therefore A is neocompact over AΩT . 2

Theorem 7.9 Let ΩT be an atomless T-adapted space. The following are equiva-
lent.

(i) ΩT is saturated.
(ii) lawT has the back and forth property.
(iii) ΩT is rich.
(iv) For each M the family of basic sections for lawT is countably compact.
(v) For each basic relation C in M×N for lawT, the existential projection

{x : ∃y(x, y) ∈ C}

is basic for lawT.

Proof: lawT is closed by Proposition 6.7, dense by Proposition 7.4, and has the
Skorokhod property by Proposition 7.3.

The equivalence of (i) and (ii) is proved exactly as in Theorem 4.8, using the fact
that ΩT is universal by Proposition 6.8. (v) is equivalent to (ii) by Theorem 2.12.

We assume (i) and prove (iii). The family of neocompact sets over BΩT is count-
ably compact by Theorem 3.6. Since AΩT(M) ⊆ BΩT(M), every neocompact set
overAΩT is neocompact over BΩT . Thus (iii) holds.

(iii) implies (iv) by Lemma 7.8 (ii), and (iv) implies (ii) by Theorem 2.7. 2
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Since saturated T-adapted spaces exist by [HK, Lemma 5.7], it follows that rich
T-adapted spaces exist. The following corollary gives four characterizations of the
neocompact sets for a rich adapted space. It follows from Lemma 7.8 and the proof
of Theorem 7.9.

Corollary 7.10 Let ΩT be a rich T-adapted space. The following four families of
subsets of M are the same.

(i) The family of neocompact sets over AΩT.
(ii) The family of neocompact sets over BΩT.
(iii) The family of neocompact sets for lawT.
(iv) The family of sets which are intersections of a set of the form

{x ∈M : law(x, z) ∈ C}

and countably many sets of the form

{x ∈M : E[fn(x, z)] ∈ Dn}

where each fn is a T-adapted function, z ∈ N , C is compact in Meas(M ×N), and
each Dn is compact in R. 2

This follows from Lemma 7.8 and the proof of Theorem 7.9. Condition (iv) gives
a characterization of the neocompact sets directly in terms of adapted functions
rather than in terms of the lawT function.

8 Adapted Spaces with Infinite Time Sets

The paper [FK1] introduced rich adapted spaces with times indexed by the dyadic
rationals. Each adapted space with times indexed by the dyadic rationals has an
associated right continuous adapted space with times indexed by the nonnegative
reals. Neocompact sets were applied to prove several optimization and existence
theorems for such spaces.

In this section we shall consider adapted spaces with times in an arbitrary lin-
early ordered set, and apply our results on law mappings to such spaces. This
general approach will include the natural special cases of adapted spaces with times
indexed by the natural numbers (discrete time), by the dyadic rationals, and by the
nonnegative reals. It is known from [FK2] and [FK1] that rich adapted spaces exist
for every linearly ordered time set, but rich adapted spaces with right continuous
filtrations on the reals never exist.
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There are two cases where an adapted space induces a law mapping in a natural
way. The first case, where the set of times is countable, is treated in this section. In
this case, saturation is equivalent to richness. The second case, where the times are
nonnegative reals and the adapted space is right continuous, is treated in the next
section. We shall see that the right continuous adapted space which is associated
with a rich adapted space on the dyadic rationals is saturated and satisfies a weak
form of richness.

Let 〈L,≤〉 be a linearly ordered set. For convenience we assume that L contains
a least element 0, and use the convention that t < ∞ for all t ∈ L. By an L-adapted
space we mean a structure

ΩL = (Ω, P,G∞,Gt)t∈L

such that (Ω, P,G∞) is a complete probability space, Gt is a σ-subalgebra of G∞ for
each t ∈ L, and Gs ⊆ Gt whenever s < t in L. We shall write G = G∞, so that
(Ω, P,G) is the probability space associated with the adapted space Ω.

For each finite subset T ⊆ L, each L-adapted space ΩL has a corresponding
T-adapted space

ΩT = (Ω, P,G∞,Gt)t∈T.

Definition 8.1 Let ΩL be an L-adapted space. We say that f is an adapted func-
tion onM for ΩL if f is a T-adapted function for the corresponding T-adapted space
ΩT for some finite subset T ⊆ L.

An L-adapted space ΩL is atomless if G0 is atomless over the trivial σ-algebra,
and Gt is atomless over Gs whenever s < t ∈ L ∪ {∞}. Note that ΩL is atomless if
and only if ΩT is atomless for each finite T ⊆ L.

We now define families of basic sets AΩL and BΩL which generalize the families
AΩT and BΩT introduced in the preceding section, and review the notion of a rich
L-adapted space from [FK1] and [FK2].

Definition 8.2 Let M∈ MΩ. We define

AΩL(M) =
⋃

{AΩT(M) : T ⊆ L and T is finite}.

That is, A ∈ AΩL(M) if A is either compact or of the form

C = {x ∈M : x is Gt −measurable and law(x) ∈ D}

for some t ∈ L ∪ {∞} and some compact set D ⊆ Meas(M).
ΩL is a rich L-adapted space if ΩL is atomless and for each M∈ MΩ, the family

of neocompact subsets of M over AΩL is countably compact.
We let

BΩL(M) =
⋃

{BΩT(M) : T ⊆ L and T is finite}.
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Thus C ∈ BΩL(M) if and only if C is basic/compact for lawT for some finite
T ⊆ L.

We shall need the following existence result from [FK2].

Theorem 8.3 For every linearly ordered set L, rich L-adapted spaces exist. 2

In fact, it is proved in [FK2, Theorem 5.15] that every atomless Loeb L-adapted
space is rich. The Loeb adapted spaces are constructed using methods from non-
standard analysis, and have been used extensively in the literature to prove existence
theorems in probability theory (e.g. see [AFHL] or [K5]).

Lemma 8.4 Let ΩL be an L-adapted space. A set is neocompact over AΩL if and
only if it is neocompact over AΩK for some finite or countable K ⊆ L. A similar
result holds for BΩL. Thus if ΩL is rich then the corresponding K-adapted space ΩK

is rich for every K ⊆ L. Conversely, if ΩK is rich for every countable K ⊆ L then
ΩL is rich.

Proof: The family of sets which are neocompact over AΩK for some finite or
countable K ⊆ L is closed under the operations (a)-(f), and hence is the same as
the family of neocompact sets over AΩL . Similarly for BΩL . 2

Using the preceding lemma, we have an analogue of Lemma 7.8.

Lemma 8.5 Let ΩL be an L-adapted space, and let M∈ MΩ.
(i) AΩL(M) ⊆ BΩL(M).
(ii) If ΩL is rich, then every basic section over BΩL is neocompact over AΩL. 2

Now let B be the set of nonnegative dyadic rationals. Because of Lemma 8.4
and the fact that every countable linearly ordered set can be embedded in B, we
shall concentrate on B-adapted spaces. For each k ∈ N, let Bk be the finite set of
multiples of 2−k in the interval [0, 2k]. Then B =

⋃

k Bk. Each B-adapted probability
space ΩB has a corresponding Bk-adapted space

Ωk = (Ω, P,G∞,Gt)t∈Bk .

We have not defined a law function corresponding to an arbitrary L-adapted
space ΩL. We shall now take advantage of the countability of the set B of dyadic
rationals to introduce a law function corresponding to a B-adapted space ΩB. By
the kth-adapted law of a random variable x ∈M we mean the function

lawk(x) = lawBk(x),
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where lawBk is the Bk-adapted law function introduced in Section 5.
In order to fit these finite adapted law functions into an infinite product as in

Section 2, for k ≥ 1 we let βk,n, n ∈ N, be a list of all the adapted functions for ΩBk

built from Φ which are not adapted functions for ΩBk−1 . Let

λ0(x) = law(x), λk(x) = 〈E[βk,n(x)] : n ∈ N〉.

Then the finite product ~λk(x) is the kth adapted law

lawk(x) = 〈λ1(x), . . . , λk(x), law(x)〉.

(We put λ0(x) = law(x) last in the sequence to conform with our practice in the
preceding sections). The adapted law of x is the infinite product

lawB(x) = 〈λ1(x), . . . , λk(x), . . . , law(x)〉.

Both lawk(x) and lawB(x) take values in RN ×Meas(M).
All of the lemmas 5.4 through 5.8 hold for B in place of T. In each case, the

result for B is an easy consequence of the result for T.

Proposition 8.6 (i) lawB is a law mapping.
(ii) If ΩB is atomless then lawB is dense.
(iii) If ΩB is atomless then for any other B-adapted space ΓB and any x ∈

L0(Γ,M), lawB(x) is in the closure of lawB(M).

Proof: (i) follows from Propositions 3.7 (i) and 5.9. (ii) follows from Propositions
3.7 (ii) and 7.4.

We now prove (iii). For each k, Ωk is an atomless Bk-adapted space, and by
Proposition 6.8 there exists yk ∈M such that lawk(yk) = lawk(x). Then

d(lawB(yk), lawB(x)) ≤ 2−k,

and thus lawB(yk) → lawB(x) in Λ(M). 2

Proposition 8.7 Suppose ΩB be atomless.
(i) If lawB has the back and forth property on Ω then lawk has the back and forth

property on Ω for each k ∈ N.
(ii) If lawB is closed on Ω then lawk is closed on Ω for each k ∈ N.
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Proof: (i) Assume that lawB has the back and forth property on Ω. Suppose
that lawk(x, yn) converges to lawk(x̄, ȳ) as n →∞. Let

A = {(xn, y) : n ∈ N}.

Then lawk(A) is relatively compact. By Lemma 5.7, the sets law(A) and lawB(A)
are relatively compact. Therefore there is a subsequence 〈ym〉 of 〈yn〉 such that
lawB(x, ym) converges to a point lawB(x′, y′) as m → ∞. By Proposition 2.4 there
exists y such that lawB(x, ym) converges to lawB(x, y). Then lawk(x, ym) converges
to lawk(x, y), so lawk(x, y) = lawk(x̄, ȳ). Thus by Proposition 2.4, lawk has the back
and forth property.

(ii) Assume that lawB is closed. Suppose that

lim
n→∞

lawk(xn) = c.

By Lemma 5.7, lawB({xn : n ∈ N}) is relatively compact. Since lawB is closed,
there is a subsequence 〈xm〉 of 〈xn〉 such that lawB(xm) converges to lawB(x) for
some x ∈ M. Then lawk(xm) converges to lawk(x), and hence lawk(x) = c. This
shows that lawk is closed. 2

It will be convenient to take B0 to be the empty set and to identify law0 with
the ordinary law function on the probability space Ω.

Definition 8.8 Following our earlier pattern, a B-adapted space ΩB is saturated
if for every B-adapted space ΓB and all complete separable metric spaces M and N ,
if

x̄ ∈ L0(Γ,M), ȳ ∈ L0(Γ, N), x ∈M,

and lawB(x) = lawB(x̄), then there exists y ∈ N such that lawB(x, y) = lawB(x̄, ȳ).
A B-adapted space ΩB is universal if for every B-adapted space ΓB and complete

separable metric space M , for each x̄ ∈ L0(Γ,M) there exists x ∈ M such that
lawB(x) = lawB(x̄).

It is clear that every saturated B-adapted space is universal and has the back
and forth property. The converse also holds, as one can see from the next theorem,
which characterizes universal B-adapted spaces.

Theorem 8.9 A B-adapted space ΩB is universal if and only if it is atomless and
lawB is closed on Ω.
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Proof: Suppose ΩB is atomless and lawB is closed on Ω. Let ΓB be another
B-adapted space and let x ∈ L0(Γ,M). By Proposition 8.6 (iii), lawB(x) is in the
closure of lawB(M). Since lawB is closed on Ω, there exists y ∈ M such that
lawB(y) = lawB(x). Thus ΩB is universal.

For the converse, suppose ΩB is universal. Then for each k, Ωk is universal,
and hence is atomless by Proposition 6.8. It follows that ΩB is atomless. Suppose
xn ∈M and lawB(xn) → c in Λ(M). By Theorem 8.3, there exists a rich B-adapted
space ΓB. Then ΓB is atomless. By Proposition 8.6 (ii), each lawB(xn) and hence
c belongs to the closure of lawB(L0(Γ, M)). Therefore there is a sequence 〈yn〉 in
L0(Γ,M) such that lawB(yn) → c. Then the sets

Bk = {lawB(yn) : n ≥ k} ∪ {c}

form a decreasing chain of compact sets, and their inverse images

Ck = {z ∈ L0(Γ,M) : lawB(z) ∈ Bk}

form a decreasing chain of nonempty basic sets for lawB on Γ. Since ΓB is rich, each
of these sets is neocompact and by Lemma 8.5, and their intersection is nonempty.
Thus there exists y ∈ L0(Γ,M)) such that lawB(y) = c. Since ΩB is universal, there
exists x ∈M with lawB(x) = c. This shows that lawB is closed on Ω. 2

We now prove our main theorem on B-adapted spaces.

Theorem 8.10 Let ΩB be an atomless B-adapted space. The following are equiva-
lent.

(i) ΩB is saturated.
(ii) lawB is closed and has the back and forth property.
(iii) ΩB is rich.
(iv) For each M∈ MΩ, the family of basic sections in M for lawB is countably

compact.
(v) For each basic relation C in M×N for lawB, the existential projection

{x : ∃y(x, y) ∈ C}

is basic for lawB.

Proof: lawB is dense on Ω by Proposition 8.6.
Assume (i). Clearly, ΩB is universal and lawB has the back and forth property

on Ω. By Theorem 8.9, lawB is closed on Ω, so (ii) holds.
Using Theorem 8.9 and the argument in the proof of Theorem 4.8, we see that

(ii) implies (i). As in our previous results, (v) is equivalent to (ii) by Theorem 2.12.
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We now assume (ii) and prove (iii). Let k ∈ N. By Proposition 8.7, lawk has
the back and forth property and is closed. By Theorem 7.9, the corresponding Bk-
adapted space Ωk is saturated. By Proposition 7.3, lawk has the Skorokhod property
for each k ∈ N. By Theorem 3.9, the family of basic sections for lawB is countably
compact for each M, and every neocompact set over BΩB is a basic section for lawB.
By Lemma 8.5 (i), every neocompact set over AΩB is a basic section for lawB, and
(iii) holds.

We now assume (iii), that ΩB is rich, and prove (iv). By Lemma 8.4, Ωk is
rich for each k ∈ N. By Proposition 3.7 (iii), every basic section C for lawB is an
intersection of a chain of basic sections Ck for lawk, and by Lemma 7.8 (ii), each
Ck is neocompact over AΩB . It follows that the family of basic sections for lawB is
countably compact, so (iv) holds.

Finally, (iv) implies (ii) by Theorem 2.7. 2

It is natural to ask whether the above theorem can be improved to show that
the family of neocompact sets for lawB is countably compact when ΩB is rich. The
following negative result shows that this can never happen.

Proposition 8.11 Let ΩB be a universal B-adapted space, and let M = {0, 1}.
Then:

(i) The function lawB does not have the Skorokhod property over Ω.
(ii) The family of neocompact subsets of M for lawB on Ω is not countably

compact.
(iii) There is a basic set C ⊆M×M for lawB and a nonempty basic set C ⊆M

for lawB such that the set {x : (∀y ∈M)(x, y) ∈ C} is not basic for lawB.

Proof: By Theorem 8.9, ΩB is atomless and lawB is closed on Ω. For each n ∈ N
let tn = 1 − 2−n. By a result of Maharam [M2, p. 146], for each n there is a
set Sn ∈ Gtn+1 of measure 1/2 which is independent of Gtn . Let xn ∈ M be the
characteristic function of Sn. If k ≤ n, s ∈ Bk, and φ : M → R, then E[φ̂(xn)|Gs]
has the constant value (φ(0) + φ(1))/2 when s ≤ tn, and E[φ̂(xn)|Gs] = φ̂(xn)
when s > tn. It follows that for each k we have lawk(xm) = lawk(xn) whenever
k ≤ m, k ≤ n. Therefore the sequence bn = lawB(xn) is a Cauchy sequence and
hence converges to a limit b∞ ∈ Λ(M). Since lawB is closed on Ω, there exists x ∈M
such that lawB(x) = b∞. We observe that whenever lawB(y) = bm, lawB(z) = bn,
and m 6= n in N∪ {∞}, y is independent of z and hence ρ0(y, z) = 1/2. Thus there
cannot be a sequence yn ∈ M such that yn → x∞ but lawB(yn) = bn for each n.
This proves (i).

Let Bm = {y : lawB(y) ∈ {b0, . . . , bm, b∞}} and B =
⋃

m Bm. Then each of the
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sets Bm and B is basic for lawB and nonempty. Moreover, for each m ∈ N the set

Cm = {(y, z) ∈ Bm ×B : ρ0(y, z) ≥ 1/2}

is basic for lawB. Let

Dm = {z ∈M : (∀y ∈ Bm)(y, z) ∈ Cm}.

Then Dm is a decreasing chain of neocompact sets for lawB on Ω. We have xn ∈ Dm

whenever m < n ∈ N, so each Dm is nonempty. However, the intersection
⋂

m Dm

is empty, because if z ∈ ⋂

m Dm then z ∈ Bm for some m, and we would have
(z, z) ∈ Cm and ρ0(z, z) ≥ 1/2. This proves (ii).

To prove (iii), we show that at least one of the sets Dm is not basic for lawB.
Suppose to the contrary that each Dm is basic for lawB. None of the sets Dm can
be compact, because then Dn would be compact for all n > m and the intersection
could not be empty. Thus for each m, Dm = {y : lawB(y) ∈ Em} for some compact
set Em. Since xn ∈ Dm, we have bn ∈ Em whenever m < n. Recalling that
bn → lawB(x∞), we see that lawB(x∞) ∈ Em, and hence x∞ ∈ Dm, for each m. This
contradicts the fact that

⋂

m Dm is empty, and proves (iii). 2

The preceding proof also works in the same way when we use a decreasing se-
quence of times instead of an increasing sequence of times.

The following question about the Skorokhod property remains open.

Question 8.12 Is there an atomless B-adapted space ΩB such that lawB has the
Skorokhod property on Ω?

By Proposition 8.11, lawB cannot be both closed and have the Skorokhod prop-
erty on Ω.

We now return to an arbitrary linearly ordered time set L. If L is countable, we
may represent L as the union of a countable chain of finite subsets Lk, and define
lawL in the same way as lawB. Then all of the results of this section hold for ΩL

as well as for ΩB. (Proposition 8.11 holds whenever L is infinite). The following
corollary holds even for uncountable L, and is a generalization of Corollary 7.10.

Corollary 8.13 Let ΩL be a rich L-adapted space. The following four families of
subsets of M are the same.

(i) The family of neocompact sets over AΩL.
(ii) The family of neocompact sets over BΩL.
(iii) The family of countable intersections of basic sections over BΩL.
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(iv) The family of sets which are intersections of a set of the form

{x ∈M : law(x, z) ∈ C}

and countably many sets of the form

{x ∈M : E[fn(x, z)] ∈ Dn}

where each fn is an L-adapted function, z ∈ N , C is compact in Meas(M ×N), and
each Dn is compact in R.

(v) If L is countable, then the family of basic sections for lawL on Ω is equal to
the families (i)-(iv). 2

Proof: The proof of Theorem 8.10 gives the result in the case that L = B. The
general case now follows by Lemma 8.4 and Corollary 7.10. 2

9 Right Continuous Adapted Spaces

We now consider continuous time adapted spaces. As is usual in the literature, we
restrict our attention to the case where the filtration is complete and right continu-
ous. By a right continuous adapted space we mean a structure

ΩR = (Ω, P,F∞,Ft)t∈R+

where R+ = [0,∞), Ft is a F∞-complete σ-algebra, and Ft =
⋂

s>tFs for each t ∈
R+. Similarly, a right continuous B-adapted space is a structure (Ω, P,F∞,Ft)t∈B

where Ft is F∞-complete and Ft =
⋂

s>tFs for each t ∈ B.
Each B-adapted space ΩB has a corresponding right continuous adapted space

ΩR where F∞ = G∞ and Ft is the G∞-completion of the σ-algebra
⋂

s>t Gs. The
filtration Gt for ΩB is not necessary right continuous, and thus is not uniquely
determined by the filtration Ft for ΩR.

Each right continuous adapted space ΩR has a corresponding right continuous
B-adapted space

Ωrt
B = (Ω, P,F∞,Ft)t∈B.

The law function for Ωrt
B will be denoted by lawrt

B.
If we start with a given B-adapted space ΩB, then Ωrt

B will denote the right
continuous B-adapted space obtained from the right continuous adapted space ΩR

corresponding to ΩB. Throughout this section we shall always assume that ΩB,
ΩR, and Ωrt

B are related in this way. Note that ΩR is atomless if and only if ΩB is
atomless, and also if and only if Ωrt

B is atomless.
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We begin with a negative result. This result is an improvement of [FK1, Example
7.7], which showed that a right continuous B-adapted space cannot be rich, and
hence cannot be saturated in the sense of the preceding section.

Proposition 9.1 Let ΩB be atomless.
(i) The law mapping lawrt

B is not closed.
(ii) Neither Ωrt

B nor ΩR is rich in the sense of Definition 8.2.
(iii) If lawB is closed, then Ft is atomless over Gt for each t ∈ B.

Proof: (i) There exist xn ∈ L0(Ω, {0, 1}) such that E[xn] = 1/2 and xn is Ft+1/n-
measurable but independent of Ft. Then lawrt

B(xn) converges in RN ×Meas({0, 1})
but there is no x ∈ L0(Ω, {0, 1}) such that lawrt

B(xn) converges to lawrt
B(x). Therefore

lawrt
B is not closed.
(ii) By (i) and Theorem 8.9, Ωrt

B is not rich. Since AΩrt
B
⊆ AΩR , ΩR is also not

rich.
(iii) Suppose lawB is closed, and let xn be as in the proof of part (i). By taking

a subsequence we may assume without loss of generality that lawB(xn) converges
to some c ∈ RN × Meas({0, 1}). Then there is an x ∈ L0(Ω, {0, 1}) such that
lawB(x) = c. For each s > t, xn is Gs-measurable for all sufficiently large n, and
hence x is Gs-measurable. Therefore x is Ft-measurable. However, for each n we
have E[xn|Gt] = 1/2 almost surely, and therefore E[x|Gt] = 1/2 almost surely. It
follows that Ft is atomless over Gt. 2

Combining the above proposition with Theorems 8.8 and 8.9, we see that right
continuous B-adapted spaces are never saturated or even universal in the sense of
the preceding section. To get around this difficulty, we use the notions of saturation
and universality from [HK], which compare a right continuous adapted space with
other right continuous adapted spaces rather than with arbitrary adapted spaces.

Definition 9.2 Two random variables x, y ∈ M are adapted equivalent on R,
in symbols x ≡ y, if E[f(x)] = E[f(y)] for every adapted function f on M for
ΩR. This notion can also be applied to random variables on two different right
continuous adapted spaces. ΩR is universal if for every other right continuous
adapted space ΓR and random variable x̄ ∈ L0(Γ, M) there exists x ∈ M such that
x ≡ x̄. ΩR is saturated if for every other right continuous adapted space ΓR, if
x̄ ∈ L0(Γ,M), ȳ ∈ L0(Γ, N), x ∈ M, and x ≡ x̄, then there exists y ∈ N such that
(x, y) ≡ (x̄, ȳ).

The following result is proved in [HK, Corollary 2.13].

Proposition 9.3 Let ΩR be a right continuous adapted space, M∈ MΩ, and x, y ∈
M. Then x ≡ y if and only if lawrt

B(x) = lawrt
B(y). 2
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The proof of the above proposition also yields the following result.

Proposition 9.4 Let ΩB be an atomless B-adapted space and x, y ∈M. If lawB(x) =
lawB(y) then x ≡ y in ΩR. 2

Example 9.5 The converse of the above proposition is false. If lawB is closed, there
exist x, y ∈ L0(Ω, {0, 1}) such that x ≡ y but lawB(x) 6= lawB(y).

To see this, note first that by Proposition 9.1, F0 is atomless over G0. Take x
to be the characteristic function of a G0-measurable set of measure 1/2, and take y
to be the characteristic function of an F0-measurable set of measure 1/2 which is
independent of G0. Then x ≡ y, but E[(E[x|G0])2] = 1/2 and E[(E[y|G0])2] = 1/4.
This shows that lawB(x) 6= lawB(y). 2

We next wish to show that richness for ΩB implies saturation for ΩR. In order
to do this we shall need a law mapping (lawR, Λ) such that:

x ≡ y if and only if lawR(x) = lawR(y) (8)

and
For each M, the function lawR is neocontinuous over AΩB . (9)

By Proposition 9.3, the function lawrt
B obtained from a rich B-adapted space ΩB has

property (8). However, [FK1, Example 7.7] shows that lawrt
B cannot have property

(9). To build a law mapping with both properties (8) and (9) we shall introduce
the notion of a conditional process from [HK], which is an adapted function with
variable times.

We let ν be the Borel probability measure on R+ with exponential density, so
that ν([s, t]) = e−s − e−t. L0(R+,R) will denote the space of measurable functions
y : R+ → R with the metric of convergence in probability with respect to ν.
It is a complete separable metric space. An n-fold stochastic process on Ω is a
random variable on Ω with values in the complete separable metric space L0,n =
L0((R+)n,R). We shall let L0,n = L0(Ω, L0,n) be the space of all n-fold stochastic
process on Ω with the metric of convergence in probability.

Definition 9.6 The class of conditional processes on M for a right continuous
adapted space ΩR is the least class of functions from M into L0,n such that:

(i) For each bounded continuous function φ : M → R, the function (φ̂(x))(ω) =
φ(x(ω)) is a 0-fold conditional process on M.

(ii) If f1, . . . , fm are n-fold conditional processes on M and g : Rm → R is
continuous, then h(x) = g(f1(x), . . . , fm(x)) is an n-fold conditional process on M.
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(iii) If f is an n-fold conditional process on M and ~t varies over (R+)n then

(g(x)(ω))(~t, s) = E[(f(x))(~t)|Fs](ω)

is an (n + 1)-fold conditional process on M.

Each conditional process on M is uniformly bounded. For each x ∈ M and
n-fold conditional process f on M, we define the expected path E[f(x)](~t) ∈ L0,n

by
E[f(x)](~t) = E[(f(x)(·))(~t)].

We shall now define the right continuous law function lawR. As in the case of
adapted functions, we choose a countable set of conditional processes on M which
is dense in an appropriate sense. Recall that Φ(M) is a countable set of bounded
continuous functions f : M → R which is bounded pointwise dense. The class of
conditional processes built from Φ(M) is defined in the natural way analogous to
the class of adapted functions built from Φ(M), and is a countable set which we
arrange in a list 〈γ0, γ1, . . .〉. Each γn is a j(n)-fold conditional process for some
j(n) ∈ N. For each M, the target space will be the product

Λ(M) =
∏

{L0,j(n) : n ∈ N} ×Meas(M).

(An alternative, would have been to use the space of right continuous functions with
left limits from (R+)j(n) into R with the Skorokhod topology in place of L0,j(n)).

Definition 9.7 Let ΩR be a right continuous adapted space and x ∈ M. The
continuous time adapted law of x is the pair

lawR(x) = (〈E[γ0(x)](·), E[γ1(x)](·), . . .〉, law(x))

in the metric space Λ(M).

Proposition 9.8 x ≡ y on R if and only if lawR(x) = lawR(y).

Proof: This follows from [HK, Corollary 2.15]. 2

The proof of the next proposition is analogous to the proof of the corresponding
result for the discrete time law function lawT.

Proposition 9.9 (i) The lawR function is continuous on M, and uniformly con-
tinuous on law−1(C) for each compact set C ⊆ Meas(M).

(ii) For each set A ⊆ M, lawR(A) is relatively compact if and only law(A) is
relatively compact.

(iii) lawR is a law mapping.
(iv) If ΩB is rich then the lawR function is neocontinuous over AΩB for each M.
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Proof: Part (iv) follows from [FK1, Theorem 9.7]. 2

One way of approximating the adapted space ΩR is to approximate the filtration
Ft by a finite step function. Let Ft,k = Fs where s is the least element of Bk ∪{∞}
such that s ≥ t, let ΩR,k be the right continuous adapted space (Ω, P,F∞,Ft,k)t∈R+ ,
and let lawR,k be the right continuous adapted law for ΩR,k. By Proposition 9.9,
lawR,k is a law mapping. Thus Ft,k is a step function with steps in Bk. For each
conditional process f for ΩR, let fk be the corresponding conditional process for
ΩR,k. The paths of each n-fold conditional process fk(x) for ΩR,k are n-fold step
functions which are constant on the interior of each cube with vertices in (Bk)n.
Moreover, the value of the conditional process fk(x) at ~t is equal to the value of the
adapted function f(x)(~s) at the greatest ~s ≤ ~t in (Bk)n.

Note that lawrt
Bk

(x) = lawrt
Bk

(y) if and only if lawR,k(x) = lawR,k(y). In fact, the
mapping lawrt

Bk
(x) 7→ lawR,k(x) is a topological homeomorphism from lawrt

Bk
(M) to

lawR,k(M). However, this map does not preserve the metrics.
We shall use the upcrossing inequality to prove that lawR,k(x) converges to

lawR(x) uniformly in ΩR and x, and then show that lawR is dense.

Lemma 9.10 For each complete separable M and each ε > 0 there exists m ∈ N
such that for all k ≥ m, all right continuous adapted spaces ΩR, and every x ∈M,
lawR,k(x) is within ε of lawR(x).

Proof: It suffices to prove that for each conditional process f and ε > 0 there
exists m(ε, f) ∈ N such that for all k ≥ m(ε, f), all ΩR, and all x ∈ M, fk(x) is
within ε of f(x) in L0,n. We do this by induction on the formation of f . The main
difficulty is in the conditional expectation step. Assume the result holds for f(x)(~t)
and let

g(x)(~t, s) = E[f(x)(~t)|Fs].

Let b be a uniform bound for f . For each δ > 0, k ≥ m(δ, f), and x ∈ M, the set
Uk of all ~t ∈ (R+)n such that fk(x)(~t) is within δ of f(x)(~t) in R has νn-measure at
least 1− δ. Then for each ~t ∈ Uk,

E[|fk(x)(~t)− f(x)(~t)|] ≤ δ(1 + b).

For each (~t, s) ∈ (Bk)n+1,

gk(x)(~t, s) = E[fk(x)(~t)|Fs].

Let hk = gk − g. Then for each ~t, 〈hk(x)(~t, s) : s ∈ Bk〉 is a martingale for ΩR,k. By
the maximal inequality for martingales, for each ~t ∈ Uk the set

Vk(~t) = {ω ∈ Ω : sup{|hk(x)(~t, s)| : s ∈ Bk} ≤
√

δ}
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has measure at least 1−
√

δ(1 + b).
Let ε > 0 and take δ so that

√
δ(1 + b) ≤ ε/2. Divide [−b, b] into a finite set I

of intervals of length ε/8 such that the center of one interval is the starting point of
the next. The set I has cardinality 16b/ε. By the upcrossing inequality (see [B2, p.
489]), for each ~t and k, the expected number of upcrossings of an interval of length
ε/8 by either gk(x)(~t, u) or g(x)(~t, u) for u ∈ R+ is at most 16b/ε.

Suppose ~t ∈ Uk and ω ∈ Vk(~t). Then

|hk(x)(~t, u)(ω)| ≤ ε/2

for all u ∈ Bk. Let

Wk(ω,~t) = {u ∈ R+ : |hk(x)(~t, u)(ω)| ≥ ε}.

If s < s′ ∈ Bk and Wk(ω,~t) meets [s, s′], then either gk(x)(~t, v)(ω) or g(x)(~t, v)(ω)
must have an upcrossing of one of the intervals in I while v ∈ [s, s′]. Therefore there
exists m(ε, g) ∈ N depending only on ε and g such that for all k ≥ m(ε, g) and
~t ∈ Uk, the set of ω ∈ Vk(~t) such that ν(Wk(ω,~t)) ≥ ε has measure ≤ ε/2. Then for
each ~t ∈ Uk the set of ω ∈ Ω such that ν(Wk(ω,~t)) < ε has measure at least 1− ε.
Since Uk has measure at least 1− δ, it follows that for all ΩR and all x ∈M, gk(x)
is within ε of g(x) in L0,n+1. 2

Proposition 9.11 If ΩR is an atomless right continuous adapted space, then lawR

is dense.

Proof: By Proposition 7.4, lawrt
Bk

is dense for each k. It follows that lawR,k

is dense for each k. Suppose x, x̄ ∈ M, ȳ ∈ N , and lawR(x) = lawR(x̄). By
Propositions 9.3 and 9.8, lawR,k(x) = lawR,k(x̄) for each k ∈ N. Let ε > 0. For
each k we may choose yk ∈ N such that lawR,k(x, yk) is within ε of lawR,k(x̄, ȳ). By
Lemma 9.10, lawR,k(x, yk) is within ε of lawR(x, yk) and lawR,k(x̄, ȳ) is within ε of
lawR(x̄, ȳ) for all sufficiently large k. Therefore lawR(x, yk) is within 3ε of lawR(x̄, ȳ),
so lawR is dense. 2

Corollary 9.12 Let ΩR be an atomless right continuous adapted space. The fol-
lowing are equivalent:

(i) lawR has the back and forth property;
(ii) lawrt

B has the back and forth property.
Moreover, ΩR is saturated if and only if ΩR is universal and one of the above

conditions (i)-(ii) holds.
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Proof: lawR is dense by Proposition 9.11, and lawrt
B is dense by Proposition 8.5.

(i) is equivalent to (ii) by Propositions 9.8 and 9.3. It follows from Proposition 9.8
that ΩR is saturated if and only if ΩR is universal and (i) holds. 2

Another proof of Corollary 9.12 is given by the proof of [HK, Theorem 5.2].
As pointed out by Hoover [H2], the statement of [HK, Theorem 5.2] was incorrect.
Corollary 9.12 gives a corrected formulation of the result.

For any countable set L ⊆ R+, one can define Ωrt
L and lawrt

L in the same way as
we defined Ωrt

B and lawrt
B. Then Corollary 9.12 also holds for any countable dense

set L ⊆ R+. Hoover [H3] proved that if ΩR is saturated then lawrt
L has the back

and forth property for every countable L ⊆ R+.

Proposition 9.13 Let ΩR be an atomless right continuous adapted space. Then
for each other right continuous adapted space ΓR and each M, lawR(M) is dense in
lawR(L0(Γ,M)).

Proof: Let x ∈ L0(Γ,M). By Proposition 6.8, for each k ∈ N we may choose
yk ∈ M such that lawR,k(yk) = lawR,k(x). By Lemma 9.10, lawR(yk) converges to
lawR(x). 2

Theorem 9.14 A right continuous adapted space ΩR is universal if and only if ΩR

is atomless and lawR is closed.

Proof: Suppose first that ΩR is universal. Then for each k, ΩR,k is universal. By
Proposition 6.8, ΩR,k is atomless, so ΩR is atomless. Let xn be a sequence inM such
that lawB(xn) converges to a point c ∈ Λ(M). Let ΓB be a rich B-adapted space.
Then ΓR is atomless, so by Proposition 9.13 there is a sequence yn in L0(Γ, M) such
that lawR(yn) converges to c. Then for each n, the set

Cn = {c} ∪ {lawR(ym) : n ≤ m}

is compact. Since lawR is neocontinuous over AΓB , the sets lawR
−1(Cn), n ∈ N,

form a decreasing chain of nonempty neocompact sets. By countable compactness,
the intersection of this chain is nonempty, so there exists y ∈ L0(Γ,M) such that
lawR(y) = c. Since ΩR is universal, there exists x ∈ M such that lawR(x) = c, so
lawR is closed.

Now suppose ΩR is atomless and lawR is closed. Let ΓR be another right contin-
uous adapted space and let y ∈ L0(Γ,M). By Proposition 9.13 there is a sequence
xninM such that lawR(xn) converges to lawR(y). Since lawR is closed, there exists
x ∈M with lawR(x) = lawR(y), so ΩR is universal. 2
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Theorem 9.15 If ΩB is a rich B-adapted space, then ΩR is saturated.

Proof: Since ΩB is rich, ΩR is atomless. By Proposition 9.9 (iv), lawR is neo-
continuous over AΩB . Then each basic section for lawR is neocompact over AΩB ,
and thus the family of basic sections in M for lawR is countably compact. lawR is
dense by Proposition 9.11. By Theorem 2.7, lawR is closed and has the back and
forth property. By Theorem 9.14, ΩR is universal, and hence by Corollary 9.12, ΩR

is saturated. 2

Since rich B-adapted spaces can never have right continuous filtrations, the con-
verse of the above theorem is false. That is, there are spaces ΩB such that ΩR is
saturated but ΩB is not rich. The following related question is open.

Question 9.16 If ΩR is a saturated right continuous adapted space, does there exist
a rich B-adapted space ΓB such that ΓR = ΩR?

The following negative result can be proved by the same construction that was
used in the proof of Proposition 8.11 in the preceding section.

Proposition 9.17 Let ΩR be a universal right continuous R-adapted space, and let
M = {0, 1}. Then:

(i) The function lawR does not have the Skorokhod property on Ω.
(ii) The family of neocompact subsets of M for lawR on Ω is not countably

compact.
(iii) There is a basic set C ⊆M×M for lawR and a nonempty basic set C ⊆M

for lawR such that the set {x : (∀y ∈M)(x, y) ∈ C} is not basic for lawR. 2

The following question is analogous to Question 8.12 for B-adapted spaces.

Question 9.18 Is there an atomless right continuous adapted space ΩR such that
lawR has the Skorokhod property on Ω?

We shall now give a characterization of saturated right continuous adapted spaces
ΩR by a weaker analogue of richness which does not depend on the Skorokhod
property.

Let us call a set C ⊆M existentially definable over A if C is built from sets
in A(M) using only the rules (a)–(e), that is, without the universal projection rule
(f). The following weak quantifier elimination theorem is a consequence of Theorem
2.12 and is proved in [K5].

44



Theorem 9.19 (Existential Quantifier Elimination) Let λ be a closed law mapping.
Let A(M) be the family of basic subsets of M for λ. The following are equivalent.

(i) λ has the back and forth property.
(ii) Each existentially definable set over A is basic for λ. 2

The next result shows that saturation is equivalent to the analogue of richness
for existentially definable sets.

Theorem 9.20 Let ΩR be an atomless right continuous adapted space. The follow-
ing are equivalent.

(i) ΩR is saturated.
(ii) lawR is closed and has the back and forth property.
(iii) For each M ∈ MΩ, the family of basic sections in M for the law mapping

lawR is countably compact.
(iv) For each M ∈ MΩ, the family of subsets of M which are existentially

definable over the basic/compact sets for lawR is countably compact.
(v) lawR is closed and for every basic relation C ⊆ M × N for lawR the set

{x : ∃y(x, y) ∈ C} is basic for lawR.

Proof: We first prove that (i) is equivalent to (ii). Assume (i). Then ΩR is
universal, and lawR is closed by Theorem 9.14. lawR has the back and forth property
by Proposition 9.9. This proves that (i) implies (ii). Now assume (ii). ΩR is universal
by Theorem 9.14. Therefore ΩR is saturated, and thus (ii) implies (i).

We now prove that (ii) is equivalent to (iii). (ii) implies (iii) by Theorem 2.7.
Assume (iii). By Proposition 9.11, lawR is dense. Then (ii) follows by Theorem 2.7.
(ii) is equivalent to (v) by Theorem 9.19. Finally, we prove that (iii) is equivalent
to (iv). Assume (iii). lawR is dense by Proposition 9.11, and has the back and forth
property by Theorem 2.7. By Theorem 9.19, the family of basic sections is closed
under the operations (b)–(e), and (iv) follows. The implication from (iv) to (iii) is
trivial. 2

The main advantage of using a rich adapted space ΩB instead of a saturated
right continuous adapted space ΩR is that we can use a rich adapted space to
prove existence theorems without introducing the adapted law function (as in the
paper [FK1]). Most of the applications of rich adapted spaces in the paper [FK1]
use neocompact sets which are constructed using the universal projection rule (f),
and thus require a rich space ΩB rather than merely a saturated right continuous
space ΩR. In particular, this applies to most applications involving conditional
expectations or stochastic integrals. However, some of the applications, such as the
result that every continuous process has a closest Brownian motion in the metric of
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convergence in probability ([FK1, Corollary 12.2]), do not depend on the universal
projection rule (f) and thus hold for any saturated right continuous space ΩR.

The results in this section can be applied to adapted Loeb spaces. Let ΩB be an
atomless Loeb B-adapted space. By [FK2, Theorem 5.15], ΩB is rich. Then ΩR is
saturated by Theorem 9.15, and thus ΩR satisfies conditions (i)-(iv) in Theorem 9.19.
A similar result was proved in [HK, Theorem 4.2]. (In that proof, formula (4.2.8)
was stated without adequate justification. This gap can be corrected using Lemma
9.10 of this paper). The adapted Loeb spaces have a particularly nice subcollection,
the hyperfinite adapted spaces. It is shown in [K3] that for each hyperfinite
adapted space ΩB, the associated right continuous adapted space ΩR is universal and
homogeneous. That is, for every pair of random variables x, y ∈ M, x ≡ y if and
only if there is a measure preserving bijection h : Ω → Ω such that y(ω) = h(x(ω))
almost surely, and h(Ft) = Ft for all t ∈ R+. It is easily seen that every universal
homogeneous space ΩR is saturated

The result in [K3] shows that for each hyperfinite adapted space ΩB, the associ-
ated right continuous adapted space ΩR is saturated.
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