EXPONENTIAL
AND LOGARITHMIC
FUNCTIONS

EXPONENTIAL FUNCTIONS

Any positive real number a can be raised to a rational exponent,

am/n = Ygm a>0
~/ 5 .

But what does a” mean if b is an irrational number? For example, what are 2" and 2V39

We shall approach the problem of defining a® by considering a* as a function
of x. Given a positive real number g, the function a* is defined for all rational numbers
x. Its graph may be-thought of as a “dotted” line as in Figure 8.1.1.

x
a 7

-
——————

Figure 8.1.1

Our idea is to define a* for all x by “‘connecting the dots.”” This will make a*
into a continuous function which agrees with the original dotted curve when x is
rational. A number such as 2™ will thus be approximated by raising 2 to a rational
exponent close to 7. 23:1* will be close to 2™ and 2°1#'% will be even closer.

To get the exact value of 2" we use hyperrational numbers; if r is a hyper-
rational number infinitely close to x, then 2" will be infinitely close to 2%, The function
y = a* will be called the exponential function with base a.

Hyperintegers were introduced in Section 3.8. To get an exact value of
27, we use hyperintegers. A quotient K/H of two hyperintegers is called a hyper-
rational number. Our idea is to take a hyperrational number K/H that is infinitely
close to 7 and define 2” to be the standard part of 2X/H,

In general, given a real number r, we can find a hyperrational number
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432 8 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

K/H infinitely close to r as follows. Choose a positive infinite hyperinteger H. Let K
be the greatest hyperinteger < Hr, K = [Hr]. Then

K<Hr<K+1
Dividing by H,

K 1

N K
=+ — =&
H H’ H

K
—<r<
H

Given a positive real number a, we then define a” to be the standard part of a*/*,
It can be proved that the value for a" obtained in this way does not depend on our
choice of H. Thus the exponent a* is defined for all real x. We summarize our
procedure as a lemma and a definition.

LEMMA 1

Let a and r be real numbers, a > 0.

(i) There is a hyperrational number K/H infinitely close to r.
(ii) The hyperrational exponent a*'™ is defined and finite.
(iii) For any other hyperrational number L/M = 1, st(a@®®y = st(a™™M).

DEFINITION

Let a and r be real, a > 0. We define a" = st(a®'"), where K/H =~ r.

The function y = g% also written y = exp,x, is called the exponential
function with base a. If a < 0, we leave a* undefined except when x = m/n, n odd.

The following rules for exponents should be familiar to the student when
the exponents are rational, except for inequality (vii). They can be proved for real
exponents by forming hyperrational exponents and taking standard parts.

RULES FOR EXPONENTS

Let a, b be positive real numbers.
@O 1I*=1, a® = 1.
i) 't = o, a "t = a¥/a.
(i) a* = (@)
@iv) a“b* = (ab)*, (a*/b%) = (a/b)™.

INEQUALITIES FOR EXPONENTS

Let a, b be positive real numbers.

(v) Ifa <band x >0, thena® < b,
(vi) If1 <aand x <y, then a* < a”.
(vil) Ifx =1, then(a + 1) = ax + 1.

PROOF (vii)  Since this inequality is probably new to the student, we give a proof
for the case where x is a rational number x = g¢.



8.1 EXPONENTIAL FUNCTIONS

Replace a by the variable ¢. Let
y=0+1)!—1tqg -1
We must show that y > 0. Whent =0,y = 0. Fort > Oand g > 1, we have

dy -
S =+ DT —g=2g.1° —g=0

Thus dy/dt > 0, so y is increasing and y = 0.

THEOREM 1

The exponential function y = a* is increasing if a > 1, constant if a = 1, and
decreasing if a < 1.
PROOF Inequality (vi) shows that a* is increasing if a > 1. If a < 1 and g < r then
lja > 1, (1/a)? < (1/ay, a® > d',

so a* is decreasing. If ¢ = 1 then 4" = 1 is constant. Figure 8.1.2 shows
graphs of y = a* for different values of a.

y
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a =1, constant

a<
!, decreasing

Figure 8.1.2

THEOREM 2

For each a > 0, the exponential function y = a* is continuous.

Consider the case a > 1. Suppose x; and x, are finite and x; ~ x,. Say
x, < x,. Choose hyperrational numbers r, and r, infinitely close to x; and
x, such that

Fp< Xy < Xy <1y
The inequalities for exponents hold for hyperreal x by the Transfer Principle,

SO
at < gt < a®t < g

But r, > r,, s0 a* ~ a". Therefore a*' x~ a*? and y = a” is continuous.

The case a < 1 is similar.

An example of an exponential function is given by the growth of a population
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8 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

(1) with a constant birth and death rate. It grows in such a way that the rate of
change of the population is proportional to the population. Given an integer n, the
population increase from time ¢ to time f + [/n is a constant times f(t).

S+ 1) — f(1) = ¢f(2)
Then flt + 1/n) = kf(r)

where k = ¢ + 1.
Let us set f(0) = 1; that is, we choose f(0) for our unit of population. Then

J0) = L f(I/n) =k, f@2/n) = k*,..., f(m/n) = k™
So if we put f(1) = a = k", we have
flm/n) = amn.

We conclude that for any rational number m/n, the population at time f = m/n is a™".
In reality, of course, the population is not a continuous function of time because its
value is always a whole number. However, it is convenient to approximate the
population by the exponential function ¢*, and to make a* continuous by defining it
for all real x.

If the birth rate of a population is greater than the death rate, the growth
curve will be a* where ¢ > 1 and the population will increase. Similarly, if the birth
and death rates are equal, @ = 1 and the population is constant. When the death
rate exceeds the birth rate, @ < 1 and the population decreases.

Warning: A population grows exponentially only when the birth rate
minus the death rate is constant. This rarely happens for long periods of time, because
a large change in the population will itself cause the birth or death rate to change.
For example, if the population of the earth quadrupled every century it would reach
the impossible figure of one quadrillion, or 10'%, people in about 900 years. In the
20th century the birth rate of the United States has fluctuated wildly while the
death rate has decreased. Later in this chapter we shall discuss more realistic growth
functions which grow nearly exponentially at first but then level off at a limiting
value.

The inequalities for exponents can be used to get approximate values for a®
and to evaluate limits.

EXAMPLE 1 Approximate ﬁ”. We have
J2~ 14142, w~ 314,
Thus 1414 < /2 < 1415, 3l<m <32
By the inequalities for exponents,

(1.414)%1 < /27 < (1.415)%2,
or 291 < /27 < 3.06.

Thus /27 is within {5 of 3.0.

EXAMPLE 2 Ifa > 1, evaluate the limit lim a*.

X W

Let H be positive infinite and ¢« = b + 1. Then b > 0 and by inequality (vii),
a'=b + D = bH + 1.
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So a* is positive infinite. Therefore

lim a* = oo,

X7

4+ 45
EXAMPLE 3 Evaluate the limit lim ———.
xoo & -3

Let H be positive infinite. Then

gHAL 4 5 gHYL g-H 4 5 47H 44 5.47H

L R N R R Y DU'E

By Example 2, 47 is infinite, so () is infinitesimal. Thus

t4H“+5 _St4+5-4‘” _44-5-0_16
) [ P PR R g DY R
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. Tl 45
lim

o L~ 3

16.

PROBLEMS FOR SECTION 8.1

In Problems 1-7, verify the inequalities.

1 10/10 < 10¥% < 10,/10 2 2 Y4 <2 <248

3 10./10 < /10" < 10.%/1000 4 359<nﬁ<3.2~/3.2

5 192 > 1.05  (use inequality (vii)) 6 (n—2=nr*—3n+1

7 \/Eﬁ >3- ﬁ
In Problems 8-23 evaluate the limit.

8 Iima* f0<a<1 9 lir_n a ifa>1
10 lim 572+ 11 lim g; if0<b<a
12 lim ' f0<a 13 lim 10%~#

{— o [ amd= o)
14 lim 3' — 2¢ 15 lim 2¢%3 — 2t+1
t—>w 1=
. 3x _ 2x + 1 . 3x+1 . 2x+4
o MizTroa RS Sy S
. 3x+5 _ 22x+1 .
B M e v lim
. 3= /3
20 lim x~* 21 lim —LX
X x—2 9 — 3
. 41+x__41—x R -7
2 Mo s B oMo e
0O 24 Prove that the function y = x*, x > 1, is increasing.
0 25 Prove that if @ > 0 and lim f(x) = L, then lim a/® = g%,

0 26 Prove that for each real number r, the function y = x", x > 0, is continuous.
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436 8 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

8.2 LOGARITHMIC FUNCTIONS

The inverses of exponential functions are called logarithmic functions. Inverse
functions were studied in Sections 2.4 and 7.3. Given a positive real number a different
from one, the exponential function with base « is either increasing or decreasing.
Therefore it has an inverse function.

DEFINITION

Let a # 1 be a positive real number. The logarithmic function with base a.
denoted by x = log,»,

is defined as the inverse of the exponential function with base a, y = a*. That
is, log, y is defined as the exponent to which a must be raised to get y,

X

log,y = x ifand only if y = da'.

We see at once that
log(a¥) = x, a'°tar =y

whenever log, y is defined.
The logarithm of y to the base 10, written log y = log;, ¥y, is called the
common logarithm of y. Common logarithms are readily available in tables.
Logarithmic functions underlie such aids to computation as the slide rule
and tables of logarithms. Some of the most basic integrals, such as the integrals
of 1/x and tan x, are functions that involve logarithms.

THEOREM 1

If 0 <a and a # 1, the function x = log, y is defined and continuous for
¥ in the interval (0, o).

We skip the proof. log, y is left undefined when either ¢ <0, a = 1, or
y <0

THEOREM 2

The function x = log, y is increasing if a > | and decreasing if a < 1.

PROOF
Case 17 a> 1. Let0O < b < ¢ Then
a'*t = b < ¢ = "k,

We cannot have log, b = log, ¢ because the inequality (v) for exponents
would then give b > ¢. We conclude that

log, b < log, c.

Case 2 a < 1 issimilar.

In Figure 8.2.1 we have graphs of y =a* fora > 1 and for ¢ < 1, and graphs
of the inverse functions x = log, y.
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Figure 8.2.1 y=a" x=log,y

The rules for exponents can be turned around to give rules for logarithms.

RULES FOR LOGARITHMS
Let a, x, and y be positive real numbers, a # 1.
(¥
(i)

log,1 =0, log,a=1.

log, (xy) = log, x + log, y.
log, (g) = log, x — log, .

(iif)

log, (x") = rlog, x.

These rules are useful because they reduce multiplication to addition and
exponentiation to multiplication.
, Let us make a quick check to see that these rules are correct for logarithms
to the base 10. Here is a short table of common logarithms.

y |12 3 4 5 6 7 8 9 10
logioy | O 030 048 060 070 078 085 090 095 1

To find common logarithms of larger or smaller numbers we can use the rule

log,o 10"y = n + logyq y-

We try a few cases to see if the answers agree, to one decimal place. We write log x
for log, , x below.

2 log 2 ~ 0.30
x 3 log3 ~ 0.48
6 log2 + log3 ~ 0.78
log 6 ~ 0.78
700 log(7 x 10?) ~ 24085
x 0.3 log(3 x 1071) ~ —1+ 048
210 log(7 x 10%) + log(3 x 10~ 1) ~ 2.33
log 210 ~ log(2 x 10?) ~ 230
34 = 81 log3 ~ 0.48
4log3 ~ 1.92

log 81 ~ log 80 ~ 1.90
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8 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

We could do the same thing with any other base. Base 10 is convenient because a
number in decimal notation immediately can be put in the form y = 10"z where
1 <:z< 10

The slide rule was a device for quickly looking up and adding logarithms.
Slide rules were widely used before the advent of electronic calculators and give
an interesting illustration of the rules of logarithms. If two ordinary rulers are slid
together in slide rule fashion they can be used to compute the sum of two numbers,
as shown in Figure 8.2.2.

In a slide rule, instead of marking off the distances 0, 1, 2, ..., 10, we mark
off the distances

0=logl,log2 log3, ..., logl0.

The marks will be unevenly spaced, being closer together toward the right. We can
then use the slide rule to compute the sum of two logarithms, and therefore the
product of two numbers, as shown in Figure 8.2.3.

We know all the numbers are logarithms, so we can make a less cluttered
slide rule by removing all the “log” symbols, as in Figure 8.2.4,

4 5
A ~ A N
0 I 2 3 4 5 6 7 8 g 10
! ! | 1 ] ] 1 1 1 | |
T T T 1 L T T T T
0 1 2 3 4 5 6 7 8 9 10
[N J
'
9 445=9
Figure 8.2.2
log 3 log 2
r —A \f‘_%
- o~ o =t D Lor\oochg
g g & ¥ ¥ EYITY
N N P R NI
T T T T T T i LU
—_— o~ o -t n WO ’\00052
[=%:] =11) =t by Y WO O bhH oo
8 =] e 2 2 o S cow
- — J log 3+1log 2 =log6
log 6 IxX2=6
Figure 8.2.3
log 3 log 2
f__')\‘___\f—k_ﬂ
1 2 3 4 5 6 7 8910
I ! L I TR S S W O
1 I 1 1 T T T T 1
{—; 2 3 4 5 6 7 8910
— Y —/ log 3+1log2=Ilogé6
log 6 IX2=6

Figure 8.2.4
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There is a simple relationship between logarithms with two different bases.

RULES FOR CHANGING BASES OF LOGARITHMS
Let a, b, and y be positive and a, b # 1. Then

log, y
b = xloga b 1 ) — _""_‘
a s Ogb y lOga b
PROOF %% = b, s0
ax loga b — (a]ogﬂ b)x — bx’
(log, b)(log, y) = log,(b"*#*) = log, y,

log, y
log, b’

whence log,y =

Setting a = y we get the equation log, a = 1/(log, b). If we hold the bases
and b fixed and let y vary, then the rule shows that log, y and log, y are proportional
to each other, with the constant ratio

log,y log
log, y

Therefore a slide rule based on logarithms to the base 2, for example, would look
exactly like a slide rule based on logarithms to the base 10 (common logarithms). If
the same unit of length is used, all the distances would be multiplied by the constant
factor

b.

a

log,10 = ~ 332

logyo 2

So the slide rule would be similar but more than 3 times as big. Table 8.2.1 shows
various logarithms with different bases.

Table 8.2.1
! 1 1
- - 2 .
x 1 2 4 8 16 5 i 2 NG
log, x 0 1 3 4 -1 -2 123
log, x 0 i i 14 2 -4 —1 1 e
logipx | 0 =1 - 3 -4 1 2 1 3
log /5 x 0 2 4 6 8 -2 —4 1 -3

Notice that for all x > 0,

] =
OB X = l0g, 4 2
log, x
logy, x = logz% = —log, x,

log, x

log s x =
2 log, ﬁ
Also, for each base g, log, (1/x) = —log, x.

= 2log, x.
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440 8 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

EXAMPLE 1 Simplify the term log, (log,(a®").

log, (log, (a®)) = log, (a* log, a) = log, (a") = x.

—

3y
EXAMPLE 2 Express log, ( v }) in terms of log, x, log, 1, and log, =.
z

xﬂﬂé

z

log,

[
) = 3log,x + ilogb y — log,z

EXAMPLE 3 Solve the equation below for x.

x2-—2x 1
3 34

We take log, of both sides of the equation.

{x? — 2x)log; 3 = log; 37 1),
x2 —2x = —1,
x2—2x+1=0,
x =l

The inequalities for exponents can be used to compute limits of logarithms.

EXAMPLE 4 Evaluate the limit lim log, x, a> 1.

XX

Let H be positive infinite. Then 0 = log, 1 < log, H, so log, H is positive. If
log, H is finite, say log, H < n, then

H = alogaH < (l",

which is impossible because H is infinite. Therefore log, H is positive infinite,
0

limw log, x = =.

X

PROBLEMS FOR SECTION 8.2

Simplify the following terms.

1 q'9%a % 2 10ga (ax)
3 log,(a™*) 4 @t
5 logax~ 2 logay 6 log,(log, (b")

Express the following in terms of log, x, log, y, etc.

7 log,(/x?) 8 log, ( s )

23\\’

9 log,~/xy 10 log,,, x



8.3

8.3 DERIVATIVES OF EXPONENTIAL FUNCTIONS AND THE NUMBER ¢

Evaluate the following.

1
11 log,9 12 log, (f)
13 loge3 14 log,,627
Solve the following equations for x.
15 5*=3 16 x5 =3
17 23%5 =8 18 logs/x =2
19 log.5=73 20 log,ox + logo(x + 3) =1
21 2%2F6 — 3% 22 6t = 7%
23 log,x = logzx + 1 24 (logax)* + log,(x 3 +2=0
25 Evaluate lim log,x when 0 < g < 1.
26 Evaluate lim log, 2.
27 Evaluate lirgl* log,x when 1 < a.
28 Evaluate lim log,, (Iog;4X).
. 1
29 Evaluate ,}LIE, logio (ﬁ .
30 Prove that for each a > 0, the function y = log, x is continuous on (0, =).

DERIVATIVES OF EXPONENTIAL FUNCTIONS AND
THE NUMBER e

One of the most important constants in mathematics is the number e, whose value is
approximately 2.71828. In this section we introduce e and show that it has the
following remarkable properties.

(1) The function y = ¢* is equal to its own derivative.

(2) eisthelimit lim (1 + )I—c) .

Either property can be used as the definition of e. Because of property 1, it is con-
venient in the calculus to use exponential and logarithmic functions with the base e
instead of 10. However, it is not at all easy to prove that such a number e exists.
Before going into further detail we shall discuss these properties intuitively.

A function which equals its own derivative may be described as follows.
Imagine a point moving on the (x, y) plane starting at (0, 1). The point is equipped
with a little man and a steering wheel which controls the direction of motion of the
point. The man always steers directly away from the point (x — 1, 0), so that

dy  y-0
dx  x—(x—-1)

y.

Then the point will trace out a curve y = f(x) which equals its own derivative, as in
Figure 8.3.1.
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Ay

Ax

—

Figure 8.3.1

Another intuitive description is based on the example of the population
growth function y = &' If the birth rate minus the death rate is equal to one, then
the derivative of «' is ¢, and a is the constant e, Imagine a country with one million
people (one unit of population) at time ¢ = 0 which has an annual birth rate of one
million births per million people, and zero death rate. Then after one year the popula-
tion will be approximately ¢ million, or 2,718,282, (This high a growth rate is not
recommended.)

The limit e = lim_,_ (1 + 1/x)* is suggested intuitively by the notion of
continuously compounded interest. Suppose a bank gives interest at the annual rate
of 100%, and we deposit one dollar in an account at time ¢ = 0. If the interest is
compounded annually, then after t = 1 year our account will have 2 dollars. If the
interest is compounded quarterly (four times per year), then our account will grow
to 1 4+ Ldollarsat timet = £, (1 + 2)? dollars at time ¢ = £, and so on. After one year
our account will have (1 + $)* ~ 2.44 dollars. Similarly, if our account is com-
pounded daily then after one year it will have (1 + 355)*°5 dollars, and if it is com-
pounded »n times per year it will have (1 + 1/n)" dollars after one year.

Table 8.3.1 shows the value of (1 + 1/n)" for various values of n. (The last
few values can be found with some hand calculators.)

Table 8.3.1

n=1 1+n=2
n=2 (1+43?=225
n=73 (1 +4°%~2370
n= 1+ 2%~ 2441
n=10 (L + 15)'° ~ 2.594
n =100 (1 + 135)'°° ~ 2,705
n = 1000 (1 + 1o90)'°%% ~ 2.717
n = 10000 (1 + 1odog)'0%%% ~ 2.718

This table strongly suggests that the limit e = lim.._, .. (I + 1/x)* exists. A proof will
be given later. Thus for H positive infinite,

lH
1+ﬁ) X e
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If the interest is compounded H times per year, then in ¢ years each dollar will grow to

el [l 4]

Thus if the 1009 interest is continuously compounded, each dollar in the account
grows to ¢ dollars in ¢ years. At the interest rate r, each dollar in a continuously
compounded account will grow to ¢" dollars in ¢ years. For more information, see
Section 8.4. We now turn to a detailed discussion of e.

LEMMA

X2 w

. AN
The limit lim (1 + ;) exists.
We shall save the proof of this lemma for the end of the section.

DEFINITION

X2

) 1\~
e=11m(1+4).
X

As we have indicated before, e has the approximate value
e ~ 2.71828.

The function y = ¢ is called the exponential function and is sometimes written
y = exp Xx.

THEOREM 1

e is the unique real number such that

d(-exz—ex
dx

PROOF Our plan is to show that whenever t and t + At are finite and differ by a non-
zero infinitesimal At,

At
We may assume that ¢ is the smaller of the two numbers, so that Az is positive.
By the rules of exponents,

M — o =¢

Let b =

@) Then bAt = — 1.
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Since ¢* is continuous and e® = 1, we see from Equation 2 that b Ar is positive
infinitesimal. Thus H = 1/b At is positive infinite. From Equation 2,
H

1 + % — (1 + bAf)l/bAl — (eAr)l/bAz — el,h.

Taking standard parts,

EZSTI:

Therefore st(b) = 1, and by Equation I,

Vi

[+ %) :l = st(el?) = glisd,

€r+At _ el

At

=¢'bx el

We conclude that for real x,

dle”)
dx

X

It remains to prove that e is the only real number with this property. Let a
be any positive real number different from e, a # e. We may then differentiate
a* by the Chain Rule.

a.\‘ — exlogea.

df;::) = (log, a)e*'*®* = (log, a)a*.

Since a # e, log, a # 1, so (d(a¥)/dx # a*.

Since e* is its own derivative, it is also its own antiderivative. We thus have
a new differentiation formula and a new integration formula which should be
memorized.

— =¢", d{e') = e¥dx,
je"' dx =" + C.

We are now ready to plot the graph of the exponential curve y = ¢*. Here is a short
table. It gives both the value y and the slope ', because y = ' = &%,

x| -2 | -t o1 ]2
et | 12 ~014 ] 1/e~037 | 1 e~27 | &~13

The number e* is always positive, and y, }’, and )" all equal e*. From this we can draw
three conclusions.

y=e" >0 the curve lies above the x-axis,
y=e¢">0 increasing,
V=e">0 concave upward.

If H is positive infinite, then by Rule (vii),

e > 14 H(e — 1)
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So e is infinite, e ® = 1/ef is infinitesimal.
Therefore, lim e* = oc, lim e =0.
X a0 xX—r — o

We use this information to draw the curve in Figure 8.3.2.

EXAMPLE 1 Given y = &%, find d2y/dx?.

dy o
I~ = " *cosx,
X
d’y .
i e * cos?x — " ¥ sinx.
X

EXAMPLE 2 Find the area under the curve

arctan x

4

=, 0 < X < 1
) [+ x2
Let u = arctanx, du = ——dx.
14+ x
1 earc!anx /4 n/4
Then J sdx = f e du = e"] = "% — 1.
o 1l +x 0 0
EXAMPLE 3 Find d(a*)/dx. We use the formula
a = elogea ax — exlogea‘

Put u = x log, a. Then a* = €", so

dla*) d(e)du  du

dx  du dx Cdx (log. a)ar,
M = (log, a)a™.
dx

This example shows that the derivative of ¢* is equal to the constant log, a
times a* itself. Figure 8.3.3 shows the graph of y = ¢* for various values of ¢ > 0.

—————/

Figure 8.3.2 Figure 8.3.3
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The slope of the curve y = ¢* at x = O is always equal to log, a. For all values
of a > 0, a* is positive for all x, so the derivative has the same sign as log,«. The three
possibilities are shown:

a>1 log,a >0 l a* increasing for all x
a =1 log,a =0 ) a* =1 for all x
O<a<l log,a <0 ! a* decreasing for all x

- S —

We conclude this section with the proof of the [emma that lim,, , (1 + 1/x)*
exists. We use the following formula from elementary algebra.

GEOMETRIC SERIES FORMULA
bn+1 —1

Ifbsél,l‘hen (1+b+b2+—|—b”): ; 1

This formula is proved by multiplying
(L4+b+b"+ -+ bb -1
:(b +b2 R +brl+bn+1)_(l +b + e -I—b"ﬁl —|~b")
=p"rt — 1.

PROOF OF THE LEMMA The function y = 2' is continuous and positive. Therefore

the integral
1
c = f 20 dr
0

is a positive real number, Our plan is to use the fact that the Riemann sums
approach ¢ to show that (1 + 1/x)* approaches the limit 2°.

Let H be positive infinite. We wish to prove that

1
1+ —
* H

H

x 25

It is easier to work with the logarithm

lo 1 + ! = Hlo I + :
2 H £ ol
Let At = lo [ + :
g Hl

Ar is positive and is infinitesimal because
At =~ log, 1 = 0.

{ (
Mor ', 28 = | + —, H=——. s0
oreover, = o
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1 At

Let us form the Riemann sum
1
Y2 Ar = (1 + 2% 4 224 ... 4 2K DAY Ar,
4]

For simplicity suppose Af evenly divides 1, so K At = 1. By the Geometric
Series Formula,

1 K&t _ 1 2-1 At
%2IA[= 2A1_1At=2At_1At=—2_ATf'
! 1
By Equation 3, > 2'At = Hlog, (1 + ﬁ)
0

Taking standard parts we have

1
~ H1 1+ =
c ogz( +H)

1 H
inall o —
Finally, 2 (1 +H)

The proof is the same when At does not evenly divide 1, except that K At is
infinitely close to 1 instead of equal to 1. Therefore

lim (1 + l) = 2
x

X0

We remark that in the above proof we could have used any other positive

real number in place of 2. Notice that 2° = e, so the constant ¢ = [} 2' dt is just log, e.

PROBLEMS FOR SECTION 8.3

In Problems 1-12 find the derivative.

1

o 3 U W

13

15

16

y=e>"* 2 y = xé&*

y=4" 4 s=3"!

u = sin(e’) 6 y = resin=

u =20 8 y = el

u =% 10 y=(1+¢})?

y =35 12 y=/F-7

Find % ifcosy = e**¥ 14 Find g—i’ ifx+y=¢e"

3

.o dy . e _ ;
Fmdalfx—?, y—\/z,

Findﬂifx =e ¥, y=J1 -t
dx

447
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In Problems [7-26, evaluate the limit.

17 lim e/t 18 lim ¢'/r", na fixed positive integer.
{ —
19 lim & ! 20 lim &8 — x?
-0 sint x—-x
21 lim ¥ — x? 22 lim -2
X - x—=0 X
23 l_im (1 + 1/x)= 24 l_im (I — 1/xy* Hint: Letu = —x.
25 lim (1 + ¢/x)* 26 lirrg (L + 0t
x— =

In Problems 27-34 use the first and second derivatives and limits to sketch the curve.

27 y=2F 28 y=2""
29 y = xet 30 y=e ¥
31 y=e" 32 y=e"+e "
1 l
= 34 D=
33 ) 14+ e ) 1 +e"

In Problems 35-50 evaluate the integral.

33 f o2 dx 36 f ax
37 jxe‘xzdx 38 f2 *dx
39 e /1 + e dx 40 f =dx Hint: Tryu = e,
1+ e
41 f xe*dx Hint: Use integration by parts.
42 f x2e* dx 43 fe" sinx dx
2
44 fe‘xcosvdx 45 J 3% dx
o

2 o

46 J. “Ydx 47 j e*dx
2 0

48 j e ™d 49 f xe ™ dx

o 0
50 J 2o " dy
51 Find the volume generated by rotating the region under the curve y = ¢, 0 < x < 1,

about (a) the x-axis, (b) the y-axis.
52 Find the volume generated by rotating the region under the curve y = ¢ 5,0 < x < =,
about (a) the x-axis, (b) the y-axis,

53 Find the length of the curve x = ¢ cost, y = ¢'sinr, 0 <t < 27
54 A snail grows in the shape of an exponential spiral, r = ¢* in polar coordinates.

(a) Find tani, the angle between a radius and the curve at 6.

(b) Sketch thecurvefora =1anda = l/ﬁA

(c} Find the length of the curve where —x < 8 < b.

(d) Find the area of the snail where — 3 < 8 < b. (To avoid overlap, one should
integrate from b — 2n to b.)
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8.4 SOME USES OF EXPONENTIAL FUNCTIONS

In this section we shall discuss some functions involving exponentials which come up
in physical and social sciences.
The hyperbolic functions are analogous to the trigonometric functions and
are useful in physics and engineering.
The hyperbolic sine, sinh, and the hyperbolic cosine, cosh, are defined as
follows.
e —e’” ef + e

sinhx = — coshx = 5

A chain fixed at both ends will hang in the shape of the curve y = cosh x (the catenary).
The graphs of y = sinhx and y = coshx are shown in Figure 8.4.1.

y y

y=sinh x y =cosh x

Figure 8.4.1

The hyperbolic functions have identities which are similar to, but different
from, the trigonometric identities. We list some of them in Table 8.4.1.

Table 8.4.1
Trigonometric Hyperbolic
sin?x + cos?x = 1 cosh?x — sinh?x = 1
d(sinx) = cosx dx d(sinhx) = coshx dx
d(cosx) = —sinxdx d(cosh x) = sinhx dx
[sinxdx = —cosx + C | [sinhxdx = coshx + C
Jeosxdx =sinx + C J coshx dx = sinhx + C

These hyperbolic identities are easily verified. For example,

d(e*) — d(e™™)
2

d(sinhx)::d(e _28 ) =

e —(—e™”
= (A(—)) dx = coshx dx.
2
, ) ef+e T+t —e”
Notice that coshx + sinhx = 5 = &5,
. ef4+e T —e" e " B
coshx — sinhx = 5 =e %

When we multiply these we get the identity cosh® x — sinh? x = 1.
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The other hyperbolic functions are defined like the other trigonometric

functions,
sinh x cosh x
tanhx = , cothx = — ,
cosh x sinhx
1 1
sechx = s cschx = — .
coshx sinh x

The hyperbolic functions are related to the unit hyperbola x* — y* =1 in
the same way that the trigonometric functions are related to the unit circle x2 + y2 = 1
(Figure 8.4.2).

<
<

sin 6

y =sinh u

Y

X

x =cos @ x = cosh «
y=sind y =sinh u
Figure 8.4.2
If we put x = cosf, y = sinf,
we have x2 + y? = cos?f + sin?0 = 1,

so the point P(x, y) is on the unit circle x* 4+ y? = 1.
On the other hand if we put

X = coshuy, y = sinhu,

we have x? — y? = cosh?u — sinh?u = I,

so the point P(x, y) is on the unit hyperbola x? — y? = 1.

The hyperbolic functions differ from the trigonometric functions in some
important ways. The most striking difference is that the hyperbolic functions are not
periodic. In fact both sinh x and cosh x have infinite limits as x becomes infinite:

lim sinhx = —w, lim sinhx = oo,
X+ — o X

lim coshx = oo, lim coshx = 5.
X - Rodie o}

Let us verify the last limit. If H is positive infinite, then

H -H
+ e l 1
coshH Ze—rzieH +§€_H

is the sum of a positive infinite number $ e and an infinitesimal e~ # and hence is
positive infinite. Therefore lim coshx = oo.

X
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y

\ y =cosh x

-1 1 x

Figure 8.4.3

EXAMPLE 1 Find the area of the region under the catenary y = coshx fromx = —1
to x = 1, shown in Figure 8.4.3.

1

1
A= f coshx dx = sinhx]
-1

-1

Il

sinh1 — sinh(—1)

We now give an application of the exponential function to economics.
Suppose money in the bank earns interest at the annual rate r, compounded con-
tinuously. (To keep our problem simple we assume r is constant with time, even though
actual interest rates fluctuate with time.) Here is the problem: A person receives money
continuously at the rate of f(r) dollars per year and puts the money in the bank as
he receives it. How much money will be accumulated during the time a < t < b?

This is an integration problem.
We first consider a simpler problem. If a person puts y dollars in the bank at
time ¢ = g, how much will he have at time t = »? The answer is

ye'®=9 dollars.

JUSTIFICATION Divide the time interval [a, b] into subintervals of infinitesimal
length At > 0,

a,a+ At,a+ 2At,...,a+ HAt = b,
where At = (b — a)/H.

If the interest is compounded at time intervals of At, the account at the above

times will be
¥, Y1 + 7 Af), y(1 + r A%, ..., y(1 + r ADH.

Let K = 1/(r At). Then H = (b — a)/At = r(b — a)K. At time b the account is

1 Kr(b—a)
q

1 H
y(1+rAt)H=y(1+E) =y(1+—
Since H, and hence K, is positive infinite,

1 K 1 Kr(b—a) ® )‘
1+ =] =~e 1+ = = yetTY,
i) = e

Thus when the interest is compounded infinitely often the account at time b

451
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is infinitely close to ye™* =, So when the interest is compounded continuously
the account at time b is

‘,er(b —a)

Now we return to the original problem.

CAPITAL ACCUMULATICON FORMULA

If money is received continuously at the rate of f(t) dollars per year and earns
interest at the annual rate r, the amount of capital accumulated between times
r=aandt =Dbis :

b
C= f (D)1 dr.

JUSTIFICATION During an infinitesimal time interval [z, ¢ + Ar], of length At, the
amount received is

Ay x f(1) At (compared to At).

This amount Ay will earn interest from time ¢ to b, so its contribution to the
total capital at time » will be

AC ~ Aye™®™" = f(1)e* ) Ar (compared to At).

Therefore by the Infinite Sum Theorem, the total capital accumulated from
t = ator = bis the integral

b
C = f F(D)e 0 d.
EXAMPLE 2 If money is received at the rate f(r) = 2t dollars per year, and earns

interest at the annual rate of 7%, how much- will be accumulated from times
r=0tor=10?

The formula gives
10
C = f 2pe00700 0 g,
0
We first find the indefinite integral.

er e0.07(10—r)d[ — J.2[80.7 (3*0'07'[11‘

= 2e°'7f te” 907 4.

Letu = —0.07tr, du = —0.07 dr. Then

1
2e00710-0 4 — 9 0.7f oo d
f ‘ “ ) =007¢ Z007™

= 2e%7(0.07)” ZJ- ue* du.
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Using integration by parts,

fue" du = ue* — J e du = ue* — ¢' + Constant.

Therefore J‘Zte""”“o‘” dr = 2¢%7(0.07) " 2(ue* — ¢*) + Constant.

Whent =0,u = 0and when t = 10, u =—0.7. Thus
C = [2°7(0.07) " *(ue* — "), %7
= 26%7(0.07)"3(=0.7e70%7 — 707 4 &Y
= 2(0.07)"2(*7 — 1.7) ~ 128.08.
The answer is $128.08.

Notice that if the money were placed under a mattress and earned no interest,
the capital accumulated between times t = 0 and ¢t = 10 would be

10

2t dt =.$100.

0

The formula for capital accumulation also has a meaning when f(¢) is negative
part or all of the time. A negative value of f(f) means that money is being paid out
instead of received. When f(f) is negative, money must be either withdrawn from the
bank account or else borrowed from the bank at interest rate r. The formula

b
C =j Sy e Dy

then represents the net gain or loss of capital from times t = a to ¢t = b, provided that
the bank pays interest on savings and charges interest on loans at the same rate r.

PROBLEMS FOR SECTION 8.4

In Problems 14, find the derivative.

1 y =sinh(3x) 2 y = cosh?x
3 y = sechx 4 y = tanhx
. . sinhx
5 Evaluate lim tanhx, 6 Evaluate lim It
X~ x=0
. 1 —coshx . .
7 Evaluate lm(l) — 8 Evaluate lim (cosh x — sinh x).

In Problems 9-12 use the first and second derivatives to sketch the curve.
9 y = tanhx 10 y = cothx
11 y = sechx 12 y = cschx

In Problems 13-20 evaluate the integral.

13 j sinhx coshx dx 14 J x~ % cosh(1/x)dx
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15 J,\' sinhx dx 16 fsinhzx dx
1
17 J.\' cosh?x dx 18 J. sinhx dx
0
19 f ~ coshux dx 20 j *sech?x dx
21 Prove the identity tanh?x + sech®x = I.
22 Find the length of the curve y = coshx, —1 < x < L.
23 Find the volume of the solid formed by rotating the curve y = coshx, 0 < x < 1, about
(a) the x-axis, (b) the y-axis.
24 Find the surface area generated by rotating the curve y = coshx,0 < x < [, about
(a) the x-axis, (b) the y-axis.
25 Money is received at the constant rate of 5000 dollars per year and earns interest at the
annual rate of 10%. How much is accumulated in 20 years?
26 Money is received at the rate of 20 — 2t dollars per year and earns interest at the annual
rate of 8 %. How much capital is accumulated between times t = 0 and t = 10?
27 A firm initially loses (and borrows) money but later makes a profit, and its net rate of
profit is

J@6)=10% - 1)
dollars per year. All interest rates are at 109, Starting at ¢t = 0, find the net capital
accumulated after (a) 2 years, (b) 3 years.

28 A firm in a fluctuating economy receives or loses money at the rate f(¢) = sint. Find the
net capital accumulated between times t = 0 and ¢t = 2 if all interest is at 109, .

O 29 The present value of z dollars t years in the future is the quantity y = ze™ ", where r is the
interest rate. This is because y = ze™" dollars today will grow to ye" = z dollars in ¢
years. Use the Infinite Sum Theorem to justify the following formula for the present
value V of all future profits where f(¢) is the profit per unit time.

v={" e a.
-L f@®e "dr

8.5 NATURAL LOGARITHMS

DEFINITION

Given x > O, the natural logarithm of x is defined as the logarithm of x to the
base e. The symbol In is used for natural logarithm; thus

Inx = log, x,

and y=Inxif and only if x = &

Natural logarithms are particularly convenient for problems involving
derivatives and integrals. When we write In x instead of log, x, the rules for logarithms
take the following form:

(1) Inl1=0, Ine = 1.
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(i) In(xy) = Ilnx + Iny,
In(x/y) =Inx — Iny.
@) In(x") = rlnx.
The rules for changing the base become
Iny
b* = X In b’ 1 = _
€ 08y ¥y b

Using the above equations, the formulas for the derivative and integral of b*
take the form

b .
= (b,

1
J.b"dx=——b"+C, (b # 1)
Inb

Recall the Power Rule for integrals,

¥n+1
"dx = - C —1.
fx X n+1+ s n #

It shows how to integrate x" for n # — 1. Now, at long last, we are about to
determine the integral of x 1. It turns out to be the natural logarithm of x.

THEOREM 1
(i) On the interval (0, c0),

d(lnx) = L

3
X

fldx =Inx + C.
X
(i1) On both the intervals (— oo, 0) and (0, <o),

1 1
d(n|x]) = —dx, f;dx =In|x| + C.

X

PROOF (i) Lety=Inx.Thenx = ¢”,dx/dy = €. By the Inverse Function Theorem,
dy 1 1 1

dx dx/dy & x

(i) Let x <Oandlet y =In|x|. For x < 0, |x| = —x so
d|x]
— = —1.
dx
dln|x]) d(n|x])dlx] 1 1 1
= e ()= —(=1) = ~-.
Then dx A dx DT =g

In the above theorem we had to be careful because 1/x is defined for all x # 0
but Inx is only defined for x > 0. Thus on the negative interval (— o0, 0) the anti-
derivative of 1/x cannot be Inx. Since |x| > 0 for both positive and negative x, In|x]|
is defined for all x # 0. Fortunately, it turns out to be the antiderivative of 1/x in all



456 8 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

y dy

N

X X

i dy _ 1
Figure 8.5.1 y=1In]x| o=

cases. For x > 0, 1/x > 0 and In|x| is increasing, while for x < 0, 1/x < 0 and In|x|
is decreasing (see Figure 8.5.1).

We now evaluate the integral of Inx. This integral can be found in the table
at the end of the book.

THEOREM 2
flnxdx=xlnx—x+ C.

PROOF We use integration by parts. Let

Il
=

1
u=lnx, du = —dx, dv = dx, v
X

Then flnx dx = uv — f vdu

=xlnx — Jid,\'
X

=xlnx—-—x+ C.

Let us study the graph of y = Inx. Here are a few values of y and dy/dx.

X e 5 1 2 4
y=Inx i‘ —-14 -0.7 0 0.7 1.4
dyfdx =1/x | 4 2 1 i i
The limits as x - 0% and x — oc (see Example 4, Section 8.2) are:
.liIglf (Inx) = — oo, lej (Inx) = =c.
lilg{ (1/x) = o, ih_)rrdl (1/x) = 0.

From the sign of dy/dx and d*y/dx? we get the following information.

dy 1 0 . .

= = >

I~ ) increasing

d?y =1

;]—%2 = < 0, concave downward.

We use this information to draw the curve in Figure 8.5.2.
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y=Inx

Figure 8.5.2
There are two bases for logarithms which are especially useful for different
purposes, base 10 and base e. The student should be careful not to confuse the two.

Table 8.5.1

Name Common Logarithms Natural Logarithms
base base 10 base e

symbols logox, log x log, x, Inx

use numerical computation derivatives and integrals

To pass back and forth between common and natural logarithm we need the constants
log, o e ~ 0.4343, In10 ~ 2.3026.

l X

Then log,o x = —n\-, Inx ~ 2.3026 log,, x
In 10
1 b

and Inx = M, log o x ~ 0.4343 Inx.
log;qe

Warning: Do not make the mistake of using common logarithms instead
of natural logarithms in differentiating and integrating.

EXAMPLE 1 Find i(lo—fi"—x).

dlog,,x) d(04343Inx) 04343
dx dx Tox

Right:

d(l 1
Wiong: ———»( 05\1:0 %) = °

10 1
EXAMPLE 2 Findf —dx.
1 X

10

10
Right: f ldx = lnxJ =In10 — In 1 ~ 2.3026.
i X

1
10

10 1
Wrong: f :dx = logloxJ = log;, 10 — log,, 1 = 1.
L x

1

457
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-1
EXAMPLE 3 FindJ- —dx.
e X

*11 -1
f —dlenlle =Inl —Ilne= —1.
X

—e —e

Note that Inx is undefined at —1 and —e but In|x| is defined there. The

absolute value sign is put in when integrating 1/x and removed when
differentiating In|x|.

EXAMPLE 4 Find dy/dx where y = In{(3 — 2x)?].
We have (3 — 2x)% = |3 — 2x|2, and by the rules of logarithms,
» = 21n|3 — 2x|.

dy 2 d3-2x) -4

1 = — = )
By Theorem 1, =0 = 3=~ — 1% 3~ 2x

This answer is correct when 3 — 2x is negative as well as positive.

EXAMPLE 5 Find d(log,x)/dx.

Inx
IOgaX =7
Ina

dlog,x) L dilnx) 1

dx  lna dx  xlna’

. 1
EXAMPLE 6 Fmdf-

3 dx. Letu = 2x — 5, du = 2dx.

1 ir1 1 1
x==|~-du==1 C==-In|2x -5 C.
J2x—5d\ 2fud” 2r1|u|+ 2n]/\ | +

. . . * 1
EXAMPLE 7 Find the improper integral J- —dx.
;X

301 bl b
J —dx = lim | —dx = lim (ln ,\} ) =limhbd==.
1

X boo Jy X b 1 b—x

Thus the region under the curve y = 1/x from [ to cc, shown in Figure 8.5.3,
has infinite area.

y

infinite area

Figure 8.5.3
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Figure 8.5.4 X

EXAMPLE 8 The region R under the curve y = 1/x from 1 to oo is rotated about the
x-axis, forming a solid of revolution. Find the volume of this solid (Figure
8.5.4).

The volume is given by the improper iﬁtegral

e} 1 2 w
V= f n(;) dx = ch x~2dx.
1 X 1
b 1P 1
Then V=rlim | x ?dx =z lim ——]):nlim(l——):n.
X It b—w b
In the last two examples a region of infinite area was rotated about the x-axis

bow Jq b—w
to form a solid of finite volume. We saw another example of this kind in Section 6.7 on
improper integrals.

Thus the solid has volume =.

PROBLEMS FOR SECTION 8.5

In Problems 1-12 find the derivatives.

1 y = (Inx)? 2 y=1In3x + 4|
3 y = In(cosx) 4 y=In(x*+x~-1)
5 s=tlntr—1t 6 s=1In(t™"
7 s = In(\/7) 8 y = In(lnx)
9 y = log, (3x) 10 y = log,a
4 1 2
11 z=In(p/3y + 1) 12 2= ln(((};%l))?)
13 Find dy/dx where x = In(xy).
14 Find dy/dx where y = In(x?y).
15 Find dy/dx where y = In(x + y).
In Problems 16-25 evaluate the limit.
- 2
16 fim 1% 17 tim 12

x—o X x> \A
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18 lim 19 lim xInx
=1 \/1 — ¢ x-20-
. ad =1
20 lim In{lnr) 21 hmer, a>0
(B =0
22 1im Xa'*—1), a>0
23 lim \‘/i Hint: Find the limit of the logarithm.
24 lim &/~ 25 lim x*
x=0" x—0-
26 Sketch the curve y = x — Inx,
27 Sketch the curve y = In{(x(2 — x)).
28 Sketch the curve y = xInx,
In Problems 29-51 evaluate the integral.
dx xdx
2 _
’ ~I"Z\‘-|—3 30 fS.Y2—2
31 f EEAEN k?) f ALY N
x—1 x+1
33 f LN 34
X P
35 j e 36 j sl
tint 1 + sin@
37 f In(In ) dx 38 j xInxdx Hint: Integrate by parts.
X
39 Jx” Inxdx, n# —1 40 f(lnx)z dx
41 f (Inx)® dx 42 f x(Inx)? dx
43 f p cos(Ilnx)dx 44 f cos(Inx)dx
10 " -2
45 j X dx 46 J L
o X+ 1 _3 X
1
47 f Inx dx 48 f =dx
o X
~1 1 1
49 f —dx 50 Inxdx
e X 0
51 J Inxdx
i
52 The region bounded by the curve y = 1,/\/;, 1 < x < 4, is rotated about the x-axis.
Find the volume of the solid of revolution.
53 Find the volume generated by rotating the region under the curve yy = Inx, 1 < x < ¢,
about (a) the x-axis, (b) the y-axis.
54 Find the volume generated by rotating the region under the curve y = —Inx,0 < x < 1,
about (a) the x-axis, (b) the y-axis.
55 Find the length of the curve y = Inx, 1 < x < e,
56 Find the surface area generated by rotating the curve y = Inx, 0 < x < 1, about the

y-axis,
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8.6 SOME DIFFERENTIAL EQUATIONS

57 The inverse hyperbolic sine is defined by

arcsinhx = In(x + ./x? + 1).

Show that this is the inverse of the hyperbolic sine function by solving the equation

below for y:
inh e — e ”
x = sinhy = 5
58 Show that d(arcsinhx) = 1//x* + 1.
59 Show that
) 1 1+ x )
arctanhx = 3In (1 — x)’ [x[ <1

is the inverse function of tanh y, and that d(arctanhx) = 1/(1 — x?).

SOME DIFFERENTIAL EQUATIONS

This section contains a brief preview of differential equations. They are studied in
more detail in Chapter 14.

A first order differential equation is an equation that involves x, y, and
dy/dx. If d*y/dx* also appears in the equation it is called a second order differential
equation. The simplest differential equation is

) dy/dx = f(x)

where the function f is continuous on an open interval I.

To solve such an equation we must find a function y = F(x) such that
dy/dx = f(x). Differential Equation 1 arises from problems such as the following.
Given the velocity v = dy/dt at each time ¢, find the position y as a function of t.
Given the slope dy/dx of a curve at each x, find the curve.

Any antiderivative y = F(x) of f(x) is a solution of this differential equation.
Remember that all the antiderivatives of f(x) form a family of functions which differ
from each other by a constant.

This family is just the indefinite integral of f,

1) ff(x) dx = F(x) + C.

The family of functions (Equation 1°) is the general solution of the Differential Equation

1.
In this chapter we have solved the problem of finding a nonzero function

which is equal to its own derivative. This problem may be set up as another differential
equation,

2 dy/dx = y.

We found one solution, namely y = e*. Are there any other solutions?

THEOREM 1

The general solution of the differential equation
dyj/dx =y
is y = Ce~.
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That is, the only functions which are equal to their own derivatives are

y = Ce*.

PROOF Assume y is a differentiable function of x. The following are equivalent,
where x is the independent variable.

dy
dx - )s

1

—dy = dx,

y

1

dey = fd.\',

¥

Injyl=x+ C, for some C,
[y| = e** for some C,

y = Ce* for some C.
In the last step, C = e if y is positive and C = — "' if y is negative.

It can be shown in a similar way that the general solution of the differential
equation

©) dyjdx = ky,

where k is constant, is

(3) y = Ce*.

The constant C is just the value of pat x = 0,
Cet® = C.

In applications we often find a differential equation (3) plus an initial con-
dition which gives the value of y at x = 0. The problem can be solved by writing down
the general solution of the differential equation and then putting in the value of C
given by the initial condition.

EXAMPLE 1 A country has a population of ten million at time t = 0, and constant
annual birth rate b = 0.020 and death rate d = 0.015 per person. Find the
population at time ¢.

The population satisfies the differential equation
dy
— = (b — d)y = 0.005 y.
k! ) )
The initial condition is
y =107 atr=0.
The general solution is

y = Ce0005

Since at 1 = 0, 107 = Ce® = C, the actual solution is

y = 107 E)O.OOSI.
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EXAMPLE 2 A radioactive element has a half-life of N years, that is, half of the
substance will decay every N years. Given ten pounds of the element at time
t = 0, how much will remain at time ¢?

In radioactive decay the amount y of the element is decreasing at a rate
proportional to y, so the differential equation has the form

dy/dt = ky.
The general solution is
y = Cé.
Since y is decreasing, k will be negative. We must find the constants C and k.
To find C we use the initial condition
y=10 att =0, C = 10.

To find k we use the given half-life. It tells us that

y=3%.10=35 att=N.

Therefore 104N = 5,
et = G,
In2
k = 1 1y1/N = — —.
n(iz)"") N
The solution is y = 10e" ¢ 2N,

As we mentioned at the beginning of this chapter, the exponential growth
function y = Cé* is unrealistic for populations except for short periods of time. Here
is a more realistic, but still quite simple, population growth function.

A population often has a limiting value L at which overcrowding will
overcome reproduction. It is reasonable to suppose that the growth rate dy/dt is
proportional to both the population y and the difference L — y. That is, the popula-
tion satisfies the differential equation

dy

5 = kL)
for some constant k. The spread of an epidemic also satisfies this differential equation,
where y is the number of victims and L is the total population. That is, the rate of
increase of the number of victims is proportional to the product of the number of
victims and the remaining population.

THEOREM 2

The general solution of the differential equation

dy
L= k(L —
e oL —y)
. L
is y= 1+ Ce "=

PROOF The constant functions y = L, y = 0 are trivial solutions. Suppose y # L,
y # 0. The following are equivalent.
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dy

== k(L - ),
dx
l’ .
A kdx,
WL =)
L-y +»Ldy = kdx,
Ly(L —y)
{1 1
—|— Iy = kdx,
L(_\' + - _\') dy dx

1 1
- 1y = kL dx,
()'—FL—)‘)(" dx

Injy| —=In|L — y| =kLx + C, for some Cy,

Y
In I —_\'( =kLx + C,,
— ekL.\‘JrCl
L—-vy
i Y ¢t forsome C, # 0,
— y
."U + Czekl,.\-) — CzLekL.\"
G ot B L
PTG T (1C e
L
V=T e for some C # 0.

The important case of this function is where C, k, and L are positive constants.
In this case the function is called a logistic function. As the graph in Figure 8.6.1 shows,
the value of the function approaches zero as t > — ¢ and L as t — = that is,
lim y =0, limy=1L.
= — =
A population given by this function will approach but never quite reach the limiting
value L.

It is easy to see intuitively that a differential equation

ZA‘\ = g(x, y)

will have a solution if the function g(x, y) behaves reasonably. We return to our
picture of a moving point controlled by a little man with a steering wheel (Figure
8.6.2). At x = 0 the point starts at y = C. (This 1s the initial condition.) At each value
of x, the little man computes the value of g(x, y) and turns the steering wheel so that
the slope will be dy/dx = g(x, y). Then the curve traced out by the point will be a
solution of the differential equation. In general, there will always be a family of
solutions which depend on the constant C of the initial condition.

Using indefinite integrals we can solve any differential equation where
dy/dx is equal to a product of a function of x and a function of ),

dy

C] — = f(x)h(y), h(y) # 0.

dx
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y
L
e LEmmm—mm————oozmes
0 X
— L
~kL
Figure 8.6.1 T+ ce *
y
0, €)1
x
& o_,
I = &x
Figure 8.6.2

We simply separate the x and y terms and integrate,
dy
—— = f(x)dx,
") f(x)
dy f
—— = | f(x)dx.
i)~ )

In an equation of the form (Equation 4) the variables are said to be separable.

EXAMPLE 3 Solve dy/dx = e’ sin x.
e Vdy = sin x dx,
—e V= —cosx —- C,
e V=cosx + C,
—y =In(cosx + C),
y = —In(cos x + C).
Second order differential equations also arise frequently in applications. As

a rule, the general solution of a second order differential equation will involve two
constants, and two initial conditions are needed to determine a particular solution.
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EXAMPLE 4 Newton's law, F = ma, states that force equals mass times acceleration.
Suppose a constant force F is applied along the y-axis to an object of constant
mass m. Then the position y of the object is governed by the second order
differential equation

d?y d*y F
m——; = F, w7 = —.
dt dt m
The general solution of this equation is found by integrating twice,
dy Fr
L= 4y,
dt  m 0
Fr?
y=—=—+ 0t + yo.
2m

Setting t = 0 we see that the constants v, and y, are just the velocity and
position at time t = 0. Thus the motion of the object is known if we know
its initial position yq and velocity v,.

If the force F(¢) varies with time we have the differential equation

a2y _F()

i~ m

The general solution can still be found by integrating twice, and the motion
will still be determined by the initial position and velocity. Suppose for example that
F(r) = t}, and y, = 5,1, = 1 at time ¢ = 0. Then

dzy B 1,2
2 m’
dy r®
AR |
dt  3m + 5
t4
=-—+414 5.
Y 12m +

We shall now discuss an important second order differential equation whose
solution involves sines and cosines,
The general solution of the equation

d?y ‘
ar=
is y=acost+ bsint.
We have d(s;; ) = cost, dz(ds%t) = —sint,
d(cos 1) , d*(cos t)
Frante —sint, —E = eos .

Therefore both y = sint and y = cos t are solutions. It then follows easily that every
function a cos t + bsint is a solution. Notice also that if

y=uacost + bsint

then at time t = 0, y = g and dy/dt = b.
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It can be proved that there are no other solutions, but we shall not give the

proof here.
More generally, given a constant w the equation
d?y N
Il —w
di? Y

has the general solution

y = acos wf + bsin wt.

EXAMPLE § When a spring of natural length L is compressed a distance x it exerts
aforce F = —kx. The negative sign indicates that the force is in the opposite
direction from x (Figure 8.6.3).

fe— L

- F

A

F—»
Figure 8.6.3 l* = /
When x is negative the spring is expanded and the equation F = — kx still

holds.

Suppose a mass m is attached to the end of the spring and at time ¢ = 0 is at
position x, and has velocity v,. The motion of the mass follows the differential

equation
F = ma —kx = m@ d_zx = —ﬁx.
’ dr®’ dr? m
The general solution is
x = acoswt + bsin wt

where w = \/% Using the initial conditions, the motion of the mass is
Vg .
X = Xo €08 Wt + —sin wt.
w

This function is periodic with period 27/w, so as expected the mass oscillates
back and forth.

In the following second order equation, hyperbolic sines and cosines arise.
The general solution of the differential equation

d’yldx? =y

is y = acosh x + b sinh x.
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We see that cosh x and sinh x are solutions because

dicoshx) . d*(cosh x)
- — = sinh x, — = coshx,
dx dx
d(sinh x d*(sinh x .
(‘—J = cosh x, —(——) = sinh x.
dx dx
Another solution is ¢, Note that
(et e+ (ef—e7* .
et = %4) = cosh x + sinh x.

PROBLEMS FOR SECTION 8.6

In Problems 1-16, find all solutions of the differential equation.
dy 2 dy
==Xy 2 —=2y-35

! dx * dx )
dy x*? dy

3 = 4 T 1,2 2 .2
dx ¥y dx SRR
dy i dy

5 - = x¢ 2 = ) X )
T = e 6 e xy + x4+ y+1
dy y dy —
= o 8 = Xy

7 ax ¢ dx V)

, . d 3

9 ih—:ﬁsmx 10 ~J=B+ky
dx dx
d%y d?y ~

1 SS5=2x+ 1 12 S0 x2

! T axr T
a’y d3y

3 -5 = 1 =5 = ¢

1 e 0 4 i e

d?y d?y
5 =3y 16 L

! dx? 3 dx? !

17 A country has a population of 10 million at time t = 0 and constant annual birth rate
b = 0.025 and death rate d = 0.015 per person. Find the population as a function of
time.

18 Suppose a tree grows at a yearly rate equal to i of its height. If the tree is 10 ft tall now,
how tall will it be in 5 years?

19 A bacteria culture is found to double in size every minute. How long will it take to
increase by a factor of one million?

20 If a bacteria culture has a population of B at time = 0 and 2B at time r = 10, what
will be its population at time ¢ = 25?

21 A city had a population of 100,000 ten years ago and its current population is 115,000,
If the growth is exponential, what will its population be in 30 years?

22 A radioactive element has a half-life of 100 years. In how many years will 99°; of the
original material decay?

23 What is the half-life of a radioactive substance if 10 grams decay to 9 grams in one year?
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37

38

8.7 DERIVATIVES AND INTEGRALS INVOLVING Inx

A body of mass m moving in a straight line is slowed down by a force due to air resistance
which is proportional to its velocity, F = —kv. If the velocity at time ¢ = 01s vy, find its
velocity as a function of time. Use Newton’s law, F = ma = m dv/dr.

A particle is accelerated at a rate equal to its position on the y-axis, d2y/dt> = y. At
time ¢ = 0 it has position y = 2 and velocity dy/dt = 0. Find y as a function of t.

A mass of m grams at the end of a certain spring oscillates at the rate of one cycle every
10 seconds. How fast would a mass of 2m grams oscillate?

A particle is accelerated at a rate equal to its position on the y-axis but in the opposite
direction, d?y/dt> = —y. At time t = 0 it has position y = 1 and velocity dy/dt = —2.
Find y as a function of .

In Problem 27, suppose that at time ¢ = 0 the position is y = —3 and at time ¢ = xn/2
the position is y = 2. Find y as a function of ¢.

Suppose the birth rate of a country is declining so that its population satisfies a differ-
ential equation of the form dy/dt = ky/t. If y = 10,000,000 at time ¢t = 10 and y =
20,000,000 at time ¢t = 40, find y as a function of ¢.

Work Problem 29 under the assumption that the population satisfies a differential

equation of the form dy/dt = ky/t>.

Suppose a population satisfies the differential equation dy/dt = 1078y(10® — y) and

Yo = 107 at time ¢, = 0 years. Find the population y at time ¢ = 1 year.

Suppose a population satisfies a differential equation of the form dy/dt = ky(10® — y).

At time t, = O years the population is y, = 107, and at time t, = 1 year the population

is y, = 2-107. Find y as a function of t.

Suppose a population grows according to the differential equation dy/dt = ky(L — y),

and0 < y< L,0< k.

(2) Show that there is a single inflection point t,, and the growth curve is concave
upward when t < t, and concave downward when ¢ > t,.

(b) Find the population y, at the inflection point

A population with a constant annual birth rate b and death rate d per person, and a

constant annual immigration rate I, grows according to the differential equation

dy/dt = (b — d)y + I. Suppose b = 0.025, d = 0.015, I = 10* people per year, and the

population at time t = 0 is ten million people. Find the population as a function of time.

Suppose the population of a country has a rate of growth proportional to the difference

between 10,000,000 and the population, dy/dt = k(10,000,000 — y). Find y as a function

of t assuming that:

(a) y=4,000000att=0andy=7,000,000att=1.

(b) y = 13,000,000 at t = 0 and y = 11,000,000 at t = 1.

Find all curves with the property that the slope of the curve through each point P is

equal to twice the slope of the line through P and the origin.

Find all curves whose slope at each point P is the reciprocal of the slope of the line
through P and the origin.

Find all curves whose tangent line at each point (x, y) meets the x-axis at (x — 4,0).

DERIVATIVES AND INTEGRALS INVOLVING In x

Sometimes it is easier to differentiate the natural logarithm of a function y = f(x)
than to differentiate the function itself. The method of computing the derivative of a
function by differentiating its natural logarithm is called logarithmic differentiation.

469
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THEOREM 1 (Logarithmic Differentiation)

Suppose the function y = f(x) is differentiable and not zero at x. Then

& diny
ax YA

dinlyl) _ddniyl) dy _ 1dy

PROOF = =
00 dx dy dx ydx

Logarithmic differentiation is useful when the function is a product or

involves an exponent, because logarithms turn exponents into products and products
into sums.

EXAMPLE 1 Find dy/dx where y = 2x + 1)(3x — 1)(4 — x).

Inly| = In]2x + 1] + In]3x — 1| + In|4 — x|,

dy 2 N 3 1
v _ _
dx Nx+1 3x—1 4-x

2 4 3 _ 1
2x+1 3x—1 4—x/

=(2x + 1)(3x — 1)(4 — X)(

EXAMPLE 2 Find dy dx where vy = x*.

Iny = xlnx

. _,l X x
d‘}:)sd(\ nL):xxl+lnx = xY1 + In x).
dx dx X

In this example, In y = In |y| because y > 0.

. '.2 4 1'3 "3 x
EXAMPLE 3 Find dy/dx where y = (i_l(\’t\_u

(x = I)/x+4

Inlyl =3In|x2+ 1|+ In|x>+x+ 2| —In|x — 1| — JIn|x + 4.

dy [ 6x +‘3x2+11 1 1
& e T T e +2 x—1 2Ax+4)
AP x2 6x Pl :

— toy s E—
(x — D/x + 4 41l A x+2 x—1 2x+4)

This derivative could have been found using the Product and Quotient Rules
but it would take a great deal of work.

The Power Rule d(x") = rx"~ ! dx was proved in Chapter 2 only when the

exponent r is rational. We can use logarithmic differentiation to show that the Power
Rule holds even for irrational r.
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THEOREM 2 (Power Rule)

Let b be any real number. Then
d(x®) = bx"~'dx,

b Xb+1
Jde=b+1+C’ b # 1)

PROOF Let y = x*. ThenIny = b In x, and

dy dlny) dblnx) L
i VTax T ax T b;—bx )

The formula [ 1/x dx = In |x| + C allows us to integrate a number of basic
functions which we could not handle before.

EXAMPLE 4 Find |tanfd0. We have tan§ = (sin 6/cos ). Let u = cos0,du =
— sin 0 d6. Then

f tan 6 df = —fl/udu: —Injul + C = —In|cos §] + C.

Remember the absolute value sign inside the logarithm. It is needed because
cos § may be negative.

EXAMPLE 5 Find [sec 6 d6.
Jsec@d() _ J‘sec()(sec@ + tan e)d()
secf + tan 6

B J‘ d(sec 8 + tan 0)
N secO + tan@

=Inlsecd + tan 6} + C.

With the above two examples and the reduction formulas from Section 7.5
we can integrate any power of tan 8 or sec 0.
These integrals often arise in trigonometric substitutions.

EXAMPLE 6 Find [ sec’ 6 d6. From the reduction formula in Section 7.5,

fsec3 6do = Lsec?Osind + 3 Jsec 6 de.

Therefore fsec3 0do = $sec’0sinfh + Lln|secH + tan 6| + C.

. xdx
EXAMPLE 7 Find Jﬁ
a® + x

Let u = a®> + x% Then du = 2x dx,

J‘xdx —lfdu—llnH C—ll 2 5 c
@ +x* 2 u 2 o+ —-2n|a X+ C
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Since a® + x? is always positive

X dx 1
faz Fige’ =§ln(a2 +x%)+C

is equally correct.
X

. d
EXAMPLE 8 Find J.‘—¥
x? — g2

Assume a > 0. We make the trigonometric substitution x = gsec,
illustrated in Figure 8.7.1.

* /T
0
a

Then dx = atan@sec 9 df, . /x* — a*> = atan 6.

Figure 8.7.1

d
J b df):J‘atan(?secO
/xZ_aZ atan @

= In[secd + tan §] + C’ (by Example 5)

2 2
x Jx?-—a
T4y i+ C=Inlx+Jx*=a}=Ina+ C.
a
=Inlx + /x* —a® + C.

df = Jsec 0 do

=In

a
Therefore

dx
J.‘/x2 —a?

dx /2 2
The fOImula J\"z\/_—‘vz = ln ,X + ac + x , + C
a* + x
can be derived in a similar way and is left as an exercise.

The integrals farctan xdx, farcsec x dx

can now be evaluated using integration by parts,

J‘u dv = uv — fv du.

EXAMPLE 9 Find [arctan x dx.
Let u = arctan x, du =dx/(l + x?), v=x, dv=dx

Then farctan xdx = fu dv = uv — fv du
x
= xarctan x — f———zdx.
l +x

From Example 7,
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Therefore ~[arctan xdx = xarctanx — $In (1 + x% + C.

{ arccot x dx can be evaluated in a similar way.

EXAMPLE 10 Find [ arcsec x dx, when x > 1.

1 1
Let u = arcsecx, du = dx = dx,
x| /x2 =1 x/x?—1
x
Then Jarcsecxdx = J.u dv = uv — fu du = x arcsec x — f——dx
x/x? =1

J‘ 1
xarcsec x — | ————=dx.
Jxr =1

v=1x, dv=dx.

From Example 8,

f——__le_ 1dx =1In|x + \/x_z———ll + C.

Therefore

farcsecxdx = xarcsecx — In|x + . /x*— 1| + C.

PROBLEMS FOR SECTION 8.7

In Problems 1-10 find the derivatives by logarithmic differentiation.
O 3x-=2
Tdx +3
2
3 y=(x +1)~./3x+4 4 y=x2x
2x — ) /x? — 4

1 y 2 y = (5x — 2)3(6x + 1)

y=(x — )=+t 6 y = (sin B)*"°
T y=e 8  y=@x+1y
s=1 10 y=x")
11 Using derivatives and limits, sketch the curve y = x* x > 0.
12 Using derivatives and limits, sketch the curve y = \’/)_c, x> 0.
13 Prove the differentiation rule d(u*) = u*(v/u du + Inu dv), (u > 0).

In Problems 14-38 evaluate the integral.

14 ftan3 0 4o 15 J.cot 8 do
16 f csc 0.d0 17 f tan (36) dO

18 fsech x dx 19 Jsec5 xdx
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2
20 ftanSX dx 21 f X x
tanx
3. 2.
2 jscc '\d.\‘ 23 Jtan ’\dx
tan x sec x
dx R
24 — 25 f x? — ldx
Ja& + X2 f
1 [
26 J»—dx 27 —————dX
x/x? + 1 x\,/4 —x?
28 JV4 + x%dx 29 [ —dx

x> —4
1 1
30 j\/l+—2(1x 31 J\/I—-de
X X

I
32 f(xl — 1)¥%dx 33 fxlm dx

34 sz arcsec x dx 35 j.\‘ “?arcsin x dx

36 Jx sec? x dx 37 farccsc xdx

38 farccot xdx

39 Find the length of the parabola y = x2, —[ < x < 1,

40 Find the surface area generated by rotating the parabola y = x2,0 < x < 1 about the
x-axis.

41 Find the length of the spiral of Archimedes r = 0,0 < § < q, in polar coordinates.

42 Find the volume of the solid generated by rotating the region under the curve y =

sec? x, 0 < x < n/3, about (a) the x-axis, (b) the y-axis.

INTEGRATION OF RATIONAL FUNCTIONS

A rational function is a quotient of two polynamials,
_ Fix)
T G(x)

Using the Quotient, Constant, Sum, and Power Rules, one can easily find the
derivative of any rational function. We shall now show how to find the integral of any
rational function. This is fairly easy to do if the degree of the denominator G(x) is
only two or three, but becomes more difficult as the degree of G(x) gets larger. Let
us work some examples and then formulate a general procedure.

Our first example shows how to integrate when the denominator G(x) has
degree one.

)

3 2
EXAMPLE 1 f"_mwjd'\,

x+ 2
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The first step is to divide the denominator into the numerator by long
division.

3 42_1
Gl P N S
x+2 x4+ 2

We now easily integrate each term in the sum.

3 2
dex———f(x2+2x—4+L dx
x4+ 2 x+2
x3
=?+x2—4x+7ln|.\‘+2|+C.
EXAMPLE 2 fx3+2x2 —20x—33dx
x? —3x - 10 ’

Step 7 By long division, divide the denominator into the numerator. The result is

x3+2x2—20x—33_x+5+ 5x + 17
x2—3x—10 x? —3x — 10
. 5 17 .
Step 2 Break up the remainder TL— into a sum,
x*—3x—-10
5x + 17 —1 6
@ 310 x42tx=%
One can readily check that Equation 1 is true,
—1+ 6  —(x—=5+6(x+2)  Sx+17
x+2 x-5 (x+2x-95  x*2-3x-10
— 6
The terms and are called partial fractions. Later on we shall
x+ 2 x—35

explain how they were found. Notice that the denominators of the partial
fractions are factors of the denominator of the rational function,

(x + 2)(x — 5) = x2 — 3x — 10.

Step 3 We now have

3 2 .
fui——zm—mdx=fxdx+f5dx+f— ! dx+f 6 dx
x+ 2 x—35

x2 —3x — 10

xZ

=7+5x—ln|x+2|+6ln1x—5|+C,

xZ

EXAMPLE 3 e ————dx.
jx3+3x2+3x+1
Step 7 This time the numerator already has smaller degree than the denominator,

so no long division is needed.

Step 2 Break the rational function into a sum of partial fractions. The denominator
can be factored as
3 4+3x2 +3x+1=(x+ 1>
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[t turns out that
x? 1 2 N |
(x+ 1P x+1 x+1? x+ 1)

This can again be readily checked.

Ste3fxz d\f1d+J 2d+J L
——dx = x ————dx ——dx
P x + 1)° Xt x4+ 2T ar

=lIn|x + 1] + :
ST x+1 2x+1

s+ C.

2x + 3
— ax.
X2+ x+1

EXAMPLE 4 f

Step 7 No long division is needed.

Step 2 The denominator x* + x + 1 cannot be factored, i.e., it is irreducible. In
this case no sum of partial fractions is needed.

. 2x +3
Step 3 To integrate fz—dx
X4+ x+1

we use the method of completing the square. We have
P x+l=x+H+ 2

Let u = x + 4. Then du = dx and

f_2x_+_3'dx_fz(u—%)+3d _f2u+2i
2+ x+1 0 T - uz-}-—}(u
2u 2
= f———uz n %du + f——uz " %du
Hu? + 32 l
LS ] S
w3 W+ (/3/2)?

! 3 4 2
=Inlu® + > 1+ —=arctan (Tu) + C
NE

TR

Ini{x? 4+ x + 1| + 4 alctan( 2

= In|x X —=ar —=
\/3 \/5

We used the trigonometric substitution illustrated in Figure 8.8.1.

u = (4) tan 6, u? + ( §)2 = (%) sec 0.

\ 2

1
X + -
2

+ C.

Figure 8.8.1 V3/2
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In all four examples the idea was to break the rational function into a sum
of simpler functions which can easily be integrated. Here are three steps in the
method.

METHOD FOR INTEGRATING A RATIONAL FUNCTION f(x) = FG_(("X))

Step 7 If the degree of F(x) is > the degree of G(x), apply long division. This puts
the quotient F(x)/G(x) in the form

F(x R(x
o= o+ g
where the degree of the polynomial R(x) is less than that of G(x).
Step 2 Break the quotient R(x)/G(x) into a sum of partial fractions.
Step 3 Integrate the polynomial Q(x) and each of the partial fractions separately.
Sometimes Step 1 or 2 will be unnecessary.

How to do Step 2: We wish to break a quotient R(x)/G(x) into a sum of partial
fractions. First, factor the denominator G(x) into a product of linear terms of the
form ax + b, and irreducible quadratic terms of the form ax? + bx 4 ¢. It can be
proved that every polynomial can be so factored, but we shall not give the proof here.
Two theorems from elementary algebra are useful for factoring a given polynomial.

FACTOR THEOREM
x — ris a factor of a polynomial G(x) if and only if r is a root of G(x) = 0.

QUADRATIC FORMULA

Let a # 0. x is a root of ax* + bx + ¢ = 0 if and only if

—b + . /b® — dac

= 2a

If (ax + b)" appears in the factorization of G(x), the sum of partial fractions
will contain the following terms:
AL L A A,
ax +b  (ax + by (ax + by"

If (ax? + bx + c)" appears, the sum of partial fractions will include

Bix+ C, B,x + C, Bx+ C,
ax? + bx + ¢ {ax* + bx + ¢)? (ax?® ¥ bx + )"

To find the partial fractions we must solve for the unknown constants 4,, B;, and C;.
We show how this is done in the examples.

5x + 17

EXAMPLE 2 (Continued) From Step | we obtained the remainder T a0
x? = 3x —
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EXAMPLE 3 (Continued) We have

8 EXPONENTIAL AND LOGARITHMIC FUNCTICNS

We first factor the denominator x* — 3x — 10. Since it has degree two we
can find its roots from the quadratic formula.

\__pﬁytykdf-44F4m_ﬁég£§_iél

21 2 2 7

x=5andx = —-2.

By the Factor Theorem, x* — 3x — 10 has the two factors x — 5 and x + 2,
whence

x? = 3x — 10 = (x + 2)(x — 5).
Now we find the sum of partial fractions. It must have the form

Sx+17 A B

K1) —3 ~x+2t7 =5

The way we find 4 and Bis to use (x + 2)(x — 5) as a common denominator
so the numerators of both sides of the equation are equal.

S5x+17  Alx - 5) + B(x + 2)
x+2(x =5  (x+2dx-79
S5x + 17 = A(x — 5) + B(x + 2),

5x 4+ 17 = (A + B)x + (=54 + 2B).

The x terms and the constant terms must be equal, so we get two equations
in the unknowns 4 and B.

=4 + B, 17 = —54 + 2B.
Solving for 4 and B we have
A= -1, B =6,
5x + 17 —1 6

.\'2—3.\‘—10:,\‘+2+.\‘i75'

.\‘2

X434+ 3+ 1

One might recognize x* + 3x? + 3x + 1 at once as (x + 1)°. Alternatively,
one can see easily that x = —1 is a root of x> 4+ 3x? + 3x + . Therefore
x + lisafactor of it. Dividing by x + I we get the quotient x* + 2x + | =
(x + 12

The sum of partial fractions has the form

x? A L B N C
G+ x+1 x4+ (x+ DY
x2 Ax+ 1 +Bx+ )+ C
Then = e ,
(x + 1) (x+ 1)

(]

Il

Ax + D+ Bx + 1) + C,
X2 =Ax?>+2A+ Bx+ (A4 + B+ Q).
1. 2A + B =0, A+ B+ C=0.

%)

b
Il
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Solving these three equations for 4, B, and C we have

A=1, B= -2, C=1

21 2 N 1
x+1P° x+1 (x+1)? (x+1¥

Therefore

2x + 3
4+ x+ 1
The denominator x* + x + 1 has no real roots because the quadratic

formula gives
-1+ /1 -4 -1+./-3
— s

EXAMPLE 4 (Continued) We are given

x:———z———z

We therefore proceed immediately to Step 3.

How to do Step 3: The rational function has been broken up into a sum of a poly-
nomial and partial fractions of the two types

A
M (ax + by”

Bx + C

—_— where ax? + bx + ¢ is irreducible.
(ax* + bx + ¢)

@

Polynomials and fractions of type (1) are easily integrated using the Power Rule,

un+1
fu"du = -+ C, n# —1,
n+1

d
and the rule, J# =1Inluy + C.

Partial fractions of type (2) can be integrated as follows.
First divide the denominator by a" so the fraction has the simpler form
Bx+ C
a'(x* + byx + )"

o b
When we make the substitution u = x + 7‘ we find that

b2
x2+b1x+c1:u2+(cl—71)=u2+k2.

This substitution is called the method of completing the square. Now the integral
takes the even simpler form

1 Bu—l—Cd IJ' Bu d1+1 Cdu
— | m——gdu = — | —5——di + — | 5.
a" (u2 4 k2)n a” (uz + kZ)n at (uz + k2)n
The first integral can be evaluated by putting w = u? + k2, dw = 2u du. The second

integral can be evaluated by the trigonometric substitution shown in Figure 8.8.2,
u = ktan.
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Figure 8.8.2

and was worked out in this way.

PROBLEMS FOR SECTION 8.8

Evaluate the following integrals.

1

11

13

15

17

19

21

23

25

27

29

31

Example 4 is an integral of the form

~ dx
J2x—7

dx
f3x(x—4)

2x -3
x—1x+4
fx3+x2+x+1

x(x + 4)

dx
f (x+ 1y

x?—x+1
e

dx

dx

1 .
ja A2+

dx
x* 4+ x2

dx
fx3+1
x4+ 3241
f -1

J‘ arctan x

dx

dx

.\'2

Bx + C
TR gy
ax*+bx + ¢

10

12

14

16

18

20

22

24

26

28

30

32

j dx
2x = D(x + 2)

X+ 5
3x—1d'\
J‘3x2—4x+2dx
x—35
2x2 +x—=35 dx
f(x—3)(x+2)
x dx
J(l\‘— 1)?

-+
,J.XZ)L 1 dx

dx
f(x + Dx+ Hx +95)
dx
4 + x?

xdx
J.xz +4x+ 5
dx
fx3+x

XZ
Jas s
J‘x4+3x+1

2 Hx4+1

J‘ dx
x*—16

J‘ 3x+ 6 dx
x*t - 2x2 4+ 1

J‘ dx
x4 1

fxl arctan x dx

dx
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8.9 METHODS OF INTEGRATION

During this course we have developed several methods for evaluating indefinite
integrals, such as the Sum and Constant Rules, change of variables, integration by
parts, and partial fractions. In the integration problems up to this point, the method
to be used was usually given. But in a real life integration problem, one will have to
decide which method to use on his own.

This section has two purposes. First, to review all the methods of integration.
Second, to explain how one might decide which method to use for a given problem.

Almost all the examples and problems in this book involve what are called
elementary functions. A real function f(x) is called an elementary function if f(x) is
given by a term t(x) which is built up from constants, sums, differences, products,
quotients, powers, roots, exponential functions, logarithmic functions, and trigono-
metric functions and their inverses. These are the functions for which we have intro-
duced names. Given an elementary function f(x), an indefinite integral { f(x) dx may
or may not be an elementary function. For example, it turns out that the integrals

je“"z dx, f, /1 — x*dx

are not elementary functions.

What is meant by the problem “evaluate the indefinite integral { f(x)dx"?
The problem is really the following,.

Given an elementary function f(x), find another elementary function F(x)
(if there is one) such that

jf(x)dx = F(x) + C.

This is a hard problem. Sometimes the integral is not an elementary function
at all. Sometimes the integral is an elementary function but it can be found only by
guesswork. There is no routine way to evaluate an indefinite integral. However, one
can often find clues which will cut down on the guesswork. We shall point out some of
these clues here.

The corresponding problem for differentiation is much easier. Given an
elementary function f(x), the derivative f'(x) is always another elementary function.
It can be found in a routine way using the rules for differentiation and the Chain Rule.

The starting point for evaluating indefinite integrals is a list of twelve basic
formulas which should be memorized.

A. BASIC FORMULAS

Let # and v be differentiable functions of x.

I. du-——fi—u—dx, jdu:u-l—C
dx
I, d(ku) = k du, J.k du = k jdu
L du + v) = du + dv, jdu +dv = jdu + fdu

r+1
IV. dw") = ru" "' du, fu” du =" +C, r# -1
r+1
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{ du
V. dinu) = (,”, j— =Inju +C
u u
VI. d(e") = " du, Je”du =e" + C
VII. d(sin u) = cos u du, fcos udy =sinu + C
VIII. d{cosu) = —sin udu, fsin wdu= —cosu + C
IX. d(tanu) = sec? u du, Jsec2 udu=tanu + C
X. d(cotu) = —csc? udu, fcscz udu = —cotu + C
X1, d(sec u) = tan u sec u du, ftan usecudu = secu + C

XII. d(cscu) = —cot u cscu du, Jcot ucscudu = —cscu + C

We shall see later, when we discuss the method of integration by change of
variables, why it is important to actually meniorize these formulas.

B. TABLES OF INTEGRALS

The integrals of the following functions were computed in Chapters 7 and 8; they can
be found in the table at the end of the book. These integrals are more complicated and
need not be memorized. Instead, one should remember that their integrals are
elementary functions which can be looked up in a table.

~ftan xdx Jcot xdx

fsec xdx fcsc xdx

jarcsin xdx [arccos x dx
Jarctan xdx jarccot xdx
jarcsec xdx jarccsc xdx

Jln xdx

The following integrals of powers of trigonometric functions are given by
reduction formulas in terms of smaller powers.

fsin" x dx J‘cos” x dx
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ftan" xdx fcot" x dx

fsec" xdx fcsc" xdx

C. INTEGRALS OF RATIONAL FUNCTIONS

In Section 8.8 we explained how to integrate any rational function. The only part of the
procedure which requires guesswork is factoring the denominator into linear and
quadratic terms. Once that is done, any rational function can be integrated in a routine
manner.

The integrals in lists A and B (which can be found in tables) and the rational
integrals are easily recognized. Now we come to grips with the real problem. Given
an integral which cannot be found in a table, we wish to transform it into either a
rational integral or an integral which can be found in a table. We have three main
methods for transforming integrals: using the Sum Rule, integration by change of
variables, and integration by parts.

D. USING THE SUM RULE

Sometimes we can break an integral into a sum of two or more easier integrals. We
may use algebraic identities, trigonometric identities, or rules of logarithms to do
this.

EXAMPLE 1 f dx
Jx+1-Jx
By multiplying the numerator and denominator by ./x + 1 + \/; (ie.,
rationalizing the denominator), we get the sum

S

=f\/x_+1dx+f\/}dx.

EXAMPLE 2 [tan® x sec’ x dx. Using the identity sec’ x = 1 + tan® x, we obtain
a sum of integrals of powers of tan x:

Jtan3 xsect xdx = ftan3 x(1 + tan® x)dx = Jtan3 xdx + J~tam5 x dx.

2

EXAMPLE 3 In ( ) dx. Using the rules of logarithms we have

x +1

2
fln( :_ l) dx:f(Zlnx —In(x + 1) dx =2flnxdx —Jln(x—k 1)dx.
X
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EXAMPLE 4  [sin(x + a)sin(x — a)dx. Using the addition formulas,

sin{x + a) = sin x cos g + cos x sin q,

sin (x — a) = sin x cos ¢ — €Os X sin g,

we have
Jsin (x + a)sin(x — a)
= f(sin X COS & + ¢os x sin a)(sin x cos ¢ — cos x sin a) dx

= f(sin" x cos?a — cos? xsin? a) dx

cos?a J.sin2 xdx — sin?a fcosz x dx.

The method of partial fractions also makes use of the Sum Rule.

EXAMPLE 5 j*i——d\, a#0, b#0 Wehave
(x —a)(x — b)

X A B
e + s
(x—a)ix—b) x-—-a x-—0»

a b
B=,——
Ta-b —a

J‘ X N J‘a’\
(x—a)(x—b) a—b X—a b—a x—b

E. INTEGRATION BY CHANGE OF VARIABLES (integration by Substitution)
Suppose an integral has the form
[ e ax

When we make the substitution u = g(x),du = g'(x)dx, the integral becomes
{ f(u) du. This new integral is often simpler than the original one.

EXAMPLE 6 [./2x + ldx. Letu = 2x + 1,du = 2dx. Then

f\/zx T ldx = J.\/E-%du.

This can be integrated using the Constant and Power Rules,

372 1

I P
f\/;-idu— ”% 3

=—u —(2\ + 132

Clue If an integral has the form f(ax + b)dx, try the substitution u = ax + b,
du = adx.
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1 ~ 1
= dx. Let u = \/x. Then du = ——=dx,dx = 2udu. We get

NAR N 2/x
the rational integral

EXAMPLE 7 j

2u

; 1
[ ax = [ au
Jx 1 u+1

Clue If an integral involves ﬁ, try the substitution u = \/;, dx = 2udu. If an
integral involves \’ﬁ, ryu = \'ﬂ, dx = m" " gy

EXAMPLE 8 | sin (3x® — I)xdx. Let u = 3x* — 1,du = 6x dx. Then
Jsin (3x% — Dxdx = j(sin u)t du.

Clue If an integral has the form [ f(ax* + b)x dx, try u = ax? + b,du = ax dx.

If the derivatives in formulas I-XII are solidly memorized, then one can often
recognize integrals of the form | f(g(x))g'(x) dx and find the right substitution. Here
are three more clues.

Clue Given [ f(a%)a™dx, put a* = e and try the substitution u = a*, du =
(In a)a™ dx.

Clue Given [ f(sin x) cos x dx, try u = sin x, du = cos x dx.

Clue Given [ f(sin x, cos x) dx, try the substitution u = tan (x/2). It can be shown
using rrigonometric identities that

1 —u? . 2u J 2 du
Cosx = , sin x = , X = .
I+ u? 1+ u? 1+ u?
1 . X . . .
EXAMPLE 9 | ———— dx. Putting u = tan —, we obtain the rational integral
2sinx + cosx 2

j ! 2 du = J;—eru
4y 1—w? 1t +u?  J1l+du—u?
L+u® 1+

F. TRIGONOMETRIC SUBSTITUTIONS

If the simple substitutions corresponding to the basic formulas I-XII do not work,
look for a trigonometric substitution. Trigonometric substitutions correspond to the
formulas for derivatives of the inverse trigonometric functions. We have not asked you
to memorize these formulas, because it is easier to remember the method of trigono-
metric substitution. The three trigonometric substitutions can be remembered by
drawing right triangles. They are shown once more in Figure 8.9.1 They often result
in an integral of powers of trigonometric functions of 6.
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a X
X
G i}
Jat —x? a a
x=uasin @ x=aqatanf x=asech
Vat—x*=acos Vat+xt=agsect Vxt—at=atan ¥

Figure 8.9.1

Clue  If an integral contains \/a* — x?, \Ja* + x*, or \/x* — a®, draw a triangle
and label its sides so that it can be used to find the appropriate trigonometric
substitution,

EXAMPLE 10 [ x2,/x? — 6% dx. We draw the triangle shown in Figure 8.9.2 and
use the substitution x = 6 sec 8.

* /x? — 62
a
6

Then \/;—2 — 62 = 6tan (), dx = 61an 8 sec 0 d0, and the integral becomes

Figure 8.9.2

Jéz sec?0+6tan O+ 6tan O secldb
= f64 tan? 0 sec® 0 d0 = 6* J‘(sec2 0 — 1)sec 0 do

= 6% J<sec5 0do — 64 ~J‘sec3 0 do.

G. INTEGRATION BY PARTS

When all else fails, try integration by parts. If u and v are differentiable functions of x,

then
Ju dv = up — fv du.

To use the method on a given integral [ f(x) dx, we must break f(x) dx into a product
of the form u dv. 1 and dv are chosen by guesswork. The method works when we are
able to evaluate both the integrals

Jdu, J‘v du.

One should therefore look for a dv whose integral is known.
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EXAMPLE 11 [xInxdx. Try u = Inx,dv = x dx. Then
du = l/xdx, v=x7%2,

2 2

2 .,'21
Jxlnxdx =%1nx — %;d)x‘:%lnx _%_,_ C.

We give two more clues and illustrate them with examples.

EXAMPLE 12 {(In x)* dx. Put u = (In x)*, dv = dx. Then

21nx
du = dx, v =X,
X

f(ln x)? dx = x(In x)? — 2 fln x dx.

Clue  Sometimes u = f(x),dv = dx can be used to evaluate an integral [ f(x)dx by
parts.

Clue Sometimes one can perform two integrations by parts and solve for the desired
integral.

EXAMPLE 13 [sin (In x)dx. Let u = sin (In x), dv = dx. Then

In
_ cos(nvc)dx
x

du

U= X.

Integrating by parts,
jsin (In x)dx = xsin(In x) — fcos (In x) dx.
Integrating by parts again,

J‘cos (In x)dx = xcos (Inx) + fsin (In x) dx.
Then Jsin (In x)dx = xsin (In x) — x cos (In x) — Jsin (In x) dx,

fsin (Inx)dx = 3xsin(Inx) — i xcos(inx) + C.

PROBLEMS FOR SECTION 8.9

Evaluate the following integrals.

1 J3 sin x + 4 cos x dx 2 jtan (Bx — S)dx

3 J' X dx 4 ~I‘xe"‘ dx
3/..2 1

x4 —
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dx

JYXF2 - \7:
1
- dx
JI + /%

|
—
f x3 /4x? 4+ 1 *

J‘sm\/A

fxz\/x — 3dx
jln (3x + 4)dx

fx tan? x dx

J.\' sin (3x2 + 1)dx

fln (x2 4+ x¥)dx

J‘sin 0 1n (cos 0) d6

sin @
2 —cosb

je"(e‘ + 13 dx

fsin \ﬂ dx
sinh x

JI + cosh xd'\

f In x dx
(1 + x)?

Jsin3 x./1 — cos x dx

1
——————dx
Jx,/Z + x?
f\/§ 4 — xdx

farcsin (5x — 2)dx

e* cos x dx

f\“ + 1
— dx
+1

-

x arcsec (x2) dx

f In (x%/4x — 1)dx

10

12

14

16

18

20

22

26

28

30

32

38

40

42

44

46

50

ij - 4[1\‘

x4+ 1

J‘ sec” x dx
1 + tan x
I/x

J.L:cl dx

Jx” Inxdx

3
J‘i'\f— dx
1 —9x?

x—2
e+ 95

el
xx = ¥
J‘ dx
\7; + 1
sze‘ dx
fe‘/; dx
f, /2x + 3dx
J“L—_d,\'
x /1 —x?
2X
Bt
j xdx
Soi-
fcos3 xy/sin x dx
J: /e* + 1dx

x—2
G 1 A

fcos3 xsin3 x dx

1
fsin 8 + cos Od()
1
Jx(l i
f X
JxP =1
fx./x — 2dx

f4" sin (4%) dx

dx
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53

55

57

59

61

63

65

I—Jiiz——ldx
jarctanﬁ dx
fx sec(4x? + Tydx
f)l\/)f:%czdx

dx
J‘xa /x>~ 3
jcos (\3&) dx

dx
Jiom

Jcosz (In x) dx

EXTRA PROBLEMS FOR CHAPTER 8

52

54

56

58

62

EXTRA PROBLEMS FOR CHAPTER 8

1

-~

&

1

13

15

16

18

20

22

24

Evaluate lim 8¥* — 2%,

4
do

dy

cos 8

Find - where y = ¢

Find =~ where y = csch? x.

dx

Evaluate J3" sin (3%) dx.

Evaluate f 5 /1 — e*¥dx.

Evaluate Je" sinh x dx.

Find by where y = In [(x2 — 1)*].
dx

Gx + 2)(5x — 4)
2x — D2 + D'

Find %’ where y = In

! Int
Evaluate !lirg E(—ln—t) .

sec? 8

Evaluate i—m .

01
Evaluate f —dx.
X

Find all solutions of dy/dx = ay*.

A falling object of mass 1 is subject to a force due to gravity of —mg and a force due to
air resistance of — kv, where v is its velocity. If v = 0 at time ¢ = 0, find v as a function of

time.

10

12

14

17

19

21

23

J‘xae"2 dx
dex
NZ S
1
J4 + sin Hde

J tan 6 In (sin 8) 40

N
j——%d,\'

J In(l + x?)dx
dx

fl—cos?ax

Evaluate lim 231 — 32,

x>

—x2

. ody 2
Find o where y = x°e

Sketch the curve y = csch x.

arcsinx

Evaluate Ae—dx.
J1=x2

Evaluate J‘~—dt—— .
Jer —1

Evaluate sz sinh x dx.

Find fi—s where s = é'Int.
dt

Evaluate liné (1 + 02",
"

1
i -
Evaluate fx(a " bx)dx.

Evaluate f ldx.
x

0

Find all solutions of dy/dx = ax/y.
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30
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34

35

36
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38
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40
41
42
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44
45
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47

48
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The pressure P and volume ¥ of a gas in an adiabatic process (a process with no heat
transfer) are related by the differential equation

dp
V-—=0,
Ptk dV

where k is constant. Solve for P as a function of ¥,

An electrical condenser discharges at a rate proportional to its charge Q, so that
dQdt = —kQ for some constant k. If the charge at time r = 0is Q,, find Q as a function
of 1.

Newton’s Law of Cooling states that a hot object cools down at a rate proportional to
the difference between the temperature of the object and the air temperature. If the
object has temperature 140° at ¢ = 0, 100° at t = 10, and 80° at ¢ = 20, find the tempera-
ture y of the object as a function of 1, and find the air temperature.

Find j—) where y = x(, 29 Find % where y = (4t + 1){t — 3)>* 1,
x

Evaluate fsec (56) do, 31 Evaluate Jtanh x dx.

Evaluate f\f(l,.\'l) — bdx, 33 Evaluate f(,\‘ + 1)*?2dx.

Evaluate f() tan? 6 do.

Find the surface area generated by rotating the curve y = sin x,0 < x < 7, about the
X-axis.
Find the surface area generated by rotating the parabola y = x%,0 < x < 1, about the
y-axis.

Approximate %03

and give an error estimate.

Approximate In (0.996) and give an error estimate.

Use the trapezoidal rule with Ax = | to approximate In 6 and give an error estimate.
Find the centroid of the region under the curve y = 5,0 < x < L.

Find the centroid of the region under the curve y = Inx, 1 < x < 2.

Find the length of the curve y = ¢, 0 < x < 1.

Find the surface area generated by rotating the curve y = ¢*,0 < x < 1, about the
x-axis.

Obtain a reduction formula for [ x*e* dx.

Prove that the function y = x* x > 0, is continuous, using the continuity of In x and

x

et
Let y = f(x)bea function which is continuous on the whole real line and such that for all

uand v, f(u + v) = f(u) f(v). Prove that f(x) = ¢ where a = f(1). Hint: First prove it
for x rational.

Prove that for all x > 0,

1
x+ 1

l+l/x1
=f —dt.
1 t

Prove that the function f(x) = (I + 1/x)* is increasing for x > 0.

1
In|l 4+ -} >
X

Hint: Use the formula

I
I+~
X

In
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EXTRA PROBLEMS FOR CHAPTER 8

Show that the improper integral f;c \/; e~ *dx converges. Hint: Show that the definite
integrals f§ \ﬂ e”*dx are finite and have the same standard part for all positive in-
finite H.

Show that |~ e~*"dx converges.
The inverse square law for gravity shows that an object projected vertically from the
earth’s surface will rise according to the differential equation
2
0} % = —)%, t=0.
Here y is the height above the earth’s center. If v = dy/dt is the velocity at time ¢, then
d’y dv dvdy dv
WS w Ty d
so Equation 1 may be written as
2) ud—v = —ﬁ.
dy  y?

Assume that at time t = 0, y = 4000 miles (the radius of the earth) and v = v, (the initial
velocity). Solve for velocity as a function of y. Find the escape velocity, i.e., the smallest
initial velocity v, such that the velocity v never drops to zero.
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