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Abstract

We settle a number of questions concerning definability in first
order logics with an extra predicate symbol ranging over semi-linear
sets. We give new results both on the positive and negative side: we
show that in first-order logic one cannot query a semi-linear set as to
whether or not it contains a line, or whether or not it contains the line
segment between two given points. However, we show that some of
these queries become definable if one makes small restrictions on the
semi-linear sets considered.

1 Introduction

Much recent work in the foundations of spatial databases concerns the model-
ing of spatial information by constraint sets: Boolean combinations of linear
or polynomial inequalities. Constraint sets can be effectively queried using
variants of first-order logic; this is the basic idea behind constraint query lan-
guages ([12], [9]), first-order languages with extra free predicates for definable
sets. The most well-studied languages in this family are the first-order linear
constraint language FO+ LIN and the first-order polynomial constraint lan-
guage FO+ POLY . By a semi-linear set we mean a subset of a Euclidean
space R"™ which is definable by a linear constraint, that is, a finite Boolean
combination of linear inequalities with rational coefficients. A linear con-
straint is just a quantifier-free first order formula in the additive real ordered
group R = (R,+,—,<,0,1). By quantifier elimination, each first order
formula in the language of R (without parameters) defines a semi-linear set.
Every FO+ LIN sentence defines a collection of semi-linear sets. FO+ LIN
is the first-order language with an atomic formula for each linear inequality



with rational coefficients and an extra predicate symbol S which ranges over
semi-linear sets.

In FO+ POLY , the binary product symbol x is added to the vocabulary,
and the extra predicate symbol S ranges over the semi-algebraic sets— the
subsets of R™ which are definable by polynomial constraints, i.e. quantifier-
free (or first order) formulas in the ordered field of reals.

A basic question, then, concerns the expressive power of these languages.
Which families of definable sets (semi-linear sets for FO+ LI N, semi-algebraic
sets for F'O + POLY') can be defined by a sentence in the language of the
underlying structure (the additive real ordered group or the real field) with
an extra predicate symbol ranging over the definable sets? More generally,
given a family of sets F' in Euclidean space, one can ask: Which subfami-
lies of I’ can be defined by a sentence in F'O + LIN or FO + POLY with
an extra predicate symbol ranging over F'?7 Recent work has clarified many
questions about the expressive power of FO+ LIN and FFO+ POLY with an
extra predicate symbol ranging over the finite subsets of Kuclidean space ([4],
[12]). There are also a number of recent results about the expressiveness of
FO+ POLY with an extra predicate symbol ranging over the semi-algebraic
sets ([7], [11]). However, the expressiveness of FO + LIN with an extra
predicate symbol ranging over the semi-linear sets is much less understood.
Let’s consider the following examples in the Euclidean plane:

Co.Linear = {A C R?: all points in A are collinear }

Is.Line = {A C R*: Ais a line }
Cont.Line = {A C R*: A contains a line }
Lin.Reach = {{ A,a,b) : A C R?,a,b € R? A contains the line segment ab}
Lin.Meet = {{A,a)) : A C R? A contains two lines which intersect in a}

In the last two examples, FO + LIN has extra constant symbols ranging
over R, in addition to the extra predicate symbol S. Each of the five examples
is easily seen to be definable by a sentence in FFO+POLY , since there one can
quantify over lines. It is shown in [2] that Is.Line is definable in FO+ LIN.
A semi-linear set A belongs to the collection Is.Line iff it is either a vertical
line or is the graph of a function and has the property that if x,y,z € A
then x + (y —z) € A. The paper [2] proved more: There is a sentence of
FO + LIN which defines Is.Line over all subsets of R?, rather than just



over the class of semi-linear sets. On the other hand, it is shown in [1] that
Co.Linear is not definable by a sentence in F'O + LIN.

It was conjectured in [1] that C'ont.Line is not definable in F'O + LIN,
and also that Lin.Meet is not definable in 'O + LIN. The general question
is: under what circumstances can we ask questions about the existence of
lines or line segments in FO + LIN? If it appears that a query cannot be
expressed in FO + LIN, how can we prove this? In this paper we introduce
techniques for showing that a family of sets is not definable in FFO + LIN.
In the preliminary version of this paper [6], we used these techniques to
show that C'ont.Line and Lin.Reach are not definable in FFO + LIN. Since
then, we found much simpler proofs that C'ont.Line and Lin.Reach are not
definable in F'O + LIN, which we give in Section 2. We will use the new
techniques to show that several other queries are not definable in FO+ LIN,
including: “The boundary of A contains the line segment ab”, and “A is 2-
linked”, (i.e. any two points of A can be connected by a path with at most
two legs).

To complement these negative results, we will prove positive results, show-
ing that queries which are very similar to C'ont.Line and Lin.Reach are de-
finable in F'O + LIN. For example, we show that the set of semi-linear sets
A such that the boundary of A contains a line is definable in FO + LIN.

We will also investigate definability in two languages between FO + LIN
and F'O + POLY . The language II; + LIN is obtained by adding universal
quantifiers over lines to FFO + LIN, while ¥; + LIN is obtained by adding
existential quantifiers over lines to FFO+ LIN. While C'ont.Line is obviously
definable in ¥; + LIN, we will show that Cont.Line and related queries are
not definable in II; + LIN.

Organization: In Section 2 we introduce notation and basic definitions,
including the language FFO 4+ LIN, and prove some elementary undefinabil-
ity results. In Section 3 we give a brief review of the notions we need from
nonstandard analysis, and prove some model-theoretic results about the ad-
ditive ordered group of hyperreal numbers which are useful in undefinability
proofs. Section 4 concerns the definability or undefinability of queries related
to Lin.Reach in FO+ LIN. In Section 5 we introduce the universal and exis-
tential second-order extensions of F'O + LIN and show that these extensions
are proper. Section 6 is about the definability problem for queries related to
Cont.Line in FO+ LIN and its second-order extensions. Section 7 concerns
the F'O + LIN-definability problem for the property that any two points
are n-linked (connected by a polygonal path with at most n segments) for
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various n. Section 8 discusses extensions of our results to higher dimensions.
Finally, conclusions are given in Section 9.

2 The Language FFO + LIN

We will introduce some basic notation for the language FO + LIN. We
will then prove some elementary undefinability results which are based on
the well-known fact that multiplication is not definable in the additive real
ordered group.

2.1 Notation

The sets of real numbers, rational numbers, and natural numbers are denoted
by R, @, and N respectively. We start with the additive real ordered group
R =(R,+,—,<,0,1) which serves as a framework for all standard models,
and a signature S consisting of predicate and constant symbols. For simplic-
ity we will confine our attention to the case where § = (.S, c) has only one
binary predicate symbol S, and a tuple ¢ of constant symbols of length .
The tuple ¢ may be empty, that is, [ = 0.

We let 'O + LIN be the first-order language with the vocabulary
SU{+,—,<,0,1}. The standard first order structures for this vocabulary
have the form (R, A,a) where A C R? interprets S and a € R! interprets
c. Since all the structures under consideration have the same R part, we
concentrate on the other part and define a real structure with signature &
to be an object A = ( A,a) where A C R? interprets S and a € R interprets
C.

A structure A = (A, a) satisfies a sentence ¢y € FO + LIN, in sym-
bols A |= 1, exactly when the corresponding first order structure (R,.A) =
(R, A, a) satisfies . By a semi-linear relation we mean a relation which
is definable by a first-order formula without parameters in R. If the re-
lation A is semi-linear and a is also definable in R, we say that A is a
semi-linear structure, or semi-linear instance. Semi-algebraic and semi-
analytic structures are defined similarly. Any collection of structures with
signature S is called a (Boolean) query. We say that a query X is FO+LIN-
definable if there is an FO + LIN sentence 1 such that:

For every semi-linear structure A, A |= v if and only if A € X.



A query X with signature S = (S, c) where |c| = [ can also be viewed
as a function from P(R?) to R, but this view does not match the syntax of
FO + LIN as well. We will sometimes consider the following generalization
where the family of all semi-linear structures is replaced by another family
of structures. Given a “base” query F', we say that a query X is FO+ LIN-
definable over F' if there is a sentence 1) of FO + LIN such that:

For every A€ F, A= if and only if 4 € X.

Thus when a base F' is not mentioned, it is understood to be the family of
all semi-linear structures.

We note that if a query is FO+ LI N-definable over F' then it is FO+LIN-
definable over any subcollection £/ C F. Thus definability results are stronger
when F' is larger, while undefinability results are stronger when F' is smaller.

One particular query which will frequently be used as a base query in this
paper is the class of thin semi-linear structures, defined by

Thin = {A: A is semi-linear and has empty interior}.

We will study the definability of some natural queries in 'O + LIN, and
in extensions of FO + LIN. We will need the following notation.

Definition 2.1 The boundary of A is the set A of all points x such that
every open rectangle around x meets both A and R*\ A.

A point x will be called regular in a semi-linear set A if for some open
rectangle U around x, and ANU is a line segment with x in ANU and x
not an endpoint of ANU.

X is said to be singular in A if x is a boundary point of A which is not
reqular in A.

If x is singular in A, the degree of x in A is the number of edges in the
boundary of A which end in x.

Lemma 2.2 Let n be a natural number. FEach of the following queries is
FO + LIN-definable.
Thin.

Card(n) = {A: A has cardinality n}.
Bounded = { A : A is bounded}.
Singular(n) = {A : A has exactly n singular points}.
Degree(n) = {A: each singular x in A has degree < n}.



Proof: We prove that Singular(n) is FO + LIN-definable. It suffices to
show that there is an F'O + LIN formula which says that x is a singular
point of S. Let U(y,z) denote the open rectangle with corners y,z. Then
x € U(y,z) can be expressed by the formula

Y < T <21 NY2 < To < 29.

Using this, it is an easy exercise to find an F'O + LIN formula 05(x) which
says that x is on the boundary of S. The following formula Reg(x) says that
X is regular in S:

Jy3z3ufu # 0 SNU(y,z) contains x + u and x — u and is closed under
midpoints, and S N U(y,z) has nonempty interior |.

Then the formula 05(x) N ~Reg(x) says that x is a singular point of S.

2.2 Elementary undefinability results

We recall a known result from [1], which is a consequence of the classical
result that the product function cannot be defined in the first order theory
of R.

Theorem 2.3 The query Co.Linear is not FO + LIN-definable. In fact,
Co.Linear N Card(3)
is not FO + LIN-definable.

One way to prove this is to note that if the query were definable, then
there would be a relation in R* definable in R (with no extra relation sym-
bols) that agrees with the graph of the multiplication function on the ra-
tionals. It is easy (e.g. by examining a cell decomposition for the relation,
which would have to be defined using a finite set of linear functions) that no
such relation can exist. The same argument shows that the set of collinear
triples (x,y,z) in R? is not definable in the structure R. Using this fact,
we now show that the queries Lin.Reach and Cont.Line are undefinable in
FO+ LIN.

Theorem 2.4 The query Lin.Reach is not FO + LIN-definable. In fact,
Lin.Reach N Singular(1) N Degree(4)
is not FO + LIN-definable.



Figure 1: Theorem 2.4—The set As.

Proof: Consider three rational points r, s, t in R2. Without loss of gener-
ality, we restrict our attention to the case that r; < s; < t; and ry < 9 < ts.
Let

As = {x 27 < 51 iff 5 < 50}

Then the structure ( Ag,r,t) is semi-linear and has one singular point of
degree 4. See Figure 1. ( Ag,r,t) satisfies Lin.Reach if and only if the triple
(r,s,t) is collinear, because the line segment rt is contained in Ay if and
only if it passes through s. It follows that Lin.Reach N Singular(1l) is not
definable in FO + LIN. m

Theorem 2.5 The query Cont.Line is not FO + LIN-definable. In fact,
Cont.Line N Singular(3) N Degree(4)
is not F'O + LIN-definable.

Proof: Consider triples of rational points r.s,t in R? with r; < s; < t4
and ry < 89 < ty. Let A be the semi-linear set shown in Figure 2, with the
understanding that all of the boundary lines have rational slope. (Ignore the
dotted line for now). The set A has three singular points of degree 4, and
contains a line if and only if the triple (r,s,t) is collinear. m
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Figure 2: Theorem 2.5 and Corollary 2.6.

Corollary 2.6 The query Lin.Meet is not FO + LIN-definable. In fact,
Lin.Meet N Singular(3) N Degree(4)
is not FO + LIN-definable.

Proof: Use the proof of Theorem 2.5, but modify the set A by rotating the
vertical ray through r to the dotted line. Now the dotted line is a boundary
line of A through r. m

By contrast, it was shown in [1] that Lin.Meet is FO + LIN-definable
over the class of semi-linear structures A such that A is exactly the union of
two lines. We can improve this using Lemma 2.2.

Corollary 2.7 The query Lin.Meet is FO+ LIN -definable over the class F
of semi-linear structures A such that A is exactly the union of finitely many
lines.

Proof: A structure (A,a) € F belongs to Lin.Meet if and only if a is
singular in A. m

3 Infinitesimals and Undefinability

We will use notions from nonstandard analysis as a tool in proving further
undefinability results. However, the statements of these undefinability results
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are standard. The main place where nonstandard notions will be used is in
characterizations of definability in query languages (as in, e.g., [5]). We
assume familiarity with basic notions of nonstandard analysis (see [8]), but
give a briefer-than-brief review here.

3.1 Some Nonstandard Analysis

N denotes the set of positive integers. For any set U, the superstructure
V(U) with base set U is defined as V(U) = U, ey Va(U) where Vi(U) =
U, and V,11(U) = V,(U)U{X : X C V,(U)}. Note in particular that
U e V(U). We will work with the superstructure (V(U), € ) considered as
a structure for the first-order language with equality and the binary relation
€. A bounded quantifier formula in this language is a formula built up
from atomic formulas by the logical connectives and the bounded quantifiers:
VX €Y, dX €Y, where X and Y are variables. Almost all of “classical”
mathematics can be done within the superstructure V' (R) based on the set
R of reals.

A nonstandard universe (based on R) consists of a pair of superstruc-
tures V(R) and V(*R) and a mapping * : V(R) — V(*R) such that:

1. *R is a proper extension of R
2. Foreachr e R, r=r

3. (Transfer Principle) For any bounded quantifier formula ¢ (vy, ..., v,)
and any list a1, ..., a, of elements from V(R), ¥(ay,...,a,) is true in
V(R) if and only if ¥ (*ay, ..., "ay) is true in V(*R).

4. (Saturation Principle) For any set of sets A € V(R), any countable
decreasing chain of nonempty sets B,, € *A has a nonempty intersection.

We will fix a nonstandard universe once and for all.

Note that *R is the image of the element R € V(R), and *R € V(*R). An
element B € V(*R) is standard if it is in the image of the x-map, that is,
B = *A for some A € V(R), and internal if it is an element of a standard
set, that is, B € *A for some A € V(R).

Some examples of standard sets are *R, the usual order relation and arith-
metic operations on *R, and the sets *Z, *Q), and *N. To improve readability,
we ordinarily drop the * from the order relation and arithmetic operations
of *R.



All standard sets are internal, all elements of internal sets are internal,
and any finite subset of an internal set is internal. Other examples of internal
sets are the closed intervals *a,b] where a,b € *R, and more generally the
sets and relations which are first-order definable in the structure *R, or even
in the structure (*R,*N, <, +, —, X ).

The Saturation Principle says that any decreasing chain of nonempty
internal sets has a nonempty intersection. A consequence we will need is
that the structure "R is wi-saturated, that is, any countable decreasing chain
of nonempty definable sets in "R has a nonempty intersection.

An element r € *R is finite if |r| < n for some n € N, and infinitesimal
if [r| < 1/n for all n € N. For r,s € *R, we write r =~ s if |r — s| is
infinitesimal. For each finite r € *R, there is a unique standard real number
°r € R, called the standard part of r, such that °r =~ r.

Three important consequences of the definition are:

e N is a proper initial segment of *N in the natural ordering.

e Every nonempty internal subset of *R which has an upper bound has
a least upper bound.

e Every infinite internal set is uncountable (and has cardinality at least
the continuum).

It follows that infinite and positive infinitesimal elements of *R exist. In
fact, there are uncountably many infinite K € *N, and uncountably many
infinitesimals in Q).

Some examples of sets in V (*R) which are not internal are: any nonempty
subset of *R which has an upper bound but no least upper bound (such as R,
the set of finite elements, or the set of infinitesimals), any countably infinite
set, the set of all finite subsets of *R, and the standard part function °.

By the Transfer Principle, the mapping * is an elementary embedding of
the ordered ring (7,4, —, x, <) into (*Z,+, —, X, <), and similarly for R
and *R. Many of the facts we need from nonstandard analysis can be derived
from these elementary embedding results.

When a set A € V(R) has a name, say the set of widgets, the elements of
*A are called *widgets, or hyperwidgets. For example, *R is the set of hyperreal
numbers, y is a hypermultiple of x if y = zx for some z € *Z, and the image
of the collection of semi-linear sets is the collection of hypersemi-linear sets.
Thus every hypersemi-linear set is internal. Hypersemi-linear sets will appear
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in many of our proofs. When discussing properties of a hypersemi-linear set,
we will often drop the “hyper” prefix; for example, we will usually write “line”
rather than “hyperline”, and “connected” rather than “hyperconnected”.

By the Transfer Principle, any set which is definable by a first order for-
mula in "R is hypersemi-linear. In fact, any set which is definable by a first
order hyperformula in *R (or, equivalently, by a hyperfinite Boolean combi-
nation of linear constraints with hyperrational coefficients) is still hypersemi-
linear.

3.2 Elementary equivalence over the hyperreals

We will present some model-theoretic results about the hyperreal ordered
additive group "R which are useful for proving undefinability in F'O + LIN.
a, b will denote finite sequences of hyperreal numbers. = is the elementary
equivalence relation for first order logic.

Here is a useful “nonstandard” sufficient condition for a query to be FO+
LI N-undefinable.

Proposition 3.1 Let X and F be queries with signature S. Suppose that
there are hyperstructures A, B € *F such that A € *X and B ¢ *X, but

(R.A) = (R.B).
Then X is not FO + LIN-definable over F.

Proof: Assume that some F'O + LIN sentence 1 defines X over F'. By
the Transfer Principle, since A € *X, we have ("R, A) |= . Similarly, since
B ¢ *X, we have ("R, B) = —). This contradicts the hypotheses, so X cannot
be FO + LIN-definable over F. m

In order to use this sufficient condition, we need conditions which imply
that two structures are elementarily equivalent. One such condition from the
literature is partial isomorphism. A partial isomorphism from A to B is a
binary relation ~ between tuples a in A and b in B of the same length such
that:

(a) 0~ 0,

(b) If a ~ b then a and b satisfy the same atomic sentences,

(c) If a ~ b then for each ¢ € A there exists d € B with (a,c) ~ (b, d),
and vice versa.
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Karp’s Theorem [Ka65], states that two structures A and B are partially
isomorphic if and only if they are elementarily equivalent in the infinitary
language L, with finite quantifiers, negation, and infinite conjunctions and
disjunctions.

Our next goal will be to develop a particular partial automorphism of
R, which will be denoted by ~. As a preliminary step we will introduce the
notion of a dispersed tuple.

Let *R(a) be the substructure of "R generated by a k-tuplea = (ay, - - - ay ).
Then the universe of *R(a) is the set of all hyperreal numbers of the form

prats=pa+- - +ppar+ s
where p = (p1,...,px) € QF and s € Q.

Definition 3.2 A tuple a is dispersed (in "R ) iff "R(a) does not contain
any positive infinitesimals.

A k-tuple x = (1, ...,xx) in *R is said to be infinitesimal iff x; ~ 0 for
each 1 < k. Two k-tuples x and y are said to be infinitesimally close, in
symbols x =y, iff x; = y; for each 1 < k.

We say that a and b are equivalent over the infinitesimals, in symbols
a~b, iff "R,a,x) = ("R, b,x) for all infinitesimal tuples x.

In other words, a ~ b if and only if the expansions of (R, a) and ("R, b)
formed by adding constant symbols for every infinitesimal are elementarily
equivalent, that is,

(*R’v a, 5)5%0 = (W, b, 5)5,&50_

We collect some easy facts about dispersed tuples and the ~ relation in
the next two lemmas.

Lemma 3.3 (i) Any tuple a of real numbers is dispersed.
(ii) Suppose a is dispersed and (*R,a) = ("R,b). Then b is dispersed.
(iii) Suppose a is dispersed and b € (*R(a))* for some k. Then b is
dispersed.

Proof: (i) If a € R™ then *R(a) is a subset of R, so it contains no positive
infinitesimals.

(ii) Suppose b is not dispersed. Then p - b + s € "R(b) is positive
infinitesimal for some p € Q* and s € Q. Then

O<p-b+s<l1/n
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for each positive integer n. Since ("R,a) = ("R, b),
O<p-ats<l/n

for each positive integer n, contradicting the hypothesis that a is dispersed.
(iii) We have *R(b) C "R(a), so *R(b) has no positive infinitesimals and
thus b is dispersed. m

Lemma 3.4 (i) ~ is an equivalence relation.
(i) a ~ b implies ("R,a) = ("R, b).
(iii) Suppose a ~ b and x is infinitesimal. Then

(a,x) ~ (b,x).
(iv) Suppose a ~ b, x is infinitesimal, and |x| = |a|. Then
at+x~b+x

Proof: Parts (i) and (ii) are trivial.
(iii) Since a ~ b, we have

("R,a,x,y) = ("R,b,x,y). (1)

for any infinitesimal tuple y. This shows that (a,x) ~ (b, x).
(iv) It follows from (1) that

(R,a+xy)=(R,b+x,y),
for any infinitesimal y, and hence a+x~b+ x. =

Lemma 3.5 Suppose a is dispersed. Then for any n-tuple b in *R there is
an n-tuple ¢ = b such that (a, c) is dispersed.

Proof: The result is trivial for n = 0. For the case n =1, let b € *R.

If (a,b) is dispersed we simply take ¢ = b. If b ~ 0 we may take ¢ = 0,
since (a, 0) is dispersed by Lemma 3.3 (iii).

We now consider the general case where (a, b) is not dispersed. Then there
exist rational p, ¢, and s such that p-a + ¢gb + s is a positive infinitesimal.
Since a is dispersed, p - a + s cannot be a positive infinitesimal. Therefore
q#0. Then (1/q)(p-a+s)+b=~0, and b~ ¢ where c = —(1/q)(p-a+ s).
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We have ¢ € "R(a), so (a, c) is dispersed by Lemma 3.3 (iii). This proves the
lemma for n = 1.

We now argue by induction. Assume that the result holds for n where
n > 0, and let (b,d) € (*R)"*!. By inductive hypothesis there exists ¢ ~ b
such that (a,c) is dispersed. Using the result for n = 1, there exists e =~ d
such that (a,c,e) is dispersed. Since (c,e) =~ (b, d), the proof is complete. m

Proposition 3.6 If ("R,a) = (*R,b) and a is dispersed, then a ~ b.

Proof: By Lemma 3.3 (ii), b is dispersed. Since the theory of R admits
quantifier elimination, it suffices to prove that for each infinitesimal n-tuple
x, ("R, a,x) and (*R, b, x) satisfy the same quantifier-free formulas. For this
it suffices to show that for each rational p, s, and q, if p-a+s+q-x>0
then p-b+s+q-x > 0. Suppose p-a+s+q-x > 0. Since x is infinitesimal,
q-x =~ 0. We distinguish three cases.

Case 1: p-a+s > 0. Then p-b+ s > 0. Since b is dispersed in "R,
p-b+ s>t for some real t > 0. Therefore p-b+s+q-x>t/2> 0.

Case 2: pra+s=0. Thenp-b+s=0, so

p-b+s+q-x=q-x=p-at+s+q-x>0.

Case 3: p-a+s < 0. Then p-a+ s < t for some real t < 0, and
p-ra+s+q-x<t/2<0,contradiction. m

We call a k-tuple a of hyperreal numbers linearly independent if
p-a+ s # 0 for every non-zero (k + 1)-tuple of rational numbers (p, s), and
algebraically independent if f(a) # 0 for every non-zero polynomial f(u)
with rational coefficients.

Corollary 3.7 If a is a linearly independent tuple of (standard) real num-
bers, and b = a, then ("R,a) ~ ("R, b).

Proof: We first note that (*R,a) = (*R,b), because for any non-zero
rational (p, s), we have

O#p-a+s=p-°b+s=°"p-b+s),

and hence
p-ats>0iff p-b+s>0.

The result now follows from Proposition 3.6. m
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Proposition 3.8 The relation ~ is a partial automorphism of "R.

Proof: Suppose a ~ b and ¢ € *R. By Lemma 3.4 (ii), a and b satisfy the
same atomic formulas in *R. By Lemma 3.5 there is a tuple a’ &~ a and an
element ¢’ & ¢ such that (a’, ) is dispersed. Then a’ is dispersed by Lemma
3.3 (iii).

Let x =a’' —a and y = ¢ — ¢. x and y are infinitesimal. By Lemma 3.4
(iv) we have a + x ~ b + x, or in other words, a’ ~ b'.

By elementary equivalence, each first order formula satisfied by ¢’ in
("R.a’) is satisfiable in (*R,b’). Since "R is w;-saturated, it follows that
there exists d’ € *R such that ("R.a’,d') = ("R,b’,d'). Since (a’,¢) is dis-
persed, we have (a’,¢’) ~ (b’,d’) by Proposition 3.6. Using Lemma 3.4 (iv)
again, we have (a’ —x,d —y) ~ (b’ —x,d' —y). Taking d = d’ — y, we may
write this as (a,c¢) ~ (b,d). m

We now apply the preceding results to get a sufficient condition for two
FO + LIN structures to be elementarily equivalent. In fact, we will get the
even stronger conclusion that the structures are partially isomorphic, and
hence elementarily equivalent in the infinitary language Lo .

Theorem 3.9 Let A and B be subsets of *R%. Suppose that:
(a)a~b,
(b) For all c¢,d € *R? such that (a,c) ~ (b,d), we have c € A if and only
ifd e B.
Then the relation
u~v iff (a,u) ~ (b,v)
is a partial isomorphism from ("R, A,a) to ("R, B,b), and hence ("R, A, a),

("R, B.b) are elementarily equivalent in Lo .

Proof: By (a) and Proposition 3.8, ~ is a partial isomorphism from (*R, a)
to ("R,b). By (b), the relation u ~ v implies that u and v satisfy the same
atomic formulas in the structures ("R, A,a) and ("R, B,b). The result now
follows from Karp’s Theorem. m

3.3 Good Automorphisms of the Hyperreal Numbers

Our next theorem shows that the structure "R has automorphisms which are
good in the following sense.
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Definition 3.10 Let § be a positive infinitesimal hyperrational number, let
m be a hyperrational number between 0 and 1, and let f be a function from
*R to *R. We say that the triple (6, m, f) is good if:

(a) f(e) =€ for all e = 0.

(b) f(n) =n for alln € *N.

(c) f(m) #m.

(d) f is an automorphism of ("R, L) where

L={(z,maz+ KS):2€"R,K € "Z}.

The key condition is (d), which implies that f is an automorphism of "R.
The extra binary relation L is internal, and is the union of a set of parallel
lines of slope m with the vertical distance § between neighboring lines. We
will use good triples to build pairs of elementarily equivalent hypersemi-linear
structures ("R, A) and ("R, f(.A)), which will be used to show that certain
queries are not F'O + LI N-definable.

Theorem 3.11 There exists a good triple (6, m, f).

Proof: Let
D={K:K/ne€"ZforallnecN}.

D is the largest divisible subgroup of (*Z,+,—,0). D is nontrivial, since
K! € D for any infinite K € *N.
We first choose §. Pick a positive hyperinteger H € D, and let § = H 2.
We next choose m € ") such that:

e m=J/H where J € "N and 0 < J < H.

e The standard part °m is irrational.

To get such an m, just choose any irrational r € (0, 1) and take J so that
J/H =~ r. We note that m has standard part °m € (0, 1).

Given a function f on the hyperreal line, let A(z) = f(z) — z and let f?
be the map on the hyperreal plane defined by f?((z,y)) = (f(z), f(y)).

We first obtain a sufficient condition for f to preserve the binary relation
L in part (d).

Claim 1 Suppose [ has the property that HA(u) € D for every u € *R.
Then for all (x,y) € R? we have (z,y) € L if and only if f*(z,y) € L.
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Proof: Consider any point (z,y) € *R%. By definition, (x,y) € L if and
only if y — max is a hypermultiple of 9. We must show that y — mx is a
hypermultiple of § if and only if f(y) — mf(z) is a hypermultiple of §. It
suffices to prove that the difference

(f(y) =mf(x)) = (y —mz) = Aly) —mA(x)

is a hypermultiple of 4. By hypothesis, A(y) = Y/H = YH6 and A(z) =
X/H = X H¢ for some hyperintegers Y, X € D. Therefore

A(y) —mA(z) = YHS — (J/H)XHS = (YH — JX)3.

]
We will now define a function f by transfinite recursion such that (8§, m, f)
is good. We will build f in such a way that HA(x) € D for all x € *R. In
view of Claim 1, this will insure that f preserves the relation L.
Let Ry be the smallest divisible subgroup of (*R,+,—,0, 1) that contains
*Z and the set of all infinitesimals. Note that Ry is just the set of all x € *R
such that the standard part of the fractional part of x is rational.

Claim 2 Ry is equal to the set of all x € *R such that x = p+ n + ¢ for
somep € QN[0,1), n € *Z, and € = 0. Moreover, for each v € Ry, the
decomposition x = p + n + < is unique.

Proof: The first statement is clear. To prove uniqueness, suppose p+n +
e=p +n'+¢'. Thenn—n' = (p' —p)+ (¢’ —¢). The left side of this equation
belongs to *Z, and the right side is finite and has standard part in (—1,1).
Therefore both sides of the equation are equal to 0. Therefore n = n’ and
p' =~ p. It follows that p’ = p and hence ¢’ = ¢. =

Now let ¢ be the cardinality of the continuum. As usual, we identify c
with the set of all ordinals of cardinality less than c. Let {r, : @ < ¢} be an
enumeration of the set of all reals in [0,1). Starting with Ry defined above,
we build an increasing chain of sets R,, a < ¢ by the following transfinite
recursion. For limit ordinals v < ¢, put R, = U,g < Rg. For successor
ordinals a+1, let R, be the smallest divisible subgroup of (*R,+,—,0,1)
that contains both R, and r,. We then have *R = J___ R,. Note that in
the case that r, € R,, Ray1 is just R,.

a<c

Claim 3 R..1 is equal to the set of all x € *R such that x = pro +n+y
for somep € Q,ne€*Z, andy € *0,1) N R,. Moreover, if o, & Ry, then for
each © € Ryyq the decomposition x = pr,, +n +y is unique.
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Proof: To prove uniqueness, suppose pro +n+y = p'ro+n'+y'. If p #p',
then r, = ((n —n') + (y — v'))/(p' — p) € Ry. On the other hand, if p = p/,
then n+y =n"+19,son—n' =y —y. The left side of this equation belongs
to *Z and the right side belongs to (—1,1). Therefore both sides are equal
to0,son=n"andy=19y". m

Claim 4 For each a < ¢, R, contains fewer than c real numbers.

Proof: We will prove by transfinite induction that for each a < c,
IR, NR| <Ny + |al <c.

By Claim 2, RyN R = @, so |[Ry N R| = Xy. If v is a limit ordinal, then by
inductive hypothesis,

[Ra N RI <> (Ro+8]) = Ro + o]

B<a

Now assume the result for a. By Claim 3 we have
[Rat1 N R[ < |Q] X |Ro N R| < Ro + |a.
Thus the result holds for a + 1, and the induction is complete. m

Claim 5 There exist infinitely many positive infinitesimal € € *Q) such that
He e D.

Proof: By hypothesis, H € D. Using the Transfer Principle, there is a
least K € *N such that H/K ¢ *Z. Since H € D, H/n € *Z for alln € N,
and hence K must be infinite. Therefore for all infinite L < K in *N we have
H/L € D, so e = 1/L has the required property. m

With another transfinite recursion, we build an increasing chain of func-
tions f | Ry : Ry — "R, a < c. Let f [ Ry be the identity function
on Ry, take unions at limit ordinals, and define f [ R,y1 as follows when
To & R, By Claim 5 we may choose a positive infinitesimal ¢, € *Q such
that He, € D. For x € R,y1, put x = pr, +n + y as in Claim 3, and
define f(z) = p(ro +€a) + f(n +vy). When x € R, we have p = 0, so the
new value of f(z) agrees with the old. Taking the union, we have a function
f:*R —*R.
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We now add one more requirement in the construction which will insure
that f(m) # m. Consider the first 5 such that m € Rg. Since °m € [0, 1]\ Q,
m ¢ Ry, so > 0. Then  must be a successor ordinal, 3 = a + 1. Since
m ¢ R, we have R,.1 # R, and thus r, ¢ R,. We then have a unique
decomposition m = pr, +n +y with p # 0. Any two different choices of the
infinitesimal €, will result in different values for f(m), so we can choose g,
in such a way that f(m) # m.

Claim 6 The function f is good.

Proof: We first verify that HA(x) € D for all z € *R. Let f = a+1
be the first ordinal such that x € Rg, and put = = pr, + n +y. We argue
by induction on a. We have A(x) = f(z) — 2 = pe, + A(n + y), where
n+y € R, and p € Q). By definition, He, € D, and by inductive hypothesis,
HA(n+y) € D. Since D is a divisible group, it follows that HA(xz) € D.
By Claim 1, f preserves the relation L. The other requirements on (4, m, f)
are now easily proved by induction on . =

This completes the proof of Theorem 3.11. m

Corollary 3.12 If (6,m, f) is a good triple, then ("R, A) = ("R, f(A)) for
any FO + LIN hyperstructure A.
Proof: f is an isomorphism between these two structures. m

The main point of good triples is that in many cases they give us enough
control to insure that f(.A) is internal even though f is external, and the
inequality f(m) # m can be used to get A € *X and f(A) ¢ *X for a query
X.

4 The Query Lin.Reach

In this section we investigate the 'O+ LI N-definability of queries which are
related to Lin.Reach.

By truncating the semi-linear set Ag in the proof of Theorem 2.4, one can
show that the query

Lin.Reach N Bounded N Singular(5) N Degree(4)

is not 'O + LI N-definable. This can be improved by applying Theorem 3.9.
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Figure 3: Theorem 4.1—The set A; and the point c’.

Theorem 4.1 The query
Lin.Reach N Bounded N Singular(4) N Degree(3)

is not FO + LIN-definable.

Proof: We will construct two hypersemi-linear sets A; and Bj as follows.
(See Figure 3). Choose hyperrational numbers ¢ and m such that ¢§ is positive
infinitesimal and m has standard part °m € (0,1) \ Q. Let

m'=m-4¢, c=(1,m), c=(1,m),

d=(1-0,m—md), d'=d-(0,0)=(1-58m —md).

Define A; to be union of the right isosceles triangle with horizontal and
vertical edges at d and hypotenuse through (0,0), and the infinitesimal line
segment (or “twig”) from d to c. Let B; be the union of the right isosceles
triangle with horizontal and vertical edges at d’ and hypotenuse through
(0,0), and the infinitesimal line segment from d’ to c'.

A; and Bj are hypersemi-linear sets because 6 and m are hyperrational.
Moreover, they are bounded and have 4 singular points, each of degree at
most 3.

We will use Theorem 3.9 to show that ("R, Ay, m) = ("R, By, m'). We
must verify the following two hypotheses:
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(a) m ~m/, that is, m and m’ are equivalent over the infinitesimals.

(b) Whenever (m,z,y) ~ (m',2’,y"), we have (z,y) € A, iff (2/,v) € B;.

Hypothesis (a) follows from Corollary 3.7. To prove (b), assume that
(m,z,y) ~ (m,2',y"). Suppose first that (z,y) € A;.

Case 1: (z,y) is on the infinitesimal twig. Then z = (z,y) — (1,m) =~
(0,0), so ("R,m,z,y,z) = ("R,m',2’,y',z). Therefore z = (2/,y') — (1,m’),
hence (2/,7y') € By (again on the infinitesimal twig).

Case 2: (z,y) is on the triangle. Then

r<1—-0,y<m-—md, z+y>0.
We have ("R, m,z,y,d,md) = ("R, m/,2’,y', 5, md). Therefore
¥ <1=6,vy <m'—md, 2" +vy >0,

so (2',y") € By (on the triangle).

The same argument shows that if (z/,vy') € B; then (z,y) € A;. This
proves hypothesis (b). It follows that ("R, A;,m) = ("R, By, m’), and hence
("R, A1, c) = ("R, By, ).

Ay contains the line segment from (0,0) to ¢, which passes through the
singular point d. However, B; does not contain the line segment from (0, 0)
to ¢/, because the segment from ¢’ to the singular point d’ has slope m, but
the segment from ¢’ to (0,0) has slope m’ and thus misses d'.

The theorem now follows from Proposition 3.1. =

We remark that by adding a superfluous polygonal line with rational ver-
tices, one can show that the preceding theorem still holds if Singular(4) is re-
placed by Singular(m) where m > 4. It can also be shown that Singular(4)
is best possible.

We now ask whether Lin.Reach is definable over the family of thin semi-
linear sets. This can also be formulated as a definability problem with respect
to the family of all semi-linear sets by considering the boundary 0A of a set

A.

Definition 4.2 For a structure A = (A,a), let 0A = (0A,a). For each
query X, let X(0S) denote the query {A:0A € X}.

The following lemma shows that any undefinability result for X (9S) is
stronger than the corresponding undefinability result for X.
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Lemma 4.3 (i) For any query X, if X(9S) is FFO + LIN-undefinable then
X is FO + LIN -undefinable.

(ii) X is FO + LIN-definable over Thin if and only if X(9S) is FO +
LIN-definable.

Proof: (i) For any FO+ LIN sentence 9(S), the definition of the bound-
ary can be used directly to obtain an F'O + LIN sentence 1(09S) such that
for each A, A = 1(S) if and only if 04 = ¥(9S). Therefore if 1(S) defines
the query X then 1(0S5) defines the query X (95).

(ii) For any semi-linear set A, the boundary 0A is a thin closed semi-
linear set. Moreover, any thin closed set is equal to its boundary. It follows
that if an FO 4+ LIN sentence ¥(S) defines a query X over the thin closed
semi-linear sets then ¢(05) defines X (0S5). And if an FF'O + LIN sentence 6
defines X (095), then 0 defines X over the thin closed semi-linear sets. m

We will now use Theorem 3.11 to show that Lin.Reach is not definable
over T'hin.

Theorem 4.4 (i) The query Lin.Reach is not FO + LIN -definable over
Thin.
(i) The query Lin.Reach(0S) is not FO + LIN-definable.

Remark 4.5 Parts (i) and (ii) of Theorem 4.4 are equivalent by Lemma 4.3.
Part (i) is a statement of the form “X is not FO + LIN-definable over
Thin”, and part (ii) is of the form “X(0S) is not FO + LIN-definable”. In
the remainder of this paper we will prove other definability results which have
two versions analogous to (i) and (ii). To avoid repetition, from now on we
will only state version (1).

Proof: We prove (i). By Theorem 3.11, there exists a good triple (J, m, f).
Let L be the set defined in Definition 3.10. Each line in L has slope m, and
0 is the vertical distance between adjacent lines. The set L is hyperthin, but
is not hypersemi-linear (a predicate for the integers is needed to define L).

Now define A, to be the intersection of L with the hyperreal unit square
*[0,1]%. See Figure 4. Since § and m are hyperrational numbers, A, is a thin
hypersemi-linear set. Since the function f is good, it maps the set A; onto
itself.

Consider the hypersemi-linear structures A; = ( A5,0,0,1,m) and By =
(As,0,0,1, f(m)). The two points (0,0), (1,m) are on the same line seg-
ment in Ay. Then Lin.Reach holds in As. But f(m) # m, so Lin.Reach
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(1,f(m))
(1,m)

i

(0,0)

Figure 4: Theorem 4.4—The set As,.

fails in B,. Since f is good, it is an automorphism of *R which maps the
relation and constants in Ay to those in By. Hence ("R, A2) = ("R, Bs). By
Proposition 3.1, Lin.Reach is not F'O + LI N-definable over Thin. m

Note that the above proof would not work if we took As to be just the
single line segment from (0,0) to (1,m), because then the image B = f(A3)
would be an external set. The infinite set of parallel lines was needed in order
to “hide” the fact that the image of each particular line segment is external
by arranging things so that f(As) = A,. Later on we will use a different
set A such that f(A) # A, but we will still need the image f(A) to be an
internal set.

The proof of Theorem 4.4 has several additional consequences.

Definition 4.6 Let Conn be the query
Conn = {(A,a,b): AC R* a,b & R* ais connected to b in A}.
Note that Lin.Reach C Conn.

Corollary 4.7 There is no query Y such that Lin.Reach C'Y C Conn and
Y is FO + LIN-definable over Thin.
In particular, Conn is not FO + LIN-definable over Thin.
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Proof: Viewed from the nonstandard world, the set A, is thin, and the
points (0,0), (1,m) are on the same line segment in A3, but the correspond-
ing points (0,0), (1, f(m)) are not even connected in the set Ay. Thus Ay € Y
but BQ ¢ Y. m

The proof of Theorem 4.4 used models with infinitely many singular
points. The following positive result shows that this is essential.

Theorem 4.8 For each n, the query
Lin.Reach N Singular(n)
1s FO + LIN -definable over Thin.

Proof: Fix n. Since Singular(n) is FO+ LIN-definable by Lemma 2.2, it
suffices to prove that Lin.Reach is FO+ LIN-definable over the family 7;, of
thin semi-linear sets with n singular points. Let Cong(x,y) (for congruence)
say that Reg(x), Reg(y), and the line segments in S containing x and y
are parallel (that is, for all sufficiently small z, x +z € S < y +z € 9).
Then Cong(x,y) is an equivalence relation on the set of regular points of
S, and each equivalence class is definable with a parameter from the class,
hence for every FO + LIN query one can ask whether it holds on some or
all classes. Moreover, a semi-linear structure (S, a, b) satisfies Lin.Reach if
and only (S, a, b) satisfies Lin.Reach where Sy is the closure in S of one
of these equivalence classes. Therefore, it suffices to prove that Lin.Reach
is FO + LIN-definable over the family U, of all semi-linear sets in 7,, such
that all regular points are congruent.

Now let (S,a,b) € U, and let m be the slope of the lines in S (possibly
vertical). Let Vert(a,b) say that S contains a vertical line segment from a
to b. Let Proj say that for every x such that a; < x < b; there exists y with
(x,y) € S. Let Env be the lower envelope of S, that is, the closure of the set

{(z,y)ra1 <z <by ANy=inf{z: (z,2) € S}}.

Suppose for the moment that Proj holds and the slope m is not vertical.
Let Seg be the line segment with slope m from a to a point with horizontal
coordinate b;. We claim that the set Seg is first order definable in (R, S, a, b).

To see this, we first observe that the lower envelope Env is the union of at
most n line segments Ly, ..., L, of slope m, where k < n, L; has endpoints
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(:Ei,yi),(:vi+1,zi+1), and a1 = 29 < 1 < ... < 2 < Tyl = b1. Thus
Yir1 — Ziv1 1s the vertical jump between the end of L; and the start of L; ;.

The set Env is definable in (R, S, a, b), and so are the numbers z;, y;, 211,
i < k. Seg is the closure of the set of all points (z,y) such that for some
Jj <k andsomet, z; <z <, (z,t) € Env, and

t—yo=(y—a2)+ Z (2i — vi)-
1<i<j
This proves the claim that Seg is definable in (R, S, a, b).
Finally, Lin.Reach holds in (S, a, b) if and only if the sentence

Vert(a,b) V [Proj A Seg(b) AVx (Seg(x) — x € )]
holds. =

In the above result, and in all the results where we prove definability
in FO + LIN in this paper, the defining formula does not use the con-
stant symbol 1. The proof shows definability not only in the language
of (R,<,+,—,0,1, A) (which is FO + LIN), but also in the language of
(R, <,+,—,0,A).

In the next section we will consider second order extensions of FO+ LIN.
Before taking up these second order extensions, let us take a brief look at
two first order extensions of FFO + LIN.

Let FO + LINg be the language obtained from F'O + LIN by adding a
parameter (i.e. a new constant symbol) for each r» € R. All of the undefin-
ability results in this paper hold for FFO + LINg as well as for FO + LIN.
Since each formula of F'O + LI Ny contains only finitely many parameters, it
suffices to show that the proofs go through when symbols for any particular
finite collection of real numbers are added to the language.

A larger extension of FO+ LIN is the language FO+ LIN (R) formed by
adding a new unary function symbol r(-) for each r € R, which stands for the
scalar product function x — rz. All of the elementary undefinability results
in Section 2 still hold for F'O + LIN(R). Moreover, Theorem 3.9 still holds
for the language F'O + LIN(R). The proof is the same except that for a
given tuple r = (ry,---,r, ) of real numbers, the structure "R is everywhere
replaced by the structure (*R,ri(+),...,r.(-)), and “rational” is replaced by
“in the field generated by r”.

It follows that Theorem 4.1 holds for FO + LIN(R), that is, the query

Lin.Reach N Bounded N Singular(4) N Degree(3)
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is not F'O + LIN(R)-definable. The same remark will apply to several other
applications of Theorem 3.9 which will be given later on in this paper. How-
ever, the proof of Theorem 3.11, the existence of good triples, does not carry
over to the language F'O + LIN(R). For this reason, the question whether
Lin.Reach is definable in /'O + LIN(R) over the family of thin semi-linear
sets remains open.

5 Restrictions of Second-order Logic

Since we have seen that F'O+ LIN cannot express several queries that we're
interested in, we now investigate definability in extensions of F'O + LIN.
The queries we consider will be obviously definable in FO + POLY, the
expansion of ( R, +, —, X, <) by a binary predicate S. It is natural to look,
then, for languages between F'O + LIN and FO + POLY .

We begin by adding second order unary function variables M; to the
language F'O 4+ LIN. Hereafter it will be understood that FO + LIN has
been enhanced by adding the unary function variables M;. The function
variable M; is to be interpreted by a scalar product function m;(-) for some
real number m;.

A II; + LIN-formula is an expression of the form VM, ...VM,, ¥, where
1 is a formula of FO+ LIN with function variables. A »; + LI N-formula is
an expression of the form IM; ... dM,, ¥, where ¥ is a formula of FO+ LIN
with function variables.

[T, + LIN-formulas and ¥; + LI N-formulas are semantically interpreted
in the natural way. A query X is II; + LIN-definable over F, or simply
IT; + LIN over F, if and only if there is a II; + LI N sentence 0 such that for
every semi-linear structure A € F'; A |= 0 if and only if A € X. Similarly, a
query is X1 + LIN over F iff its complement is I1; + LIN over F. A query
is said to be Ay + LIN over F' iff it is both IT; + LIN and ¥ + LIN over F.

Our convention when we omit F' will be different for the languages I1; +
LIN, ¥+ LIN, and Ay + LIN than it was for FO + LIN—we will now
allow parameters from R. A structure A = (A, a) with signature S is semi-
linear over R if A is definable by a first order formula in R with parameters
from R. By quantifier elimination, this is equivalent to the condition that
A is definable by a finite Boolean combination of inequalities of the form
a1x1 + - + apx,, < r where the coefficients a; are rational and r is real. In
particular, every finite relation A C R¥ is semi-linear over R. We say that a
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query X is Iy + LIN, ¥y + LIN, or Ay + LIN ifitis 1y + LIN, ¥y + LIN,
or A + LIN respectively over the family of structures which are semi-linear
over R. Thus

Ay + LIN =11, + LINN X, + LIN.

An equivalent way to form the languages II; + LIN and »; + LIN is
to add second order variables which range over lines, so that the second
order quantifiers would say “for all lines,” or “there exists a line.” The
languages formed in this way would have slightly different syntax but the
same expressive power as II; + LIN and ¥y + LIN.

It is easily seen that over every collection F' of subsets of R? we have

FO+LIN C Ay+LIN, IL+LIN C FO+POLY, %,+LIN C FO+POLY.

It is also easily seen that the query Co.Linear is in A; + LIN. Since this
query is not F'O + LIN-definable, we see that

FO+ LIN # A, + LIN

even over the collection of sets of cardinality 3. Another example of a query
which is in A; + LIN but not in FO + LIN is the query Lin.Reach. It
is easily seen that Lin.Reach is in A; + LIN, since x reaches y by a line
segment in S iff for some (every) m such that y is on the line through x with
slope m, every point on this line between x and y lies in S. But Theorem 2.4
shows that Lin.Reach is not in F'O + LIN.

Our next proposition shows that FFO + POLY is exactly the closure of
I, + LIN, and also of ¥; + LI N, under first order quantification. Let us say
that two sentences are equivalent (over S) iff they define the same query
over the collection of all structures (R,.A) with signature S. Say that two
languages are equivalent iff every sentence in one language is equivalent to
a sentence in the other language.

Proposition 5.1 (i) The set of universal sentences of FO+ POLY is equiv-
alent to the set of universal sentences of 11, + LIN.

(ii) The set of existential sentences of FO + POLY is equivalent to the
set of existential sentences of X1 + LIN.

(iii) FO + POLY is equivalent to the closure of Ay + LIN under first
order quantification, and also to the closure of 11y + LIN wunder all the first-
order operations {V,3, A\, V, —}.
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Proof: It suffices to prove the non-trivial direction of (i). Then (ii) follows
by applying (i) to the negation, and the non-trivial direction of (iii) follows
by applying both (i) and (ii) to quantifier-free sentences of FO+ POLY and
then using the prenex normal form theorem.

Consider a universal sentence Vy 6(c,y) of 'O + POLY. We need an
equivalent universal sentence of II; + LIN. Let 7y,..., 7 be the set of all
terms and subterms of terms which occur in 6. Introduce second order vari-
ables M, ..., M. For each j < k, we define a term o; of II; + LIN by
induction on the complexity of 7;. The only nontrivial case in this definition
is the product case: If 7; is 7, - 7;, then o, is M),(0;). Form 6" by replacing
each term 7; in 6 by o;. The required sentence of II; + LIN is

VYMVy (/k\ M;(1) =0; — 0'(M,c, y)) .

j=1

We will sometimes add second order constants, that is, extra unary func-
tion symbols, to the language of R. For an n-tuple t = (¢q,...,¢,) of real
numbers, let R(t) be the structure obtained by adding second order constants
t1(+), ..., ta(+) to R, where t;(-) stands for the scalar product function.

We will also consider hyperreal second order constants. For an n-tuple
t = (t1,...,t,) of hyperreal numbers, let *R(t) be the structure obtained by
adding second order constants ty(-),...,t,(-) to *R.

Our next goal is:

Theorem 5.2 The classes Ay+LIN, ¥1+LIN, 1I1,4+LIN, and FO+POLY
are all distinct.

To prove this theorem, all we need is an example of a query with signature
{S} that is ¥; + LIN but not II; + LI N-definable. The negation will then
be I1; + LIN but not ¥; + LIN-definable, and Theorem 5.2 will follow. We
first give a sufficient condition for not being ¥; + LI N-definable.

Definition 5.3 For a collection X of semi-linear sets over R and a natu-
ral number n, the game G,(X) is played as follows: Duplicator chooses a
set A € *X. Spoiler chooses an n-tuple of hyperreal numbers t = (t1...t,).
Duplicator chooses a hypersemi-linear set B over *R that is not in *X. Dupli-
cator wins the game if the structures ("R(t), A) and ("R(t), B) are first-order
elementarily equivalent, and otherwise Spoiler wins.
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The game G,,(X) could, of course, be refined further, but the above def-
inition is sufficient for our purposes here.

Lemma 5.4 If Duplicator has a winning strategy for G, (X) for every n €
N, then X s not 31 + LIN-definable.

Proof: Suppose X is definable by a ¥; + LIN-sentence 37} ...3T,.
Duplicator’s first move in the winning strategy for G,,(X) must be a set
A € *X. Then ("R, A) | IT;...3T,3p. Spoiler can then choose hyperreal
numbers ¢; ..., such that ¢ holds in ("R(t), A). Duplicator must respond
with a hypersemi-linear set B over *R such that B ¢ *X. Then the formula
¥ cannot hold in (*R(t), B). Thus ("R(t), A) and (*R(t), B) are not elemen-
tarily equivalent. Therefore Duplicator cannot have a winning strategy for

Gn(X). m

We will now give an example which completes the proof of Theorem 5.2.
Consider the query Somel'riple:

{S:(3Ix € 8)(Jy € 5)(3z € 9)[(x,y,2z) are distinct and collinear]}.

SomeTriple is clearly FO + POLY -definable, and is even ¥y + LIN-
definable.

Theorem 5.5 The query SomeTriple is not 11y + LIN-definable.

Proof: Let X be the set of all semi-linear sets over R in which SomeTriple
fails. For each (standard) integer n our goal is to produce a winning strategy
for Duplicator in the game G,,(X). Duplicator’s opening move is the set As
which is constructed as follows: Let r = (ry,...,7,41) be an n + 1-tuple of
hyperreal numbers in %0, 1) such that 0 < °ry < --- < °r,4; < 1, and the
real tuple °r is algebraically independent, (that is, no polynomial with ratio-
nal coefficients has root °r). Then any (n + 1)-tuple u of hyperreal numbers
which is infinitely close to r is also algebraically independent, because for
each rational polynomial p(x), if p(u) = 0 then p(°r) = °p(u) = 0.

For each 7, choose a hyperreal number ¢; such that ¢; =~ (r;)? but ¢; #
(r;)?. Let A3 be the finite set consisting of the point 0 = (0,0), the points
x; = (ri,¢;), and the points y; = (,r;), where i = 1,...,n+ 1. This is the
fan-shaped set shown in Figure 5.

For each 7, the points (0,x;,y;) are not collinear because ¢q; # (r;)%. It
follows from the algebraic independence of °r that for any other distinct
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triple of points of Az, the standard parts are not collinear and hence the
triple itself is not collinear. Therefore Az belongs to *X, and is a legal move
for Duplicator.

Figure 5: Theorem 5.5. The set As; the triples are almost collinear.

In the game G,,(X), Spoiler must respond to Duplicator’s opening move
Az by choosing n scalar multipliers ¢;...t, in *R. Let P be the algebraic
closure of {t;...t,} U@ within *R. Then P has transcendence rank n over
@, so P cannot contain an algebraically independent (n+ 1)-tuple. Since any
(n+1)-tuple u = x is algebraically independent, thereisa j € {1,...,n+1}
such that P is disjoint from the monad of ;. To simplify notation, we may
assume that j = 1.

We must now construct Duplicator’s response, which will be a finite set
Bs ¢ *X. First, form the structure *R(P) by adding a new second order
constant p(-) for scalar multiplication for each p € P. Since P and R are
real closed, it follows from Tarski’s theorem that *R(P) admits quantifier
elimination. Next, let D be the substructure of "R(P) generated by 1. Thus
P C D and r; € D. We now prove two claims.

Claim 7 For each element d € D there are unique s,p € P such that d =
S+ p(?”l).

Proof: The set of all elements of the form s+p(ry) is clearly a substructure
of "R(P), so s, p exist. They are unique because if s +p(r;) = s’ +p/(r1) and
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p#p, then (s—s")+(p—p)(r1) =0 and hence r; = —(s—¢')/(p—p') € P,
contrary to hypothesis. m

Claim 8 D is disjoint from the monad of 2.

Proof: Suppose to the contrary that r? ~ d for some d € D. Let d =
s+ p(r1) as in Claim 7. Consider the parabola g(z) = s + p(z) — 22, We
have g(r1) ~ 0. The slope at r; is ¢/(r1) = p — 2ry. Since P is disjoint
from the monad of 71, we cannot have p — 2r; = 0, so the slope ¢'(ry) is
not infinitesimal. Therefore the parabola crosses the z axis at some point
ro ~ r1, and xg € P because P is algebraically closed, contradiction. m

Since ¢; belongs to the monad of r? which is disjoint from D, ¢; and r?
are in the same cut in the ordering of D. It follows by quantifier elimination
that

(*R'(P)vrlaql) = (*R»(P),Tl,T%).

By the Saturation Principle, the relation ("R(P),x) = (*R(P),y) has the

back and forth property. Since the set A is finite and contains the points

(0,0), (r1,q1), and (1,7y), it follows that there is a finite set Bs which contains

the points (0,0), (ry,7%) and (1,71) such that ("R(P), A3) = ("R(P), Bs).

Then ("R(t), A3) = ("R(t), B3). But B3 ¢ *X because the triple

((0,0), (r1,7%),(1,71)) is collinear. Therefore Duplicator wins the game G,,(X).
This completes the proof of Theorem 5.5. m

Theorem 5.2 now follows immediately from Theorem 5.5
As usual, the proof of the theorem shows more. We give three corollaries
of the construction.

Corollary 5.6 SomeTriple is not 11y + LIN-definable over the collection of
finite sets. m

A query is said to be I1; + LIN(n) if it can be defined by a II; + LIN
sentence with at most n second order quantifiers. Similarly for ¥, + LIN (n).

Corollary 5.7 For each n, SomeT'riple is not 11} + LIN (n)-definable over
the collection of sets of cardinality 2n + 3. =

Let SomeTriple0 be the query
{S:0eSA(3yeS)(Jze 5)[0,y,z) are distinct and collinear]}.

Clearly, SomeTriple0) implies SomeTriple. The proof of Theorem 5.5
works for SomeTriple0 as well. Namely:
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Corollary 5.8 There is no 11y + LIN-definable query Y such that

SomeTriple) CY C SomeTriple.

A natural variant of SomeTriple0 is the query
AllTriples = {A: (Vx € A)(Jy € A)(0,x,y) are distinct and collinear}.

Note that this query implies that 0 ¢ A. AllTriples is clearly FO + POLY -
definable, and is even I1; + LI N-definable. Using a modification of the proof
of Theorem 5.5 we can show:

Theorem 5.9 AllTriples is not X1+ LIN-definable over the family of finite
sets.

Proof:
We will use Lemma 5.4 and a modification of the proof of Theorem 5.5.
See Figure 6.

Figure 6: AllTriples. The set Ay; (0, z;, ;) are collinear. Move one x; verti-
cally.
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Take a standard n. This time Duplicator’s first move must be a set Ay
for which AllTriples is true. Choose r = (ry,...,7,41) as in the proof of
Theorem 5.5. Let A, be the finite set consisting of the points x; = (r;,7?)
and y; = (i,ir;) fori = 1,...,n+ 1. AllTriples is true in A,. Again, Spoiler
chooses an n-tuple of hyperreal numbers t,...,t,, and thereis a j <n+1
such that the algebraic closure P of Q U {ty,...,t,} within *R is disjoint
from the monad of r;. For simplicity we assume j = 1.

This time Duplicator’s move is a finite set By such that ("R(t), Ay) =
(*R(t), By) and By, contains points (1,7;) and (r,q;) where ¢ ~ r? but
q1 # ri. Then AllTriples is false in By, because the points 0, (rq, q1), (1,71)

are not collinear. Therefore Duplicator wins the game G, (AllTriples). m

Corollary 5.10 For each n, AllTriples is not ¥, + LIN(n)-definable over
the collection of sets of cardinality 2n + 2.

6 The Queries Cont.Line and Lin.Meet

We have seen in Section 2 that C'ont.Line and Lin.Meet are not FO+ LIN-
definable. We will now show that they are F'O+ LI N-definable over the thin
semi-linear sets.

It is easily seen that Cont.Line and Lin.Meet are X1 + LI N-definable.
We will complement this by showing that they are not II; + LI N-definable.

Intuitively, the query Cont.Line is “almost” first-order definable. For
example, the query “S contains a ray” is easily definable in FO + LIN,
because a semi-linear set contains a ray if and only if it is unbounded. The
proof of Theorem 2.5 used semi-linear sets which are not thin. Our next
theorem shows that this is essential, and reinforces the idea that C'ont.Line
is almost first-order definable.

Theorem 6.1 Cont.Line is FO + LIN-definable over Thin.

Proof: We restrict our attention to thin semi-linear sets in the following
argument. We will freely use the particular FO + LIN formulas introduced
in the proofs of Lemma 2.2 and Theorem 4.8.

Let MinSame(x,t,y) say that y is minimal such that Cong(x,t,y), that
is,

Cong(x,t,y) ANVu(Cong(x,t,u) — y < u).
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Let Vert be the sentence asserting that S contains a vertical line. Let
OnLine(x) be the formula

AsVE V' [(s < tAs < t') — JyTy [MinSame(x,t,y) AMinSame(x,t', ')A
(x+(t.y) - (L.y) € 5],

Finally, let 1 be the sentence

Vert V 3x[Reg(x) A OnLine(x)|.

We claim that for any regular point x in a thin semi-linear set A, OnLine(x)
holds if and only if A contains a non-vertical line through x. From this it
follows easily that v is the required sentence.

Suppose A is a thin semi-linear set and x is a regular point of A which
is not on a vertical line segment in A. We make a preliminary observation.
If the set J = {y : MinSame(x,y)} is unbounded on the right, then J is
contained in the union of finitely many parallel lines, and it follows that there
exists s and a line K such that J contains the part of K to the right of s.

Assume that A contains a line L through x. Then L is not vertical. The
set J is unbounded on the right, and there exist s and K as in the above
paragraph. Moreover, K is parallel to L. Thus whenever t,t" > s, (t,y) € K,
and (¢, y') € K, the sum of x and the vector between (¢,y) and (¢, y’) belongs
to L, which is a subset of A. Thus OnLine(x) holds.

For the converse, suppose that OnLine(x) holds. Since x is regular, there
is a line L through x such that A = L in some open rectangle around x. We
show that L is actually contained in A. Let m be the slope of L. It follows
from OnLine(x) that the set J is unbounded on the right. Therefore there
is a line K of slope m and an s such that J contains the part of K to the
right of s. For any d we can find t,t' > s with t —t' = d. Then there are
y,y" such that (t,y), (t',y') € K. When we add the vector between (¢,y) and
(t',y') to x, we get the point on L at horizontal distance d away from x.
By OnLine(x), this point is in A. Since d was arbitrary, this shows that A
contains L, and proves the claim. m

The above argument shows somewhat more.

Corollary 6.2 (i) Cont.Line is FO+LIN -definable over the family of semi-
linear sets A such that the interior of A is bounded on the right.

(i) Cont.Line is FO + LIN-definable over the family of thin semi-
algebraic sets.

(iii) For each o-minimal expansion R’ of R, Cont.Line is FO + LIN-
definable over the family of thin R'-definable sets.
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Proof: In each case, the FO+ LIN sentence 9 in the proof of Theorem 6.1
defines Cont.Line. m

Corollary 6.3 Lin.Meet is FO + LIN-definable over Thin.

Proof: Using the formula OnLine(x) from the proof of Theorem 6.1, one
can build an 'O + LIN sentence 0(a) which says that every open rectangle
containing a contains two regular points x,y such that =Cong(x,y), and
A contains a line through x and a line through y. This sentence defines
Lin.Meet over Thin. m

We now prove the undefinability results over I1; + LIN.

Figure 7: Theorem 6.4. The set As.

Theorem 6.4 Cont.Line is not 11y + LIN-definable.
Proof: We build upon the construction used in Theorem 5.5, where it
was shown that SomeTriple is not in II; + LIN. Let X be the family of

semi-linear sets over R in which Cont.Line fails. Given n, let

A3 = {07X17y17 S 7Xn+17y”—|—1}
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be the finite set constructed in the proof of Theorem 5.5. Now take n + 1
wedges W; such that each W; has vertex (0,0), has rational slopes between
0 and 1, and contains the points x; and y;, and such that for ¢ # j, W; and
W; are disjoint except for the origin (0,0). For each i, form the set U; by
removing from W; the vertical lines through x; and y; and then adding back
the points x; and y;. The vertical lines which are removed are “barriers”
which are crossed by “bridges” x; and y;. Finally, let

As=U; U - UU,p1 U{(u,v) :u <0Av <0}

Let B3 be the finite set used in Duplicator’s strategy in the proof of
Theorem 5.5 and let Bs be the set formed in the same way as As (with the
same rational slopes). The sets A5 and Bs are hypersemi-linear over *R. The
proof of Theorem 5.5 shows that ("R, As) = ("R, B5). One can see from the
figure that Cont.Line fails in A5 because none of the triples (0,x;,y;) are
collinear, but C'ont.Line holds in Bs because one of the triples (0, u;, v;) is
collinear. Therefore Duplicator has a winning strategy for the game G,,(X),
and the theorem is proved. m

Corollary 6.5 The query Lin.Meet is not 11; + LIN-definable.

Proof: Argue as in the proof of Theorem 6.4, but add a vertical line
through the origin to the sets As and Bs. m

The following positive result shows that the use of models with unbound-
edly many singular points or unbounded degrees is essential in the proof of
Theorem 6.4. This result should be contrasted with Theorem 2.5.

Theorem 6.6 For each k,m € N, the query
Cont.Line N Singular(k) N Degree(m)
is IIy + LIN-definable.

Proof: Let h = k(k+m). The defining I1; + LI N-sentence says that there
are k singular points, each singular point has degree at most m, and either
S contains a vertical line, or for all My, ..., My, if the slope of each regular
point is equal to M; for some ¢ < h, and the slope of the segment between
each pair of singular points is equal to M; for some ¢ < h, then S contains a
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line of slope M; for some ¢ < h. It is clear that this sentence implies that S
contains a line.

For the converse, note that if A contains a line L, then L can be moved
within A to a line which is either vertical, parallel to the segment through a

regular point of A, or parallel to the segment between two singular points of
A m

7 The Queries n-Linked, n € N

Definition 7.1 For each n, let n-Linked be the class of semi-linear sets A
such that for any two points x andy in A, A contains a polygonal path from
X to 'y consisting of at most n line segments.

Note that a semi-linear set is connected if and only if it is n-linked for
some n. It is easily seen that for each n the query n-Linked is definable in
FO+ POLY. We will give a fairly complete description of the FFO + LIN-
definability of n-Linked for n € N, summarized in a table at the end of the
section. Like Cont.Line, the query n-Linked will behave differently over the
family of thin semi-linear sets than over the family of all semi-linear sets.

Proposition 7.2 1-Linked is FO + LIN-definable.
Proof: 1-Linked is defined by the FO + LIN sentence

Vx € SVy € SMid(x,y) € S.

Note that a semi-linear set A is in 1-Linked if and only if it is convex.
Theorem 7.3 2-Linked is FO + LIN-definable over Thin.

Proof: Let Par(x,y) say that each rectangle around x contains a point
z such that Cong(y,z). As before, we let Mid(x,y) denote the midpoint
between x and y. Now consider the following F'O + LIN sentence 1:

VxVy( Reg(x) A Reg(y) — [ Par(x,y) — Mid(x,y) € S|A

[—Par(x,y) — 3z( Par(z,x) A\ Par(z,y))]).
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1 says that any two regular points either have the same slope and their
midpoint is in S, or they have different slopes and there is a singular point
in S which realizes both slopes.

We claim that a thin semi-linear set A is 2-linked if and only if it satisfies
1. It is easily seen that if A is 2-linked then A satisfies .

For the converse, assume that A satisfies ¥. To show that A is 2-linked,
it suffices to prove that any two regular points x,y in A are 2-linked. Call a
pair of points x,y bad if Reg(x), Reg(y), and Par(x,y), but x,y are not 1-
linked in A. By v, if x,y is a bad pair then every rectangle around Mid(x,y)
must contain a point z such that then either x,z or z,y is another bad pair
of points. It follows that there are bad pairs of points which are arbitrarily
close to each other. This cannot happen in a thin semi-linear set. Therefore
there are no bad pairs of points.

Now suppose Reg(x), Reg(y) and not Par(x,y). By v there is a point
z € A such that Par(z,x) and Par(z,y). Then each rectangle around z
contains regular points u, v such that Par(u,x) and Par(v,y). Since there
are no bad pairs, A must contain the line segments from x to z and from z
to y, so x and y are 2-linked in A. m

We obtain several undefinability results by modifying the proofs of our
earlier theorems.

Theorem 7.4 2-Linked is not FO + LIN-definable. In fact, each of the
queries
2-Linked N Bounded N Singular(6) N Degree(3),

2-Linked N Singular(4) N Degree(3)
is not F'O + LIN-definable.

Proof: For the first query, start with the hypersemi-linear sets A; and B
introduced in the proof of Theorem 4.1. Form new hypersemi-linear sets Ag
and Bg by attaching to (0,0) an “infinitesimal twig” of slope m from (0, 0)
to (=9, —md), as in the left part of Figure 8. Ag and Bg have six singular
points with degree < 3. As before, we have ("R, Ag) = ("R, Bg) by Theorem
3.9. However, Ag is 2-linked but By is not.

For the second query, let A; be the union of the infinite vertical strip
[0,1 — d] x *R and the line segment from (0,0) to (1,m), and let B; be the
same as A7 except that the infinitesimal twig on the right is shifted down by
5. (See the right part of Figure 8). Again, A; and B; are hypersemi-linear
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(0,0)

Figure 8: Theorem 7.4—The sets Ag, Bg and A7, B,

sets such that ("R, A7) = ("R, By), and each set has four singular points, all
of degree at most 3. However, A7 is 2-linked but B; is not. m

The next result shows that the queries in Theorem 7.4 are FO + LIN-
definable over T hin.

Proposition 7.5 For each finite n and k, the query
k-Linked N Singular(n)
is O + LIN-definable over Thin.

Proof: By Lemma 2.2 and Theorem 4.8, the query Lin.Reach is FO +
LIN-definable over the class T,, = ThinNSingular(n). The defining sentence
must be of the form v¥,(a,b) for some FO + LIN formula ¢,(x,y). Then
k-Linked is defined over T,, by the following FFO + LIN sentence:

VxVy3dzy -« -3z (21 =X A2 =Y AN Un(21,22) A+« Ap(Zr1,21) ) .

We next obtain a negative interpolation result between 3-Linked and
k-Linked.
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Figure 9: Theorem 7.6—The sets Ag, Bg

Theorem 7.6 There does not exist an FO + LIN-definable query Y and
natural number k > 3 such that

3-Linked CY C k-Linked.
Thus for each k > 3, k-Linked is not FO + LIN -definable.

Proof: Fix a natural number k£ > 3. Let Y be a query which is definable
by an FO~+ LIN sentence 1. Choose k41 linearly independent real numbers
71 < --+ < < 1 in the interval (0,1) and choose hyperrational numbers
r;,m with standard part 7;, m. Form the set Ag by taking the vertical strip
0, 1] x *R, removing the k vertical lines {r;} x *R for i = 1,..., k, and adding
the line segment L from (0,0) to (1,m). The removed vertical lines are
“barriers” and the segment from (0,0) to (1,m) has a bridge across each
barrier.

Let 0 be a positive infinitesimal hyperrational number. Let Bg be the
same as Ag except that for each even ¢ < k, the bridge on the line segment
L with horizontal coordinate r; is shifted vertically upward by d. See Figure
9. The sets Ag and Bg are hypersemi-linear sets. The set Ag is 3-linked,
but Bg is not k-linked, because it takes two segments to get to the first
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and last bridge, and (k — 1) segments to cross all k bridges. By Corollary
3.7 and Theorem 3.9, the structures ("R, Ag) and ("R, Bg) are elementarily
equivalent. If 3-Linked C Y, then Ag |= v, so By = ¢ and thus Y is not
contained in k-Linked. m

The preceding results leave two problems open.

Problem 7.7 (i) Can Theorem 7.6 be improved by replacing 3-Linked by
2-Linked?
(i) Is there an F'O + LIN-definable query Y such that

3-Linked CY C Connected?

//\‘
P

\

Figure 10: Theorem 7.8—The sets Ag, By

We now return to the question of definability over the family of thin
semi-linear sets.

Theorem 7.8 The query 3-Linked is not FO + LIN-definable over Thin.

Proof: Let C' be the restriction of the hypersemi-linear set Ay from the
proof of Theorem 4.4 to the right triangle with vertices (0,0), (1,0), (1,1).
Now form the hyper-semilinear set Ag by adding to C' the boundary of the
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right triangle, and two extra infinitesimal twigs, which are line segments with
rational slopes attached to the points (0,0) and (1,m). See Figure 10. The
set Ag is thin and 3-linked.

By Theorem 3.11, there is a good triple (,m, f). The map f leaves the
left twig fixed, but shifts the right twig vertically upward. f sends Ag to a
set By with the same bounding triangle, but the two infinitesimal twigs are
no longer on the same line of slope m. The set By is not 3-linked, because it
takes four segments to connect the ends of the two infinitesimal twigs. m

(b1,b2)

Figure 11: Theorem 7.9—The set A

A similar argument can be used to show that the query 4-Linked is not
FO + LIN-definable over the thin semi-linear sets. By yet another modifi-
cation, we can map a 4-linked set to a set that is not connected at all, and
obtain a stronger interpolation result.

Theorem 7.9 There is no class Y of semi-linear sets such that'Y is FO +
LIN-definable over Thin and

4-Linked CY C Connected.

In particular, this shows that Connected is not FO + LIN-definable over
Thin, and also that for each k > 4, k-Linked is not FO + LIN-definable
over Thin.
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not connected

(c1,c2) /

Figure 12: Theorem 7.9—The set Bjg

Proof: Again let (6,m, f) be a good triple. We take the set Ay from the
proof of Theorem 4.4, but modify its boundary so that the opposite sides
are not parallel but have rational slopes, as shown in Figure 11. We choose
one of the line segments from a point a on the left boundary to a point b
on the top boundary. We let Ay be the hypersemi-linear set that includes
the parallel lines within the boundary, plus the left boundary and the part
of the top boundary to the left of the point b. Finally, we extend these two
boundary lines until they intersect. As one can see from Figure 11, the set
Aqg is 4-linked and contains the line segment from a to b.

Since the boundaries of the triangle in A,y have rational slope, the map
f takes Ajp to a hypersemi-linear set By whose boundaries have the same
slopes. f fixes the point a, but moves the point b horizontally to the left.
f(b) is the point where the upper boundary line of By ends. One can see
from Figure 12 that, viewed from the nonstandard world, the set By is not
connected. m

Problem 7.10 Can Theorem 7.9 can be improved by replacing 4-Linked by
3-Linked?

We will also leave open the question of whether the queries n-Linked are
definable in the second order languages II; + LIN and ¥; + LIN.
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We summarize our results in this section with a table.

Summary of F'O + LIN-definability for k-Linked

k | Arbitary Thin Thin with n singular points
1 Yes Yes Yes
2 No Yes Yes

>3 No No Yes

Here ‘Yes’ in a box for integer k£ and class C' means that k-Linked is
definable over C.

8 Extensions to Higher Dimensions

In this section we consider the F'O + LI N-definability of higher dimensional
analogs of the query Cont.Line. We first consider the three-dimensional case.

Theorem 8.1 Let S be a ternary relation symbol.

(i) The query “S contains a plane” is not Iy + LIN -definable.

(ii) The query “S contains a line” is not 1y + LIN-definable over the
family of thin semi-linear sets.

Proof: (i) Note that a set A C R? contains a line if and only if the product
A x R contains a (vertical) plane. Since C'ont.Line is not II; + LI N-definable
by Theorem 6.4, it follows that “S contains a plane” is not II; + LIN-
definable.

(i) A set A C R? contains a line if and only if the product A x {0}
contains a line. The product A x {0} is thin. It follows that “S contains a
line” is not II; + LIN-definable over the thin semi-linear sets. m

Theorem 8.2 Let S be a ternary relation symbol. The query “S contains a
plane” is FO + LIN -definable over the family of thin semi-linear sets.

Proof: Let A be a thin semi-linear subset of R3. A contains a plane if
and only if either

(1) A contains a vertical plane, or

(2) A contains a plane which is the graph of a function of the form z =
ax + by + ¢ where a, b, c € R.
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We first give an FO + LIN sentence saying that (1) holds. Let Vert(t)
be the FO + LIN formula VzS(t, z). Then A = Vert(t) iff the vertical line
{(t,z) : z € R} is contained in A. For each thin A, the set V4 = {t € R?:
A |= Vert(t)} must be a thin semi-linear set in R%. By Theorem 6.1, there
is a FFO + LIN sentence Vert such that for every thin semi-linear set A,
A = Vert iff V4 contains a line, and it is clear that V4 contains a line iff A
contains a vertical plane.

We now find an FFO + LIN sentence which expresses (2). Let Reg(x)
say that x is a regular point of A, which now means that in some open box
containing x the boundary of A coincides with a plane. We call two points
x and y congruent, in symbols Cong(x,y), if they are both in A, and if for
some U containing 0 we have

(WelUx+veA—y+veA

For x € R}t € R?, let MinSame(x,t,y) say that y is the least real
u such that Cong(x, (t,u)). Let OnPlane(x) be the analog of OnLine(x)
from the proof of Theorem 6.1. It says that for any two points t,t’ with
sufficiently large coordinates in the horizontal plane,

MinSame(x,t,y) A MinSame(x,t',y') — (x + (t,y) — (t',y)) € S.
Let ¥ be the FO + LIN sentence
Ix[Reg(x) A OnPlane(x)].

Then v expresses (2), and thus Vert V 1 says that A contains a plane. m

The theory of o-minimal structures gives an appropriate notion of dimen-
sion for semi-linear subsets of R™. Equivalently, one can define the dimension
of a semi-linear set A to be the largest m such that A has a subset which is
topologically equivalent to a ball in R™.

Note that in n-dimensional Euclidean space, a semi-linear set is thin if
and only if it has dimension at most n — 1. Our results can be generalized
to the following theorem in n variables.

Theorem 8.3 Let n > k > 0, and let X(n, k) be the query saying that an

n-ary semi-linear relation contains a k-dimensional hyperplane. Then:
(1) X(n, k) is ¥4 + LIN-definable.
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(ii) X (n, k) is FO+ LIN-definable over the collection of semi-linear sets
of dimension < k.

(iii) X (n, k) is not Il + LIN-definable over the collection of semi-linear
sets of dimension < k + 1.

Proof: Part (i) is clear. Part (ii) proved by a direct generalization of the
proof of Theorem 8.2. For (iii), we observe that for any set A in the plane,
the product C' = Ax R* ! has dimension < k+1, and A contains a line if and
only if C' contains a k-dimensional hyperplane. By Theorem 6.4, C'ont.Line
is not I[I; + LIN-definable, and (iii) follows. m

9 Conclusions and Future Work

Questions concerning definability with an extra predicate, even for a well-
understood structure such as the real ordered additive group, turn out to be
surprisingly complex. The answers are also a bit counterintuitive: the results
here show that seemingly slight modifications of either the query definition
or the class of definable sets can make or break definability. It would clearly
be desirable to find general topological conditions on a family of sets that
guarantee definability and include the interesting definable examples here.
Our results, however, indicate that this will be a difficult (perhaps impossible)
task.

Given the undefinability results, it seems natural to look for intermedi-
ate languages between the first-order linear and polynomial query languages,
which can define the queries considered here. We have introduced the in-
termediate languages II; + LIN, ¥1 + LIN, and A; + LIN and have found
natural examples of queries which are 1 + LI N-definable but not 11+ LIN-
definable. We have left to the future the analogous separation question for
the higher prefix classes I1,, + LIN, ¥,, + LIN.
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