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Abstract. Answering a question of Cifú Lopes, we give a syntactic
characterization of those continuous sentences that are preserved under
reduced products of metric structures. In fact, we settle this question
in the wider context of general structures as introduced by the second
author.

1. Introduction

Reduced products are a generalization of ultraproducts where one works
with an arbitrary proper filter instead of an ultrafilter. Since the  Los’ the-
orem fails at this level of generality, it becomes an interesting question to
understand when the truth of a sentence in a reduced product follows from
the truth of the sentence in each of the factor structures; when this happens
for a given sentence in all reduced products, we say that that the sentence is
preserved under reduced products or is a reduced product sentence. In recent
years, there has been an increasing interest in reduced products in contin-
uous model theory, especially in the model theory of operator algebras (see
[FS] or [Gh]). This suggests that a syntactical characterization of reduced
product sentences in continuous model theory may be useful.

In [Ke65], the second author showed, assuming the continuum hypothe-
sis, that a sentence is preserved under reduced products if and only if the
sentence is equivalent to a Horn sentence. Here, we recall that a basic Horn
formula is a first order formula that is either a finite disjunction of negated
atomic formulas, or a disjunction of an atomic formula and finitely many
negated atomic formulas, while a Horn formula is a first order formula that
is built from basic Horn formulas using the connective ∧ and the quanti-
fiers ∀, ∃. In his thesis (see also [Ga]), Galvin showed that statement “σ
is a reduced product sentence” is actually arithmetical, whence an abso-
luteness argument shows that the use of the continuum hypothesis above is
unnecessary.

At the end of Section 3 of [Lo], Cifú Lopes defines reduced products of
metric structures and asks if a metric analogue of the classical theorem
holds, to wit: is there a syntactic characterization of those continuous sen-
tences that are preserved under reduced products. To be clear, a continuous
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sentence σ is said to be preserved under reduced products if its value in a
reduced product is 0 whenever its value in each of the factor structures is
0. In Corollary 3.10 of [Lo], Lopes gives one family of sentences preserved
under reduced products.

The continuous analogue of the class of Horn sentences is the syntacti-
cally defined class of conditional sentences. In this article, we settle Lopes’
question by showing that a continuous sentence is preserved under reduced
products if and only if it is equivalent to a countable set of conditional sen-
tences. In fact, we show that this result holds in the wider context of general
structures, a generalization of metric structures investigated by the second
author in [Ke]. General structures have no uniform continuity requirement
on the predicate and function symbols and, in fact, do not even require a
distinguished metric on the universe at all.

The plan of our proof is as follows: we first show, as in the classical case,
that the result holds when assuming the continuum hypothesis. Incidentally,
this result already appeared in the monograph [CK1966] on an earlier version
of continuous logic. We take the opportunity here to supply that proof in
the modern incarnation of continuous logic.

In order to eliminate the use of the continuum hypothesis, rather than
try to mimic Galvin’s absoluteness argument, we instead introduce a univer-
sal procedure that converts all general structures into (classical) first-order
structures and vice-versa; this conversion process takes advantage of the
more flexible framework provided by general structures. We use this conver-
sion process (as well as a similar process on theories), and the absoluteness
of being a classical reduced product sentence, to prove the absoluteness of
being a continuous reduced product sentence.

The paper is organized as follows. After this introduction, Section 2
contains all the preliminary information on general structures. Section 3
describes the reduced product construction for general structures and de-
fines the key notion of conditional sentences; here we prove that conditional
sentences are preserved under reduced products. In Section 4, we use the
continuum hypothesis to show that reduced product sentences are equiva-
lent to a set of conditional sentences and finally, in Section 5, we use the
aforementioned conversion procedure to remove the use of the continuum
hypothesis. We also prove a result characterizing reduced product sentences
as those satisfying a “semi-continuity” condition in all reduced products.

The paper also includes three appendices: Appendix A proves a version
of the Feferman-Vaught theorem for general structures (which was proven
for metric structures by Ghasemi in [Gh]); Appendix B discusses some easy
preservation theorems for general structures; Appendix C uses the tech-
niques from Section 5 to prove the Keisler-Shelah theorem for general struc-
tures.

We thank James Hanson for allowing us to include his observation on the
Keisler-Shelah theorem for general structures.
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2. Preliminaries

We will assume that the reader is familiar with the model theory of metric
structures as developed in the paper [BBHU], and we will freely use nota-
tion from that paper. In this section we review the basic model theory of
general [0, 1]-valued structures as developed in [Ke], and the relationship
between general structures, pre-metric structures, and metric structures;
unless stated otherwise, all Facts appearing below refer to the paper [Ke].

The syntax for general structures is the same as for metric structures.
The space of truth values is the real interval [0, 1], with 0 representing true
and 1 representing false. The connectives are the continuous functions from
[0, 1]n into [0, 1] for n ∈ N, and the quantifiers are sup and inf. A vocabulary
V is a set of predicate, function, and constant symbols. Terms and atomic
formulas are as in first order logic. Formulas are built in the usual way from
terms using connectives and quantifiers, and sentences are formulas with no
free variables.

A general structure M consist of a vocabulary V , a non-empty universe
set M , a function PM : Mn → [0, 1] for each predicate symbol P of arity n
in V , a function FM : Mn → M for each function symbol F of arity n in
V , and an element cM ∈ M for each constant symbol c in V . In a general
structure, there is no uniform continuity requirement for the function and
predicate symbols.

If V0 ⊆ V , and M0 is obtained from M by forgetting every symbol of
V \ V0, we call M an expansion of M0 to V , and call M0 the V0-part of M.
If M is a general structure and A ⊆ M , the expansion of M obtained by
adding a constant symbol for each element of A is denoted by MA, and the
constant symbols for the elements of A are called parameters from A.

The truth value of a formula ϕ(~x) at a tuple ~a in a general structure M is
denoted by ϕM(~a). We follow [Ke] rather than [BBHU] by defining a theory
with vocabulary V to be a set of sentences in vocabulary V . We often use
the connective r −. s, which is defined by r −. s = max(r − s, 0).

We say that M is a (general) model of a theory T , in symbols M |= T ,
if M is a general structure in which each sentence in T has truth value 0.
Note that M |= (ϕ −. ψ) if and only if ϕM ≤ ψM, so to improve readability
we also denote r −. s by r ≤. s. Two theories S, T are said to be equivalent
if they have the same general models, but two sentences ϕ,ψ are said to be
equivalent if ϕM = ψM for every general structure M. Thus the singletons
{ϕ} and {ψ} are equivalent if and only if

{M : ϕM = 0} = {M : ψM = 0},

while the sentences ϕ,ψ are equivalent if only if the singletons {ϕ−. ε}, {ψ−. ε}
are equivalent for all ε ∈ [0, 1].

Hereafter, M,N, sometimes with subscripts, will denote general structures
with universe sets M,N and vocabulary V , and S, T, U will denote sets of
sentences with the vocabulary V .
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The notions of substructure (denoted by ⊆), union of chain, elementary
equivalence (denoted by≡), elementary substructure and extension (denoted
by ≺ and �), elementary chain, and κ-saturation are defined as in [BBHU],
but applied to general structures as well as metric structures.

Fact 2.1. (Downward Lowenheim-Skolem) For every general structure M,
there is a general structure M′ ≡M such that |M ′| ≤ ℵ0 + |V |.

Fact 2.2. The union of an elementary chain of general structures 〈Mα : α <
β〉 is an elementary extension of each Mα.

By an embedding h : M → N we mean a function h : M → N such that
h(cM) = cN for each constant symbol c ∈ V , and for every n and ~a ∈ Mn,
h(FM(~a)) = FN(h(~a)) for every function symbol F ∈ V of arity n, and
PM(~a) = PN(h(~a)) for every predicate symbol P ∈ V of arity n. We say
that M is embeddable in N if there is an embedding h : M → N. Note that
the image of an embedding h : M→ N is a substructure of N.

We now review the notions from [Ke] of a reduced general structure, and
an ultraproduct of general structures.

Definition 2.3. For a, b ∈M , we write a
.
=M b if for every atomic formula

ϕ(x, ~z) and tuple ~c ∈ M |~z|, ϕM(a,~c) = ϕM(b,~c). The relation
.
=M is called

Leibniz equality. M is reduced if whenever a
.
=M b we have a = b.

The reduction of the general structure M is the reduced structure N such

that N is the set of equivalence classes of elements of M under
.
=M, and

the mapping that sends each element of M to its equivalence class is an
embedding of M onto N. We say that M,M′ are isomorphic, in symbols
M ∼= M′, if there is an embedding from the reduction of M onto the reduction
of M′.

Remark 2.4.

• ∼= is an equivalence relation on general structures.
• Every general structure is isomorphic to its reduction.
• If there is an embedding of M onto N, then M ∼= N.
• M ∼= N implies M ≡ N.

Remark 2.5. Let V 0 ⊆ V .

(i) If two general structures are isomorphic, then their V 0-parts are
isomorphic.

(ii) For every general structure M, the V 0-part of M, the V 0-part of the
reduction of M, the reduction of the V 0-part of M, and the reduction
of the V 0-part of the reduction of M, are all isomorphic to each
other.

Recall that for any ultrafilter D over a set I and function g : I → [0, 1],
there is a unique value r = limD g in [0, 1] such that for each neighborhood
Y of r, the set of i ∈ I such that g(i) ∈ Y belongs to D.
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Definition 2.6. Let D be an ultrafilter over a set I and Mi be a general

structure for each i ∈ I. The pre-ultraproduct
∏DMi is the general structure

M′ =
∏DMi such that:

• M ′ =
∏
i∈IMi, the cartesian product.

• For each constant symbol c ∈ V , cM
′

= 〈cMi〉i∈I .
• For each n-ary function symbol G ∈ V and n-tuple ~a in M ′,

GM′
(~a) = 〈GMi(~a(i))〉i∈I .

• For each n-ary predicate symbol P ∈ V and n-tuple ~a in M ′,

PM′
(~a) = lim

D
〈PMi(~a(i))〉i∈I .

The ultraproduct
∏

DMi is the reduction of the pre-ultraproduct
∏DMi.

For each a ∈M ′ we also let aD denote the equivalence class of a under
.
=M′

.
When Mi = M for all i ∈ I, the reduced product

∏
DM is called an

ultrapower of M and is denoted by MI/D.

Fact 2.7. Let Mi be a general structure for each i ∈ I, let D be an ultrafilter
over I, and let M =

∏
DMi be the ultraproduct. Then for each formula ϕ

and tuple ~b in the cartesian product
∏
i∈IMi,

ϕM(~bD) = lim
D
〈ϕMi(~bi)〉i∈I .

As usual, it follows that:

Fact 2.8. (Compactness) If every finite subset of T has a general model,
then T has a general model.

Corollary 2.9. Suppose ϕ is a sentence in the vocabulary V , and T |= {ϕ}.
(i) For every r ∈ (0, 1] there is a finite T0 ⊆ T such that T0 |= ϕ≤. r.
(ii) There is a countable T1 ⊆ T with T1 |= {ϕ}.

Proof. (i): Suppose not. Then for some r ∈ (0, 1], T ∪ {r/2≤. ϕ} is finitely
satisfiable. By the Compactness Theorem, T ∪ {r/2 ≤. ϕ} has a general
model, so T 6|= {ϕ}.

(ii): By (i), for each positive n ∈ N there is a finite subset Tn of T such
that Tn |= {ϕ ≤

.
1/n}. Then T∞ =

⋃
n Tn is a countable subset of T , and

T∞ |= {ϕ}. �

For an infinite cardinal κ, we say that a general structure M is κ-saturated
if for every set A ⊆ M of cardinality |A| < κ, every set of formulas in the
vocabulary of M with one free variable and parameters from A that is finitely
satisfiable in MA is satisfiable in MA.

Remark 2.10. M is κ-saturated if and only if the reduction of M is κ-
saturated.



CONTINUOUS SENTENCES PRESERVED UNDER REDUCED PRODUCTS 6

Definition 2.11. By a special cardinal we mean a cardinal κ such that
2λ ≤ κ for all λ < κ. We say that M is special if |M | is an uncountable
special cardinal and M is the union of an elementary chain of structures
〈Mλ : λ < |M |〉 such that each Mλ is λ+-saturated. M is κ-special if κ is
special and M is the reduction of a special structure of cardinality κ.

Note that every strong limit cardinal is special, and if 2λ = λ+ then
2λ is special. Note also that every κ-special structure is reduced and has
cardinality ≤ κ.

Remark 2.12. If M is κ-special and V 0 ⊆ V , then the reduction of the
V 0-part of M is κ-special.

Fact 2.13. (Uniqueness Theorem for Special Models) If T is complete and
M,N are κ-special models of T , then M and N are isomorphic.

Fact 2.14. (Existence Theorem for Special Models) If κ is a special cardinal
and ℵ0 + |V | < κ, then every reduced structure M such that |M | ≤ κ has a
κ-special elementary extension.

Define r u s = min(r + s, 1). A connective C : [0, 1]n → [0, 1] is called
increasing if C(s1, . . . , sn) ≤ C(t1, . . . , tn) whenever si ≤ ti for all i ≤ n.
Important examples of increasing connectives are max,min,u and the unary
connectives s−. ε for a fixed ε ∈ (0, 1). We say that T,U are S-equivalent if
S ∪ T and S ∪U have the same general models. The following lemma is the
analogue for continuous model theory of Lemma 3.2.1 in [CK2012].

We say that a continuous formula ϕ is restricted if ϕ is built from atomic
formulas using only the quantifiers sup, inf and the connectives 0, 1, min,
max, −. , u, ·/2. Note that any dyadic rational number r ∈ [0, 1] can be
built in finitely many steps using the connectives 0, 1, ·/2. Note that there
at most |V |+ ℵ0 restricted continuous sentences in the vocabulary V .

Lemma 2.15. Every set T of continuous sentences is equivalent to a set of
restricted continuous sentences.

Proof. Let V be the vocabulary of T . Then |V | ≤ |T | + ℵ0. Let U be
the set of restricted continuous sentences θ in the vocabulary V such that
T |= {θ}. Then T |= U . Suppose N |= U but not N |= T . Then for some
ϕ ∈ T and some dyadic rational r > 0 we have ϕN ≥ r. By Theorem
6.3 of [BBHU] (whose proof works for general structures as well as metric
structures), there is a restricted continuous sentence θ in the vocabulary V
such that |θM − ϕM| ≤ r/4 for every general structure M. (θ ≤. r/4) is also
a restricted continuous sentence. Since T |= {θ}, we have T |= {θ ≤. r/4},
so (θ ≤. r/4) ∈ U . But since ϕN ≥ r, we have θN ≥ r − r/4, so (θ ≤. r/4) is
not true in N, contradicting the assumption that N |= U . We conclude that
U |= T , so T is equivalent to U . �

A metric signature L over V specifies a distinguished binary predicate
symbol d ∈ V for distance, and equips each predicate or function symbol
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S ∈ V with a modulus of uniform continuity 4S : (0, 1]→ (0, 1] with respect
to d.

A pre-metric structure M+ = (M, L) for L consists of a general structure
M with vocabulary V , and a metric signature L over V , such that dM

is a pseudo-metric on M , and for each predicate symbol P and function
symbol F of arity n, PM and FM are uniformly continuous with the bounds
specified by L. A metric structure for L is a pre-metric structure for L such
that (M,dM) is a complete metric space.

Given a pre-metric structure M+ = (M, L), we will call M the down-
grade of M+, and call M+ the upgrade of M to L. Note that two dif-
ferent pre-metric structures can have the same downgrade, because they
may have different metric signatures. A pre-metric structure (M, L) is said
to be reduced if and only if its downgrade M is reduced. Similarly for κ-
saturated, etc. Given a family 〈(Mi, L) : i ∈ I〉 of pre-metric structures with
the same signature L, the ultraproduct is defined as the pre-metric structure∏

D(Mi, L) := (
∏

DMi, L).
We remind the reader that every pre-metric structure for L has a unique

completion up to isomorphism, that this completion is a metric structure
for L, and that every pre-metric structure is elementarily embeddable in its
completion.

Fact 2.16. Let (M, L) be a pre-metric structure with distinguished distance
d. M is reduced if and only if for all x, y ∈M , if dM(x, y) = 0 then x = y.

In particular, every metric structure is reduced.

Remark 2.17. Every pre-metric structure for L that is reduced and ℵ1-
saturated is a metric structure for L.

The preservation theorems in this paper will apply to general structures.
Using Fact 2.18 below, we will immediately get analogous results for pre-
metric and metric structures.

Fact 2.18. (See [Ca], page 112.) For each metric signature L over V ,
there is a theory met(L) whose general models are exactly the downgrades of
pre-metric structures for L. Thus every pre-metric structure for L satisfies
met(L). Each sentence in met(L) consists of finitely many sup quantifiers
followed by a quantifier-free formula.

A metric theory (T, L) consists of a metric signature L and a set T of
sentences in the vocabulary of L such that T |= met(L). We say that T is a
metric theory with signature L if (T, L) is a metric theory. A pre-metric (or
metric) model of a metric theory (T, L) is a pre-metric (or metric) structure
M+ = (M, L) such that ϕM = 0 for all ϕ ∈ T . Thus Fact 2.18 shows that
for any metric theory (T, L) and general structure M, (M, L) is a pre-metric
model of T if and only if M is a general model of T .
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We say that a sequence 〈ϕm(~x, ~y)〉m∈N of formulas is Cauchy in T if for
each ε > 0 there exists m such that for all k ≥ m,

T |= sup
~x

sup
~y
|ϕm(~x, ~y)− ϕk(~x, ~y)| ≤. ε.

Definition 2.19. Let T be a theory in a vocabulary V , and let D be a
new binary predicate symbol. We say that Te is a pre-metric expansion of
T (with signature Le) if:

(i) (Te, Le) is a metric theory whose signature Le has vocabulary VD :=
V ∪ {D} and distance predicate D.

(ii) There is a Cauchy sequence 〈d〉 = 〈dm〉 of formulas in T such that
the general models of Te are exactly the structures of the form Me =
(M, [lim dm]M), where M is a general model of T .

Fact 2.20. Suppose V has countably many predicate symbols and T is a
V -theory.

(i) (Theorem 3.3.4 of [Ke].) T has a pre-metric expansion.
(ii) (Proposition 4.4.1 of [Ke].) If Te a pre-metric expansion of T ,

M,N |= T , and M ≡ N, then Me ≡ Ne.

3. Reduced Products

As in the classical case, the reduced product construction is a general-
ization of the ultraproduct construction with a proper filter F instead of an
ultrafilter D. We refer to Sections 4.1 and 6.2 of [CK2012] for a treatment
of reduced products in classical model theory. In Section 7.4 of [CK1966],
reduced products of general structures with a predicate symbol $ for the
discrete metric were defined, and here we will modify this to define reduced
products of general structures without $. For the special case of metric
structures, this will be exactly the definition of reduced product in the pa-
per [Lo].

We say that a sentence ψ is preserved under reduced products if every
reduced product of models of ψ is also a model of ψ. As mentioned in the
introduction, [Lo] proposed the problem of characterizing the sentences that
are preserved under reduced products of metric structures. Theorem 7.4.23
of [CK1966] implies that, assuming the continuum hypothesis, a sentence ψ
is preserved under reduced products of general structures if and only if {ψ}
is equivalent to some countable set of conditional sentences (see Definition
3.5 below). In this paper we will present that theorem and its proof in the
modern framework. It will follow (in Corollary 4.3), still assuming the con-
tinuum hypothesis, that a sentence ψ is preserved under reduced products of
metric structures if and only if {ψ} is met(L)-equivalent to some countable
set of conditional sentences. In Theorem 3.9, we will prove in ZFC that
every conditional sentence is preserved under reduced products. In the next
section, in Theorem 4.2, we will prove, assuming the continuum hypothesis,
that every sentence that is preserved under reduced products is equivalent to
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a countable set of conditional sentences. Thus, to solve the problem posed
in [Lo], all that has to be done is to eliminate the continuum hypothesis
from the result in [CK1966]. We will carry out that elimination in Section
5.

In this section, the letter I will always denote a non-empty set, to be used
as an index set, and F will denote a proper filter over I. Let βI be the set
of all ultrafilters over I. Recall that when D ∈ βI and g : I → [0, 1], there is
a unique value r = limD g in [0, 1] such that for each neighborhood Y of r,
the set of i ∈ I such that g(i) ∈ Y belongs to D. The following topological
lemma partly motivated the definition of reduced product that comes next.

Fact 3.1. (Lemma 7.4.16 in [CK1966], with the order reversed.) For every
g : I → [0, 1],

(1) sup{lim
D
g : F ⊆ D ∈ βI} = inf

J∈F
sup
i∈J

g(i).

Proof. Let x denote the left side of (1), y denote the right side of (1), and
z = (x + y)/2. Suppose first that x > y, so x > z > y. Then there exists
F ⊆ D ∈ βI and J ∈ F such that

lim
D
g > z > sup

i∈J
g(i).

But then {i ∈ I : g(i) > z}∩J ∈ D, so there exists i ∈ J such that g(i) > z,
a contradiction.

Now suppose x < y, so x < z < y. Then whenever F ⊆ D ∈ βI and
J ∈ F we have J ∈ D but

lim
D
g < z < sup

i∈J
g(i),

which is again a contradiction. �

In [CK1966], the left side of equation (1) is denoted by F-supx, while in
[Lo] the right side of (1) is denoted by lim supF x. We will use the latter
notation here. Thus

lim sup
F

x := inf
J∈F

sup
i∈J

x(i).

The left side of equation (1) makes it clear that, for g : I → [0, 1], we
have lim supD g = limD g when D is an ultrafilter on I.

We now define the reduced product
∏

F Mi of an indexed family 〈Mi : i ∈
I〉 modulo F. The reduced product, like the ultraproduct, will be con-

structed in two steps: first construct the pre-reduced product
∏F Mi, whose

universe is the cartesian product
∏
i∈I Mi, and then take the reduction.

Definition 3.2. Let Mi be a general structure for each i ∈ I. The pre-

reduced product
∏F Mi is the general structure M′ such that:

• M ′ =
∏
i∈IMi, the cartesian product;

• For each constant symbol c ∈ V , cM
′

= 〈cMi : i ∈ I〉;
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• For each n-ary function symbol G ∈ V and n-tuple ~a in M ′,

GM′
(~a) = 〈GMi(~a(i)) : i ∈ I〉;

• For each n-ary predicate symbol P ∈ V and n-tuple ~a in M ′,

PM′
(~a) = lim sup

F

〈PMi(~a(i)) : i ∈ I〉.

The reduced product
∏

F Mi is the reduction of
∏F Mi. We also let aF denote

the equivalence class of a under
.
=M′

.

Thus an ultraproduct is a reduced product modulo an ultrafilter.

Remark 3.3. Let M′ =
∏F Mi and N =

∏
F Mi. The mapping a 7→ aF is

an embedding of M′ onto N. Therefore:

• N = {aF : a ∈M ′}.
• For each term t(~x) and tuple ~a in M ′, tN(~aF) = (tM

′
(~a))F.

• For each atomic formula α(~x) and tuple ~a in M ′,

αN(~aF) = αM′
(~a) = lim sup

F

〈αMi(~a(i)) : i ∈ I〉.

• If Mi
∼= Ni for each i ∈ I, then

∏
F Mi

∼=
∏

F Ni.
• If Ni is the reduction of Mi for each i ∈ I, then

∏
F Mi

∼=
∏

F Ni.

Remark 3.4. Let V 0 ⊆ V , and let M0
i be the V 0-part of Mi for each i ∈ I.

Then
∏F M0

i is the V 0-part of
∏F Mi, and

∏
F M

0
i is isomorphic to the

V 0-part of
∏

F Mi.

Proof. Let M =
∏F Mi, and M0 =

∏F M0
i . By definition,

∏
F Mi is the

reduction of M, and
∏

F M
0
i is the reduction of M0. It is clear that M0 is

the V 0-part of M. Therefore, by Remark 2.5 (ii),
∏

F M
0
i is isomorphic to

the V 0-part of
∏

F Mi. �

We next define the conditional sentences, which are the continuous ana-
logues of Horn sentences.

Definition 3.5. A formula ϕ is primitive conditional if there are atomic
formulas α0, . . . , αn and unary increasing connectives C0, . . . , Cn such that

(2) ϕ = min(C0(α0), C1(1− α1), . . . , Cn(1− αn)).

The set of conditional formulas is the least set of formulas that contains
the primitive conditional formulas and is closed under the application of the
max connective and the quantifiers sup, inf.

By taking C0 = 1 in (2), one can see that min(C1(1−α1), . . . , Cn(1−αn))
is also a primitive conditional formula.

Lemma 3.6. The set met(L) of axioms for pre-metric structures with sig-
nature L is equivalent to a set of conditional sentences.
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Proof. The property d(x, y) ≤. d(y, x) is equivalent to the countable set of
primitive conditional formulas

{(r ≤. d(x, y))≤. (r ≤. d(y, x)) : r dyadic rational}.

Using a similar trick, the property

d(x, z)≤. d(x, y)u d(y, z)

and the uniform continuity property

max
k≤n

d(xk, yk) < δ ⇒ |P (~x)− P (~y)| ≤ ε

can be expressed by countable sets of primitive conditional formulas. The
sentences in met(L) can then be expressed by countable sets of sentences
obtained by putting sup quantifiers in front of primitive conditional formu-
las. �

Lemma 3.7. For every (primitive) conditional formula ϕ and every in-
creasing unary connective B, Bϕ is equivalent to a (primitive) conditional
formula.

Proof. If ϕ is primitive conditional, then Bϕ is equivalent to the primitive
conditional formula obtained from equation (2) by replacing each connective
Ck by B ◦Ck. The result for arbitrary conditional formulas ϕ follows by an
easy induction on the complexity of ϕ. �

The paper [Lo] considered other classes of formulas that are obtained by
closing the class of atomic formulas under inf, sup, and certain connectives.
These classes are quite different from the class of conditional formulas, since
they do not contain the primitive conditional formulas.

The following topological fact is motivated by Definition 3.5.

Fact 3.8. (Lemma 7.4.20 in [CK1966].) Let y0, . . . , yn : I → [0, 1], and
C0, . . . , Cn be increasing unary connectives. Suppose

J ′ := {i ∈ I : min(C0(y0(i)), C1(1− y1(i)), . . . , Cn(1− yn(i))) = 0} ∈ F.

Then

min(C0(lim sup
F

y0), C1(1− lim sup
F

y1), . . . , Cn(1− lim sup
F

yn)) = 0.

Proof. We may assume that Ck(0) = 0 for 1 ≤ k ≤ n, because otherwise we
may remove C` when ` is the least ` ≥ 1 such that C`(0) > 0. For 1 ≤ k ≤ n,
let zk = sup{z : Ck(z) = 0}. Since each Ck is increasing and continuous, for
1 ≤ k ≤ n we have Ck(z) = 0 if and only if z ≤ zk.

Suppose that Ck(1− lim supF yk) > 0 for each 1 ≤ k ≤ n. We prove that
C0(lim supF y0) = 0. Fix 1 ≤ k ≤ n. Then 1− lim supF yk > zk, so

inf
J∈F

sup
i∈J

yk(i) = lim sup
F

yk < 1− zk.
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Hence there exists J ∈ F such that for every i ∈ J and 1 ≤ k ≤ n, yk(i) <
1 − zk, so 1 − yk(i) > zk and Ck(1 − yk(i)) > 0. Then J ′ ∩ J ∈ F, and
therefore

J ′ ∩ J ⊆ {i ∈ I : C0(y0(i)) = 0} ∈ F.

Hence there is a set J ′′ ∈ F such that C0(y0(i)) = 0 for all i ∈ J ′′. Then
there exists z such that C0(z) = 0. Since C0 is increasing and continuous,
we have {z : C0(z) = 0} = [0, z0] for some z0 ∈ [0, 1]. So y0(i) ≤ z0 for all
i ∈ J ′′, and thus lim supF y0 ≤ z0. It follows that C0(lim supF y0) = 0, as
required. �

Theorem 3.9. (Exercise 7K in [CK1966].) If T is equivalent to a set of
conditional sentences, then every reduced product of general models of T is a
general model of T (that is, T is preserved under reduced products of general
structures).

Proof. It suffices to prove the result when T = {ψ} for a single conditional
sentence ψ. Consider an indexed family 〈Mi : i ∈ I〉 of general structures,
and let N =

∏
F Mi be the reduced product. First suppose that ϕ is a

primitive conditional formula as in (2) above, and let ~a be a tuple of elements

of the cartesian product
∏
i∈I Mi. For k ≤ n put yk(i) = αMk

k (~a(i)). Then
Fact 3.8 shows that

{i ∈ I : ϕMi(~a(i)) = 0} ∈ F ⇒ ϕN(~aF) = 0.

By Lemma 3.7, for each ε ∈ [0, 1], ϕ −. ε is equivalent to a primitive condi-
tional formula. Moreover, for every M, tuple ~a in M , and ε, ϕM(~a) ≤ ε if
and only if ϕM(~a)−. ε = 0. Therefore for each ε ∈ [0, 1],

(3) {i ∈ I : ϕMi(~a(i)) ≤ ε} ∈ F ⇒ ϕN(~aF) ≤ ε.

We now complete the proof of the theorem by proving the following stronger
statement: for every conditional formula ψ and ε ∈ [0, 1],

(4) {i ∈ I : ψMi(~a(i)) ≤ ε} ∈ F ⇒ ψN(~aF) ≤ ε.

The base case of the induction is taken care of by equation (3). For the
inductive step, we only treat the inf case, the remaining cases being similar.
Suppose (4) holds for θ(~x, y), and ψ(~x) = infy θ(~x, y). Assume that

{i ∈ I : ψMi(~a(i)) ≤ ε} ∈ F.

Then for each δ > 0 there exists b ∈
∏
i∈IMi such that

{i ∈ I : θMi(~a(i), b(i)) ≤ ε+ δ} ∈ F.

By inductive hypothesis, θN(~aF, bF) ≤ ε+δ. ψN(~aF) ≤ ε+δ. Since this holds
for all δ > 0, ψN(~aF) ≤ ε, as required. �

It is shown in [Lo], pages 221-222, that every reduced product of metric
structures is a metric structure. We have analogous results for pre-metric
structures, and for V 0-parts of pre-metric structures.
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Corollary 3.10. Suppose L is a metric signature over V with distinguished
distance d, d ∈ V 0 ⊆ V , and L0 is the restriction of L to V 0.

(i) Any reduced product of pre-metric structures (with signature L) is a
pre-metric structure.

(ii) If the V 0-part of Mi is a pre-metric structure (with signature L0)
for each i ∈ I , then the V 0-part of

∏
F Mi is a pre-metric structure.

(iii) If the reduction of the V 0-part of Mi is a metric structure (with
signature L0) for each i ∈ I, then the reduction of the V 0-part of∏

F Mi is a metric structure.

Proof. (i) and (ii): By Fact 2.18, Lemma 3.6, and Theorem 3.9.
(iii): For each i ∈ I, let M0

i be the reduction of the V 0-part of Mi, and let
M0 be the reduction of

∏
F M

0
i . By Remarks 3.3 and 3.4, M0 is isomorphic

to the V 0-part of
∏

F Mi. By hypothesis, each M0
i is a metric structure.

By (ii), M0 is a pre-metric structure, and its distinguished distance dM is a
metric. As in [Lo], one can show that dM is a complete metric by modifying
the proof of Proposition 5.3 in [BBHU]. �

The following corollary will be used later to apply results about general
structures to metric structures.

Corollary 3.11. Suppose F is a proper filter over a set I, L is a metric
signature, and for each i ∈ I, (Ni, L) is a pre-metric structure and (Mi, L)
is its completion. Then (

∏
F Mi, L) is the completion of (

∏
F Ni, L).

Proof. For each i, (Mi, L) is a metric structure. By Corollary 3.10, (
∏

F Ni, L)
is a pre-metric structure, and (

∏
F Mi, L) is a metric structure. For each

i ∈ I, Ni is a dense substructure of Mi. Therefore, for each a ∈
∏
i∈IMi

and ε > 0 there exists b ∈
∏
i∈I Ni such that Mi |= d(ai, bi) ≤

.
ε for all

i ∈ I. The formula d(x, y) ≤. ε is conditional, so by Theorem 3.9 we have∏
F Mi |= d(aF, bF)≤. ε. Therefore

∏
F Ni is dense in

∏
F Mi. By definition,

all reduced products are reduced structures. It follows that (
∏

F Mi, L) is
the completion of (

∏
F Ni, L). �

Recall from the introduction that a basic Horn formula is a first order
formula that is either a finite disjunction of negated atomic formulas, or a
disjunction of an atomic formula and finitely many negated atomic formulas
while a Horn formula is a first order formula that is built from basic Horn
formulas using the connective ∧ and the quantifiers ∀, ∃. We will use the
following result of Galvin, which is a result in ZFC that characterizes the
first order sentences preserved under reduced products

Fact 3.12. ([Ga], Theorems 3.4, 5.2, and Section 6).
(i) A first order sentence θ is preserved under reduced products if and only

if θ is equivalent to a Horn sentence.
(ii) A first order theory is preserved under reduced products if and only if

it is equivalent to a set of Horn sentences.
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Each first order formula θ can be converted to a continuous formula θc by
replacing the first order connectives ∧,∨,¬ by the continuous connectives
min,max, 1−. ·, and replacing the first order quantifiers ∀,∃ by the continuous
quantifiers sup, inf. The following gives a connection between preservation
under reduced products in first order and continuous model theory.

Corollary 3.13. Let θ be a first order sentence. Each of the following
conditions implies the next.

(i) θ is a Horn sentence.
(ii) θc is a conditional sentence.
(iii) θc is preserved under continuous reduced products.
(iv) θ is equivalent to a Horn sentence.

Proof. (i) ⇒ (ii) is clear from the definition. By Theorem 3.9, (ii) → (iii).
Assume (iii). Each first order structure M without identity may be con-

sidered as a general structure in which every formula has truth values in
{0, 1}. By Remark 2.3 in [Lo], if each Mi is a first order structure, then the
reduced product

∏
F Mi considered as a first order structure is the same as

the reduced product
∏

F Mi considered as a general structure. Therefore θ is
preserved under first order reduced products, so by Fact 3.12, (iv) holds. �

Example 3.14. In Corollary 3.13, Condition (iv) does not imply Condition
(iii).

Proof. For example, let P,Q be 0-ary predicates, and let θ be the first order
sentence P ∨ Q ∨ ¬(P ∨ Q). Then θ is equivalent to the Horn sentence
P ∨¬P , but we will show that θc is not preserved under continuous reduced
products. θc is the continuous sentence

min(P,Q, 1−. (min(P,Q))).

Let I = {1, 2} and let F be the filter F = {I} (so reduced products modulo
F are direct products). Let 0 < r ≤ 1/2. Let M1 be a general structure
such that M1 |= P = r and M1 |= Q = 0. Let M2 be a general structure
such that M2 |= P = 0 and M2 |= Q = r. We leave it to the reader to check
that M1 |= θ = 0 and M2 |= θ = 0, but

∏
F Mi |= θ = r. �

We will need the following result of Ghasemi [Gh], which follows from a
metric analogue of the Feferman-Vaught theorem in first order model theory.

Fact 3.15. (Proposition 3.6 in [Gh].) If F is a proper filter over I, and
Mi,Ni are metric structures with Mi ≡ Ni for each i ∈ I, then

∏
F Mi ≡∏

F Ni.

Remark 3.16. Fact 3.15 was stated in [Gh] only for metric structures, but
the proof shows that it holds for pre-metric structures as well.

Here is the analogous result for general structures.

Proposition 3.17. Suppose V is countable, F is a proper filter over I,
and Mi,Ni are general structures with Mi ≡ Ni for each i ∈ I. Then∏

F Mi ≡
∏

F Ni.
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Proof. By Fact 2.20 (i), the empty theory T has a pre-metric expansion Te.
For each i ∈ I, Mie and Nie are pre-metric structures with signature Le.
By Corollary 3.10,

∏
F(Mie) and

∏
F(Nie) are also pre-metric structure with

signature Le. By Fact 2.20 (ii), Mie ≡ Nie for each i. Then by Remark 3.16,∏
F(Mie) ≡

∏
F(Nie). Finally, taking the V -parts and using Remark 3.4, we

have
∏

F Mi ≡
∏

F Ni. �

4. Consequences of the Continuum Hypothesis

In this section we will show that, assuming 2λ = λ+ for some λ ≥ |V |+ℵ0,
the converse of Theorem 3.9 holds. In the next section we will eliminate the
assumption 2λ = λ+ from that result. The hypothesis 2λ = λ+ is called the
generalized continuum hypothesis (GCH) at λ.

In the following, given an infinite set I, we say that a statement holds for
most i ∈ I if it holds for all but fewer than |I| elements i ∈ I.

Lemma 4.1. (Lemma 7.4.22 in [CK1966].) Assume that:

• λ is infinite and the GCH at λ holds, 2λ = λ+.
• |I| = λ, |V | ≤ λ, and |Mi| ≤ 2λ for each i ∈ I.
• N′ is special and |N ′| is either finite or 2λ.
• Every restricted conditional sentence that is true in Mi for most
i ∈ I is true in N′.

Then there exists a filter F over I such that N′ ∼=
∏

F Mi.

Proof. The analogue of this lemma for classical model theory is Lemma 6.2.4
in [CK2012], and the reader can look at the proof in [CK2012] to fill in the
details in this proof. We first construct a mapping h from

∏
i∈IMi onto N ′

with the following property:

P: For every restricted conditional formula ϕ(~x) and tuple ~a in the domain

of h, if ϕMi(~a(i)) = 0 for most i ∈ I, then ϕN′
(h(~a)) = 0.

The hypothesis 2λ = λ+ implies that |
∏
i∈IMi| ≤ λ+ and |N ′| ≤ λ+. The

mapping h is constructed by enumerating both
∏
i∈IMi and N ′ by sequences

of length λ+, and then using a back-and-forth argument that is a transfinite
induction with λ+ steps. To begin we note that the hypotheses of this
lemma guarantee that the empty mapping has property P. At each stage
of the induction, we assume that we have already constructed a mapping
h′ from a subset of

∏
i∈IMi into N ′ that has the property P. Let b be the

next element in the enumeration of
∏
i∈IMi, and let e be the next element

in the enumeration of N ′. We will use the fact that the set of restricted
conditional formulas has cardinality ≤ λ and is closed under max, sup, inf,
and that there are at most λ previous stages.

We first use the fact that N′ is λ+-saturated to find an element c ∈ N ′ such
that h′ ∪ {(b, c)} has the property P. Let Γ(y) be the set of all formulas of
the form ϕ(h′(~a), y)≤. r such that ϕ(~x, y) is restricted conditional, ~a is a tuple
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in the domain of h′, r is a positive dyadic rational, and ϕMi(~a(i), b(i)) = 0
for most i ∈ I. For each finite subset Γ0 ⊆ Γ, the formula

ψ(~x) := (inf
y

max(Γ0))(~x, y)≤. r

is restricted conditional. Moreover, ψMi(~a(i)) = 0 for most i ∈ I, so by

property P for h′, ψN′
(h′(~a)) = 0. It follows that Γ(y) is finitely satisfiable

in N′. The set Γ(y) has cardinality ≤ λ, and N′ is λ+-saturated, so Γ(y)
is satisfied by some element c in N′. Then the mapping h′ ∪ {(b, c)} has
property P.

We next use Lemma 6.1.6 in [CK2012] to find an element d of
∏
i∈IMi

such that h′ ∪ {(b, c), (d, e)} has property P. That lemma says that for
any set Z of cardinality |Z| ≤ λ and family X = 〈Xζ : ζ ∈ Z〉 of sets of
cardinality λ, there is a family Y = 〈Yζ : ζ ∈ Z〉 of pairwise disjoint sets of
cardinality λ, called a refinement of X, such that Yζ ⊆ Xζ for each ζ ∈ Z.

If e is already in the range of h′, we take d to be the first element such
that h′(d) = e. Otherwise, we argue as follows. Let Z be the set of ϕ(~a)
such that ϕ(~x) = supy ψ(~x, y), where ψ is restricted conditional, ~a is a tuple

of elements of the domain of h′ ∪ {(b, c)}, and ϕN′
(h(~a)) > 0. Then ϕ(~x)

is also restricted conditional. For each ϕ(~a) ∈ Z, let Xϕ(~a) be the set of

i ∈ I such that ϕMi(~a(i)) > 0. Since h′ ∪ {(b, c)} has property P, it follows
that Xζ has cardinality λ for each ζ ∈ Z. Therefore X has a refinement
Y . Since each Yζ ⊆ Xζ , we may build an element d ∈

∏
i∈IMi such that

for each ϕ(~a) ∈ Z and i ∈ Yϕ(~a) we have ψMi(~a(i), d(i)) > 0. Since each
Yζ has cardinality λ, the function h′ ∪ {(b, c), (d, e)} has property P. This
completes the induction.

Now let h be a mapping from
∏
i∈IMi onto N ′ with property P. Let E

be the set of all J ⊆ I such that for some atomic formula α(~x), some tuple
~a in

∏
i∈IMi, and some ε ∈ [0, 1),

αN′
(h(~a)) < 1− ε and J = {i ∈ I : αMi(~a(i)) < 1− ε}.

Claim 1: E has the finite intersection property, and in fact, the intersec-
tion of any finite subset of E has cardinality λ.

Proof of Claim 1. Let J0, . . . , Jn ∈ E and K = J0 ∩ · · · ∩ Jn. For each
k ≤ n, take an atomic formula αk, tuple ~ak in

∏
i∈IMi, and a dyadic rational

εk ∈ [0, 1) such that

αN′
k (h(~ak)) < 1− εk and Jk = {i ∈ I : αMi

k (~ak(i)) < 1− εk}.

Let

ψ = max(α0 u ε0, . . . , αn u εn)

and ~b = (~a0, . . . ,~an). Then

(5) ψN′
(h(~b)) < 1 and K = {i ∈ I : ψMi(~b(i)) < 1}.
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Assume, towards a contradiction, that |K| < λ and let ϕ = 1 − ψ. ϕ is
equivalent to the restricted primitive conditional formula

min(1− (α0 u ε0), . . . , 1− (αn u εn)).

For most i ∈ I we have i /∈ K, so ψMi(~b(i)) = 1 and hence ϕMi(~b(i)) = 0.

Then by property P, we have ϕN′
(h(~b)) = 0. But this means that ψN′

(h(~b)) =
1, contradicting (5). Therefore |K| = λ and Claim 1 is proved.

By Claim 1, E generates a proper filter F over I.
Claim 2: For each atomic formula α(~x) and tuple ~a in

∏
i∈IMi,

αN′
(h(~a)) = lim sup

F

αMi(~a(i)).

Proof of Claim 2. Let rN = αN′
(h(~a)), and

rM = lim sup
F

αMi(~a(i)) = inf
J∈F

sup
i∈J

αMi(~a(i)).

For every ε ∈ [0, 1] such that rN < 1− ε, we have

Jε := {i ∈ I : αMi(~a(i)) < 1− ε} ∈ E ⊆ F,

so
rM ≤ sup

i∈Jε
αMi(~a(i)) ≤ 1− ε.

Since this holds for all ε > 0, we have rM ≤ rN .
Now suppose rM < rN , and take δ ∈ (rM , rN ). Since rM < δ, there is a

set J ∈ F such that supi∈J α
Mi(~a(i)) ≤ δ. Hence

(6) (∀i ∈ J)αMi(~a(i))−. δ = 0.

There are sets J0, . . . , Jn ∈ E such that J0 ∩ · · · ∩ Jn ⊆ J . Take αk,~ak, and
εk such that

(7) αN′
k (h(~ak)) < 1− εk and Jk = {i ∈ I : αMi

k (~ak(i)) < 1− εk}.
Since J0 ∩ · · · ∩ Jn ⊆ J we have

I = J ∪ (I \ J0) ∪ · · · ∪ (I \ Jn).

For each k ≤ n,

Jk = {i ∈ I : 1− (αMi(~ak(i))u εk) > 0},
so

(8) (∀i ∈ I \ Jk) 1− (αMi(~ak(i))u εk) = 0.

Let ϕ be the restricted primitive conditional formula

ϕ = min(α−. δ, 1− (α0 u ε0), . . . , 1− (αn u εn)),

and ~b = (~a,~a0, . . . ,~an). By (6) and (8),

(∀i ∈ I)ϕMi(~b(i)) = 0,

so by property P,

ϕN′
(h(~b)) = 0.
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Therefore either

rN = αN′
(h(~a)) ≤ δ,

or

αN′
k (h(~ak)) ≥ 1− εk for some k ≤ n.

But this contradicts (7) and the fact that δ ∈ (rM , rN ). Therefore rM = rN ,
and Claim 2 is proved.

Now let M′ be the pre-reduced product of 〈Mi : i ∈ I〉 modulo F. Then∏
F Mi is the reduction of M′, and h is a mapping from M ′ onto N ′. By

Claim 2 and Remark 3.3, h is an embedding from M′ onto N′, so M′ ∼= N′.
Therefore N′ ∼=

∏
F Mi, and the proof is complete. �

Theorem 4.2. Assume that ℵ0 + |V | ≤ λ and the GCH at λ holds. The
following are equivalent.

(i) T is S-equivalent to a set of conditional sentences.
(ii) T is S-equivalent to a set of restricted conditional sentences.
(iii) For any proper filter F over I, and indexed family 〈Mi : i ∈ I〉 of

general models of S ∪ T , if the reduced product
∏

F Mi is a general
model of S then it is a general model of T .

Proof. (ii) ⇒ (i) is trivial. Even without the hypothesis that 2λ = λ+, the
implication (i) ⇒ (iii) follows from Theorem 3.9.

(iii) ⇒ (ii): Assume (iii). Let U be the set of all restricted conditional
sentences ϕ such that every general model of S ∪ T is a general model of
U . Then every general model of S ∪ T is a general model of S ∪U . We will
show that every general model N of S ∪ U is a general model of S ∪ T . It
will then follow that S ∪T and S ∪U have the same general models, and (i)
follows.

By the GCH at λ, 2λ is a special cardinal. By Facts 2.1 and 2.14, we may
assume that N is a special model such that N is either finite or of cardinality
2λ. For each conditional sentence ϕ that is not true in N, we have ϕ /∈ U ,
so there exists a model of S ∪ T in which ϕ is not true. Let I be a set of
cardinality λ. Since there are ℵ0 + |V | ≤ λ restricted sentences, there is an
indexed family 〈Mi : i ∈ I〉 of general models of S ∪ T with |Mi| ≤ 2λ such
that every restricted conditional sentence that is true in Mi for most i ∈ I is
true N. By Lemma 4.1, there exists a filter F over I such that N ∼=

∏
F Mi.

Then by (iii), N is a model of T , and (ii) follows. �

As a consequence, we obtain the analogue of Theorem 4.2 for metric
structures.

Corollary 4.3. Assume that ℵ0 + |V | ≤ λ, L is a metric signature over V ,
S, T are metric theories with signature L, and the GCH at λ holds. Then
the following are equivalent.

(i) T is S-equivalent to a set of conditional sentences.
(ii) T is S-equivalent to a set of restricted conditional sentences.
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(iii) For any proper filter F over I, and indexed family 〈Mi : i ∈ I〉 of
metric models of S∪T with signature L, if the reduced product

∏
F Mi

is a metric model of S with signature L, then it is a metric model of
T with signature L.

Proof. Since S is a metric theory with signature L, S |= met(L), and sim-
ilarly for T . As in the proof of Theorem 4.2, the implication (ii) ⇒ (i) is
trivial, ant the implication (i) ⇒ (iii) follows from Theorem 3.9 (without
the hypothesis 2λ = λ+).

We next assume (iii) and prove Condition (iii) of Theorem 4.2. To dis-
tinguish pre-metric structures from their downgrades, we will use the full
notation (N, L) for a pre-metric structure. Let 〈Ni : i ∈ I〉 be an indexed
family of general models of S ∪ T such that

∏
F Ni is a general model of S.

Since S |= met(L), each (Ni, L) is a pre-metric model of S. By Corollary
3.10, (

∏
F Ni, L) is a pre-metric structure, and hence a pre-metric model of

S. For each i, let (Mi, L) be the completion of (Ni, L). By Corollary 3.11,
(
∏

F Mi, L) is the completion of (
∏

F Ni, L). Therefore
∏

F Mi ≡
∏

F Ni, so
(
∏

F Mi, L) is a metric model of S. By (iii) above, (
∏

F Mi, L) is a metric
model of T . It follows that

∏
F Ni is a general model of T . This proves

Condition (iii) of Theorem 4.2.
Finally by Theorem 4.2, Condition (ii) of Theorem 4.2, which is the same

as Condition (ii) above, holds. �

We have not been able to answer the following question.

Question 4.4. Can the conclusions of Theorem 4.2 and Corollary 4.3 be
proved in ZFC (without the continuum hypothesis)?

However, in the next section we will give an affirmative answer in the
special case where S is the empty theory.

5. Eliminating the Continuum Hypothesis

We will prove the following preservation result in ZFC.

Theorem 5.1. The following are equivalent.

(i) T is equivalent to a set of conditional sentences.
(ii) T is equivalent to a set of restricted conditional sentences.
(iii) T is preserved under reduced products.

Remark 5.2. If we assume the GCH at some λ ≥ |T |+ ℵ0, then Theorem
5.1 follows from Theorem 4.2 when S is the empty set of sentences.

We will now introduce a method that allows us to go back and forth
between general [0, 1]-valued structures and first-order structures. This
method will allow us to prove Theorem 5.1 in ZFC by using the analogous
preservation result in first order model theory (Fact 3.12 (ii) below).

Definition 5.3. For a continuous vocabulary V , let V↓ be the first order
vocabulary with the same function and constant symbols as V and with an
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n-ary predicate symbol P≤r for each n-ary predicate symbol P ∈ V and
rational r ∈ [0, 1).

For a reduced general structure M with vocabulary V , let M↓ be the
first order structure with vocabulary V↓, equality, and the same universe,
functions, and constants as M, and such that for each P, r, and ~x ∈ Mn,
M↓ |= P≤r(~x) iff M |= P (~x)≤. r.

We say that a first-order structure K with vocabulary V↓ is increasing if
for every P ∈ V and rational r ≤ s in [0, 1), we have K |= (∀~x)[P≤r(~x) ⇒
P≤s(~x)].

Throughout this section, M,M′,Mi will denote reduced general structures
with vocabulary V , and K,K′,Ki will denote increasing first-order structures
with vocabulary V↓.

Definition 5.4. Let K↑ be the reduction of the general structure N with
vocabulary V , and the same universe, functions, and constants as K, such
that for each n-ary P ∈ V and ~x ∈ Kn, PN(~x) = inf{s : K |= P≤s(~x)}.
Lemma 5.5. M↓ is increasing, and M = M↓↑.

Proof. The lemma follows from the observation that PM(~x) ≤ r if and only
if for all rational s ∈ (r, 1) we have PM(~x) ≤ s . �

Definition 5.6. For a continuous theory T with vocabulary V , let T↓ be
the theory of the class of all increasing V↓-structures K such that K↑ |= T ,
that is,

T↓ = {θ : (∀K)[K↑ |= T ⇒ K |= θ]}.
Lemma 5.7. Let T and U be continuous theories.

(i) If T |= U then T↓ |= U↓.
(ii) If M |= T , then M↓ |= T↓.
(iii) Every model of T↓ is increasing.

Proof. (i) is clear from the definitions.
(ii) Suppose M |= T and θ ∈ T↓. By Lemma 5.5, M = (M↓)↑ |= T , so

M↓ |= θ. Therefore M↓ |= T↓.
(iii) The property of being increasing is expressed by a set of V↓-sentences.

�

The following key lemma shows that one can freely move the ↑ symbol in
certain reduced product formulas.

Lemma 5.8. Let F be a proper filter over I. Then∏
F

(Ki↑) =

(∏
F

(Ki)

)
↑

.

In particular, ∏
F

Mi =

(∏
F

(Mi)↓

)
↑

.
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Proof. It is enough to prove the result in the case that V contains a predicate
symbol d for the discrete metric, because then the general case follows by
removing d from the vocabulary and taking the reduction of both sides. In
that case, for each n-ary P ∈ V , rational r ∈ [0, 1), and ~x ∈ (

∏
Ki)

n, the
following are equivalent.

•
∏

F(Ki↑) |= P (~xF)≤. r.
• infJ∈F(supi∈J P

Ki↑(~xi))≤
.
r.

• (∀s ∈ (r, 1))(∃J ∈ F)(supi∈J P
Ki↑(~xi))≤

.
s.

• (∀s ∈ (r, 1))(∃J ∈ F)(∀i ∈ J)PKi↑(~xi)≤
.
s.

• (∀s ∈ (r, 1))(∃J ∈ F)(∀i ∈ J)Ki |= P≤s(~xi).
• (∀s ∈ (r, 1)){i : Ki |= P≤s(~xi)} ∈ F.
• (∀s ∈ (r, 1))

∏
F(Ki) |= P≤s(~xF).

• (
∏

F(Ki))↑ |= P (~xF)≤. r.
The second statement follows from the first statement and Lemma 5.5. �

Lemma 5.9. (i) If K ∼= K′ then K↑ ∼= K′↑.

(ii) If K ≡ K′ then K↑ ≡ K′↑.

Proof. (i) is clear. We prove (ii). By the Isomorphism Theorem for ultra-
powers (Theorem 6.1.15 in [CK2012]), there are ultrafilters D over H and E

over I such that KH/D ∼= K′J/E. Then by (i) we have (KH/D)↑ ∼= (K′J/E)↑.

By Lemma 5.8, (K↑)
H/D ∼= (K′↑)

J/E. It follows that K↑ ≡ K′↑. �

Lemma 5.10. For each continuous theory T and each K, K |= T↓ if and
only if K↑ |= T .

Proof. It follows immediately from the definition of T↓ that if K↑ |= T , then
K |= T↓. For the other direction, suppose that K |= T↓. Then there is a
set I, an ultrafilter D on I, and increasing structures Ki, i ∈ I, such that
Ki↑ |= T for each i ∈ I, and K ≡

∏
DKi. By Lemmas 5.9 and 5.8, we have

K↑ ≡

(∏
D

Ki

)
↑

=
∏
D

(Ki↑),

from which it follows that K↑ |= T . �

Lemma 5.11. For all continuous theories S, T , the following are equivalent.

(i) Each reduced product of general models of S is a general model of T .
(ii) Each reduced product of models of S↓ is a model of T↓.

Proof. Let F be a proper filter over a set I.
(i) ⇒ (ii): Assume (i). For each i ∈ I, let Ki |= S↓. By Lemma 5.10,

Ki↑ |= S, so
∏

F(Ki↑) |= T . But
∏

K(Ki↑) = (
∏

F(Ki))↑ by Lemma 5.8.
Therefore (

∏
F(Ki))↑ |= T , so

∏
F(Ki) |= T↓ by Lemma 5.10. This proves

(ii).
(ii) ⇒ (i): Assume (ii). Let Mi |= S for each i ∈ I. We have Mi↓↑ =

Mi by Lemma 5.5, so Mi↓ |= S↓. Then
∏

F(Mi↓) |= T↓. By Lemma
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5.10, (
∏

F(Mi↓))↑ |= T . By the second statement of Lemma 5.8, we have∏
F(Mi) |= T , and (i) holds. �

Corollary 5.12. For every continuous theory T , T is preserved under re-
duced products if and only if T↓ is preserved under reduced products.

Proof. Take S = T in Lemma 5.11. �

In order to eliminate the continuum hypothesis from Theorem 4.2, we will
need to use the Shoenfield Absoluteness Theorem. For background we refer
to [J]. The set of hereditarily finite sets, which is countable, is denoted by
HF. Note that tuples of hereditarily finite sets are also hereditarily finite
sets. A Π1

2 sentence (over HF) is a sentence of set theory of the form

(∀X ⊆ HF)(∃Y ⊆ HF)θ(X,Y )

where θ(X,Y ) is a formula of set theory with quantifiers restricted to HF.

Fact 5.13. Every sentence of set theory of the form Q1Q2θ, where Q1 is
a sequence of second order universal quantifiers over subsets of HF and
first order quantifiers restricted to HF, Q2 is a sequence of second order
existential quantifiers over subsets of HF and first order quantifiers restricted
to HF, and θ is quantifier-free, is equivalent to a Π1

2 sentence.

We will use the following consequence of the Shoenfield Absoluteness The-
orem.

Fact 5.14. Every Π1
2 sentence over HF that is provable from ZFC + CH is

provable from ZFC.

If the vocabulary V is a subset of HF, then by coding formulas in the
usual way, we can also take the set of restricted continuous formulas with
vocabulary V , and the set of first order formulas in the vocabulary V↓, to
be subsets of HF.

Lemma 5.15. (In ZFC) Suppose V ⊆ HF, T is a set of restricted con-
tinuous sentences in vocabulary V , and T↓ is equivalent to a set of Horn
sentences. Then T is equivalent to a set of restricted conditional sentences.

Proof. First assume the continuum hypothesis. By Fact 3.12, T↓ is preserved
under reduced products. By Corollary 5.12, T is preserved under reduced
products. Since V ⊆ HF, V is countable. By the continuum hypothesis and
Theorem 4.2, T is equivalent to a set of restricted conditional sentences.

By Fact 5.14, to show that this lemma is provable in ZFC, it suffices to
show that the statement of this lemma is a Π1

2 sentence. To do that, we will
freely use Fact 5.13, which allows us to ignore quantifiers over elements of
HF.

It is elementary that the statements “θ is a first order V↓-sentence”, “θ is
a Horn sentence”, “ ϕ is a strict V -sentence”, and “ϕ is a strict conditional
sentence”, are ∆1

1. It follows that the first hypothesis of this lemma, “T is
a set of strict continuous sentences in a vocabulary V ⊆ HF”, is ∆1

1.
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Every countable V↓-structure is isomorphic to a V↓-structure that is a
subset of HF and similarly for general structures. In the following we let
K be a variable that ranges over V↓-structures that are subsets of HF with
universe K, and let M,N be variables ranging over V -structures that are
subsets of HF. By unravelling the definition of satisfaction in [CK2012] and
[BBHU], one can show that the statements “K |= θ”, “K is increasing”,
“K↑ |= ϕ”, “K↑ |= T”, “N |= ϕ”, and “N |= T”, are ∆1

1.
To illustrate, we show that the statement “K↑ |= ϕ” is ∆1

1. The statement
“ψ is a strict V -sentence with parameters in K and r is a dyadic rational in
[0, 1)” is a ∆1

1 formula δ(K, ψ, r). Let us say that D is an ↑-diagram of K if
D is the set of all pairs (ψ, r) such that δ(K, ψ, r) and K↑ |= ψ≤. r. Then D
is an ↑-diagram of K if and only if each of the following ∆1

1 sentences with
the parameters K, D hold.

• (∀ψ)(∀r)[(ψ, r) ∈ D ⇒ δ(K, ψ, r)].
• (∀ atomic P (~τ))(∀r)[(P (~τ), r) ∈ D ⇔ K |= P≤r(~τ)].
• (∀ψ1)(∀ψ2)(∀r)[(max(ψ1, ψ2), r) ∈ D ⇔ [(ψ1, r) ∈ D ∧ (ψ2, r) ∈ D]].
• Similar rules for connectives min,−. ,u, ·/2.
• (0, r) ∈ D ∧ (1, r) /∈ D.
• (∀ψ(x))(∀r)[(supx ψ(x), r) ∈ D ⇔ (∀a ∈ K)(ψ(a), r) ∈ D].
• A similar rule for infx.

Then K↑ |= ϕ if and only if (ϕ, 0) ∈ D for every ↑-diagram D of K, and
also if and only if (ϕ, 0) ∈ D for some ↑-diagram D of K. This shows that
the statement “K↑ |= ϕ” is ∆1

1.
By Lemma 5.10, the statement “K |= T↓” is also ∆1

1. It follows that
the second hypothesis of this lemma, that “T↓ is equivalent to a set of
Horn sentences”, is equivalent in ZFC to the following Σ1

2 sentence with
the parameter T :

(∃U ⊆ HF)(∀K)[(∀θ)(θ ∈ U ⇒ θ is Horn) ∧ (K |= T↓ ⇔ K |= U)].

The statement “T |= ϕ” is Π1
1, because it is equivalent in ZFC to

(∀N)[N |= T ⇒ N |= ϕ].

The conclusion of this lemma says that for every M, if every strict conditional
consequence of T holds in M, then M |= T , that is,

(∀M)[(∀ϕ)(ϕ strict conditional and T |= ϕ)⇒M |= T ].

This is a Π1
2 sentence with a parameter for T .

So the whole statement of this lemma has the form

(∀T )[α(T )⇒ β(T )]

where α(T ) is a Σ1
2 sentence, and β(T ) is a Π1

2 sentence. It follows that the
statement of this lemma is a Π1

2 sentence.
�

We are now ready to prove Theorem 5.1 in ZFC. For convenience we
restate the result here.
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Theorem 5.1. (Restated) The following are equivalent.

(i) T is equivalent to a set of conditional sentences.
(ii) T is equivalent to a set of restricted conditional sentences.
(iii) T is preserved under reduced products.

Proof. (ii) ⇒ (i) is trivial, and (i) ⇒ (iii) follows from Theorem 3.9
(iii) ⇒ (ii): Assume (iii). By Lemma 2.15, we may assume without gen-

erality that T is a set of strict continuous sentences, and that every con-
sequence of T that is a strict continuous sentence in vocabulary V belongs
to T . For each vocabulary V ′ ⊆ V , let [V ′] be the set of strict continuous
sentences in vocabulary V ′, and let T ′ = T ∩ [V ′].

Claim 1. For every countable vocabulary V ′ ⊆ V , T ′ is preserved under
reduced products.

Proof of Claim 1. Let {M′i : i ∈ I} be a family of general models of
T ∩ [V ′], let F be a proper filter over I, and let M′ =

∏
F(M′i). For each i,

let Ui be the set of strict continuous sentences

Ui = T ∪ {ϕ≤. r : ϕ ∈ Th(M′i), r > 0}.
Suppose that Ui is not finitely satisfiable. Then there is a strict sentence
ϕ ∈ Th(M′i) and a dyadic rational r > 0 such that T |= r≤. ϕ. The sentence
r≤. ϕ belongs to [V ′], and also belongs to T because it is a consequence of T .
But then M′i |= ϕ = 0 and M′i |= r ≤. ϕ, which is a contradiction. Therefore
Ui is finitely satisfiable. By the Compactness Theorem, Ui has a general
model Ni. Then Ni |= T for each i, so by (iii) we have N :=

∏
F(Ni) |= T .

Let N′i be the V ′-part of Ni. By Remark 3.4, N′ :=
∏

F(N′i) is the V ′-part
of N, so N′ |= T ′. Since Ni |= Ui, we have N′i ≡ M′i. Then by Proposition
3.17, N′ ≡M′. Therefore M′ |= T ′, and Claim 1 is proved.

Claim 2. For every countable V ′ ⊆ V , T ′ is equivalent to a set of strict
conditional sentences.

Proof of Claim 2. By Claim 1, T ′ is preserved under reduced products.
We may take V ′, T ′, V ′↓ , and T ′↓ to be subsets of HF. By Lemma 5.11, T ′↓ is

preserved under reduced products. By Fact 3.12 (ii), T ′↓ is equivalent to a

set of Horn sentences with vocabulary V↓. By Lemma 5.15, T ′ is equivalent
to a set of strict conditional sentences in the vocabulary V ′, so Claim 2 is
proved.

It follows at once from Claim 2 that Condition (i) holds. �

Here is a version of Theorem 5.1 for single sentences.

Corollary 5.17. For each continuous sentence ϕ, the following are equiva-
lent.

(i) For each positive integer n there is a conditional sentence ψn such
that ϕ |= ψn and ψn |= ϕ≤. 2−n.

(ii) For each positive integer n there is a restricted conditional sentence
ψn such that ϕ |= ψn and ψn |= ϕ≤. 2−n.



CONTINUOUS SENTENCES PRESERVED UNDER REDUCED PRODUCTS 25

(iii) ϕ is preserved under reduced products.

Proof. It is clear that (ii) implies (i).
Assume (i). Then {ϕ} is equivalent to the countable set {ψn : n > 0} of

conditional sentences. Then by Theorem 5.1, (iii) holds.
Now assume (iii). By Theorem 5.1, {ϕ} is equivalent to a set U of re-

stricted conditional sentences. By Corollary 2.9, for each n > 0 there is a
finite U0 ⊆ U such that U0 |= ϕ ≤. 2−n. Let ψn = max(U0). Then ψn is a
restricted conditional sentence, ϕ |= ψn and ψn |= ϕ≤. 2−n, so (ii) holds. �

The following corollary characterizes metric theories that are preserved
under reduced products of metric structures.

Corollary 5.18. Let L be a metric signature over V , and let T be a metric
theory with signature L. The following are equivalent:

(i) T is equivalent to a set of conditional sentences.
(ii) Every reduced product of pre-metric models of T is a pre-metric model

of T (with signature L).
(iii) Every reduced product of metric models of T is a metric model of T

(with signature L).

Proof. (i) ⇒ (ii) follows from Theorem 3.9 and Corollary 3.10. (ii) ⇒ (iii)
follows from Corollary 3.10.

(iii) ⇒ (ii): Assume (iii), and let (
∏

F Ni, L) be a reduced product of
pre-metric models of T . For each i ∈ I, let (Mi, L) be the completion of
(Ni, L), which is a metric model of T . By (iii) above, (

∏
F Mi, L) is a metric

model of T . By Corollary 3.11, (
∏

F Mi, L) is the completion of (
∏

F Ni, L).
Therefore (

∏
F Ni, L) is a pre-metric model of T , and (ii) holds.

(ii) ⇒ (i): Assume (ii). We first show that T is preserved under reduced
products of general structures. Suppose

∏
F Ni is a reduced product of

general models of T . Since T |= met(L), (Ni, L) is a pre-metric model of T
for each i ∈ I. Therefore, by (ii), (

∏
F Ni, L) is a pre-metric model of T , and

hence
∏

F Ni is a general model of T . Thus T is preserved under reduced
products of general structures. So by Theorem 5.1, (i) holds. �

In [Ga], Galvin also proved the following “interpolation” statement: For
all first order theories S0, T0, if every reduced product of models of S0 is a
model of T0, then there is a set U0 of Horn sentences such that S0 |= U0 and
U0 |= T0. It is thus natural to ask if the continuous analogue of this fact is
true:

Question 5.19. Suppose S, T are continuous theories, and every reduced
product of general models of S is a general model of T . Is there a set U of
conditional sentences such that S |= U and U |= T?

We end this section with one further characterization of reduced product
sentences. First, we need a lemma. For our purposes, by a definable predi-
cate, we mean an expression of the form ψ(~x) :=

∑
n 2−nψn(~x), where each

ψn(~x) is a formula.
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Lemma 5.20. For definable predicates ψ(~x) and χ(~x), the following are
equivalent:

(1) For all general structures M and all ~a from M , if M |= ψ(~a), then
M |= χ(~a).

(2) There is an increasing continuous function α : [0, 1] → [0, 1] such
that α(0) = 0 and for which, given any general structure M and ~a
from M , we have χ(~a)M ≤ α(ψ(~a)M).

Proof. In the case of metric structures, this is Proposition 7.15 of [BBHU].
However, the proof given there also works in the case of general structures.

�

Corollary 5.21. Given a sentence ϕ, the following are equivalent:

(1) ϕ is a reduced product sentence.
(2) There is an increasing continuous function γ : [0, 1] → [0, 1] such

that γ(0) = 0 and for which, given any set I, general structures Mi

for each i ∈ I, and a filter F on I, setting M :=
∏

F Mi, we have

ϕM ≤ γ
(

lim sup
F

ϕMi

)
.

Proof. It is clear that (2) implies (1). Conversely, suppose that (1) holds.
Then by Corollary 5.17, there are conditional sentences ψn such that σ |= ψn
and ψn |= σ ≤. 2−n. Set ψ :=

∑
n 2−nψn, a definable predicate. Note

that ϕ |= ψ and ψ |= ϕ. By Lemma 5.20, there are increasing continuous
functions αn : [0, 1] → [0, 1] and β : [0, 1] → [0, 1] with αn(0) = β(0) = 0
and such that ψM

n ≤ αn(ϕM) and ϕM ≤ β(ψM) for all general structures M.
Set α :=

∑
n 2−nαn, so that α : [0, 1] → [0, 1] is an increasing continuous

function with α(0) = 0. Finally, set γ := β ◦ α.
Suppose now that we have a set I, general structures Mi for each i ∈ I,

and a filter F on I, and set M :=
∏

F Mi. Let r := lim supF ϕ
Mi and take

s > r. Take J ∈ F such that supi∈J ϕ
Mi ≤ s. It follows that ψMi

n ≤ αn(s)

for all i ∈ J . By (4) in the proof of Theorem 3.9, it follows that ψM
n ≤ αn(s)

and thus ψM ≤ α(s) and ϕM ≤ β(ψM) ≤ β(α(s)) = γ(s). Since s > r was
arbitrary, we have that ϕM ≤ γ(r), as desired. �

Appendix A. The Feferman-Vaught Theorem for General
Structures

In [Gh], Ghasemi proved an analogue of the Feferman-Vaught Theorem
for reduced products of metric structures. He used that result to prove
that reduced products of metric structures preserve elementarily equivalence
(Fact 3.15 above), which we in turn used to prove that reduced products
of general structures preserve elementary equivalence. In this appendix, we
will extend Ghasemi’s analogue of the Feferman-Vaught Theorem to general
structures.
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In the following definition, we will slightly strengthen the notion from
[Gh] of a formula being determined up to 2−n, by adding the additional
requirement (c). Let L be a metric signature.

Definition A.1. For a restricted continuous formula ϕ(~x) with signature
L, we say that ϕ(~x) is determined up to 2−n by

(σ0, . . . , σ2n ;ψ0, . . . , ψm−1)

if

(a) Each σi is a formula in the first order language of Boolean algebras
with at most s = m2n variables which is monotonic in each variable.

(b) Each ψj(~x) is a restricted continuous formula.
(c) For each j, every predicate or function symbol that occurs in ψj

occurs in ϕ.
(d) For any set Ω, ideal I and corresponding filter F on Ω, indexed

family 〈Mγ〉γ∈Ω of metric structures with signature L, |~x|-tuple ~a in∏
Ω Mγ , and ` ∈ {0, . . . , 2n}, we have

P(Ω)/I |= σ`([X
0
0 ]I, . . . , [X

0
2n ]I, . . . , [X

m−1
2n

]I)⇒ ϕ(~aF)
∏

F Mγ > `/2n,

and

ϕ(~aF)
∏

F Mγ > `/2n ⇒ P(Ω)/I |= σ`([Y
0

0 ]I, . . . , [Y
0

2n ]I, . . . , [Y
m−1

2n ]I),

where for each i and j,

Xj
i = {γ ∈ Ω: ψj(~a(γ))Mγ > i/2n}, Y j

i = {γ ∈ Ω: ψj(~a(γ))Mγ ≥ i/2n}.

Definition A.2. We say that a formula ϕ with signature L is determined
up to 2−n if there is a restricted formula θ such that every predicate or func-
tion symbol that occurs in θ occurs in ϕ, θ is uniformly within 2−(n+1)

of ϕ in all metric structures, and θ is determined up to 2−n by some
(σ0, . . . , σ2n , ψ0, . . . , ψm−1).

Fact A.3. (Theorem 3.3 of [Gh]) For every n ∈ N, every continuous formula
is determined up to 2−n.

The above statement is slightly stronger than the statement of Theorem
3.3 in [Gh] because of condition (c) in our definition of being determined,
but the proof in [Gh] shows that the result holds as stated here.

Now consider a vocabulary V with countably many predicate and function
symbols.

Definition A.4. For a restricted continuous formula ϕ(~x) with vocabulary
V , we say that ϕ(~x) is generally determined up to 2−n by

(σ0, . . . , σ2n ;ψ0, . . . , ψm−1)

if conditions (a)–(d) of Definition A.1 hold with the phrase “metric struc-
tures with signature L” replaced by “general structures with vocabulary V ”
in (d).
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We say that a continuous formula ϕ with vocabulary V is generally deter-
mined up to 2−n if there is a restricted formula θ such that every predicate or
function symbol that occurs in θ occurs in ϕ, θ is uniformly within 2−(n+1)

of ϕ in all general structures, and θ is generally determined up to 2−n by
some (σ0, . . . , σ2n , ψ0, . . . , ψm−1).

Theorem A.5. Every continuous formula ϕ with vocabulary V is generally
determined.

Proof. By the Expansion Theorem, the empty theory T with vocabulary
V has a pre-metric expansion (Te, Le). Fix an n ∈ N. By Fact A.3, ϕ is
determined up to 2−n with respect to the metric signature Le. Then there
is a restricted formula θ such that every predicate or function symbol that
occurs in θ occurs in ϕ, θ is uniformly within 2−(n+1) of ϕ in all metric struc-
tures, and θ is determined up to 2−n by some (σ0, . . . , σ2n , ψ0, . . . , ψm−1).
Then θ and each ψi are V -formulas (rather than just VD-formulas). Then

θ is uniformly within 2−(n+1) of ϕ in all general V -structures. Let 〈Nγ〉γ∈Ω

be an indexed family of general V -structures. For each γ ∈ Ω, Nγe is a
pre-metric structure with signature Le. Then the completion Mγe of Nγe

is a metric structure with signature Le. By Corollary 3.11, for each filter
F over Ω,

∏
F Mγe is the completion of

∏
F Nγe. Since θ is determined up

to 2−n by some (σ0, . . . , σ2n , ψ0, . . . , ψm−1), Condition (d) of Definition A.1
holds for θ and 〈Mγ〉γ∈Ω. It follows that Condition (d) of Definition A.1
also holds for θ and 〈Nγ〉γ∈Ω. Therefore θ is generally determined up to 2−n

by some (σ0, . . . , σ2n , ψ0, . . . , ψm−1), so ϕ is generally determined. �

Appendix B. Embeddings, Unions of Chains, and Homomorphisms

In this appendix, we prove some relatively easy preservation theorems
for general structures. Each of these results is a special case of a result
in the much earlier monograph [CK1966], but the results in [CK1966] were
stated with the unnecessary hypothesis that the general structures have a
predicate symbol for equality. Using Fact 2.18, it will follow as a corollary
that these results also hold for metric structures. These consequences for
metric structures were also proved in the paper [F], by adapting the classical
proofs of the corresponding first order results.

The following lemma is the analogue for continuous model theory of
Lemma 3.2.1 in [CK2012].

Lemma B.1. Let Γ be a set of sentences that is closed under the application
of the min connective and unary increasing connectives. The following are
equivalent.

(i) T is S-equivalent to a set of sentences U ⊆ Γ.
(ii) If M,N are general models of S, M is a general model of T , and

every sentence γ ∈ Γ that is true in M is true in N, then N is a
general model of T .
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Proof. It is trivial that (i) implies (ii). Assume (ii), and let U be the set
of all sentences γ ∈ Γ such that every general model of S ∪ T is a general
model of γ. Then every general model of S ∪ T is a general model of S ∪U .
Let N be a general model of S ∪ U . Consider sentences ψ0, . . . , ψn ∈ Γ and
numbers r0, . . . , rn ∈ [0, 1]. Using the fact that Γ is closed under min and
increasing unary connectives, one can show that Γ contains a sentence γ
saying that ψi ≤ ri for some i ≤ n. Now let ε > 0 and put ri = ψN

i −. ε for
each i ≤ n. Then γ is not true in N. Since N is a general model of S ∪ U ,
γ /∈ U , so γ cannot be true in every general model of S ∪ T . Hence there
is a general model M of S ∪ T such that ψM

i ≥ ψN
i −. ε for all i ≤ n. By

the compactness theorem, there is a general model M of S ∪ T such that
ψM ≥ ψN for every sentence ψ ∈ Γ. Then by (ii), N is a general model of T ,
so (i) holds. �

Here is an analogue of Lemma B.1 for metric theories.

Corollary B.2. Suppose L is a metric signature over V , and S, T are metric
theories with signature L. Let Γ be a set of sentences that is closed under
the application of the min connective and unary increasing connectives. The
following are equivalent.

(i) T is S-equivalent to a set of sentences U ⊆ Γ.
(ii) If M+,N+ are pre-metric models of S, M+ is a pre-metric model of

T , and every sentence γ ∈ Γ that is true in M+ is true in N+, then
N+ is a pre-metric model of T .

Proof. This is just a restatement of Lemma B.1 in the special case that
S, T |= met(L). �

Throughout this appendix, S and T denote continuous theories. The set
of existential formulas is defined as the least set of formulas that contains
all quantifier-free formulas and is closed under the application of increasing
connectives and the inf quantifier.

Lemma B.3. (Theorem 7.2.8 in [CK1966].) Suppose that N is special,
|M | ≤ |N |, and every existential sentence that is true in M is true in N.
Then M is embeddable in N.

Proof. Arrange the elements of M in a sequence 〈aα : α < |N |〉. By trans-
finite induction, build a sequence 〈bα : α < |N |〉 of elements of N such
that every existential formula that is true for a tuple of aα’s is true for the
corresponding tuple of bα’s. Then show that the mapping aα 7→ bα is an
embedding of M into N. �

Theorem B.4. (Theorem 7.2.11 in [CK1966].) The following are equiva-
lent.

(i) T is S-equivalent to a set of existential sentences.
(ii) For all general models M,N of S, if M is embeddable in N, and M

is a general model of T , then N is a general model of T .
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Proof. Assume (i). Suppose h is an embedding from M into N, and M is
a model of T . One can show by induction on complexity that for every
existential formula ϕ(~x) and tuple ~a in M , ϕM(~a) ≥ ϕN(h(~a)). It follows
that N is a model of T , so (ii) holds.

Assume (ii). We apply Lemma B.1 where Γ is the set of existential sen-
tences. Note that Γ is closed under the application of min and of increasing
unary connectives. Suppose M,N satisfy the hypotheses of Lemma B.1 (ii),
that is, M,N are general models of S, M is a general model of T , and every
sentence γ ∈ Γ that is true in M is true in N. By Fact 2.14, we may assume
that N is a special structure and |M | ≤ |N |. Then by Lemma B.3, M is
embeddable in N. Therefore by Condition (ii) above, N is a general model
of T . Hence by Lemma B.1, Condition (i) above holds. �

The set of universal formulas is defined as the least set of formulas that
contains all quantifier-free formulas and is closed under the application of
increasing connectives and the sup quantifier.

Exercise B.5. The following are equivalent.

(i) T is S-equivalent to a set of universal sentences.
(ii) For all general models M,N of S, if M is embeddable in N, and N

is a general model of T , then M is a general model of T .

The set of universal-existential formulas is defined as the least set of
formulas that contains all existential formulas and is closed under the ap-
plication of increasing connectives and the sup quantifier.

Theorem B.6. (Exercise 7F in [CK1966].) The following are equivalent:

(i) T is S-equivalent to a set of universal-existential sentences.
(ii) For every increasing chain M0 ⊆ M1 ⊆ · · · of general models of

S ∪ T , if
⋃
nMn is a general model of S then it is a general model

of T .
(iii) If M,M′,N are general models of S such that M ⊆ N ⊆M′, M ≺M′,

and N is a general model of T , then M is a general model of T .

Proof. Assume (i) and let M0 ⊆M1 ⊆ · · · satisfy the hypotheses of (ii). By
induction on the complexity of formulas, for every assignment of the free
variables, every universal-existential formula that is true in all but finitely
many Mn is true in

⋃
nMn. Hence (ii) holds.

Assume (ii), and let M,M′,N satisfy the hypotheses of (iii). Let κ be a
strong limit cardinal greater than |V |. By Fact 2.14, there are special models
M0 ≡ M,M1 ≡ M,N0 ≡ N of cardinality κ that satisfy the hypotheses of
(iii). By Fact 2.13 there is an increasing chain M0 ⊆ N0 ⊆ M1 ⊆ N1 ⊆ · · ·
of special structures of cardinality κ such that for each n, Mn ≡ M,Mn ≺
Mn+1, and Nn ≡ N. Then M0 ≺

⋃
nMn =

⋃
nNn. Then for each n, Nn is

a model of S ∪T and
⋃
nNn is a model of T , so by (ii),

⋃
nNn is a model of

T . Finally, since M ≡
⋃
nNn, M is a general model of T and (iii) holds.

Assume (iii). To prove (i), we apply Lemma B.1 where Γ is the set of
universal-existential sentences. As before, Γ is closed under the application
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of min and of increasing unary connectives. This time, we suppose N,M
satisfy the hypotheses of Lemma B.1, and show that M is a general model
of T . We may assume that N is a special structure, M is reduced, and |M | <
|N |. As in the proof of Lemma B.3, one can show that there is an embedding
h : M → N such that for any universal-existential formula ϕ(~x) and tuple
~a in M , ϕN(h(~a)) ≥ ϕM(~a). Then every existential sentence that is true in
the expanded structure (N, h(a) : a ∈M) is true in (M, a : a ∈M). By Fact
2.14, M has a special elementary extension M′ of cardinality |M ′| ≥ |N |,
and by Lemma B.3, there is an embedding

k : (N, h(a) : a ∈M)→ (M′, a : a ∈M).

Then there are isomorphic copies M0,M
′
0 of M,M′ such that M0 ⊆ N ⊆M′0

and M0 ≺M′0. By (iii), M0 is a general model of T , so M is a general model
of T , as required. �

By Fact 2.18, met(L) is a set of universal sentences. It follows that if M
is embeddable in a pre-metric structure then M is a pre-metric structure,
and also that the union of any chain of pre-metric structures is a pre-metric
structure.

The set of positive formulas is the least set of formulas that contains
the set of atomic formulas and is closed under the application of increasing
connectives and the quantifiers sup and inf. Given two general structures
M,N, a homomorphism from M into N is a function h from M onto N
such that h(cM) = cN for each constant symbol c ∈ V , and for every n and
~a ∈Mn, h(FM(~a)) = FN(h(~a)) for every function symbol F ∈ V of arity n,
and PM(~a) ≥ PN(h(~a)) for every predicate symbol P ∈ V of arity n. We
say that N is a homomorphic image of M if there is a homomorphism from
M onto N. Note that every homomorphic image of a pre-metric structure is
a pre-metric structure.

Lemma B.7. (Theorem 7.3.7 in [CK1966].) Suppose that M,N are special,
that either N is finite or |M | = |N |, and that every positive sentence that is
true in M is true in N. Then N is a homomorphic image of M.

Proof. Similar to the proof of Lemma B.3 but using a back-and-forth con-
struction. �

Theorem B.8. (Theorem 7.3.9 in [CK1966].) The following are equivalent.

(i) T is S-equivalent to a set of positive sentences.
(ii) For all general models M,N of S, if N is a homomorphic image of

M, and M is a general model of T , then N is a general model of T .

Proof. Similar to the proof of Theorem B.4. �

The set of positive existential formulas is the least set of formulas that
contains the set of atomic formulas and is closed under the application of
increasing connectives and the inf quantifier.
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Exercise B.9. (Theorem 7.2.11 in [CK1966].) The following are equiva-
lent.

(i) T is S-equivalent to a set of positive existential sentences.
(ii) For all general models M,N of S, if there is a homomorphic embed-

ding of M in N, and M is a general model of T , then N is a general
model of T .

Corollary B.10. Let L be a metric signature over V . If S contains met(L),
then Theorems B.4, B.6, and B.8, and Exercises B.5 and B.9, still hold when
all structures mentioned are taken to be metric structures with signature L.

Proof. In view of Remark 2.17, the proofs go through using metric structures
instead of general structures. �

Appendix C. The Keisler-Shelah Theorem for General
Structures

In this section, we use the ideas developed in Section 5 to prove the
Keisler-Shelah Theorem ([Sh]) for general structures, an idea suggested to
us by James Hanson:

Theorem C.1. Suppose that V is a vocabulary and M and N are elemen-
tarily equivalent V -structures. Then there is an ultrafilter D over a set I
such that MI/D and NI/D are isomorphic.

We remark that no proof of the Keisler-Shelah theorem for continuous
logic (in its current incarnation) has appeared in the literature thus far. (A
proof in the context of positive bounded logic, a predecessor of continuous
logic, can be found in [HI].)

Before proving Theorem C.1, we need a lemma:

Lemma C.2. Suppose that M and N are ℵ1-saturated elementarily equiva-
lent V -structures. Then M↓ and N↓ are elementarily equivalent.

Proof. As shown in Lemma 2.4 of [GH], the assumption of the current lemma
implies that, for any k ∈ N, player II has a strategy for winning the strength-
ening of the usual Ehrenfeucht-Fräısse game between M and N of length k,
where winning means that, denoting by a1, . . . , ak and b1, . . . , bk the ele-
ments of M and N played during the game, the map ai 7→ bi induces an iso-
morphism between the substructures that the tuples generate respectively.
By playing according to this winning strategy, player II can win any ordi-
nary Ehrenfeuch-Fräısse game between M↓ and N↓, whence M↓ and N↓ are
elementarily equivalent. �

We invite the reader to verify that the preceding lemma fails when the
saturation assumption is removed. We are now ready to prove the main
theorem of this section:
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Proof of Theorem C.1. Suppose that M and N are elementarily equivalent
V -structures. By replacing M and N with ultrapowers respect to a non-
principal ultrafilter on N, we may assume that they are ℵ1-saturated. By
the previous lemma, we have that M↓ and N↓ are elementarily equivalent.
By the classical Keisler-Shelah Theorem in [Sh], we have an ultrafilter D

over a set I such that (M↓)
I/D and (N↓)

I/D are isomorphic, whence so are

((M↓)
I/D)↑ and ((N↓)

I/D)↑. By Lemmas 5.5 and 5.8, these aforementioned

structures are simply MI/D and NI/D, as desired. �
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