
MODEL THEORY FOR REAL-VALUED STRUCTURES

H. JEROME KEISLER

Abstract. We consider general structures where formulas have truth values

in the real unit interval as in continuous model theory, but whose predicates

and functions need not be uniformly continuous with respect to a distance
predicate. Every general structure can be expanded to a pre-metric structure

by adding a distance predicate that is a uniform limit of formulas. Moreover,

that distance predicate is unique up to uniform equivalence. We use this to
extend the central notions in the model theory of metric structures to general

structures, and show that many model-theoretic results from the literature

about metric structures have natural analogues for general structures.
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1. Introduction

We show that much of the model theory of metric structures carries over to
general structures that still have truth values in [0, 1]. A general ([0, 1]-valued)
structure is like a classical first-order structure, except that the predicate symbols
have truth values in [0, 1]. It has a vocabulary consisting of predicate, function,
and constant symbols. General structures are called models of [0, 1]-valued logic in
[CK66], and are called [0, 1]-valued structures in [AH] and [Ca].

Continuous model theory, as developed in [BBHU], [BU], and [Fa], has been
highly successful in the study of metric structures, which are more elaborate than
general [0, 1]-valued structures. A metric (or pre-metric) structure has, in addition
to a vocabulary, a metric signature that specifies a distance predicate symbol that is
a metric (or pseudo-metric), and a modulus of uniform continuity for each predicate
and function symbol. The notions of formula, truth value of a formula, and sentence,
are the same for general structures as for pre-metric structures.

We show that almost all of the model-theoretic properties of metric structures in
[BBHU] extend in a unique way (called the absolute version) to general structures,
and have natural characterizations in terms of the general structure itself. We
also show that almost all of the results about metric structures in [BBHU] imply
analogous results about general structures. We get similar results for the infinitary
continuous model theory in [Ea15], and the model theory for unbounded metric
structures in [BY08]. We show, for instance, that the property of stability has an
absolute version, and a general structure is stable if and only if it has a stable
independence relation. One can readily find (e.g. using Theorem 4.10.1 below)
examples of stable general structures that are quite different from the familiar
examples of stable metric structures in [BBHU].

The formalism for metric structures in [BU] and [BBHU] is, to quote from [BU].
“an immediate generalization of classical first order logic, more natural and less
technically involved than previous formalisms.”1 The main advantage of their for-
malism is that it is easy to describe a metric structure by specifying the universe,
functions, constants, relations, and moduli of uniform continuity. Here we go a
step further—the notion of a general structure is even less technically involved
than the notion of a metric structure, since it does not require one to specify a
metric signature giving a distance predicate and moduli of uniform continuity.

Formally, the key concepts that make things work in this paper are the notion of
a pre-metric expansion of a theory (Definition 3.2.1), and the notion of an absolute
version of a property of pre-metric structures (Definition 3.4.1).

Let T be a theory (or set of sentences) with vocabulary V . A pre-metric ex-
pansion of T is a metric theory Te that makes every general model M of T into
a pre-metric model Me of Te in the following way. Te has a metric signature over
V ∪ {D} with distance D. Moreover, there is a sequence 〈dm〉m∈N of formulas of
V , called an approximate distance for Te, such that for each general model M of
T , Me = (M, D) with D = limm→∞ dm.

By adapting arguments of Iovino [I94] and Ben Yaacov [BY05] to our setting,
and using Theorem 4.23 of [BU], one can prove that every complete theory of

1Previous formalisms included metric open Hausdorff cats in [BY03a] and Henson’s Banach
space logic in [He], [HI].
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general structures with a countable vocabulary has a pre-metric expansion.2 The
Expansion Theorem 3.3.4 improves that by showing that every (not necessarily
complete) theory T with a countable vocabulary has a pre-metric expansion in
which each of the formulas dm(x, y) defines a pseudo-metric in T . We will see in
Section 4 that the Expansion Theorem has far-reaching consequences. Proposition
3.3.7 shows that the pre-metric expansion of a theory is unique up to uniform
equivalence (but far from unique).

We say that a property P of general structures with parameters is an absolute
version of a property Q of pre-metric structures if whenever M is a general model
of a theory T and Te is a pre-metric expansion of T , M has property P if and only
if Me has property Q. If Q has an absolute version, its absolute version is unique.
We regard the absolute version of a property of pre-metric structures as the “right”
extension of that property to general structures.

General structures correspond to first order structures without equality in the
same way that metric structures with a distance predicate correspond to first order
structures with equality. In first order model theory, each structure without equality
can be expanded to a pre-structure with equality in a unique way, so there is very
little difference between structures without equality and structures with equality.

In [0, 1]-valued model theory, every general structure can be expanded to a pre-
metric structure by taking a pre-metric expansion. In some cases, such as Banach
spaces, there is a natural distance predicate that can be regarded as the analogue of
equality. But in other cases, a general structure is easily described, but every pre-
metric expansion is complicated. In general, there may not be a natural distance,
but since the pre-metric expansion is unique up to uniform equivalence, there will
always be a natural notion of uniform convergence.

In continuous model theory, one can either focus on general structures with a
vocabulary, or focus on metric structure with a metric signature. When the goal is
to apply the methods of continuous model theory to a family of structures with a
natural metric, it is better to focus on metric structures as in [BBHU]. But when
the goal is to discover potential new applications of the results in continuous model
theory, it may be better to focus on general structures.

In Section 2 we lay the groundwork by developing some basic model-theory for
general structures, and also give a brief review of pre-metric structures. In Section
3 we introduce pre-metric expansions and prove their existence, and then introduce
the notion of an absolute property. In Section 4 we extend a variety of deeper
properties and results from metric structures to general structures.

I thank Isaac Goldbring and Ward Henson, and José Iovino for helpful comments
related to this paper.

2. Basic Model Theory for General Structures

We assume that the reader is familiar with the model theory of metric structures
as developed in the paper [BBHU], and we will freely use notation from that paper.
Our focus in this section will be on the definitions. Only brief comments will be
given on the proofs, which will be similar to the proofs of the corresponding classical
results that can be found, for example, in [CK12], as well as to proofs in [BBHU],

2In [BU], Theorem 4.23 was used to show that their formalism of continuous model theory is
equivalent to the formalism of open Hausdorff cats in [BY03a].
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and in the much earlier monograph [CK66] that treated metric structures with the
discrete metric.

2.1. General Structures. The space of truth values will be [0, 1], with 0 repre-
senting truth. A vocabulary V consists of a set of predicate symbols P of finite arity,
a set of function symbols F of finite arity, and a set of constant symbols c. A general
([0, 1]-valued) structure M consists of a vocabulary V , a non-empty universe set M ,
an element cM ∈ M for each constant symbol c, a mapping PM : Mn → [0, 1] for
each predicate symbol P of arity n, and a mapping FM : Mn → M for each func-
tion symbol F of arity n. A general structure determines a vocabulary, but does
not determine a metric signature.

The formulas are as in [BBHU], with the connectives3 being all continuous func-
tions from finite powers of [0, 1] into [0, 1], and the quantifiers supx, infx. The truth
value of a formula ϕ(~x) at a tuple ~a ∈M |~x| in a general structure M is an element
of [0, 1] denoted by ϕM(~a). It is defined in the usual way by induction on the
complexity of formulas. The syntax and semantics of general structures described
here are the same as in [AH], and are the same as the restricted continuous logic in
[Ca], except that there the value 1 denotes truth.

We deviate slightly from [BBHU] by defining a theory to be a set of sentences
(rather than a set of statements of the form ϕ = 0). Similarly, we define an
n-type over a set of parameters A to be a set of formulas with free variables in
~x = 〈x1, . . . , xn〉 and parameters from A. A general model4 of a theory T is a

general structure M such that ϕM = 0 for each ϕ ∈ T . An n-tuple ~b in a general

structure M satisfies a formula ϕ(~x) in M if ϕM(~b) = 0, and satisfies, or realizes,

an n-type p if ~b satisfies every formula ϕ(~x) ∈ p.
Hereafter, M,N will denote general structures with universe sets M,N and vo-

cabulary V , and S, T, U will denote sets of sentences (that is, theories) with the
vocabulary V .

The notions of substructure (denoted by ⊆), elementary equivalence (denoted by
≡), elementary substructure and extension (denoted by ≺ and �), and elementary
chain are as defined as in [BBHU], but applied to general structures as well as

metric structures. M |= T means that M is a general model of T , M |= ϕ(~b) means

that ϕM(~b) = 0, and T |= U means that every general model of T is a general model
of U . T and U are equivalent if they have the same general models. The complete
theory Th(M) of M is the set of all sentences true in M. Thus Th(M) = Th(M′) if
and only if M ≡M′. We state two elementary results.

Fact 2.1.1. (Downward Löwenheim-Skolem) For every general structure M, there
is a general structure M′ ≺M such that |M ′| ≤ ℵ0 + |V |.

Fact 2.1.2. (Elementary Chain Theorem) The union of an elementary chain of
general structures 〈Mα : α < β〉 is an elementary extension of each Mα.

By an embedding h : M→ N we mean a function h : M → N such that h(cM) =
cN for each constant symbol c ∈ V , and for every n and ~a ∈ Mn, h(FM(~a)) =
FN(h(~a)) for every function symbol F ∈ V of arity n, and PM(~a) = PN(h(~a))
for every predicate symbol P ∈ V of arity n. We say that M is embeddable in

3we consider the elements of [0, 1] to be 0-ary connectives, so each r ∈ [0, 1] is a formula.
4To avoid confusion, we will always write “general model” instead of just “model”, because in

the literature on continuous model theory, “model” is used to mean what we call “metric model”.
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N if there is an embedding h : M → N. Note that the image of an embedding
h : M → N is a substructure of N. An elementary embedding h : M ≺ N is an
embedding that preserves the truth value of every formula. We say that M is
elementarily embeddable in N if there exists an h : M ≺ N.

In [BBHU], the reduction of a pre-metric structure was defined by identifying
elements that are at distance zero from each other. Some care is needed to choose
the right notion of reduction for general structures. In first order logic without
equality, the reduction of a structure is formed by identifying two elements that
cannot be distinguished by atomic formulas. We do the analogous thing here for
general structures.

Definition 2.1.3. For a, b ∈ M , we write a
.
=

M
b if for every atomic formula

ϕ(x, ~z) and tuple ~c ∈ M |~z|, ϕM(a,~c) = ϕM(b,~c). M is reduced if whenever a
.
=

M
b

we have a = b.

The relation
.
=

M
is a very old idea that goes back to Leibniz around 1840, and

is called Leibniz equality.

Remark 2.1.4. For any general structure M and a, b ∈M , a
.
=

M
b if and only if

in M, (a, b) satisfies the set of formulas

{sup
~z
|ϕ(a, ~z)− ϕ(b, ~z)| : ϕ is atomic}.

The reduction map for M is the mapping that sends each element of M to

its equivalence class under
.
=

M
. The reduction of the general structure M is the

reduced structure N such that N is the set of equivalence classes of elements of M

under
.
=

M
, and the reduction map for M is an embedding of M onto N. We say

that M,M′ are isomorphic, in symbols M ∼= M′, if there is an embedding from the
reduction of M onto the reduction of M′. We write h : M ∼= N if h : M → N, and

for each b ∈ N there exists a ∈M such that h(a)
.
=

N
b.

Remark 2.1.5.

• ∼= is an equivalence relation on general structures.
• Every general structure is isomorphic to its reduction.
• M,N are isomorphic if and only their reductions are isomorphic.
• If there is an embedding of M onto N, then M ∼= N.
• M ∼= N implies M ≡ N.
• M ∼= N if and only there exists h such that h : M ∼= N.

If V 0 ⊆ V , and M0 is obtained from M by forgetting every symbol of V \ V 0,
we call M an expansion of M0 to V , and call M0 the V 0-part of M.

Remark 2.1.6. Suppose V 0 ⊆ V , and M0 is the V 0-part of M. Then for every

formula ϕ(~x) in the vocabulary V 0, and every tuple ~b ∈ M |~x|, we have ϕM(~b) =

ϕM0

(~b).

Remark 2.1.7. If M0 is reduced and M is an expansion of M0, then M is reduced.

Proof. For all a, b ∈M , a
.
=

M
b implies a

.
=

M0

b. �

2.2. Ultraproducts. The ultraproduct of an indexed family of general structures
will be defined below as the reduction of the pre-ultraproduct, which is a general
structure whose universe is the cartesian product. As we will see later, this will be a
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direct generalization of the ultraproduct of metric structures as defined in [BBHU].
Recall that for any ultrafilter D over a set I and function g : I → [0, 1], there is a
unique value r = limD g in [0, 1] such that for each neighborhood Y of r, the set of
i ∈ I such that g(i) ∈ Y belongs to D.

Definition 2.2.1. Let D be an ultrafilter over a set I and Mi be a general structure

for each i ∈ I. The pre-ultraproduct
∏D

Mi is the general structure M′ =
∏D

Mi

such that:

• M ′ =
∏
i∈IMi, the cartesian product.

• For each constant symbol c ∈ V , cM
′

= 〈cMi〉i∈I .
• For each n-ary function symbol G ∈ V and n-tuple ~a in M ′,

GM′
(~a) = 〈GMi(~a(i))〉i∈I .

• For each n-ary predicate symbol P ∈ V and n-tuple ~a in M ′,

PM′
(~a) = lim

D
〈PMi(~a(i))〉i∈I .

The ultraproduct
∏

D Mi is the reduction of the pre-ultraproduct
∏D

Mi. For

each a ∈M ′ we also let aD denote the equivalence class of a under
.
=

M′
.

The following fact is the analogue for general structures of the fundamental
theorem of  Loś.

Fact 2.2.2. Let Mi be a general structure for each i ∈ I, let D be an ultrafilter
over I, and let M =

∏
D Mi be the ultraproduct. Then for each formula ϕ and tuple

~b in the cartesian product
∏
i∈IMi,

ϕM(~bD) = lim
D
〈ϕMi(~bi)〉i∈I .

The special case of Fact 2.2.2 where each Mi has a symbol =i for the discrete
metric was already stated and proved in [CK66]. The general case can be obtained
from that special case by observing that if each Mi has vocabulary V and Ni =
(Mi,=i), then

∏
D Mi is the reduction of the V -part of

∏
D Ni. Alternatively, Fact

2.2.2 can be proved from scratch by induction on the complexity of formulas, as is
done in first order logic.

If Mi = M for all i ∈ I, the ultraproduct
∏

D Mi is called the ultrapower of M
modulo D, and is denoted by MI/D.

Corollary 2.2.3. For each M and ultrafilter D, M is elementarily embeddable into
MI/D.

Corollary 2.2.4. Suppose Mi
∼= Ni for each i ∈ I, and D is an ultrafilter over I.

Then
∏

D Mi
∼=

∏
D Ni.

Proof. By Remark 2.1.5, for each i ∈ I there is a map hi : Mi
∼= Ni. Let h :

∏
i∈IMi →∏

i∈I Ni be the mapping such that for a ∈
∏
i∈IMi, h(a) = 〈hi(ai)〉i∈I . For each

continuous formula ϕ(~v) and tuple ~a ∈ (
∏
i∈IMi)

|~v|, it follows from Fact 2.2.2 that

ϕ
∏D Mi(~a) = lim

D
(ϕMi(~ai)) = lim

D
(ϕNi(hi(~ai))) = ϕ

∏D Ni(h(~a)).

Therefore h :
∏D

Mi →
∏D

Ni.

By Fact 2.2.2, if b, c ∈
∏
i∈I Ni and bi

.
=

Ni ci for each i ∈ I, then b
.
=

∏D Ni c. It

follows that h :
∏D

Mi
∼=

∏D
Ni, so by Remark 2.1.5,

∏
D Mi

∼=
∏

D Ni. �
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The following is proved in the usual way, using Fact 2.2.2.

Fact 2.2.5. (Compactness) If every finite subset of T has a general model, then T
has a general model.

2.3. Definability and Types. We write

• r u s for min(r + s, 1),
• r ≤. s for max(r − s, 0),
• r ≤. s≤. t for max(r ≤. s, s≤. t).

Thus r ≤ s if and only if r ≤. s = 0. In the literature, r ≤. s is sometimes written
r −. s. Note that for any general structure M, the following are equivalent:

• M |= sup~x[ϕ(~x)≤. ψ(~x)≤. θ(~x)].
• (∀~a ∈M |~x|)[ϕM(~a) ≤ ψM(~a) and ψM(~a) ≤ θM(~a)].

In what follows, all formulas mentioned are understood to be in the vocabulary
of a theory T . Let ~x be a tuple of variables, and ~y be a finite or infinite sequence of
variables, where all the symbols xi and yj are distinct. Given a formula θ(~x, ~y), we
let sup~y θ(~x, ~y) denote the formula sup~u θ(~x, ~y) where ~u is the (necessarily finite)
tuple of variables from ~y that occur freely in θ.

We say that a sequence 〈ϕm(~x, ~y)〉m∈N of formulas is Cauchy in T if for each
ε > 0 there exists m such that for all k ≥ m,

T |= sup
~x

sup
~y
|ϕm(~x, ~y)− ϕk(~x, ~y)| ≤. ε.

Cauchy in M means Cauchy in the complete theory Th(M).
If 〈ϕm(~x, ~y)〉m∈N is Cauchy in T , then for each general model M of T there is a

unique mapping from M |~x| ×M |~y| into [0, 1], denoted by [limϕm]M, such that

(∀~b ∈M |~x|)(∀~c ∈M |~y|)[limϕm]M(~b,~c) = lim
m→∞

ϕM
m (~b,~c).

We say that 〈ϕm(~x, ~y)〉m∈N is exponentially Cauchy in T if whenever m ≤ k we
have

T |= sup
~x

sup
~y
|ϕm(~x, ~y)− ϕk(~x, ~y)| ≤. 2−m.

Note that every exponentially Cauchy sequence of formulas in T is Cauchy, and
every Cauchy sequence in T has an exponentially Cauchy subsequence.

Definition 2.3.1. We say that a mapping P : M |~x| ×M |~y| → [0, 1] is defined by
〈ϕm(~x, ~y)〉m∈N in a general structure M, and is definable in M, if 〈ϕm(~x, ~y)〉m∈N is
Cauchy in M and P = [limϕm]M.

Note that for each general structure M,

δM(ϕ,ψ) := sup
~x

sup
~y
|ϕ(~x, ~y)− ψ(~x, ~y)|M

is a pseudo-metric on the set of all formulas with free variables from (~x, ~y), and the
above definition says that 〈ϕm(~x, ~y)〉m∈N is Cauchy in T if and only if it is Cauchy
with respect to δM uniformly for all M |= T .

We often consider the case where ~y is empty, or equivalently, where only finitely
many of the variables in ~y actually occur in some ϕm(~x, ~y). In that case, we have
the notion of a Cauchy sequence of formulas 〈ϕm(~x)〉m∈N and a definable mapping
P : M |~x| → [0, 1] in M.
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We now introduce complete n-types. For each theory T and n ∈ N, a complete
n-type over T is an n-type p(~x) that is maximal with respect to being satisfiable
in a general model of T . Sn(T ) denotes the set of all complete n-types over T . In
particular, S0(T ) is the set of all complete extensions of T . For each p ∈ Sn(T )
and formula ϕ(~x) with n free variables, we let ϕ(~x)p be the unique r such that
|ϕ(~x) − r| ∈ p. The logic topology on Sn(T ) is the topology whose closed sets are
the sets of the form {p ∈ Sn(T ) : Γ(~x) ⊆ p} for some n-type Γ(~x). It follows from
the Compactness Theorem that:

Fact 2.3.2. For each theory T and n ∈ N, the logic topology on Sn(T ) is compact.

Given a general structure M and a set A ⊆ M , let MA = (M, a)a∈A. The

complete type of an n-tuple ~b over A in M is the set tpM(~b/A) of all formulas

satisfied by ~b in MA. The set Sn(Th(MA)) of all complete n-types over A realized
in models of Th(MA) is denoted by SM

n (A). Thus the logic topology on SM
n (A) is

compact.
We say that a mapping P(~x, ~y) is definable over A in M if P is definable in MA.
The following lemma gives a relationship between P(~x) being definable over a

countable sequence of parameters, and P(~x, ~y) being definable without parameters.

Lemma 2.3.3. Let B ⊆M . A mapping P(~x) is definable over B in M if and only

if there is a countable sequence ~b of elements of B and an exponentially Cauchy
sequence 〈ϕ(~x, ~y)〉 of formulas in M such that for all ~a ∈ M |~x| we have P(~a) =

Q(~a,~b) where Q is the mapping defined by 〈ϕ(~x, ~y)〉 in M.

Proof. It is clear that if there is such a sequence of formulas, then P(~x) is definable
over B in M. Suppose P(~x) is definable over B in M, by a sequence 〈θm(~x)〉m∈N
with parameters in B. By taking a subsequence if necessary, we may insure that

for some sequence ~b of elements of B, each θm has parameters from ~b, and for each
m we have

(1) M |= sup
~x
|θm(~x,~b)− θm+1(~x,~b)| ≤ 2−(m+1).

We now use the forced convergence trick in [BU] to find a new sequence of formulas
ϕm(~x, ~y) in such a way that

(2) M |= sup
~x

sup
~y
|ϕm(~x, ~y)− ϕm+1(~x, ~y)| ≤ 2−(m+1),

and that ϕM
m (~a,~b) = θMm (~a,~b) whenever ~a ∈ M |~x| and m ∈ N. To do that we

inductively define ϕ0 = θ0, and

ϕm+1 = max(ϕm − 2−(m+1),min(ϕm + 2−(m+1), θm+1)).

Condition (2) implies that ϕm(~x, ~y) is exponentially Cauchy in M, and defines a

mapping Q in M such that P(~a) = Q(~a,~b) for all ~a ∈M |~x|. �

The following result is the analogue for general structures of Theorem 9.9 of
[BBHU].

Proposition 2.3.4. Let M be a general structure, A ⊆ M , and P : Mn → [0, 1].
The following are equivalent:

(i) P is a definable predicate over A in M.
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(ii) There is a unique function Ψ: SM
n (A)→ [0, 1] such that P(~c) = Ψ(tpM(~c/A))

for all ~c ∈ Mn. Furthermore, Ψ is continuous in the logic topology on
SM
n (A)

Proof. The proof that (ii)⇒ (i) is the same as the proof of Theorem 9.9 in [BBHU],
which did not use a metric on M.

(i)⇒ (ii): Suppose that P is defined by 〈ϕm〉m∈N over A in M. Then 〈ϕm〉m∈N is
Cauchy in Th(MA). There is a unique Ψ: SM

n (A)→ [0, 1] such that Ψ(tpM(~c/A)) =
[limϕm]MA(~c) = P(~c) for each ~c ∈Mn. For each closed interval I ⊆ [0, 1], there is a
n-type ΓI(~x) with parameters in A such that for all ~c ∈Mn, Ψ(tpM(~c/A)) ∈ I if and
only if MA |= ΓI(~c). Therefore Ψ−1(I) is closed in SM

n (A), so Ψ is continuous. �

Remark 2.3.5. Let A ⊆M and ~b in Mn.

• If N �M then tpM(~b/A) = tpN(~b/A).

• ϕM(~b,A) = r if and only if |ϕ(~x,A)− r| belongs to tpM(~b/A).

Using the compactness theorem, we have

• If N �M then SM
n (A) = SN

n (A).
• There exists N �M in which every type in

⋃
n S

M
n (A) is realized.

2.4. Saturated and Special Structures. For an infinite cardinal κ, we say that
a general structure M is κ-saturated if for every set A ⊆M of cardinality |A| < κ,
every set of formulas in the vocabulary of M with one free variable and parameters
from A that is finitely satisfiable in MA is satisfiable in MA.

Remark 2.4.1. If M is κ-saturated, A ⊆ M , and |A| < κ, then every complete
type p ∈ Sn(A) is realized in M.

Remark 2.4.2. M is κ-saturated if and only if the reduction of M is κ-saturated.

Definition 2.4.3. By a special cardinal we mean a cardinal κ such that 2λ ≤ κ
for all λ < κ. We say that M is special if |M | is an uncountable special cardinal
and M is the union of an elementary chain of structures 〈Mλ : λ < |M |〉 such that
each Mλ is λ+-saturated. M is κ-special if κ is special and M is the reduction of a
special structure of cardinality κ.

Note that every strong limit cardinal is special, and if 2λ = λ+ then 2λ is special.
Thus every κ-special structure is reduced and has cardinality ≤ κ. A κ-special
structure may have cardinality less than κ. For example, every metric structure
with a compact metric is κ-special for every special cardinal κ but has cardinality
at most 2ℵ0 .

Remark 2.4.4. If M is κ-special and V 0 ⊆ V , then the reduction of the V 0-part
of M is κ-special.

Remark 2.4.5. If κ is an uncountable inaccessible cardinal, then M is κ-special if
and only if M is a reduced κ-saturated structure of cardinality κ.

Fact 2.4.6. (Uniqueness Theorem for Special Models) If T is complete and M,N
are κ-special models of T , then M and N are isomorphic.

An easy consequence is:

Fact 2.4.7. Suppose M is κ-special, A ⊆ M , and |A| < cofinality of κ. Then for

all tuples ~b,~c in M , tpM(~b/A) = tpM(~c/A) if and only if M has an automorphism

that sends ~b to ~c and is the identity on A.
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The following result is proved using the Compactness, Downward Löwenheim-
Skolem, and Elementary Chain Theorems.

Fact 2.4.8. (Existence Theorem for Special Models) If κ is a special cardinal and
ℵ0 + |V | < κ, then every reduced structure M such that |M | ≤ κ has a κ-special
elementary extension.

The statement of Fact 2.4.8 above differs slightly from the corresponding result
in [CK66], because we do not have a symbol for the equality relation here.

2.5. Pre-metric Structures. A metric signature L over V specifies a distin-
guished binary predicate symbol d ∈ V for distance, and equips each predicate
or function symbol S ∈ V with a modulus of uniform continuity 4S : (0, 1]→ (0, 1]
with respect to d.

In the literature on metric structures, one usually fixes a metric signature L
once and for all, but here we focus on general structures that are not equipped with
metric signatures, and often consider many metric signatures at the same time. For
that reason, we will officially define a pre-metric structure to be pair consisting of
a general structure and a metric signature.

A pre-metric structure M+ = (M, L) consists of a general structure M with
vocabulary V , and a metric signature L over V , such that dM is a pseudo-metric
on M , and for each predicate symbol P and function symbol F of arity n, and for

all ~a,~b ∈Mn and ε ∈ (0, 1],

max
k≤n

dM(ak, bk) < 4P (ε)⇒ |PM(~a)− PM(~b)| ≤ ε.

and

max
k≤n

dM(ak, bk) < 4F (ε)⇒ dM(FM(~a), FM(~b)) ≤ ε.

A metric structure is a pre-metric structure (M, L) such that (M,dM) is a complete
metric space. The paper [BBHU] emphasized metric structures, but in this paper
we will focus more on pre-metric than metric structures.

Given a pre-metric structure M+ = (M, L), we will call M the downgrade of M+,
and call M+ the upgrade of M to L. Note that two different pre-metric structures
can have the same downgrade, because they may have different metric signatures.

We will slightly abuse notation and say that M is a pre-metric (or metric)
structure for L when (M, L) is a pre-metric (or metric) structure. We say that
a pre-metric structure M+ for L is κ-saturated if its downgrade is κ-saturated.
Similarly for other properties of general structures, such as being reduced, or being
an ultraproduct of a family of structures.

We remind the reader that every pre-metric structure for L has a unique com-
pletion up to isomorphism, that this completion is a metric structure for L, and
that every pre-metric structure is elementarily embeddable in its completion.

Remark 2.5.1. Every pre-metric structure for L that is reduced and ℵ1-saturated
is a metric structure for L.

In [BBHU], when M+ is a metric structure, a mapping from Mn into [0, 1] that
is uniformly continuous with respect to dM is called a predicate on M+.

We will make frequent use of the following result from [BBHU].
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Fact 2.5.2. (Theorem 3.5 in [BBHU]) For every metric signature L and formula
ϕ(~x) in the vocabulary of L, there is a function 4ϕ : (0, 1] → (0, 1] that is a mod-

ulus of uniform continuity for the mapping ϕM : M |~x| → [0, 1] in every pre-metric
structure M+ for L.

Fact 2.5.3. (See [Ca], page 112, and Definition 2.4 in [AH].) For each metric
signature L over V , there is a theory met(L) whose general models are exactly the
downgrades of pre-metric structures for L. Each sentence in met(L) consists of
finitely many sup quantifiers followed by a quantifier-free formula.

The sentences in met(L) formally express that d is a pseudo-metric, and that
the functions and predicates in V respect the moduli of uniform continuity for L.

Corollary 2.5.4. Every ultraproduct of pre-metric structures for L is a pre-metric
structure for L.

Proof. By Facts 2.2.2 and 2.5.3. �

A metric theory (T, L) consists of a metric signature L and a set T of sentences
in the vocabulary of L such that T |= met(L). A pre-metric (or metric) model of a
metric theory (T, L) is a pre-metric (or metric) structure M+ = (M, L) for L such
that ϕM = 0 for each sentence ϕ ∈ T .

When (T, L) is a metric theory, we also say that T is a metric theory with
signature L. Note that for every metric theory (T, L), pre-metric structure (M, L),
and continuous sentence ϕ, we have T |= M iff (T, L) |= (M, L), and T |= ϕ iff
(T, L) |= ϕ. Also, if (M, L) is a pre-metric model of a metric theory (T, L), then M

is a general model of T .
Part (i) of the next lemma shows that when M+ is a metric structure, the defi-

nition of a definable predicate here agrees with the notion of a definable predicate
in [BBHU].

Lemma 2.5.5.

(i) In every pre-metric structure M+ for L, every mapping that is definable in
the sense of Definition 2.3.1 is uniformly continuous.

(ii) For every metric theory T with signature L, and sequence of formulas
〈ϕm(~x)〉m∈N that is Cauchy in T , there is a function 4〈ϕ〉 that is a mod-

ulus of uniform continuity for the definable predicate [limϕm]M in every
pre-metric model M+ of T .

Proof. (ii) trivially implies (i). We prove (ii). Given ε > 0, take the least m so that
for all n ≥ m,

T |= sup
~x
|ϕm(~x)− ϕn(~x)| ≤. ε/3.

Let4〈ϕ〉(ε) = 4ϕm(ε/3) . Suppose M+ is a pre-metric model of T , and maxk≤n d
M(ak, bk) <

4〈ϕ〉(ε). Then

|[limϕm]M(~a)− [limϕm]M(~b)| ≤
|[limϕm]M(~a)− ϕM

m (~a)|+ |ϕM
m (~a)− ϕM

m (~b)|+ |ϕM
m (~b)− [limϕm]M(~b)| ≤

ε/3 + ε/3 + ε/3 = ε.

�

The next fact follows at once from Theorem 3.7 in [BBHU].
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Fact 2.5.6. If M+ is a pre-metric structure, a
.
=

M
b if and only if dM(a, b) = 0.

As mentioned above, in [BBHU], the notion of a reduction of a pre-metric struc-
ture M+ was defined as the structure obtained by identifying elements x, y when
d(x, y) = 0, rather than when x

.
= y. So the reduction of a pre-metric structure

as defined here is the same as the reduction of a pre-metric structure as defined
in [BBHU]. It follows that the ultraproduct of a family of metric structures with
signature L as defined here is the same as the ultraproduct of a family of metric
structures with signature L as defined in [BBHU].

Fact 2.5.7. (By Proposition 5.3 in [BBHU].) Every ultraproduct of metric struc-
tures for L is a metric structure for L.

Corollary 2.5.8. (Metric Compactness Theorem) If T is a metric theory with
signature L, and every finite subset of T has a metric model, then T has a metric
model.

In [BBHU], the definitions of a pre-metric structure and of an ultraproduct were
designed to insure that Fact 2.5.8 and the Metric Compactness Theorem hold.
There were pitfalls to avoid in extending the notion of an ultraproduct to general
structures. For example, if one adds a discontinuous predicate or function to a
pre-metric structure and tries to define an ultraproduct by identifying elements
at distance 0 from each other, the added predicate or function symbol would be
undefined in the ultraproduct.

Such pitfalls were avoided here by defining the reduction of a general structure

to be the general structure formed by identifying x with y when x
.
=

M
y. Using

that notion of reduction, we obtained a well-defined notion of ultraproduct that
coincides with the notion in [BBHU] for metric structures, satisfies the theorem of
 Loś (Fact 2.2.2) in all cases, and leads to the Compactness Theorem for general
structures.

2.6. Some Variants of Continuous Model Theory. In this subsection we dis-
cuss some cases from the literature where variants of continuous model theory have
been developed in order to study special classes of general structures that share
some features with pre-metric structures. In each of these cases, one can instead
work with the model theory of general structures as developed here.

Example 2.6.1. (Infinitary Continuous Logic) Christopher Eagle, in [Ea14] and
[Ea15], developed an infinitary logic Lω1ω that is analogous to continuous logic, but
has much greater power of expression and fails to satisfy the compactness theorem.
The Lω1ω-formulas in a vocabulary V are built from the atomic formulas using
the connectives and quantifiers of continuous logic and, in addition, the operations
supm ϕm and infm ϕm whenever 〈ϕm〉m∈M is a sequence of formulas in which only
finitely many variables occur freely. Given an Lω1ω-formula ϕ(~x) and a pre-metric
structure M, the truth value function ϕM : M |~x| → [0, 1] is defined in [Ea15] as one
would expect by induction on complexity.

We adopt here the same definition for the truth value ϕM of an Lω1ω-formula
in a general structure M. Then (M, ϕM) is a general structure whose vocabulary
has an extra |~x|-ary predicate symbol. However, even if M is a metric structure,
(M, ϕM) is not necessarily a metric structure, and ϕM may even be discontinuous.
We will revisit this concept in Subsection 4.4.
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Example 2.6.2. (Geodesic Logic) The paper [Cho17] introduced a variant of con-
tinuous model theory, called geodesic logic, whose structures are pre-metric struc-
tures with extra functions that are possibly discontinuous. He used this to obtain
approximate fixed point results and metastability results for certain discontinuous
functions.

A geodesic signature G consists of a metric signature H over a vocabulary V ,
and a set Y of extra symbols for possibly discontinuous functions, including a
set {Lt : t ∈ [0, 1]} of binary function symbols (the linear structure). A geodesic
structure with signature G is a general structure in our present sense, that has a
vocabulary V ∪ Y whose V -part is a pre-metric structure with signature H, that
satisfies the following sentences for each s, t ∈ [0, 1]:

sup
x

sup
y

[|d(Ls(x, y), Lt(x, y))− |s− t|d(x, y)| ≤. 0],(3)

sup
x

sup
y

[d(Lt(x, y), L1−t(y, c))≤
.

0].(4)

Thus a geodesic structure is just a general model of the theory

TG = metH ∪ {(3), (4)}.

For example, in our setting, Theorem 6.6 (a) of [Cho17] can be stated as follows:
Let λ ∈ [0, 1] and let G be a geodesic signature with distance predicate d, and an

extra unary function symbol F . Let M be a general model of the theory

(5) TG ∪ {sup
x

[d(Fx, FLλ(x, Fx))≤. d(x, Fx)]}.

In M, when xn+1 = Lλ(xn, Fxn) for all n, we have limn→∞ d(xn, xn+1) = 0.
The compactness theorem can then be used to get a uniform metastability bound

across all general models of (5) (Theorem 6.6 (b) of [Cho17]).

Example 2.6.3. (Sorted Vocabularies) Many-sorted metric structures are promi-
nent in the literature. Here we will work exclusively with general structures, as
defined at the beginning of this section, but introduce the notions of a sorted vo-
cabulary, and of a general structure that respects the sorts in that vocabulary. A
general structure that respects sorts cannot be a pre-metric structure. We have the
flexibility of starting with a general structure that respects sorts, and adding a new
unsorted distance predicate to form a pre-metric structure that does not respect
sorts. As we will see later, that flexibility will be useful when we consider such
topics as unbounded metrics and imaginary elements.

A sorted vocabulary W consists of a set of sorts, sets of finitary predicate and
function symbols, and a set of constant symbols. Each argument of a predicate or
function symbol is equipped with a sort, and each function and constant symbol is
equipped with a sort for its value. Moreover, W contains a unary predicate symbol
US associated with each sort S, and a constant symbol u (for “unsorted”) that has
no sort.

We say that a general structure M with vocabulary W respects sorts if:

• The universe M of M contains a family of pairwise disjoint non-empty
universe sets SM corresponding to the sorts S of W .
• For each sort S of W and a ∈M , UM

S (a) = 0 when a ∈ SM, and UM
S (a) = 1

when a /∈ SM.
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• For each k-ary predicate symbol P of W and ~a ∈Mk, PM(~a) = 1 when at
least one argument is of the wrong sort.
• For each k-ary function symbol F of W with value sort S and ~a ∈ Mk,
FM(~a) belongs to SM when each argument is of the correct sort, and is uM

when at least one argument is of the wrong sort.
• The value cM of each constant symbol c of sort S is an element of SM.
• The constant uM does not belong to any of the sets SM.

The unsorted constant symbol u serves two purposes: It allows one to interpret
each function symbol as a total function rather than as a partial function from a
product of sorts to a sort, and it insures that each structure that respects sorts has
an unsorted element.

Lemma 2.6.4. Let W be a sorted vocabulary and let M be a general structure with
vocabulary W .

(i) If M respects sorts, then the reduction of M also respects sorts.
(ii) If M is reduced and respects sorts, then uM is the unique element of M that

does not belong to SM for any sort S of W .
(iii) There is a set rs(W ) of sentences such that for every reduced structure M

with vocabulary W , M respects sorts if and only if M |= rs(W ).

Proof. (i) is clear.
(ii): Let a be an element of M that does not belong to SM for any sort S of

W . Then for any tuple ~c in M and atomic formula ϕ(x,~c) in which the variable x

occurs, we have ϕM(a,~c) = 1 and ϕM(uM,~c) = 1. Thus a
.
=

M
uM, so (ii) holds.

(iii): Each of the requirements for respecting sorts can be expressed in M be a set
of sentences. For example, the requirement that two sorts S1 and S2 are pairwise
disjoint is expressed by the sentence

sup
x

(1≤. max(US1(x), US2(x))).

By Remark 2.1.4, F (x, ~y)
.
= u can be expressed in M by a set of formulas. One can

use that to show that when M is reduced, the requirement that FM(x, ~y) = uM

when x does not have sort S can be expressed by a set of sentences. The other
requirements are similar. With a bit more work, one can take each sentence in
rs(W ) to be a finite set of sup quantifiers followed by a quantifier-free formula. �

Definition 2.6.5. Given a sorted vocabulary W , a sorted metric signature L over
W consists of a distinguished distance predicate symbol dS for each sort S of W ,
and a modulus of uniform continuity for each predicate and function symbol with
respect to these distance predicates. By a sorted metric (or pre-metric) structure
with the sorted signature L we mean a reduced general structure M with vocabulary
W that respects sorts, such that in M, each dS is a complete metric (or metric) on
S, and each symbol of W satisfies the modulus of uniform continuity given by L
with respect to these metrics.

We will return to sorted metric structures in Subsection 4.5.

Example 2.6.6. (Bounded Continuous Logic)
The version of continuous logic as defined in Section 2 of [BBHU], which we will

here call bounded continuous logic, is slightly broader than the [0, 1]-valued version.
(See also [BY09] and [Fa]). A bounded vocabulary is a vocabulary V equipped
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with a bounded real interval [rP , sP ] where rP < sP , for each predicate symbol
P ∈ V . The metric signatures, continuous formulas, and metric structures with
the bounded vocabulary V are as in the [0, 1]-valued case, except that the bounds
of uniform continuity are maps from (0,∞) into (0,∞), the distinguished metric d
is a metric with values in [0, sd], the logical connectives are continuous functions
from Rn into R, and the predicates P have truth values in the bounded interval
[rP , sP ]. The truth values of formulas in a bounded metric structure are defined by
induction on complexity of formulas in the usual way, and the truth values are in
R. Many-sorted bounded metric structures are treated in a similar way.

One can regard [0, 1]-valued continuous logic as the special case of bounded
continuous logic where where each predicate symbol P , including the distinguished
metric d, has the interval [0, 1]. The model theory of [0, 1]-valued metric structures
carries over to bounded metric structures in a routine way. As pointed out in
[BBHU], there is no real loss of generality in working with [0, 1]-valued continuous
logic, and for simplicity, [BBHU] develops things in detail only for the [0, 1]-valued
case.

One can convert any bounded metric structure M to a [0, 1]-valued metric struc-

ture M1 by replacing each predicate PM by the [0, 1]-valued predicate PM1

where

PM1

(~v) = (PM(~v)− rP )/(sP − rP ).

It then turns out that a predicate P : [0, 1]n → [0, 1] is definable in M if and only if it
is definable in M1. In that sense, the [0, 1]-valued language has the same expressive
power as the bounded language. But in many applications, the formulas in the
bounded language will be easier to understand than the corresponding formulas in
the [0, 1]-valued language.

In keeping with the perspective of this paper, one can also consider bounded
general structures with a given bounded vocabulary, by simply dropping the re-
quirement that there is a distinguished metric and a signature giving moduli of
uniform continuity. However, we retain the bounded vocabulary that equips each
predicate symbol P with a bounded real interval. Formulas and truth values are
defined in the same way for bounded general structures as they are for bounded
metric structures in [BBHU].

Example 2.6.7. (Unbounded Continuous Logic) Many important mathematical
structures, such as Banach spaces, valued fields, and C∗-algebras, are structures
with an unbounded complete metric d, functions that are uniformly continuous
with respect to d, predicates with truth values in R that are uniformly continuous
with respect to d, and constant symbols. We will call such structures unbounded
metric structures.

The inductive definition of the truth value of a formula in a bounded metric
structure does not automatically carry over to unbounded metric structures, be-
cause the sup of a set of values may not exist in R. In the literature, there are at
least three approaches to the study of an unbounded metric structure N by applying
the existing model theory to some metric structure that is associated with N.

One approach is to add a constant symbol 0 for a distinguished element of N,
and look at the many-sorted bounded metric structure M that has a sort Sm for the
closed m-ball around 0 for each 0 < m ∈ N, and, for each 0 < m < k, a function imk
of sort Sm → Sk for the inclusion map. For simplicity, suppose N has no function
symbols. For every constant symbol c and n-ary predicate symbol P of N, and every
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sort Sm, M will have a constant symbol cm and an n-ary predicate symbol Pm of
sort Sm. The uniform continuity property of N guarantees that for each predicate
symbol P of N, and each m > 0, PN maps the closed m-ball around 0 into a
bounded interval [rPm, s

P
m]. For each predicate symbol P , the bounded vocabulary

of M will be equipped with both the arity of P and the bounded interval [rPm, s
P
m].

In [Fa], C∗-algebras are treated as many-sorted bounded metric structures as
in the preceding paragraph. In order to make things work properly, axioms are
explicitly added to guarantee that the inclusion map sends the sort Sm onto the
closed m-ball in Sk. In [BBHU], Sections 15 and 17, Hilbert spaces and Banach
lattices are treated in a similar way (see also Remark 4.6 in [BU], and [BY09]).
In those cases, in any metric model of the many-sorted theory, the inclusion map
sends the sort Sm onto the closed m-ball around 0 in Sk.

A second, and simpler, approach is to look at the single-sorted [0, 1]-valued
metric structure formed by restricting the universe of N to the unit ball around
0, and normalizing each predicate symbol so that it takes truth values in [0, 1].
[BBHU] show that for Hilbert and Lp spaces, the many-sorted metric structure has
essentially the same model-theoretic properties as the single-sorted structure on the
unit ball, and are able to successfully simplify things by working exclusively with
the unit ball.

However, as pointed out in [BY08] and [BY14], there are other cases, such as in
non-archimedean valued fields, where neither of the above approaches is adequate.
The many-sorted structure M may have definable predicates that would not be
considered definable in the original structure N. For example, if m < k, the distance
dist(x,B) from a point x ∈ Sk to the set B = range(imk) might not be definable in
N, but is always definable in M by the formula infy dk(x, imk(y)).

To deal with that problem, Ben Yaacov [BY08] developed a variant of continuous
logic with an unbounded metric and modified notions of formula and ultraproduct.
That logic has a Lipschitz gauge function ν : N → [0,∞) that is thought of as the
size of an element, and determines the closed m-balls Bm = {x : ν(x) ≤ m}. In
most examples, the gauge ν(x) is d(x, 0), the distance from x to a distinguished
point 0. The universe of the modified pre-ultraproduct is the set of elements x of
the usual pre-ultraproduct such that 〈νi(xi)〉i∈I is bounded. This means that the
gauge of x is finite, which in most examples means that d(x, 0) is finite. Using
that logic, [BY08] converted an unbounded metric structure N into an ordinary
[0, 1]-valued metric structure N∞ via his emboundment construction. The intuitive
idea is to add a point at infinity to N, and to add a new metric to form a metric
structure N∞ such that the theories of N and N∞ have the same model-theoretic
properties. The reason for doing that is to study the unbounded metric structure
N by applying ordinary continuous model theory to N∞.

The logic developed in [BY08] is in many ways equivalent to the logic initiated in
1976 by Henson [He], and developed further by Henson and Iovino [HI], and Dueñez
and Iovino [DI]. That approach uses a similar notion of unbounded metric struc-
ture and modified ultraproduct as [BY08], but with a different notion of formula,
and a semantics based on approximate truth. Another form of unbounded contin-
uous logic, that uses a similar notion of unbounded metric structure and modified
ultraproduct but a different notion of formula, is developed in [Lu].

The bounded continuous logic of [BBHU] is better suited for applications than
either of the logics developed in [BY08] or in [HI] and [DI], because the notions
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of formula and truth value are simpler and more natural, and the formulas are
easier to understand, in [BBHU] than in the other approaches. For that reason, it
desirable to find a way to use bounded continuous logic to study unbounded metric
structures when possible.

We will return to unbounded metric structures in Subsection 4.6 below.

3. Turning General Structures into Metric Structures

In this section we define the key notion of a pre-metric expansion, and show that
for every theory T there exists a pre-metric expansion of T .

3.1. Definitional Expansions. In this subsection we introduce definitional ex-
pansions of a theory, and in the next subsection we will introduce pre-metric ex-
pansions as a special case.

Definition 3.1.1. Let T be a general theory in a vocabulary V , let D be a predicate
symbol that may or may not belong to V , and let VD = V ∪ {D}. A definitional
expansion of T over VD is a theory Te with vocabulary VD such that for some
sequence 〈d〉 = 〈dm(~x)〉m∈N of formulas of V that is Cauchy in T :

(i) For every general model M of T , Me = (M, [lim dm]M) is the a unique
expansion of M to a general model of Te.

(ii) Every general model of Te is equal to (M, [lim dm]M) where M is a general
model of T .

We say that the sequence 〈d〉 approximates D in Te. Note that if 〈d〉 approximates
D in Te, then so does every subsequence of 〈d〉. Therefore, for every definitional
expansion Te of T over VD, there is an exponentially Cauchy sequence of formulas
of V that approximates D in Te.

Lemma 3.1.2. (Axioms for Te) Suppose Te is a definitional expansion of T , and
〈dm(x, y)〉m∈N is exponentially Cauchy in T and approximates D in Te. Let T ′e be
the union of T and the set of sentences

(6) {sup
x

sup
y

(|dm(x, y)−D(x, y)| ≤. 2−m) : m ∈ N}.

Then Te is equivalent to T ′e.

Proof. Let N be a general structure with vocabulary VD, and let M be the V -part
of N. Then N satisfies (6) if and only if DN = [lim dm]M. By 3.1.1 (i), every general
model of T ′e is a general model of Te. By 3.1.1 (ii), every general model of Te is a
general model of T ′e. �

Remark 3.1.3. Suppose Te is a definitional expansion of T with vocabulary VD.

(i) For each sequence 〈dm〉m∈N of formulas of V that approximates D in Te,
and each general model M of T , DMe = [lim dm]M is defined by 〈d〉 in M.

(ii) If Te, Tf are definitional expansions of T with vocabulary VD, and there is
a sequence of formulas of V that approximates D in both Te and Tf , then
Te and Tf are equivalent.

(iii) If T ⊆ U , then Ue := Te∪U is a definitional expansion of U , every sequence
that approximates D in Te approximates D in Ue, and for every general
model M of U , the definitional expansion Me of M is the same for Ue as
for Te.
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(iv) For each general model M of T , Th(Me) is a definitional expansion of
Th(M).

The next remark says that definitional expansions are preserved under the ad-
dition of constant symbols.

Remark 3.1.4. Suppose V ′ = V ∪ C where C is a set of constant symbols. If Te
is a definitional expansion of the theory T with vocabulary VD, then Te is still a
definitional expansion of T with vocabulary V ′D.

Lemma 3.1.5. Suppose Te is a definitional expansion of a theory T , and M is a
general model of T .

(i) (
.
=

M
) = (

.
=

Me).
(ii) Me is reduced if and only if M is reduced.
(iii) If M′ is the reduction of M, then M′e is the reduction of Me.
(iv) If M′ is a general model of T and h : M ∼= M′, then h : Me

∼= M′e.

Proof. Let 〈dm(~x)〉m∈N approximate D in Td.

(i): It is trivial that x
.
=

Me y implies x
.
=

M
y. Suppose x

.
=

M
y. Consider an

atomic formula D(~τ(x, ~z)), where ~τ is a tuple of terms, and none of the variables
x, y, ~z occur freely in the any of the approximating formulas dm. Then for all ~z in
Me we have

D(~τ(x, ~z)) = lim
m→∞

dm(~τ(x, ~z)) = lim
m→∞

dm(~τ(y, ~z)) = D(~τ(y, ~z)),

so x
.
=

Me y. Therefore (
.
=

Me) = (
.
=

M
).

(ii): Expansions of reduced structures are always reduced. Suppose Me is re-

duced. By the proof of (ii), if x
.
=

M
y then x

.
=

N
y, and since Me is reduced, x = y.

Hence M is reduced.
(iii) For each x ∈M let x′ ∈M ′ be the equivalence class of x under

.
=

M
. Then

DMe(~x) = lim
m→∞

dMm (~x) = lim
m→∞

dM
′

m (~x′) = DM′
e(~x′),

so M′e is the reduction of Me.
(iv): By (ii), we may assume that M,M′ are reduced. Then any isomorphism

h : M ∼= M′ sends [lim dm]M to [lim dm]M
′
. �

Proposition 3.1.6. (Definitional expansions commute with ultraproducts.) Sup-
pose Te is a definitional expansion of T , D is an ultrafilter over a set I, and Mi |= T

for each i ∈ I. Then (
∏D

Mi)e =
∏D

((Mi)e), and (
∏

D Mi)e =
∏

D((Mi)e).

Proof. By Fact 2.2.2,
∏D

Mi,
∏

D Mi are models of T , and
∏D

((Mi)e),
∏

D((Mi)e)

are models of Te. (
∏D

Mi)e =
∏D

((Mi)e) because
∏D

Mi is the V -part of∏D
((Mi)e). Therefore, by Lemma 3.1.5 (ii), (

∏
D Mi)e =

∏
D((Mi)e). �

3.2. Pre-metric Expansions. We assume hereafter that D is a binary predicate
symbol.

Definition 3.2.1. Let T be a theory in a vocabulary V . We say that Te is a
pre-metric expansion of T (with signature Le) if:

(i) (Te, Le) is a metric theory whose signature Le has vocabulary VD and dis-
tance predicate D.
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(ii) There is a Cauchy sequence 〈d〉 of formulas in T such that the general
models of Te are exactly the structures of the form Me = (M, [lim dm]M),
where M is a general model of T .

Since (Te, Le) is a metric theory, we have Te |= met(Le), and every general model
of Te is the downgrade of a pre-metric structure with signature Le. Condition (ii)
in the above definition just says that Te is a definitional expansion of T . So each
of the results 3.1.2 – 3.1.6 hold for pre-metric expansions because they hold for all
definitional expansions.

We call (Me, Le) the pre-metric expansion of M for Te, and call M the non-
metric part of Me. We abuse notation by using Me to denote both the pre-metric
expansion (Me, Le) of M, and its downgrade Me. We call a sequence 〈d〉 that
approximates D in Te an approximate distance for Te, and also for Me. Every
pre-metric expansion of T has approximate distances, but they are not unique.

Here are three rather trivial examples of pre-metric expansions.

Example 3.2.2. Suppose V has no predicate symbols. Then up to equivalence,
the unique pre-metric expansion of T is the theory Te = T ∪{supx supyD(x, y)≤. 0}
in which the distance between any two elements is 0. Every reduced model of T or
of Te is a one-element structure.

Example 3.2.3. Suppose the predicate symbol D already belongs to V , L is a
metric signature over V with distance predicate D, and T |= met(L). Let Te be
the metric theory with signature L and the same set of sentences as T . Then Te is
a pre-metric expansion of T , and for each general model M of T , the upgrade of M
to L is the pre-metric expansion of M for Te.

Example 3.2.4. If there is a formula D(x, y) in the vocabulary V such that DM

is
.
=

M
in every general model M of T , then T has a pre-metric expansion with the

distinguished distance D and the trivial moduli of uniform continuity. We call such
a pre-metric expansion discrete. A theory T has a discrete pre-metric expansion if
and only if T has a Cauchy sequence of formulas 〈dm(x, y)〉m∈N such that in every
reduced model N of T , [lim dm]N is the discrete metric =N. (Hint: Take dm(x, y)
to be exponentially Cauchy, so that d2 is always within 1/4 of the limit, and take
D(x, y) = C(d2(x, y)) for an appropriate connective C.)

Note that a classical structure without equality (where every atomic formula
has truth value 0 or 1) will not necessarily have a discrete pre-metric expansion.
But by the Expansion Theorem below, it will have a pre-metric expansion if V is
countable.

From this point on, except when we specify otherwise, every general structure
we consider will be understood to be a general structure whose vocabulary has at
most countably many predicate and function symbols. We let V be a vocabulary
that contains at most countably many predicate and function symbols (we make no
restriction on the number of constant symbols). We let D be a binary predicate
symbol and let VD = V ∪ {D}.

Formulas in the vocabulary V will be called V -formulas, and general structures
for V will be called V -structures. Similarly for terms and sentences. Unless we say
otherwise, T will be a V -theory, that is, a set of V -sentences.



20 H. JEROME KEISLER

Definition 3.2.5. Let T be a complete V -theory. We call 〈d〉 = 〈dm(x, y)〉m∈N an
exact distance in T if

(i) 〈d〉 is Cauchy in T .
(ii) [lim dm]M is a pseudo-metric in every general model of T .
(iii) For each general model M |= T and V -formula ϕ(~x), the mapping ϕM : M |~x| →

[0, 1] is uniformly continuous in the pseudo-metric space (M, [lim dm]M).

Proposition 3.2.6. Suppose Te is a pre-metric expansion of a complete V -theory
T with approximate distance 〈d〉 = 〈dm(x, y)〉m∈N. Then 〈d〉 is an exact distance
in T .

Proof. By the definition of a pre-metric expansion, Definition 3.2.5 (i) and (ii) hold,
and for every M |= T , Me = (M, [lim dm]M) is a pre-metric structure with signature
Le. Then by Fact 2.5.2, (iii) holds. �

We now state two results, Theorems 3.2.7 and 3.2.8, that follow from the proofs
of results from [I94] in the context of Henson’s Banach space model theory [He],
and from [BU] in the context of open Hausdorff cats. Those results together imply
that every complete theory has a pre-metric expansion. In order to convert the
proofs from [I94] and [BU] to proofs of Theorems 3.2.7 and 3.2.8 in our present
setting, we would need a long detour through positive bounded formulas and open
Hausdorff cats. Instead, in the next subsection we will give a different and self-
contained proof of a stronger result, that every (not necessarily complete) theory
has a pre-metric expansion with an approximate distance 〈dm〉m∈N such that each
dm defines a pseudo-metric in every general model of T .

Theorem 3.2.7. (By the proof of Proposition 53 of [I94], Theorem 5.1 of [I99],
or Theorem 2.20 of [BY05].) Every complete V -theory T has an exact distance.

Theorem 3.2.8. (By Theorem 4.23 of [BU].) Let T be a complete V -theory. If T
has an exact distance, then T has a pre-metric expansion.

Note that by Proposition 3.2.6, every complete V -theory has a pre-metric ex-
pansion if and only if both Theorem 3.2.7 and Theorem 3.2.8 hold.

3.3. The Expansion Theorem. We will show that every V -theory T has a pre-
metric expansion with an approximate distance 〈dm(x, y)〉m∈N such that each dm
defines a pseudo-metric in every general model of T . In Lemma 3.3.3 below we
prove this in the special case that V has no function symbols. We will use that
to prove the general result in Theorem 3.3.4. By Remark 3.1.3 (iii), it is enough
to show that the empty set of sentences with vocabulary V has such a pre-metric
expansion.

Definition 3.3.1. A formula ϕ(~x, ~y) is pseudo-metric in T if |~x| = |~y| and ϕM

is a pseudo-metric on M |~x| for every general model M |= T . By a pseudo-metric
approximate distance for a pre-metric expansion Te of T , we mean an approximate
distance 〈dm(x, y)〉m∈N for Te such that each dm is a pseudo-metric formula in T .

Remark 3.3.2. (i) If 〈ϕm(~x, ~y)〉m∈N is Cauchy in T and each formula ϕm is
pseudo-metric in T , then [limϕm]M is a pseudo-metric on M |~x| for every M |= T .

(ii) If T ⊆ U and Te is a pre-metric expansion of T , then Ue = Te ∪ U is a pre-
metric expansion of U with the same metric signature and approximate distance as
Te.
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Proof. (i) is clear. (ii) follows from Remark 3.1.3 (iii) and part (i) above. �

Lemma 3.3.3. If the vocabulary V has countably many predicate symbols and no
function symbols, then every V -theory T has a pre-metric expansion with a pseudo-
metric approximate distance.

Proof. Let x, y, u, z1, z2, . . . be distinct variables. Arrange all atomic formulas with
no constant symbols whose variables are among u, z1, z2, . . . in a countable list
α0, α1, . . .. For each m, let αm(x, ~z) and αm(y, ~z) be the formulas formed from
αm(u, ~z) by replacing u by x and y respectively. For each m, let βm(x, y) be the
V -formula

βm(x, y) = sup
~z
|αm(x, ~z)− αm(y, ~z)|.

Let d0(x, y) = β0(x, y), and for each m > 0 let dm(x, y) be the V -formula

dm(x, y) = max(dm−1(x, y), 2−mβm(x, y)).

Then for every V -structure M and every m, βM
m and dMm are pseudo-metrics on M .

Moreover,
|= dm(x, y)≤. dm+1(x, y)≤. dm(x, y)u 2−(m+1),

so 〈d〉 := 〈dm(x, y)〉m∈N is exponentially Cauchy in T . For every general model M of
T , let Me = (M, DMe) where DMe = [lim dm]M. Since each dMm is a pseudo-metric
on M , the limit DMe is a pseudo-metric on M .

For every M |= T , Me is a general model of the VD-theory

T〈d〉 = {sup
x

sup
y

[dm(x, y)≤. D(x, y)≤. dm(x, y)u 2−m] : m ∈ N}.

We will find a metric signature Le such that Te = T ∪T〈d〉 is a pre-metric expansion
of T with approximate distance 〈d〉. It suffices to specify a modulus of uniform
continuity 4P for each k-ary predicate symbol P ∈ V that is satisfied with respect
to D in every general model of T〈d〉. For each 1 ≤ i ≤ k, let P (u, ~z)i be the atomic
formula obtained from P (z1, . . . , zk) by replacing zi by u. Then P (u, ~z)i is αmi for
some mi ∈ N. Let m = max(m1, . . . ,mk). For each 1 ≤ i ≤ k, we have

T〈d〉 |= sup
~z
|P (x, ~z)i − P (y, ~z)i| = βmi

(x, y)≤. 2mdm(x, y)≤. 2mD(x, y).

Therefore whenever ~x, ~y differ only in the i-th argument we have

T〈d〉 |= |P (~x)− P (~y)| ≤. 2mD(xi, yi).

Since one can change any k-tuple ~x to ~y in k steps by changing one variable at a
time, for every pair of k-tuples ~x, ~y we have

T〈d〉 |= |P (~x)− P (~y)| ≤. 2mkmax(D(x1, y1), . . . , D(xk, yk)).

It follows that P has modulus of uniform continuity4P (ε) = 2−mk−1ε with respect
to D in each general model of T〈d〉. Therefore Te = T∪T〈d〉 is a pre-metric expansion
of T . �

In the general case that V contains function symbols, we must also specify a
modulus of uniform continuity for each function symbol with respect to D. In a pre-
metric structure with distance d, one can eliminate function symbols by using the
formula d(F (~x), y) for the graph of F (~x). This will not work in a general structure,
because the formula D(F (~x), y) for the graph of F (~x) is not a V -formula. We will
circumvent that difficulty by an “atomic Morleyization”, adding a new predicate
symbol for each atomic V -formula.
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Theorem 3.3.4. (Expansion Theorem) For every vocabulary V with countably
many predicate symbols and countably many function symbols, every V -theory T
has a pre-metric expansion with a pseudo-metric approximate distance.

Proof. By Remark 3.3.2 (ii), we may assume that T is the empty set of sentences.
Let V ′ be the union of V and a k-ary predicate symbol Pα for each atomic V -formula
α(~x) with k variables and no constant symbols. Let T ′ be the set of V ′-sentences
sup~x |Pα(~x)− α(~x)| for each α(~x). Then V ′ \ V is a countable set of new predicate
symbols, and every V -structure M has a unique expansion to a general model M′

of T ′. It can be shown by induction on complexity that every V ′-formula ϕ(~x) is
T ′-equivalent to a V -formula ϕ0(~x), and is also T ′-equivalent to a V ′-formula ϕ′′(~x)
that has no function symbols.

Let V ′′ be the set of all predicate and constant symbols in V ′, and for each
V -structure M let M′′ be the V ′′-part of M′. Let T ′′ be the set of all V ′′-sentences
that hold in all general models of T ′, which is the same as the set of all V ′′-sentences
that hold in M′′ for every V -structure M. Note that V ′′ ⊆ V ′, T ′′ ⊆ T ′, and for
each V ′-formula ϕ(~x), the formula ϕ′′(~x) defined in the previous paragraph is a
V ′′-formula. By Lemma 3.3.3, T ′′ has a pre-metric expansion T ′′e with a pseudo-
metric approximate distance 〈d〉 = 〈dm(x, y)〉m∈N. Then for each V -structure M,

M′′e = (M′′, [lim dm]M
′′
).

We next find a metric signature L′e over V ′D such that T ′e = T ′′e ∪T ′ with signature
L′e is a pre-metric expansion of T ′ with the same approximate distance. Since each

M′ is an expansion of M′′, dM
′

m = dM
′′

m , so [lim dm]M
′

= [lim dm]M
′′
. We must

find a modulus of uniform continuity for each k-ary function symbol F in V . For
each m, let θm(~x, y) be a V ′′-formula that is T ′-equivalent to dm(F (~x), y). Then

〈θm(~x, y)〉m∈N is Cauchy in T ′′, and for each M |= T and all (~b, c) ∈Mk+1,

DM′′
e (FM(~b), c) = [lim dm]M

′′
(FM(~b), c) = [lim θm]M

′′
(~b, c) = [lim θm]M

′′
e (~b, c).

By Lemma 2.5.5, there is a function 4F that is a modulus of uniform continuity
for [lim θm]M

′′
e in the pre-metric structure M′′e for every general model M of T .

We note that Proposition 9.23 of [BBHU] on definable functions holds for pre-
metric structures as well as metric structures. Therefore in M′′e , the function FM

is definable and has the same modulus of uniform continuity 4F . This shows that
M′e = (M′, [lim dm]M

′
) is a pre-metric structure with the metric signature L′e that

agrees with L′′e on V ′′ and gives F the modulus of uniform continuity 4F .
Finally, we show that there is a pre-metric expansion Te of the empty theory

T with a pseudo-metric approximate distance. We take Le to be the restriction
of L′e to VD (so the symbols of VD have the same moduli of uniform continuity
in Le as in L′e). Then Le is a metric signature with distance predicate D over

VD. For each m let d̂m(x, y) be a V -formula that is T ′-equivalent to dm(x, y),

and let 〈d̂〉 = 〈d̂m(x, y)〉m∈N. Since 〈d〉 is Cauchy in T ′ and each dm is pseudo-
metric in every general model of T ′, and every M |= T has a unique expansion to a

general model M′ |= T ′, 〈d̂〉 is Cauchy in T ′ and each d̂m is pseudo-metric in each
general model of T . We let Te be the union of T and a set of sentences saying that

D(x, y) = limm→∞ d̂m(x, y) with signature Le. Then Te is a pre-metric expansion

of T with pseudo-metric approximate distance 〈d̂〉. �
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Theorem 3.3.4 shows that a pre-metric expansion with a pseudo-metric approx-
imate distance always exists, but the distance predicate built in the proof depends
on an arbitrary enumeration of the atomic formulas, and may not be natural.

Corollary 3.3.5. Every complete V -theory T has an exact distance 〈dm〉m∈N in
which each dMm is a pseudo-metric for each M |= T .

Proof. By Theorem 3.3.4 and Proposition 3.2.6. �

Question 3.3.6. Does every pre-metric expansion of T have a pseudo-metric ap-
proximate distance?

Added in October, 2020: With the permission of James E. Hanson, we report
that he has shown that the answer to Question 3.3.6 is “Yes”. If 〈dk〉 is an approx-
imate distance for Te, then 〈ek〉 is a pseudo-metric approximate distance for Te,
where en(x, y) = supx |dk(x, z)− dk(y, z)|.

We now show that the pre-metric expansion of a V -structure M is unique up to
a uniformly continuous homeomorphism.

Proposition 3.3.7. Let Te, Tf be pre-metric expansions of T . There is a function
4(·) : (0, 1]→ (0, 1] such that for every general model M of T , the identity function
is a uniformly continuous homeomorphism from (M,DMe) onto (M,DMf ) with
modulus 4(·).

Proof. We must find a function 4(·) that is a modulus of uniform continuity for
DMf in the pre-metric structure Me for each M |= T . Let 〈dm〉m∈N be an ap-
proximate distance for f . For each M |= T , Me is a pre-metric structure with
signature Le. 〈dm〉m∈N is Cauchy in the V -theory T . T is also a VD-theory, and
DMf = [lim dm]M = [lim dm]Me . By Lemma 2.5.5 (ii), there is a function 4(·) with
the required property. �

Let us look at the pre-metric expansion process in the reverse direction. The
general structure M can by obtained from the pre-metric expansion Me by simpli-
fying in two steps: first downgrade Me to a general structure N by forgetting the
metric signature, and then take the V -part of N by forgetting the distance to get
the original general structure M. M is the non-metric part of Me. We thus have
two equivalence relations on the class of pre-metric structures with vocabulary VD,
the fine relation of having the same downgrade, and the coarse relation of having
the same non-metric part.

Formally, the class of general structures is disjoint from the class of pre-metric
structures because only the latter includes a metric signature. But intuitively, we
regard Me and the downgrade of Me as the same structure presented in two different
ways.

3.4. Absoluteness. In this rather philosophical subsection we develop a frame-
work that allows one to apply known model-theoretic results about metric struc-
tures to general structures.

For the remainder of this paper, we let T be a V -theory, Te be an arbitrary pre-
metric expansion of T with signature Le, M be an arbitrary general model of T ,
and Me be the pre-metric expansion of M for Te.

By a general property we mean a class of general structures that is preserved
under automorphism (i.e., bijective embeddings), and by a pre-metric property we
mean a class of pre-metric structures, again preserved under automorphisms. When
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P is a property, we interchangeably use the phrases “N belongs to P”, “N has
property P”, “N satisfies P”, and “P holds in N”.

Definition 3.4.1. An absolute version of a pre-metric property Q is a general
property P such that whenever Me is a pre-metric expansion of M, M has property
P if and only if Me has property Q.

The following corollary was stated in the Introduction.

Corollary 3.4.2. Every pre-metric property Q has at most one absolute version.

Proof. Suppose P and P′ are absolute versions of Q, and consider a general structure
M. By Theorem 3.3.4, M has a pre-metric expansion Me. Then the following are
equivalent: M has property P, Me has property Q, M has property P′. �

Definition 3.4.3. We say that a general property P is absolute if whenever Me is
a pre-metric expansion of M, M has property P if and only if the downgrade of Me

has property P.

Corollary 3.4.4. Suppose P is an absolute version of Q. Then P is absolute.

Proof. By Example 3.2.3, each pre-metric structure N is a pre-metric expansion of
the downgrade of N. Therefore for each M and Me, the following are equivalent:
M has property P, Me has property Q, the downgrade of Me has property P. �

By Lemma 3.1.5 (i) we have:

Proposition 3.4.5. The property [M is reduced] in Definition 2.1.3 is absolute.

In view of Remark 3.1.4, we often consider properties of a general structure M

with additional parameters from M .

Proposition 3.4.6. Let p(~x,A) be a set of V -formulas with parameters from M .
The property [p(~x,A) is realized in MA] is absolute.

Proof. Every pre-metric expansion of M is an expansion of M. It follows from

Remark 2.1.6, that if M′ is an expansion of M, A ⊆M , and ~b ⊆M , then ~b realizes

p(~x,A) in M′A if and only if ~b realizes p(~x,A) in MA. �

For the same reason, Proposition 3.4.6 also holds when p(~x,A) is an infinitary
Lω1ω-formula in the sense of [Ea15]

In view of Corollaries 3.4.2 and 3.4.4, we consider the absolute version of a pre-
metric property Q, if there is one, to be the “right” way to extend Q to all general
structures. When we have a name for structures with a pre-metric property Q,
it will be convenient to use the same name for general structures that satisfy an
absolute version of Q. So we adopt the following convention.

Definition 3.4.7. A pre-metric property Q is said to be absolute if Q has an
absolute version. If Q is an absolute pre-metric property, a general structure that
satisfies the absolute version of Q will be called a general structure with property Q.

Proposition 3.4.8. For any pre-metric property Q, the following are equivalent:

(i) Q is absolute.
(ii) The class of general structures with property Q is absolute.
(iii) For every general structure M and all pre-metric expansions Me,Mf of M,

Me has property Q if and only if Mf has property Q.
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Proof. (i) and (ii) are equivalent by Corollary 3.4.4. Assume (i), so Q has an
absolute version P. Let M be a general structure and let Me and Mf be two
pre-metric expansions of M. Then the following are equivalent: Me has Q, the
downgrade of Me has P, M has P, the downgrade of Mf has P, Mf has Q. Therefore
(iii) holds.

Assume (iii). Let P be the property such that for each general structure M, P
holds for M if and only if Q holds for some pre-metric expansion of M. By (iii), for
each M and Me, P holds for M if and only if Q holds for Me. By Example 3.2.3,
each pre-metric structure N is a pre-metric expansion of the downgrade of N, so Q

holds for N if and only if P holds for the downgrade of N. In particular, for each M

and Me, Q holds for Me if and only if P holds for the downgrade of Me. It follows
that P is an absolute version of Q, so (i) holds. �

Here are some examples of pre-metric properties that are not absolute.

Example 3.4.9.

• Let 0 < r ≤ 1. The property of being a pre-metric structure whose dis-
tinguished distance has diameter r is not absolute. Similarly for diameter
≤ r, and for diameter ≥ r.
• Let d(x, y) be a V -formula that defines a pseudo-metric in every V -structure.

The property of being a pre-metric structure Me with distinguished dis-
tance D such that Me satisfies supx supy(d(x, y)≤. D(x, y)), is not absolute.

(Hint: If Me has an approximate distance 〈dm〉m∈N, then (M,max(D, dM))
is a pre-metric expansion of M with approximate distance 〈max(dm, d)〉m∈N
and the same signature Le.)
• Say that a pre-metric structure is Lipschitz if every predicate and function

symbol S has a modulus of uniform continuity 4S that is linear, that is, for
each S there is a positive real ` such that 4S(x) = `x for all x ∈ (0, 1]. The
property of being a Lipschitz pre-metric structure is not absolute. (Hint:
Consider pre-metric expansions of the unit ball in an n-dimensional vector
space over the reals.)

In the next section, we will show that many pre-metric properties Q in the
literature have absolute versions, and also give necessary and sufficient conditions
for M to be a general structure with property Q. Note that the characterization
of the absolute version of Q given by the proof of Proposition 3.4.8 mentions pre-
metric expansions. In the results that follow, we will always give necessary and
sufficient conditions for a general structure M to have property Q that are about
M itself, rather than conditions that mention pre-metric expansions of M. This is
desirable for potential applications, because a general structure M may have a very
simple description even though all its pre-metric expansions are complicated.

4. Properties of General Structures

In this section we use absoluteness to extend known results about metric struc-
tures to general structures.

4.1. Types in Pre-metric Expansions.

Proposition 4.1.1. If M |= T and N ≡M, then Ne ≡Me.
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Proof. Let κ be a special cardinal such that |V |+ℵ0 < κ. By the Existence Theorem
for Special Models, there are κ-special VD-structures M′ ≡ Me and N′ ≡ Ne. Let
M′′,N′′ be the V -parts of M′,N′ respectively. Then M′′,N′′ |= T , M′ = M′′e and
N′ = N′′e . By Remark 2.4.4, the reductions of M′′ and N′′ are κ-special. By the
Uniqueness Theorem for Special Models, we have M′′ ∼= N′′. By Lemma 3.1.5 (iii)
we have M′′e

∼= N′′e , or in other words, M′ ∼= N′. Therefore Ne ≡ N′ ≡M′ ≡Me. �

Corollary 4.1.2. Suppose A ⊆M and h : A→ N . Then (M, a)a∈A ≡ (N, ha)a∈A
if and only if (Me, a)a∈A ≡ (Ne, ha)a∈A

Proof. By Remark 3.1.4 and Proposition 4.1.1. �

Corollary 4.1.3. h : M ≺ N if and only if h : Me ≺ Ne.

Proof. By Corollary 4.1.2 with A = M . �

Corollary 4.1.4. The property of two tuples realizing the same type over A is

absolute—tpM(~b/A) = tpM(~c/A) if and only if tpMe
(~b/A) = tpMe

(~c/A). Also,
indiscernibility over A is absolute.

Proof. Apply Corollary 4.1.2 with N = M and where h is the identity on A and

maps ~b to ~c. �

The next corollary shows that for each complete theory T , Te has essentially the
same complete types as T .

Corollary 4.1.5. If T = Th(M) and Te = Th(Me), there is a homeomorphism h
from Sn(T ) onto Sn(Te) such that for each ~c ∈Mn, h(tpM(~c)) = tpMe

(~c).

Proof. This follows from Corollary 4.1.4. �

Proposition 4.1.6. Let κ be an infinite cardinal. The κ-saturation property is
absolute—for each general model M of T , M is κ-saturated if and only if Me is
κ-saturated.

Proof. We prove the non-trivial direction. Suppose M is κ-saturated. By Remark
2.4.2 and Lemma 3.1.5 (i), we may assume without loss of generality that M is
reduced. Then Me is reduced. Let A ⊆ M with |A| < κ, and let Γ(x) be a set
of VD-formulas that is finitely satisfiable in (Me)A. By the Existence Theorem
for Special Models, there is a reduced κ-saturated elementary extension N′ � Me.
Then N′ is equal to Ne where N is the V -part of N′, and N � M. Since Ne is κ-
saturated, some c ∈ N satisfies Γ(x) in (Ne)A. Since M is κ-saturated, there exists
b ∈ M such that tpM(b/A) = tpN(c/A), so tpN(b/A) = tpN(c/A). By Corollary
4.1.4, tpNe

(b/A) = tpNe
(c/A). Therefore b satisfies Γ(x) in Ne, and hence also

satisfies Γ(x) in Me. �

Corollary 4.1.7. M is κ-special if and only if Me is κ-special.

Proof. By Corollary 4.1.3 and Proposition 4.1.6. �

4.2. Definable Predicates. The notion of a definable predicate in M was intro-
duced in Definition 2.3.1. In Proposition 4.2.2 below we will show that the general
property [P is a definable predicate] is absolute. The next lemma will be used
several times in this paper.



MODEL THEORY FOR REAL-VALUED STRUCTURES 27

Lemma 4.2.1. Let Te be a pre-metric expansion of T . For every VD-formula
ϕ(~x), there is a Cauchy sequence of V -formulas 〈ϕm(~x)〉m∈N in T such that for
every general model M of T , ϕMe = [limϕm]M. Hence ϕMe is definable in M.

Proof. Let 〈d〉 = 〈dm(u, v)〉m∈N be an approximate distance for Te, such that no
bound variable in dm(u, v) occurs in ϕ(~x). Let Ψ be the set of all subformulas
of ϕ(~x). For every ψ ∈ Ψ, let ψm be the V -formula obtained by replacing every
subformula of ψ of the form D(σ, τ) by dm(σ, τ), where σ, τ are V -terms. It then
follows by induction on complexity that for every ψ ∈ Ψ we have:

〈ψM
m 〉m∈N is Cauchy in T and for each M |= T, ψMe = [limψm]M.

In particular, this holds when ψ = ϕ(~x), as required. �

Proposition 4.2.2. Let P : Mk → [0, 1]. The general property [P is a definable
predicate] is absolute.

Proof. It is clear that if P is definable in M, then P is definable in Me. Suppose
that P is definable in Me. Then P = [limϕm]Me for some sequence 〈ϕm〉m∈N of
VD-formulas that is Cauchy in Th(Me). By Lemma 4.2.1, each ϕMe

m is definable in
M, so for each m there is a V -formula ψm(~x) such that

(∀~b ∈Mk)|ψM
m (~b)− ϕMe

m (~b)| ≤ 2−m.

Then P = [limϕm]Me = [limψm]M, so P is definable in M. �

The following corollary shows that when we add countably many predicates
that are definable in M to a pre-metric expansion of M, we still have a pre-metric
expansion.

Corollary 4.2.3. Suppose V ′ = V ∪ W where W is a countable set of new
predicate symbols, M is a V -structure, Me is a pre-metric expansion of M, and
M′ = (M, PM′

)P∈W is a V ′-structure such that PM′
is a definable predicate in M

for each P ∈ W . Then the V ′D-structure (Me, P
M′

)P∈W is a pre-metric expansion
of M′.

Proof. Let 〈d〉 = 〈dm〉m∈N be an approximate distance for Te. By Lemma 2.5.5, for

each predicate symbol P ∈ W , PM′
is uniformly continuous with respect to DMe

with some modulus of uniform continuity 4P . Let Lf agree with Le on V and give
each new predicate symbol P ∈W the modulus of uniform continuity 4P . Then

M′f := (M′, [lim dm]M
′
) = (M′, DMe) = (Me, P

M′
)P∈W

is a pre-metric expansion of M′ with signature Lf . �

Given a set of parameters A ⊆ M , we say that a mapping P : Mk → [0, 1] is
a definable predicate over A in M if P is a definable predicate in MA. In view of
Remark 3.1.4, all of the results in this section hold for definable predicates over A
in M.

Definition 4.2.4. We say that a general structure N whose vocabulary W contains
V admits quantifier elimination over V if for every W -formula ϕ(~x), ϕN is defined
by a sequence of quantifier-free V -formulas in N.

Note that admitting quantifier elimination over V is a stronger property than
admitting quantifier elimination over VD.
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Corollary 4.2.5.

(i) M admits quantifier elimination over V if and only if Me admits quantifier
elimination over V .

(ii) If DMe(x, y) is defined in Me by a sequence of quantifier-free V -formulas,
and Me admits elimination of quantifiers over VD, then M admits elimina-
tion of quantifiers over V .

Proof. This follows easily from Lemma 4.2.1. �

4.3. Topological and Uniform Properties. The following definition was given
in [BBHU] for metric structures, but makes sense for all general structures.

Definition 4.3.1. A set C ⊆ Mk is said to be type-defined by Φ(~x) in a general
structure M, and that C is type-definable in M, if Φ(~x) is a set of formulas in the
vocabulary of M with parameters in M , and

C = {~c ∈Mk : M |= Φ(~c)}.

Note that type definability in M is preserved under finite unions and arbitrary
intersections.

Definition 4.3.2. Let N be a pre-metric structure with distinguished distance
predicate d. A set C ⊆ Nk is closed in N if it is closed with respect to the pseudo-
metric d(~x, ~y) = maxi≤k d(xi, yi) on Nk.

Lemma 4.3.3. Let N be a pre-metric structure. A set C ⊆ Nk is closed in N if
and only if C is type-definable in N.

Proof. Assume C ⊆ Nk is closed in N. For each~b ∈ Nk\C let ε~b = inf~c∈C maxi≤k d(bi, ci),
so ε~b > 0. Then C is type-defined in N by the set of formulas

Φ(~x) = {ε~b ≤
.

max
i≤k

d(bi, xi) : ~b ∈ Nk \ C}.

Now suppose C is type-defined in N by some set of formulas Ψ(~x). By Fact 2.5.2,
for each ψ(~x) ∈ Ψ(~x), the set {~c ∈ Nk : N |= ψ(~c)} is closed in N. Therefore C is
closed in N. �

Proposition 4.3.4. The property of a set C ⊆Mk being closed in M is absolute.
C is closed in M if and only if C is type-definable in M.

Proof. By taking a subsequence if necessary, we can find an approximate distance
〈dm〉m∈N for Te such that

Te |= sup
x

sup
y
|dm(x, y)−D(x, y)| ≤. 2−m

for each m. Let C ⊆Mk. By Corollary 3.4.2 and Lemma 4.3.3, it suffices to prove
that C is type-definable in Me if and only if C is type-definable in M. It is clear
that if C is type-definable in M then C is type-definable in Me

Suppose C is type-defined in Me by Φ(~x). Let Ψ(~x) be the set of all V -formulas

ψ(~x) with parameters in M such that C ⊆ ψMe , and let B = {~b : Me |= Ψ(~b)}.
Then B = {~b : M |= Ψ(~b)}, so B is type-definable in M. To prove that C is type-

definable in M we show that B = C. Clearly C ⊆ B. Let ~b ∈ B \ C. By Lemma
4.3.3, C is closed in Me, so there is an ε > 0 such that ε ≤ maxi≤kD

Me(bi, ci) for
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all ~c ∈ C. Hence for each m ∈ N, we have ε ≤ (maxi≤k d
M
m (bi, ci) + 2−m) for all

~c ∈ C. Therefore the V -formula

ε≤. (max
i≤k

dm(bi, xi))u 2−m)

belongs to Ψ(~x). But then

Me |= (ε≤. max
i≤k

dm(bi, bi))u 2−m

for each m ∈ N, which contradicts the fact that D(x, y) = limm→∞ dm(x, y) in
Me. �

It follows that every pre-metric expansion Me has the same topology as M. Hence
all topological properties of subsets C ⊆Mk or sequences in Mk are absolute. For
example, the properties that C is dense, that C is compact, and that limn→∞ cn

.
= c,

are absolute. We let clM(C) denote the closure of C in M. Then clM(C) = clMe
(C).

We now obtain absolute versions of properties related to uniform convergence.

Proposition 4.3.5. The property [〈cn〉n∈N is Cauchy in M] is absolute. A sequence
〈cn〉n∈N is Cauchy in a general structure M if and only if 〈cn〉n∈N converges to some
point in some elementary extension M′ �M.

Proof. It suffices to show that the following are equivalent:

(a) 〈cn〉n∈N is Cauchy in Me.
(b) 〈cn〉n∈N converges in some elementary extension of Me.
(c) 〈cn〉n∈N converges in some elementary extension of M.

It is clear that (a) ⇔ (b).
(b) ⇒ (c): Assume (b). Then there is a general structure N and a point c ∈ N

such that Ne � Me and limn→∞ cn
.
= c in Ne. By Corollary 4.1.3, N � M. By

absoluteness of convergence, limn→∞ cn
.
= c in N, so (c) holds..

(c) ⇒ (b): Suppose N �M, c ∈ N , and limn→∞ cn
.
= c in N. Since convergence

of a sequence is absolute, limn→∞ cn
.
= c in Ne. By Corollary 4.1.3, Ne � Me, so

(b) holds. �

We say that a general structure M is complete if every pre-metric expansion Me

of M is a metric structure.

Corollary 4.3.6. The property of being complete is absolute. A general structure
M is complete if and only if M is reduced and every Cauchy sequence in M converges
to some point in M .

Corollary 4.3.7. Every ℵ1-saturated reduced structure is complete.

Proof. Suppose M is reduced and ℵ1-saturated. By Lemma 3.1.5 (ii) and Propo-
sition 4.1.6, Me is a reduced ℵ1-saturated pre-metric structure, and hence is com-
plete. Let 〈cn〉n∈N be Cauchy in M. By Proposition 4.3.5, 〈cn〉n∈N is Cauchy in
Me. Therefore 〈cn〉n∈N converges to some point c in Me. By the absoluteness of
convergence, 〈cn〉n∈N converges to some point c in M. �

Recall that if M is a pre-metric structure, then a completion of M is a metric
structure N such that the reduction of M is a dense elementary substructure of N.

Definition 4.3.8. We say that a general structure N is a completion of a gen-
eral structure M if N is complete, and the reduction of M is a dense elementary
substructure of N.
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The elementary substructure requirement in the above definition ensures that
the approximate distances are preserved when passing from M to N.

Corollary 4.3.9. Let M,N be general models of T and let Te be a pre-metric
expansion of T . Then N is a completion of M if and only if Ne is a completion of
Me.

Proof. Let M′ be the reduction of M. By Lemma 3.1.5 (ii), M′e is the reduction of
Me. By Corollary 4.3.6, Ne is reduced and complete if and only if N is reduced and
complete. By Proposition 4.3.4, M′e is dense in Ne if and only if M′ is dense in N.
By Corollary 4.1.3, M′e ≺ Ne if and only if M′ ≺ N. �

Proposition 4.3.10. Every general structure M has a completion, which is unique
up to an isomorphism that is the identity on the reduction of M.

Proof. By Theorem 3.3.4, there is a pre-metric expansion Te of Th(M). Let M′ be
the reduction of M. Then Me is a pre-metric structure, M′e is the reduction of Me,
and there exists a completion N1 of Me that is unique up to an isomorphism that
is the identity on M ′. Moreover, N1 � M′e. Then N1 = Ne where N is the V -part
of N1. By Corollary 4.3.9, N is a completion of M.

If N′ is another completion of M, then by Corollary 4.3.9, N′e is a completion
of Me, so there is an isomorphism h : Ne ∼= N′e that is the identity on M ′. Then
h : N ∼= N′, as required. �

Let κ be an infinite cardinal. A complete metric theory T is κ-categorical if
every two complete models of T of density character κ are isomorphic.

Corollary 4.3.11. The property of having a κ-categorical complete theory is abso-
lute. A complete general theory T is κ-categorical if and only if every two complete
general models of T of density character κ are isomorphic.

Proof. By Proposition 4.3.4 (closed is absolute), Corollary 4.3.6 (being complete is
absolute), and Lemma 3.1.5 (iii) (being isomorphic is absolute). �

4.4. Infinitary Continuous Logic. We return to the infinitary continuous for-
mulas that were introduced in [Ea15] and discussed in Example 2.6.1. We assume
in this subsection that |V | ≤ ℵ0. Lω1ω(V ) denotes the set of all continuous Lω1ω-
formulas over the vocabulary V .

Lemma 4.4.1. Let Te be a pre-metric expansion of a V -theory T . For every
formula ψ(~x) ∈ Lω1ω(VD), there is a formula ϕ(~x) ∈ Lω1ω(V ) such that ψMe = ϕM

for every general V -model M of T .

Proof. The pre-metric expansion Te has an exponentially Cauchy approximate dis-
tance 〈dm(u, v)〉m∈N such that no bound variable in dm(u, v) occurs in ψ(~x) or in
~z. Then for each m and pair of V -terms σ(~z), τ(~z), dm(σ(~z), τ(~z)) is a V -formula,
and for every general model M of T and tuple ~z in M we have

DMe(σ(~z), τ(~z))− 2−m ≤ dMm (σ(~z), τ(~z)) ≤ DMe(σ(~z), τ(~z)) + 2−m.

It follows that

DMe(σ(~z), τ(~z)) = inf
m

sup
k
dMm+k(σ(~z), τ(~z)) = sup

m
inf
k
dMm+k(σ(~z), τ(~z)).

Let ψ ∈ Lω1ω(VD), and let ϕ be the Lω1ω-formula in the vocabulary V ob-
tained by replacing each atomic subformula of ψ of the form D(σ(~z), τ(~z)) by
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infm supk dm+k(σ(~z), τ(~z)). It follows by induction on the complexity of ψ that
ψMe = ϕM for every general V -model M of T . �

We say that a mapping P : Mk → [0, 1] is Lω1ω-definable in a general structure
M if P = ϕM for some Lω1ω-formula ϕ(~x) with |~x| = k in the vocabulary of M. It
is easily seen that if P is definable in M then P is Lω1ω-definable in M.

Proposition 4.4.2. The property [P is Lω1ω-definable in M] is absolute.

Proof. Let Me be a pre-metric expansion of M. It is easily seen by induction on
complexity that for each Lω1ω-formula ϕ(~x) in the vocabulary V of M we have
ϕM = ϕMe , so Lω1ω-definability in M implies Lω1ω-definability in Me. Conversely,
by Lemma 4.4.1, Lω1ω-definability in Me implies Lω1ω-definability in M. �

We now generalize several results in [Ea15] from metric theories to general the-
ories.

Proposition 4.4.3. Let M be a separable complete V -structure. There is an Lω1ω-
sentence ϕ in the vocabulary V , called a Scott sentence of M, such that for every
separable complete V -structure N, ϕN = 0 if M ∼= N and ϕN = 1 otherwise.

Proof. By Theorem 3.2.1 of [Ea15] (which follows from [BDNT]), the result holds
for metric structures. By the Expansion Theorem 3.3.4, the empty V -theory T
has a pre-metric expansion Te with signature Le. By the preceding section, Me

is a separable complete pre-metric structure, and hence is a metric structure with
signature Le. Therefore there is an Lω1ω-sentence ψ in the vocabulary VD such that

for every separable metric structure N′ with signature Le, ψ
N′

= 0 if Me
∼= N′, and

ψN′
= 1 otherwise. By Lemma 4.4.1, there is an Lω1ω-sentence ϕ in the vocabulary

V such that ψNe = ϕN for every V -structure N. Moreover, every metric structure
N′ with signature Le is a general model of Te, and hence is equal to Ne where N is
the V -part of N′, and N is a separable complete V -structure. By Lemma 3.1.5 (iii),
M ∼= N if and only if Me

∼= Ne. Therefore ϕ has the required property that for every
separable complete V -structure N, ϕN = 0 if M ∼= N and ϕN = 1 otherwise. �

Proposition 4.4.4. Let M be a separable complete general structure and let P be
a mapping from Mn into [0, 1]. The following are equivalent:

(i) P is Lω1ω-definable in M.
(ii) P is fixed by all automorphisms of M.

Proof. By Theorem 3.2.3 of [Ea15], the result holds for metric structures. By the
preceding section, Lemma 3.1.5 (iii), and Proposition 4.4.2, both (i) and (ii) are
absolute for complete separable general structures. �

Proposition 4.4.7 below extends the Omitting Types Theorem 3.3.4 of [Ea15] to
general theories T . The result in [Ea15] is about reduced pre-metric structures,
which are pre-metric structures whose distinguished distance is a metric, but is not
necessarily complete.

We first need the notion of a strong countable fragment of Lω1ω(V ). By [BBHU],
Section 6, we may fix a countable set F of connectives such that F is closed under
composition and projections, and for each n ∈ N the set of n-ary connectives
C ∈ F is uniformly dense in the set of all n-ary connectives. We also assume that F
contains the connective ≤. and each rational constant in [0, 1]. Following [Ea15], by a
countable fragment of Lω1ω(V ) we mean a countable set L ⊆ Lω1ω(V ) that contains
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the set of atomic formulas over V , and is closed under the connectives in F, supx,
infx, subformulas, and substituting terms for free variables. The smallest countable
fragment of Lω1ω(V ) is the set of all (finitary) V -formulas with connectives in F.

Definition 4.4.5. We say that L is a strong countable fragment of Lω1ω(V ) if there
is a countable fragment LD of Lω1ω(VD) such that L = LD∩Lω1ω(V ), and for each
finitary V -formula θ(x, y) with connectives in F and pair of V -terms σ(~u), τ(~v), LD
is closed under the operation of replacing each subformula of the form D(σ(~u), τ(~v))
by θ(σ(~u), τ(~v)).

Clearly, every strong countable fragment of Lω1ω(V ) is a countable fragment of
Lω1ω(V ). Also, the smallest countable fragment of Lω1ω(V ) is a strong countable
fragment of Lω1ω(V ). It is easily seen that every countable subset of Lω1ω(V ) is
contained in a strong countable fragment of Lω1ω(V ).

Definition 4.4.6. Let L be a countable fragment of Lω1ω(V ), and let T be a set
of sentences in L. We say that a set Σ(~x) ⊆ L is principal over (T,L) if there is
a formula ϕ(~x) ∈ L, an |~x|-tuple of V -terms ~τ(~y), and a rational r ∈ (0, 1), such
that:

• T ∪ {ϕ(~y)} is satisfiable,
• T ∪ {ϕ(~y)≤. r} |= Σ(~τ(~y)).

Proposition 4.4.7. Let L be a strong countable fragment of Lω1ω(V ). Let T be a
set of sentences in L, and for each n ∈ N, suppose Σn(~xn) ⊆ L but Σn(~xn) is not
principal over (T,L). Then there is a reduced separable model of T in which none
of the sets Σn(~xn) is realized.

Proof. By hypothesis, L = LD ∩ Lω1ω(V ) for some countable fragment LD of
Lω1ω(VD) as in Definition 4.4.5. Let Ue be a pre-metric expansion of the empty
V -theory U . Then every pre-metric model of T ∪ Ue is of the form Me for some
general model M of T .

Claim. For each n ∈ N, Σn(~xn) is not principal over (T ∪ Ue,LD).

To prove this Claim, suppose that Σn(~xn) is principal over (T ∪ Ue,LD), wit-
nessed by ϕ(~xn) ∈ LD, a tuple of V -terms ~τ(~y), and a rational r ∈ (0, 1). By
approximating the connectives by connectives in F and taking a subsequence, we
see that Ue has an exponentially Cauchy approximate distance 〈dm〉m∈N where each
dm is a finitary continuous formula that belongs to L. Hence by Fact 2.5.3 and
Lemma 3.1.2, we may take Ue to be a set of sentences of LD. For each m ∈ N, let
ϕm(~x) be the formula obtained from ϕ(~x) by replacing every subformula of ϕ of
the form D(σ1(~x), σ2(~x)) by dm(σ1(~x), σ2(~x)). Then ϕm ∈ LD ∩ Lω1ω(V ) = L. It
follows by induction on the complexity of formulas that for each ε > 0 there is an

m ∈ N such that for all k ≥ m, N |= Te, and ~b ∈ N |~x|, ϕN
m(~b) is within ε of ϕN(~b).

Taking ε = r/2, we obtain a formula ϕm(~x) ∈ L such that ϕm(~x), ~τ(~y), and r/2
witness that Σn(~x) is principal over (T,L). This contradicts our hypothesis that
Σn(~xn) is not principal over (T,L), and proves the Claim.

Now, by Theorem 3.3.4 of [Ea15], there is a reduced separable pre-metric model
N of T ∪ Ue in which none of the sets Σn is realized. Then the V -part of N is a
reduced separable model of T in which none of the sets Σn is realized. �

Since the set L0(V ) of all V -formulas built from connectives in F is a strong
countable fragment of Lω1ω(V ), we have:
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Corollary 4.4.8. Let T ⊆ L0(V ), and for each ∈ N, let Σn(~xn) be a non-principal
subset of L0(V ) over (T,L0(V )). Then there is a reduced separable model of T in
which none of the sets Σn(~xn) is realized.

4.5. Many-sorted Metric Structures. In Definition 2.6.5 we defined a sorted
metric structure M with sorted vocabulary W to be a reduced structure that re-
spects the sorts of W and has a complete metric dS on each sort S. As a sorted
vocabulary, W must have an unsorted constant symbol u and a unary predicate
symbol US for each sort S.

Definition 4.5.1. We say that Th(M), Th(Me) have essentially the same types if
there is a homeomorphism h from Sn(Th(M)) onto Sn(Th(Me)) such that for each
~c ∈Mn, h(tpM(~c)) = tpMe

(~c).

Proposition 4.5.2. Let W be a sorted vocabulary with sorts S1,S2, . . ., and M be
a sorted metric structure over W . Then any pre-metric expansion Me = (M,D) of
M is a metric structure, and Th(M), Th(Me) have essentially the same types.

Proof. Note that in Me, the new distance symbol D does not have sorts assigned
to its arguments. Since M is reduced, Me is a reduced pre-metric structure, so D
is a metric. Moreover, uM is the only sortless element by Lemma 2.6.4 (ii). We
show that D is complete. Let 〈dm(x, y)〉m∈N be an approximate distance for Me.
Suppose that 〈ak〉k∈N is Cauchy convergent in Me.

Case 1: For some sort Sn, ak ∈ SMn for infinitely many k. By taking a subse-
quence, we may assume that ak ∈ SMn for all k. Since Me is a pre-metric structure,
dMm is uniformly continuous with respect to D, so 〈ak〉k∈N is Cauchy with respect
to dMm . dMm is a complete metric on SMm , so 〈ak〉k∈N converges to some point b ∈ SMm
with respect to dMm . The set SMn is defined by the formula USn(x) in M, and is there-
fore closed in Me. By Proposition 4.3.4, the topologies of Me and M restricted to
SMn are the same. Since M is a sorted metric structure, that topology is the metric
topology of dMm restricted to SM. Therefore 〈ak〉k∈N converges to b with respect to
D.

Case 2. For each sort Sn, ak /∈ SMn for all but finitely many k. Then 〈ak〉k∈N
converges to some point b in the completion M′e � Me. For each n, Sn is open in

M′e, so b /∈ SM
′
e

n . Therefore b = uM
′
e = uMe . It follows that 〈ak〉k∈N converges to

uMe with respect to D.
In both cases, 〈ak〉k∈N converges to a point with respect to D, so D is complete.

The existence of the homeomorphism h follows from Corollary 4.1.5. �

4.6. Bounded and Unbounded Metric Structures. Bounded vocabularies,
metric structures, and general structures, were discussed in Example 2.6.6. Like
the metric case, the model theory of [0, 1]-valued general structures carries over to
bounded general structures in a routine way. When working with bounded contin-
uous logic, we will freely use the same terminology that we use in the [0, 1]-valued
case. In particular, the Expansion Theorem shows that every bounded general
structure M has a pre-metric expansion Me = (M,D), which is a bounded pre-
metric structure. By normalizing D, one can even get a pre-metric expansion where
D has values in [0, 1].

Unbounded metric structures were briefly discussed in Example 2.6.7. We men-
tioned three ways that an unbounded metric structure N has been treated in the
literature using the model theory of metric structures. One way, as in [BBHU],
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[Fa], and [BY09], was to look at the corresponding bounded many-sorted metric
structure M with a sort for the closed m-ball around a distinguished constant 0 for
each positive m ∈ N. M can be viewed either as a many-sorted structure with a
metric in each sort, or as a single sorted general structure with a unary predicate
for each sort. By the Expansion Theorem, as a single-sorted general structure, M
has a pre-metric expansion Me, and by Proposition 4.5.2, Th(Me) has essentially
the same types as Th(M).

The Expansion Theorem opens up additional possibilities, which have not yet
been explored in the literature, for using the model theory of metric structures
to treat unbounded metric structures. It allows the flexibility to look at general
structures that are built in some way from an unbounded metric structure, and
then use the Expansion Theorem to get a related metric structure.

For instance, consider an unbounded metric structure N with a real-valued gauge
predicate ν, as in the paper [BY08] that was discussed in Example 2.6.7 above. To
study N, one might look at the bounded general structure N′ such that N′ has the
same universe and functions as N plus a point at ∞, and for each predicate P of
N (including d and ν), and positive m ∈ N, N′ has the predicate Pm formed by
truncating P at m, that is,

PN′

m (~v) =


−m if PN(~v) ≤ −m
m if PN(~v) ≥ m
PN(~v) otherwise.

This construction merely truncates the predicates of N rather than adding sorts
for the closed m-balls. Again, N′ will have a pre-metric expansion N′e = (N′,D),
and the theories of N′ and N′e will have essentially the same types. As usual,
the distinguished metric D of N′e may be wildly behaved and unnatural, but its
existence does make the model theory of metric structures available for the study
of the unbounded metric structure N.

Note that for any x in N, νN
′

m (x) = m whenever m ≤ νN(x), and νN
′

m (x) = νN(x)
whenever m > νN(x). So in any model of Th(N′), limm→∞ νm(x) is finite if and
only if νm(x) is eventually constant as m→∞.

Instead of looking at an arbitrary model of Th(N′), it may be useful to look at
the substructure consisting of those elements y such that limm→∞ νm(y) is finite,
plus the point at ∞. This corresponds to looking at the modified pre-ultraproduct
of unbounded metric structures that was discussed in Example 2.6.7. The universe

of the modified pre-ultraproduct M =
∏D

Ni is the set of elements y of the ordinary

pre-ultraproduct M′ =
∏D

N′i such that the set {νNi(yi) : i ∈ I} has a finite bound,
plus the point at ∞.

To see the connection, one can check that for each element x of M′, the following
are equivalent, where x =D y means {i ∈ I : xi = yi} ∈ D:

• For some y =D x, y belongs to M.
• For some y =D x, the set {νNi(yi) : i ∈ I} has a finite bound.

• For some y =D x, the set {limm→∞ ν
N′

i
m (yi) : i ∈ I} has a finite bound.

• For some y =D x, limm→∞ νM
′

m (y) is finite.

4.7. Imaginaries. For each metric structure M, [BU] (Section 5) introduces a
sorted metric structure Meq that has M as its home sort and infinitely many sorts



MODEL THEORY FOR REAL-VALUED STRUCTURES 35

of imaginary elements. In a similar way, we will now introduce imaginary elements
for any reduced general structure M with the vocabulary V .

In the following, we let T be a complete V -theory, ~x be a tuple of variables and ~y
be a countable sequence of variables, and 〈ϕ〉 = 〈ϕm(~x, ~y)〉m∈N be an exponentially
Cauchy sequence of formulas in T . Let V 〈ϕ〉 be the two-sorted vocabulary obtained
from V by adding a home sort S, an imaginary sort Si, unary predicate symbols
US for the home sort and USi for the imaginary sort, a predicate symbol d〈ϕ〉 of

sort Si × Si, a predicate symbol P〈ϕ〉 of sort S|~x| × Si, and the unsorted constant
symbol u.

Intuitively, the imaginary elements will be equivalence classes of infinite se-
quences of parameters in the home sort, P〈ϕ〉(~x, ~y) will be limm→∞ ϕm(~x, ~y), and
d〈ϕ〉(~y, ~z) will be limm→∞(sup~x |ϕm(~x, ~y)− ϕm(~x, ~z)|).

Definition 4.7.1. Let T 〈ϕ〉 be the set of V 〈ϕ〉-sentences

sup
wz

[| sup
~x
|P〈ϕ〉(~x,w)− P〈ϕ〉(~x, z)| − d〈ϕ〉(w, z)| ≤

.
0],

{sup
z

inf
~y

sup
~x

[|ϕm(~x, ~y)− P〈ϕ〉(~x, z)| ≤
.

2 · 2−m : m ∈ N},

{sup
~y

inf
z

sup
~x

[|ϕm(~x, ~y)− P〈ϕ〉(~x, z)| ≤
.

2 · 2−m : m ∈ N}.

T 〈ϕ〉 is the natural analogue, for general structures, of the theory Tψ that is
defined in [BU].

Proposition 4.7.2. For every reduced model M of T , there is, up to isomorphism,
a unique reduced model M〈ϕ〉 of T ∪T 〈ϕ〉 that respects sorts in V 〈ϕ〉 and agrees with
M in the home sort.

Proof. The argument is the same as in [BU], pages 29-30. �

The elements of sort Si in M〈ϕ〉 are called imaginary elements, or canonical

parameters. By Lemma 2.6.4, uM
〈ϕ〉

is the only element without a sort.

Proposition 4.7.3. For each reduced model M of T , d〈ϕ〉 is a metric on the imag-

inary sort in M〈ϕ〉.

Proof. We work in M〈ϕ〉. It is clear from the definition that d〈ϕ〉 is the limit of
a uniformly convergent sequence of pseudo-metrics on Si, and hence is itself a
pseudo-metric on Si. Suppose that b, c have sort Si and d〈ϕ〉(b, c) = 0. Since M〈ϕ〉

is reduced, it suffices to show that b
.
= c. Let ~z be a tuple in M 〈ϕ〉, and let α(b, ~z)

be an atomic formula. If α begins with a predicate symbol other than d〈ϕ〉 or P〈ϕ〉
or USi , then b and c have the wrong sort, so α(b, ~z) = α(c, ~z) = 1.

Suppose α begins with the predicate symbol d〈ϕ〉, so α(b, ~z) has the form

d〈ϕ〉(σ(b, ~z), τ(b, ~z))

where σ, τ are terms. No function or constant symbol in V 〈ϕ〉 has value sort Si. So
if either σ or τ starts with a function or constant symbol, then α(b, ~z) = α(c, ~z) = 1.
The only other possibilities are that for some variable z0, α(b, ~z) is either d〈ϕ〉(b, b),
d〈ϕ〉(z0, z0), d〈ϕ〉(b, z0), or d〈ϕ〉(z0, b). In each of those cases, since d〈ϕ〉(b, c) = 0,
we have α(b, ~z) = α(c, ~z).

If α begins with the predicate symbol P〈ϕ〉 or USi , then an argument that is
similar to the preceding paragraph again shows that α(b, ~z) = α(c, ~z). Thus in all
cases we have α(b, ~z) = α(b, ~z) and hence b

.
= c. �
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Proposition 4.7.4. If M is κ-special, then M〈ϕ〉 is κ-special. If in addition κ has
uncountable cofinality, then d〈ϕ〉 is a complete metric on the imaginary sort.

Proof. By the Existence Theorem for Special Models, there is a κ-special model N
of T ∪T 〈ϕ〉. It is easily checked that the V -part M′ of N is κ-special, and N = M′〈ϕ〉.
By the Uniqueness Theorem for Special Models, M′ ∼= M, so M′〈ϕ〉 ∼= M〈ϕ〉. If κ
has uncountable cofinality, then M〈ϕ〉 is ℵ1-saturated, and as in Remark 2.5.1, it
follows that d〈ϕ〉 is a complete metric on the imaginary sort. �

With more work, one can show that if M is κ+-saturated, then M〈ϕ〉 is κ+-
saturated, but we will not need that fact here.

Definition 4.7.5. We say that two exponentially Cauchy sequences 〈ϕ〉 and 〈ψ〉
are equivalent in T if [limϕm]M = [limψm]M for all general models M of T .

Remark 4.7.6. If M is a reduced model of T and 〈ϕ〉 and 〈ψ〉 are equivalent
exponentially Cauchy sequences in T , then M〈ϕ〉 = M〈ψ〉, in the sense that they
have the same universes and the identity function is an isomorphism between them.

We now define the sorted vocabulary V eq and structure Meq. Let Φ be a set
of exponentially Cauchy sequences 〈ϕ〉 for M that contains exactly one member of
each equivalence class. For each 〈ϕ〉 ∈ Φ, take a copy of M〈ϕ〉 in such a way that
the home sorts are all the same, and the imaginary sorts of M〈ϕ〉 and M〈ψ〉 are

disjoint when 〈ϕ〉 6= 〈ψ〉. Denote the imaginary sort of M〈ϕ〉 by S〈ϕ〉i .

Let V eq be the union of the sorted vocabularies {V 〈ϕ〉 : 〈ϕ〉 ∈ Φ}. Finally, let Meq

be a V eq-structure that respects sorts and is a common expansion of the structures
{M〈ϕ〉 : 〈ϕ〉 ∈ Φ}.

Remark 4.7.7. It follows from Remark 4.7.6 that for each reduced V -structure M,
Meq is unique up to isomorphism.

Note that V eq may have uncountably many sorts and hence uncountably many
predicate symbols. To avoid that difficulty, one can restrict things to countable sets
of sorts. For any set Θ ⊆ Φ, let V Θ and MΘ be the parts of V eq and Meq with

only the main sort and the imaginary sorts S〈ϕ〉i where 〈ϕ〉 ∈ Θ . Whenever Θ is
countable, the vocabulary V Θ has countably many predicate and function symbols.

The next result concerns pre-metric expansions of M.

Proposition 4.7.8. Suppose M is a reduced V -structure, and Me = (M,D) is a
pre-metric expansion of M with vocabulary VD. Then (VD)eq has the same sorts as
V eq, and (Me)

eq is a sorted pre-metric structure whose signature has:

• the distinguished distance D in the home sort,

• the distinguished distance d〈ϕ〉 in each imaginary sort S〈ϕ〉i ,
• the same modulus of uniform continuity as Me has for each symbol of V ,
• the modulus of uniform continuity for P〈ϕ〉 that Me has for [limϕm],
• the trivial modulus of uniform continuity for US and each US〈ϕ〉

i
.

The same holds with a set Θ ⊆ Φ in place of eq.

Proof. Since every exponentially Cauchy sequence of formulas in T is also expo-
nentially Cauchy in Te, every sort of Meq is also a sort of (Me)

eq. Also, for each
〈ϕ〉 ∈ Φ, (Me)

〈ϕ〉 = (M〈ϕ〉,D) is the structure obtained by adding the predicate
D in the home sort. If 〈ϕ〉 and 〈ψ〉 are equivalent in T then they are equivalent
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in Te. The proof of Lemma 4.2.1 shows that every exponentially Cauchy sequence
〈ϕ〉 in Te is equivalent in Te to an exponentially Cauchy sequence 〈ψ〉 in T , so by
Remark 4.7.6 we have (Me)

〈ϕ〉 = (Me)
〈ψ〉. It follows that (Ve)

eq has the same sorts
as V eq, and (Me)

eq with the signature described above is a pre-metric expansion
of Meq. �

Assume the hypotheses of Proposition 4.7.8, and let Θ ⊆ Φ. One can combine all
the distinguished distances in MΘ

e into a single metric DΘ in the following way. If
x, y are in the home sort, DΘ(x, y) = D(x, y). If x, y have the same imaginary sort

S〈ϕ〉i , then DΘ(x, y) = d〈ϕ〉(x, y). If neither x nor y has a sort, then DΘ(x, y) = 0.

Otherwise, DΘ(x, y) = 1. According to our definition, the structure (MΘ,DΘ) does
not respect sorts. However, MΘ is a general structure whose vocabulary is V Θ, and
(MΘ,DΘ) is a V Θ

D -structure.

Corollary 4.7.9. Assume the hypotheses of Proposition 4.7.8, and Θ ⊆ Φ is finite.
Then (MΘ,DΘ) is a pre-metric expansion of MΘ.

Proof. The vocabulary V Θ has countably many predicate and function symbols. It
is easily seen that there is a V Θ-formula θ(x, y) that defines DΘ(x, y) in MΘ. �

Proposition 4.7.10. If M is κ-special, then Meq is κ+-special, and MΘ is κ-special
for each Θ ⊆ Φ.

Proof. The proof is similar to the proof of Proposition 4.7.4, but with many imag-
inary sorts. �

Corollary 4.7.11. Suppose Te is a pre-metric expansion of T , M is κ-special, and
κ has uncountable cofinality. Then (Me)

eq is a sorted metric structure, and (Me)
Θ

is a sorted metric structure for each Θ ⊆ Φ.

Proof. By Propositions 4.7.4, 4.7.10, and Remark 2.5.1. �

4.8. Definable Sets. Recall that in [BBHU], in a metric structure Me, the distance
between a k-tuple ~x ∈Mk and a closed set S ⊆Mk is the mapping

distMe(~x, S) = inf{max
i≤k

DMe(xi, yi) : ~y ∈ S},

and S is a definable set over A in Me if S is a closed subset of Mk and distMe(~x, S)
is a definable predicate over A in Me. Note that the empty set ∅ is always definable
over ∅, and distMe(~x, ∅) = 1.

The following result uses the fact that the Expansion Theorem 3.3.4 gives a
pseudo-metric approximate distance.

Proposition 4.8.1. The general property [M is complete and S is a definable set
in M over A] is absolute. For each complete general structure M, set A ⊆ M , and
set S ⊆Mk, the following are equivalent:

(a) S is definable over A in M.
(b) S is closed in M, and for each V -formula ϕ(~x, ~y), the mapping

distMϕ (~x, S) := inf{ϕM(~x, ~y) : ~y ∈ S}
is a definable predicate over A in M.

(c) S is closed in M, and for each V -formula ϕ(~x, ~y) that is pseudo-metric in

Th(M), distMϕ (~x, S) is a definable predicate over A in M.
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Proof. We first consider an arbitrary pre-metric expansion Me of M. By Propo-
sition 4.3.6, M is complete if and only if Me is complete. By Proposition 4.3.4, a
subset of Mk is closed in Me if and only if it is closed in M. Let (a’)–(c’) be the
statements (a)–(c) with Me in place of M. By Theorem 9.17 of [BBHU], (a’), (b’),
and (c’) are equivalent. We now show that (b) is equivalent to (b’).

(b’)⇒ (b): Assume (b’). Let ϕ(~x, ~y) be a V -formula. By (b’), distMe
ϕ is definable

in Me over A. distMe
ϕ is definable in M over A by Proposition 4.2.2. Since ψM =

ψMe for every V -formula ψ, distMe
ϕ = distMϕ . This proves (b).

(b) ⇒ (b’): Assume (b). Let ϕm(~x, ~y) be the V -formula maxi≤k dm(xi, yi). By
(b),

distMϕm
(~x, S) = inf{max

i≤k
dMm (xi, yi) : ~y ∈ S}

is a definable predicate over A in M. Moreover, 〈ϕm〉n∈N is Cauchy in T , and

converges uniformly to distMe(~x, S). Therefore distMe(~x, S) is a definable predicate
over A in Me, so (a’) holds and hence (b’) holds.

Since (b) is equivalent to (b’) for all Me, the property [M is complete and (b)] is
the absolute version of the property [Me is complete and (b’)]. The absolute version
is unique and (a’) is equivalent to (b’), so (a) is equivalent to (b). It is trivial that
(b) implies (c).

(c) ⇒ (b): Assume (c). By Theorem 3.3.4, there exists a pre-metric expansion
Mf of M with a pseudo-metric approximate distance 〈dm(x, y)〉m∈N. By hypothesis,
each formula dm(x, y) is pseudo-metric in Th(M). Let ϕm(~x, ~y) be the V -formula
maxi≤k dm(xi, yi), which is also pseudo-metric in Th(M). By (c),

distMϕm
(~x, S) = inf{max

i≤k
dMm (xi, yi) : ~y ∈ S}

is a definable predicate over A in M. Moreover, 〈ϕm〉m∈N is Cauchy in Th(M), and

converges uniformly to distMf (~x, S). Therefore distMf (~x, S) is a definable predicate
over A in Mf . It follows that (a’) holds for Mf , and therefore (b) holds. �

We now turn to the notions of definable and algebraic closure. The following
definitions agree with the corresponding definitions in [BBHU] in the case that M

is a metric structure.

Definition 4.8.2. Let M be a complete general structure. An element b belongs
to the definable closure of A in M, in symbols b ∈ dclM(A), if the singleton {b} is
definable over A in M. b belongs to the algebraic closure of A in M, b ∈ aclM(A),
if there is a compact set C in M such that b ∈ C and C is definable over A in M.

A tuple ~b belongs to dclM(A) or aclM(A) if each term bi does.

One can use Proposition 4.8.1 to obtain necessary and sufficient conditions for
b ∈ dclM(A) and b ∈ aclM(A).

Corollary 4.8.3. If M is a complete general structure, then dclM(A) = dclMe
(A)

and aclM(A) = aclMe(A).

Proof. By Propositions 4.3.4 and 4.8.1. �

Corollary 4.8.4. Suppose M,N are complete general structures and A ⊆M ≺ N.
Then dclM(A) = dclN(A) and aclM(A) = aclN(A).
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Proof. By Proposition 4.3.6, Me and Ne are metric structures. By Corollary 4.1.3
we have Me ≺ Ne. By Corollary 4.8.3 above and Corollary 10.5 of [BBHU],
dclM(A) = dclMe(A) = dclNe(A) = dclN(A), and similarly for acl. �

Corollary 4.8.5. Suppose M is a reduced ℵ1-saturated general structure, A ⊆M ,
and b ∈M .

(i) b ∈ dclM(A) if and only if b is the only realization of tp(b/A) in M.
(ii) b ∈ aclM(A) if and only if the set of realizations of tp(b/A) is compact in

M.

Proof. By Exercises 10.7 (4) and 10.8 (4) of [BBHU], (i) and (ii) hold with an
ℵ1-saturated metric structure N in place of M. By Corollary 4.3.7, M is complete.
By Proposition 4.1.6, Me is an ℵ1-saturated metric structure. By Corollary 4.8.3,
dclM(A) = dclMe

(A) and aclM(A) = aclMe
(A). By Corollary 4.1.4, an element

c ∈M realizes tpM(b/A) if and only if it realizes tpMe
(b/A). By Proposition 4.3.4,

a subset of M is compact in M if and only if it is compact in Me. Therefore (i) and
(ii) hold for M. �

The paper [EG] introduced the notion of a metric structure admitting weak
elimination of finitary imaginaries. We now introduce the analogous notion for
general complete structures.

An exponentially Cauchy sequence 〈ϕ〉 in M is called finitary if there is an ` ∈ N
such that for each m ∈ N, ϕm has at most the free variables (~x, y0, . . . , y`). If 〈ϕ〉
is finitary, the elements of sort S〈ϕ〉i in M〈ϕ〉 are called finitary imaginaries.

Definition 4.8.6. Let M be a reduced ℵ1-saturated general structure

(i) M admits elimination of finitary imaginaries if for every finitary imaginary
b ∈M〈ϕ〉, there is a finite tuple ~c from M such that in M〈ϕ〉, b ∈ dcl(~c) and
~c ∈ dcl(b).

(ii) M admits weak elimination of finitary imaginaries if for every finitary imag-
inary b ∈M〈ϕ〉, there is a finite tuple ~c from M such that in M〈ϕ〉, b ∈ dcl(~c)
and ~c ∈ acl(b).

The next result shows that the property of being reduced and admitting (or
weakly admitting) elimination of finitary imaginaries is absolute.

Corollary 4.8.7. For every reduced ℵ1-saturated general structure M and pre-
metric expansion Me of M, Me admits (or weakly admits) elimination of finitary
imaginaries if and only if M admits (or weakly admits) elimination of finitary
imaginaries.

Proof. By Corollaries 4.7.9 and 4.8.3. �

4.9. Stable Theories. As is often done the literature on stable theories, we will
work in a monster structure of inaccessible cardinality. The axioms of ZFC do not
imply the existence of an inaccessible cardinal. However, one can avoid inaccessible
cardinals by working in a universal domain, at the cost of some minor complications
(see [BBHU]).

We assume hereafter that T is a complete V -theory, and that υ is an inaccessible
cardinal greater than |V | + ℵ0. By a monster structure we mean a reduced υ-
saturated structure of cardinality υ. We let M be a monster model of T , and let Me

be a pre-metric expansion of M.



40 H. JEROME KEISLER

For the rest of this paper we will work exclusively within M and Me. By a small
set we mean a set of cardinality < υ. A,B will always denote small subsets of M.

Remark 4.9.1. By Remark 2.4.5, M is υ-special. By the Uniqueness Theorem for
Special Models, T has a unique monster model up to isomorphism. By Corollary
4.1.7, Me is also monster structure. By Corollary 4.3.7, M and Me are complete,
so Me is a metric structure.

Let us recall the definition of a λ-stable metric theory in [BBHU], where λ is an

infinite cardinal. For each small set A, the D-metric on the type space SMe
1 (A) is

defined by

DMe(p, q) = inf{DMe(b, c) : tpMe
(b/A) = p, tpMe

(c/A) = q}.
The complete metric theory Th(Me) is λ-stable if for each A of cardinality ≤ λ

there is a dense subset of SMe
1 (A) of cardinality ≤ λ with respect to the D-metric.

And Th(Me) is stable if it is λ-stable for some small cardinal λ. Here, it will be
convenient to say that Me is stable instead of saying that Th(Me) is stable. So,
by a λ-stable metric structure we mean a monster metric structure whose complete
metric theory is λ-stable.

Proposition 4.9.2. The property of being λ-stable is absolute. M is λ-stable if
and only if for each A of cardinality ≤ λ there is a set B ⊆ SM

1 (A) of cardinality
≤ λ such that the set {b : tpM(b/A) ∈ B} is dense in M.

Proof. By Corollary 4.1.4, for all elements b, c of M, tpM(b/A) = tpM(c/A) if and
only if tpMe

(b/A) = tpMe
(c/A). By Proposition 4.3.4, a subset of M is dense in M if

and only if it is dense in Me. So it suffices to prove that a set B ⊆ SMe
1 (A) is dense in

SMe
1 (A) with respect to the D-metric if and only if the set B′ := {b : tpMe

(b/A) ∈
B} is dense in Me. We prove the non-trivial direction here. Let c ∈ Me and

p = tpMe
(c/A). Since B is dense in SMe

1 (A), there is a sequence 〈pn〉n∈N in B that
converges to p in the D-metric. Since Me is κ+-saturated, for each n there exists
bn such that tpMe

(bn/A) = pn and DMe(bn, c) = DMe(pn, p). Then bn ∈ B′ for each
n and limn→∞ bn = c in Me, so B′ is dense in Me. �

Corollary 4.9.3. M is ℵ0-stable if and only if M is λ-stable for all infinite λ.

Proof. This follows from the corresponding result for metric structures (Remark
14.8 in [BBHU]) and the fact that being λ-stable is absolute (Proposition 4.9.2). �

Exercise 4.9.4. Suppose every predicate symbol and every function symbol in V
is unary. Then T is ℵ0-stable. Hint: Show that for all b.c ∈ M and all A ⊆ M,
tpM(b) = tpM(c) if and only if tpM(b/A) = tpM(c/A).

Corollary 4.9.5. Suppose λ = λℵ0 . The following are equivalent:

(i) T is stable.
(ii) T is λ-stable.

(iii) For every set A of cardinality ≤ λ, |SM
1 (A)| ≤ λ.

Proof. The equivalence of (i) and (ii) follows from the corresponding result for
metric structures (Theorem 8.5 in [BU]) and the fact that λ-stability is absolute.
It is trivial that (iii) implies (ii). Assume (ii). Suppose A ⊆ M, and |A| ≤ λ. By
(ii) and Proposition 4.9.2, there is a set B ⊆ SM

1 (A) of cardinality ≤ λ such that
the set B′ := {b : tpM(b/A) ∈ B} is dense in M. By Remark 2.4.1, every complete
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type in SM
1 (A) is realized in M. Therefore, since B′ is dense in M, B is dense in

SM
1 (A). So |SM

1 (A)| ≤ λℵ0 = λ, and (iii) follows. �

In [BBHU], a stable independence relation on a monster metric structure M =
Me is a ternary relation A |̂

C
B on small subsets of M that has the following

properties5.

• Invariance under automorphisms of M.
• Symmetry: A |̂

C
B if and only if B |̂

C
A.

• Transitivity: A |̂
C
BD if and only if A |̂

C
B and A |̂

BC
D.

• Finite character: A |̂
C

if and only if ~a |̂
C
B for all finite ~a ⊆ A.

• Full existence: For all A,B,C there exists A′ such that (MA′)C ≡ (MA)C
and A′ |̂

C
B.

• Strong local character: For each finite ~a, there exists B0 ⊆ B of cardinality
≤ |V |+ ℵ0 with ~a |̂

B0
B.

• Stationarity: For all small complete M0 ≺M and all small A,A′, B, if

(MA)M0 ≡ (MA′)M0 , A |̂
M0

B, A′ |̂
M0

B,

then
(MA)B∪M0 ≡ (MA′)B∪M0

We define a stable independence relation on a monster general structure M to be
a ternary relation that satisfies the same seven properties with respect to M.

Theorem 4.9.6.

(i) A relation |̂ is a stable independence relation on M if and only if it is a
stable independence relation on Me.

(ii) M is stable if and only if it has a stable independence relation, and also if
and only if it has a unique stable independence relation.

Proof. (i): Let |̂ be a ternary relation on small subsets of the universe of M. We
show that each of the properties listed above for a stable independence relation
is absolute, that is, holds for M if and only if it holds for Me. It is trivial that
Symmetry, Transitivity, Finite Character, and Local Character are absolute. By
Lemma 3.1.5 (iii), Invariance under automorphisms is absolute. To show that Full
Existence is absolute, use Corollary 4.1.4, which says that two tuples realize the
same complete type over C in M if and only if they realize the same complete type
over C in Me. To show that Stationarity is absolute, use Corollary 4.1.4 again and
Corollary 4.1.3, which says that M0 ≺M if and only if M0

e ≺Me.
(ii) follows immediately from (i) and Theorem 14.1 of [BBHU]. �

We now consider the approach to stability theory via definable types.

Definition 4.9.7. We say that a complete k-type tpM(~a/B) is definable over C in
M if for each V -formula ϕ(~x, ~y) with parameters in C there is a mapping Q : M |~y| →
[0, 1] that is definable over C in M such that for all~b ∈ B|~y| we have ϕM(~a,~b) = Q(~b).

In the case that M = Me (so M is a metric structure), the above definition is
the same as the corresponding definition in [BBHU]. We now show that the general
property [tp(~a/B) is definable over C] is absolute.

5In naming these properties, we follow Adler [Ad], rather than [BBHU]
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Proposition 4.9.8. Let ~a ∈ M and B,C be small subsets of M . tpM(~a/B) is
definable over C in M if and only if tpMe

(~a/B) is definable over C in Me.

Proof. Suppose first that tpMe
(~a/B) is definable over C in Me. Let ϕ(~x, ~y) be a V -

formula with parameters in C. By hypothesis there is a mapping Q : M |~y| → [0, 1]

that is definable over C in Me such that for all ~b ∈ B|~y| we have ϕMe(~a,~b) = Q(~b).

By Proposition 4.2.2, Q is definable over C in M, and by Remark 2.1.6, ϕM(~a,~b) =

ϕMe(~a,~b) = Q(~b), so tpM(~a/B) is definable over C in M.
Now suppose that tpM(~a/B) is definable over C in M. Let ϕ(~x, ~y) be a VD-

formula with parameters in C. By Lemma 4.2.1, ϕMe is definable in M over C.
Then there is a sequence of V -formulas 〈ϕm(~x, ~y)〉m∈N with parameters in C such
that for each m ∈ N,

(∀~a ∈M |~x|)(∀~b ∈M |~y|)|ϕM
m(~a,~b)− ϕMe(~a,~b)| ≤ 2−m.

By hypothesis, for each m ∈ N there is a mapping Qm : M|~y| → [0, 1] definable over

C in M such that for all ~b ∈ B|~y| we have ϕM
m(~a,~b) = Qm(~b). By Proposition 4.2.2,

each Qm is definable in M over C, so there is a sequence of V -formulas 〈ψm(~y)〉m∈N
with parameters in C such that

(∀~b ∈M|~y|)(|ψM
m(~b)− Qm(~b)| ≤ 2−m)

and
(∀~b ∈ B|~y|)(|ψM

m(~b)− Qm(~b)| = |ψM
m(~b)− ϕM

m(~a,~b)| ≤ 2−m).

Then
(∀~b ∈ B|~y|)(|ψM

m(~b)− ϕMe(~a,~b)| ≤ 2 · 2−m.
We now modify 〈ψm(~y)〉m∈N to a sequence of V -formulas that is Cauchy in Th(M)

using the forced convergence trick of [BU]. Note that for all ~b ∈ B|~y|,

|ψM
m(~b)− ψM

m+1(~b)| ≤ 3 · 2−m.
We inductively define θ0 = ψ0, and

θm+1 = max(θm − 3 · 2−m,min(θm + 3 · 2−m, ψm+1)).

Then θMm(~b) = ψM
m(~b) for all m and all ~b ∈ B|~y|. Moreover, 〈θm(~y)〉m∈N is a sequence

of V -formulas with parameters in C such that

(∀~b)|θMm(~b)− θMm+1(~b)| ≤ 3 · 2−m,

so 〈θm(~y)〉m∈N in Cauchy in Th(M). Therefore by Proposition 4.2.2, Q := [lim θm]M

is a definable predicate over C in Me, and ϕMe(~a,~b) = Q(~b) for all ~b ∈ B|~y|.
Therefore tpMe

(~a/B) is definable over C in Me. �

Definition 4.9.9. We say that a complete type p = tpM(~a/B) does not fork over
C in M if p is definable over aclM(C).

In the case that M = Me, the above definition is the same as the definition in
[BBHU]. We now show that the property [tp(~a/B) does not fork over C] is absolute.

Corollary 4.9.10. For every a,B, and C, tpM(a/B) does not fork over C in M if
and only if tpMe

(a/B) does not fork over C in Me.

Proof. By Proposition 4.9.8, tpM(~a/B) is definable over aclM(C) in M if and only
tpMe

(~a/B) is definable over aclM(C) in Me. We have aclM(C) = aclMe
(C) by

Corollary 4.8.3. �
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Corollary 4.9.11. M is stable if and only if for every small N ≺ M and every
tuple ~a of elements of M, tpM(~a/N) is definable over N in M.

Proof. By Theorem 14.16 of [BBHU], the result holds with the monster metric
structure Me in place of M. Corollary 4.1.3, N ≺ M if and only if Ne ≺ Me. By
Proposition 4.9.8, tpM(~a/N) is definable over N in M if and only if tpMe

(~a/N) is
definable over N in Me. By Proposition 4.9.2, M is stable if and only if Me is
stable, and the result follows. �

4.10. Building Stable Theories. In both first order and continuous logic, sta-
ble structures are of particular interest because they are well-behaved and can be
analyzed. The literature contains a wide variety of examples of stable first order
structures, and several examples of stable metric structures in areas such as Banach
spaces and probability algebras. We now present a way to build many examples of
stable general structures from first order structures that are stable, or even stable
for positive formulas. As in [HI] and [BY03a], we exploit a connection between
[0, 1]-valued structures and positive formulas in first order structures. We need
some definitions.

A first order formula is positive if it is built from atomic formulas using only
quantifiers and the connectives ∧,∨. A first-order structure is positively κ-saturated
if every set of positive formulas with the free variable x and fewer than κ parameters
that is finitely satisfiable is satisfiable in the structure. Note that every κ-saturated
first-order structure is positively κ-saturated. A positive monster structure is a
positively υ-saturated first order structure of cardinality υ.

In a positive monster structure K, the complete positive type of a k-tuple ~b over

a set A is the set of all positive formulas ϕ(~x) with parameters in A satisfied by ~b.
We say that a first-order structure K is positively λ-stable if K is a positive monster
structure and, for every set A of cardinality λ, the set of complete positive 1-types
over A in K has cardinality ≤ λ. In particular, every λ-stable first order monster
structure is a positively λ-stable.

By a
∧

-formula we mean a finite or countable conjunction of positive formulas,
possibly with parameters in K. We also allow the empty conjunction, whose truth
value is always true. Let D be the set of all dyadic rationals in [0, 1]. Hereafter
we let q, r, s vary over D. Let J be the set of all intervals of the form [0, r] or [r, 1]
where r ∈ D.

Let K be a first-order positive monster structure with universe M whose vocab-
ulary W contains at least all the function and constant symbols of V . By a positive
interpretation of V in K we mean a function I that associates, with each k-ary
predicate symbol P ∈ V and interval J ∈ J, a

∧
-formula I(P, J) in the vocabulary

W with k free variables, such that whenever r < s we have:

(a) I(P, [0, r])K ⊆ I(P, [0, s])K and I(P, [r, 1])K ⊇ I(P [s, 1])K.
(b) I(P, [0, r])K ∩ I(P, [s, 1])K = ∅.
(c) I(P, [r, 1])K ∪ I(P, [0, s])K = Mk.

Theorem 4.10.1. Suppose I is a positive interpretation of V in a positive monster
structure K. There is a unique V -structure M = I(K) with universe M such that
M agrees with K on all function and constant symbols in V , and for each k-ary

predicate symbol P ∈ V , r ∈ D, and ~b ∈Mk,

PM(~b) ∈ [0, r] if and only if K |=
∧
s>r

I(P, [0, s])(~b)
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and

PM(~b) ∈ [r, 1] if and only if K |=
∧
s<r

I(P, [s, 1])(~b)

(with the empty conjunction being the true sentence). Moreover, M is a monster
structure, and for each λ, if K is positively λ-stable then M is λ-stable.

Theorem 4.10.1 shows that one can build a λ-stable general structure M by
starting with a positively λ-stable monster structure K and taking any positive
interpretation I of V in K. In fact, it is not hard to show that if λ = λℵ0 , then
every λ-stable general structure M can be obtained in this way. Since λ-stability
is absolute, one can then get a λ-stable metric structure by taking any pre-metric
expansion Me.

Proof of Theorem 4.10.1. It is clear that there is at most one such M. We first
prove that such an M exists. Let

I′(P, [0, r]) =
∧
s>r

I(P, [0, s]), I′(P, [r, 1]) =
∧
s<r

I(P, [s, 1]).

Using the fact that D is dense, one can easily check that I′ is a positive interpretation

of V in K, and that I′′ = I′. For each k-ary P ∈ V and ~b ∈Mk, let

X = X(P,~b) = {r : K |= I′(P, [r, 1])(~b)},

Y = Y (P,~b) = {s : K |= I′(P, [0, s])(~b)}.
By (c), X and Y are non-empty. Therefore supX exists. We define M to be the
V -structure with universe M that agrees with K on every function and constant

symbol in V , and such that PM(~b) = supX for each P and ~b. We first show that:

(7) For each P and ~b ∈Mk, supX = PM(~b) = inf Y .

If r ∈ X and s ∈ Y , then by (b), ¬s < r and thus r ≤ s. Hence supX ≤ inf Y . By
(a), q ≤ r ∈ X ⇒ q ∈ X, and q ≥ s ∈ Y ⇒ q ∈ Y . If supX < inf Y , then there is
a q ∈ D with supX < q < inf Y , which would contradict (c). This proves (7).

It follows that for all r < 1 in D,

(8) PM(~b) ∈ [0, r]⇔ inf Y ∈ [0, r]⇔ (∀s > r)K |= I′(P, [0, s])(~b).

Then using I′′ = I′, one can see that whenever r < 1,

PM(~b) ∈ [0, r]⇔ PN
[0,r](

~b).

By (c), this also holds when r = 1. By a similar argument,

PM(~b) ∈ [r, 1]⇔ K |= I′(P, [r, 1])(~b)

for all r ∈ D.
We next prove that M is υ-saturated, and thus is a monster structure. Note that

any small set of
∧

-formulas with parameters in M that is finitely satisfiable in K
is satisfiable in K. Finite disjunctions and countable conjunctions of

∧
-formulas

are logically equivalent to
∧

-formulas. Moreover, since K is ℵ1-saturated, for every∧
-formula Θ(~x, y), (∃y)Θ and (∀y)Θ are equivalent to

∧
-formulas in K.

By a D-interval we mean either the empty set or an interval [r, s] where 0 ≤
r ≤ s ≤ 1 and r, s ∈ D. A D-rectangle is a finite cartesian product of D-intervals.
Note that for any continuous connective C : [0, 1]k → [0, 1] and D-interval [r, s],
C−1([r, s]) is a countable intersection of finite unions of D-rectangles.
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Using the above two paragraphs, one can show by induction on the complexity
of formulas that for every V -formula ϕ(~x) and D-interval [r, s], there is a

∧
-formula

Θ(~x) such that for all ~b ∈ Mk, ϕM(~b) ∈ [r, s] if and only if K |= Θ(~b). For every
small set A, every finitely satisfiable set of

∧
-formulas Θ(x) with parameters in A

is satisfiable in K. It follows that every finitely satisfiable set of V -formulas ϕ(x)
with parameters in A is satisfiable in M, so M is a monster structure.

It also follows that if~b,~c have the same positive type overA in K, then tpM(~b/A) =
tpM(~c/A). Therefore if K is positively λ-stable, then M is λ-stable. �

4.11. Simple and Rosy Theories. The notion of a simple theory was introduced
in the context of cats in [BY03b]. In the literature (see [EG], for example), the
definition of a simple complete metric theory is obtained by translating the defini-
tion of a simple cat in [BY03b] into the context of continuous model theory. Fact
4.11.2 below is a necessary and sufficient condition for a complete metric theory
to be simple that is proved in [BY03b]. Using that fact, we will show here that
the property of being simple is absolute. We need the relation ≡LsC (for Lascar
equivalence) from [BY03b].

Definition 4.11.1. In a monster general structure M, we write A ≡LsC B if A,B
are small sequences of the same length and there exist finitely many sequences
A1, . . . , An such that A = A1, B = An, and for each k < n, Ak and Ak+1 both
occur on some C-indiscernible sequence.

Fact 4.11.2. (By Theorem 1.51 of [BY03b]) A complete metric theory is simple if
and only if its monster metric model M has a ternary relation A |̂

C
B on small

sets that has the following properties:

• Invariance under automorphisms of M.
• Symmetry.
• Transitivity.
• Finite character.
• For every A and C, A |̂

C
C.

• Local character: For every A there exists a small cardinal λ such that for
every B there exists B0 ⊆ B with B0 ≤ λ and A |̂

B0
B.

• Extension: If A |̂
C
B and B̂ ⊇ B, there exists A′ ≡BC A such that

A′ |̂
C
B̂.

• Independence theorem: Whenever A0 |̂ C A1, B0 |̂ C A0, B1 |̂ C A1, and

B0 ≡LsC B1, there exists B such that B |̂
C
A0A1, B ≡LsCA0

B0, and B ≡LsCA1

B1.

As in first order model theory, every stable metric theory is simple.
By a simple metric structure we mean a monster metric structure whose complete

theory is simple. The following corollary shows that the property of being a simple
metric structure has an absolute version. By Definition 3.4.7, this tells us that the
right definition of a simple general structure is a monster general structure that
satisfies that absolute version.

Corollary 4.11.3. The property of being simple is absolute. A general monster
structure M is simple if and only if there exists a ternary relation A |̂

C
B on small

subsets of M that satisfies the properties listed in Fact 4.11.2.
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Proof. It suffices to show that for each ternary relation |̂ on the universe of M,
each of the condit6ions listed in Fact 4.11.2 is absolute, that is, it holds for M if and
only if it holds for Me. We have already seen that Invariance under automorphisms
is absolute. Absoluteness for the other conditions follow easily from Corollary

4.1.4, which says that the property tp(~b/A) = tp(c/A) is absolute, and hence that
indiscernibility over C is absolute. �

The notion of a rosy metric theory is introduced by Ealy and Goldbring [EG].

Definition 4.11.4. A metric structure M, or its complete metric theory Th(M), is
real rosy if M is a monster metric structure and has a ternary relation |̂ on small
sets with the following properties:

• Invariance under automorphisms of M.
• Monotonicity: If A |̂

C
B, A′ ⊆ A, and B′ ⊆ B, then A′ |̂

C
B′.

• Base monotonicity: Suppose C ∈ [D,B]. If A |̂
D
B, then A |̂

C
B.

• Transitivity.
• Normality: A |̂

C
B implies AC |̂

C
B.

• Extension.
• Countable character: A |̂

C
B if and only if ~a |̂

C
B for all countable ~a ⊆

A.
• Local character.
• Anti-reflexivity: a |̂

B
a implies a ∈ aclM(B).

A ternary relation with the above properties is called a strict independence re-
lation. Every strict independence relation also satisfies Symmetry, Full Existence,
and A |̂

C
C.

Corollary 4.11.5. The property of being real rosy is absolute. A general monster
structure M is real rosy if and only if it has a strict independence relation.

Proof. It is enough to show that for each ternary relation |̂ on the universeM , each
of the conditions in Definition 4.11.4 is absolute, that is, it holds for M if and only if
it holds for Me. We have already observed that Invariance under automorphisms is
absolute. The absoluteness of Anti-reflexivity follows from Corollaries 4.1.4 about
types, and Corollary 4.8.3 about algebraic closure. It is trivial that the other
properties for a strict independence relation are absolute. �

By Proposition 4.7.10, if M is a monster general structure, then Meq is a monster
structure, and MΘ is a monster structure for each Θ ⊆ Φ.

Definition 4.11.6. A metric structure M, or its theory Th(M), is called rosy if M
is a monster metric structure and Meq is real rosy.

Lemma 4.11.7. Let M be a monster general structure, and let Me be a pre-metric
expansion of M.

(i) (Me)
eq has the same sorts, and the same universe in each sort, as Meq,

(ii) If ~a,~b are tuples and C is a small set in Meq, then

tpMeq (~a/C) = tpMeq (~b/C)⇔ tp(Me)eq (~a/C) = tp(Me)eq (~b/C).

Proof. By Proposition 4.7.8, (Me)
eq is a pre-metric expansion of Meq. Therefore

(i) holds. The proof of Corollary 4.1.4 also works in this case, even though the
vocabulary V eq has uncountably many predicate symbols, and shows that (ii) holds.

�
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Corollary 4.11.8. The property of being rosy is absolute. A general monster
structure M is rosy if and only if Meq has a strict independence relation.

Proof. By Lemma 4.11.7 (i), Meq and (Me)
eq have the same sorts and universe sets.

Therefore they have the same ternary relations. It follows from Lemma 4.11.7 (i)
that for each ternary relation |̂ , each of the conditions in Definition 4.11.4 holds
for Meq if and only if it holds for (Me)

eq. �

5. Conclusion

We have shown that every general structure with truth values in [0, 1] can be
made into a metric structure by adding a distance predicate that is a uniform
limit of pseudo-metric formulas, and completing the metric. We used that result
to extend many notions and results from the class of metric structures to the class
of general structures. Thus the model theory of metric structures is considerably
more broadly applicable than it initially appears.
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