LIMITS,
ANALYTIC GEOMETRY,

AND APPROXIMATIONS

5.1 INFINITE LIMITS

Up to this point we have studied three types of limits:

lim f(x) = L means f(x)~ L whenever x = cbut x # c.

x—c

lim+ f(x) = L means f(x) ~ L whenever x = c but x > c.

lim f(x) =L means f(x) ~ L whenever x ~ ¢ but x <c.

The limit notation lim,_ , f(x) = L means that whenever H is positive
infinite, f(H) ~ L (Figure 5.1.1(a)).

lim,_,. f(x) = — oo means that whenever x =~ ¢ and x # ¢, f(x) is negative
infinite (Figure 5.1.1(b)). The various other combinations have the meanings which
one would expect.

o1
EXAMPLE 1 lim — = co.
x>0 X
.1 1
EXAMPLE 2 lim — = co, lim — = —co.
x->0* X x-0~" X

EXAMPLE 3 Find Ilim 3x% + 5x — 2
e e —6x* 1+ 7

Let H be positive infinite. Then
3H* +5H -2 3 +5H 3 -2H*
2H* —6H® +7 2—6H ' + 7TH *
3H* + SH — 2 3+40-0 3
and therefore SI(ZH“ el 7) =3 "630"72

Thus the limit exists and is 3.

237



238 5 LIMITS, ANALYTIC GEOMETRY, AND APPROXIMATIONS

infinite
telescope

infinite
microscope
(@) lim f{x)=1L

X o

/ ('y infinite
microscope

(c-€f(c—e€)

infinite
/ telescope

———— 8

b) limflv)= —
Figure 5.1.1 x e

EXAMPLE 4 Find lim (x® + 200x?).
We have x* + 200x* = x*(x + 200). When H is negative infinite, H? is
positive infinite and (H + 200) is negative infinite, so their product is negative
infinite. Thus

lim (x* + 200x%) = — oo,

X—= —a
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When limf(x) = w0 or —co,
X—cC

the limit does not exist, because f(x) has no standard part. The infinity symbol is
only used to indicate the behavior of f(x) and is not to be construed as a number.

EXAMPLE 5 A student can get a score of 100z/(t + 1) on his math exam if he studies
t hours for it (Figure 5.1.2). If he studies infinitely long for the exam, his score
will be infinitely close to 100, because if H is positive infinite,

o 100H . 100 _ 100__100
H+1) “"\U+1/H 140
In the notation of limits,

limﬂ= 100.
ot + 1

100+
+1

-1l !
{
Figure 5.1.2 |

EXAMPLE 6 Given any polynomial
fO=at" +a,_;t"" '+ +a;t + a,
of degree n > 0, the limits as ¢ approaches —oo or 4+ oo are as follows.
Suppose a, > 0. When n is even, lim,,__ f(t) = oo, lim,, f(t) = co.
When n is odd, lim,_, _, f(t) = — o0, lim,_, ., f(t) = o0.
The signs are all reversed when a, < 0.
All these limits can be computed from

a1 a, ag
; +"'+tn__1+F.

SO =t"a, +

EXAMPLE 7 In the special theory of relativity, a body which is moving at constant
velocity v, —¢ < v < ¢, will have mass

My

m=——
1 — v?/c?

and its length in the direction of motion will be

Z - lo«/l - DZ/CZ.
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. sl
EXAMPLE 8 Evaluate Iim

5 LIMITS, ANALYTIC GEOMETRY, AND APPROXIMATIONS

Here mq, [y, and ¢ are positive constants denoting the mass at rest (that is,
the mass when ¢ = 0), the length at rest, and the speed of light.

Suppose the velocity v is infinitely close to the speed of light ¢, that is,

r=c— ¢ ¢ > 0 infinitesimal.

2 EPAY] 2 2 2
r (c — &) ct —(c® — 2ce + &%)
l——==/1- — = -
Then \/ c? f c? \/ c?
[2¢ &2 (2 8)
- — = ev|l—— =],
27y, 2

Ve« c c

which is the square root of a positive infinitesimal. Thus \ﬂ — 3/t isa
positive infinitesimal. Therefore for ¢ infinitely close to ¢, m 1s positive infinite
and [ is positive infinitesimal. That is, a bady moving at velocity infinitely
close to (but less than) the speed of light has infinite mass and infinitesimal
length in the direction of motion. In the notation of limits this means that

. Mg
lim = + =,

roe- \/1 _ 1‘2/02

lim [, /1 — ¢%/c? = 0.

v

Caution: This example must be understood in the light of our policy of
speaking as if a line in physical space really is like the hyperreal line. Actually,
there is no evidence one way or the other on whether a line in space is like
the hyperreal line, but the hyperreal line is a useful model for the purpose of
applications.

nx

x—=ee X

When H is positive infinite, sin H is between —1 and 1 and thus finite, so
(sin H)/H is infinitesimal. The limit is therefore zero:

. sinx

lim — = 0.

xowo o X

EXAMPLE 9 Find lim cosx.

If H is any integer or hyperinteger, then
cos 2nH) = 1, cos(2rH + ) = — 1.

In fact, cos x will keep oscillating between 1 and —1 even for infinite x.
Therefore the limit does not exist.

Limits involving e* and In x will be studied in Chapter 8.



PROBLEMS FOR SECTION 5.1

Find the following limits. Your answer should be a real number, co, — oo, or “does not exist.”
With a calculatg& cor2pute some values as x approaches its limit, and iee what happens.
. — X

1

2x + 5
3 lim 3 — 10:2 — 61 — 2
} hadi- o)
. o x2—x+4
S Jlrg 3x2+2x -3
592 4+ 3y + 2
7 -~ - @@=
y"ll}lw 3P -6y + 1
x> /3x + 1
11 lim x — \/x
13 lim ¥x + 2
15 lim L
o 3x
17 lim 14—
19 limi2 21
x=0 X X
. 5x+ 6
21 xll'oo XZ —4
3 lim ——t
oo 482 + 1
25 fim Y+ 2
1--w 4t + 2
. St+2
27 rlirg 2 — 66+ 1
.1 =571
B RiTet
. 14+ 2t
3 Im-o—————
1 T —5 2
1 - x
i
33 :er;2 — X
. y+1
35 lim ————
y3+(y = 2)y - 3)
. y+1
37 lim————
3y —2)(y - 3)
. 3+ 4
3 Im—5——
9 tll'I} If2 +r—-2
x* +4
41 li
x—l'r;l" x2—-4
43 lim ./x + 2 — \/E
45 lim /3x + 1 — 2/x

lim
X2

2

4

10

12

14

16

18

20

22

30

32

36

38

40

42

5.1 INFINITE LIMITS

xlll}loo4x— 10

lim 4t% + 6t + 2

t—=+—ow

lim 2x%? —4x + 1

x> m 3X2 + SX - 6
4 _ .3

lim 4 y+1

y=>o 2y4 — 4y2 +5
lim 3+ 2yu 2ﬁ
usew 4 — \/l;
lim /% + /x4 1

lim /2 —x

X+ -

1
lim —

x>0+ \3/;

lim VLt 2

im0 4t + 2

im P —6rr +4

- 2%+ -5
54617 472

o 3Ty 22
liml — 2t 4472
=0 3—4¢71
1-x

x—g.l*‘z - X

. y+1
e T
11,,1_3"2i~
x=5x2 — 10x + 25
limxi +4
x=2X° — 4

lim — !

=it x — 2. /x + 1
lim (x + 1)*7? — x3/2

X2

lim \/2x + 3 — /x

241



242 5 LIMITS, ANALYTIC GEOMETRY, AND APPROXIMATIONS

47 lim /x> 4+ x — x 48 lim . /x? 4+ 1 —x

X x> ®

49 lim (/t + 1 = /1) 50 lim /e(/t+2-/t+1)

! lim Ju? = 3u+2- w1l 82 lim VAT 27

e o e+ 3 - Jx
53 lim Yt +4 - Yt 54 lim Y + 1 —1
t— oo

=
55 lim cos (1/t) 56 lim sin (1/¢)
= 1=
57 lim ™ 58 lim &%
- f »x !
59 lim sin 8 60 lim 8 cos 6
80— > f0—x
61 lim tan 6 62 lim tan @
-0 g2
63 lim tan@ 64 lim tan@
—-ni2 * o—+nj2-
65 l_irré sin (1/x) 66 lin(l) x cos (1/x)
67 lim 3% 68 lim 2%
x=0+ X =0 X
69 Prove that if lim,_, . f(x) = oo then lim,_ . 1/f(x) = 0.
71 Prove that if lim,_,,. f(x) = 0 and f(x) > O for all x, then lim,_,, 1//(x) = cc.
72 Prove that if lim,_ . f(x) exists or is infinite, then
lir(? f{x) = lim f(1/z).
x=0* 1w
73 Prove that if lim,, ,, f(x) exists or is infinite then

lim £(x) = lim /(1/1)

5.2 L'HOSPITAL'S RULE

Suppose [ and g are two real functions which are defined in an open interval con-
taining a real number ¢, and we wish to compute the limit

lim 7.9,
x—a g(x)
Sometimes the answer is easy. Assume that the limits of f(x) and g(x) exist as x — q,

lim f(x) = L, lim g(x) = M.

xX—*a

If M # 0, then the limit of the quotient is simply the quotient of the limits,
fx} L

m = .
x—a g(x) M

This is because for any infinitesimal Ax # 0,

lim& g fla+Ax)) _si(fla+ Ax) L
x—a g(x) gla + Ax) st(gla+ Ax) M’
If L # 0and M = (Q, then the limit
1im~f(—x)

x~a g(X)
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does not exist, because when Ax # 0 is infinitesimal, f(a + Ax) has standard part
L # 0 and g(a + Ax) has standard part 0.
But what happens if both L and M are 0? In some cases a simple algebraic
manipulation will enable us to compute the limit. For example,
x2 -1 x4+ Dx—~1)

li = lim ——————— = 1i —1)=-2
x—l»rzl1 x+1 x—l»rfll x+ 1 x—lﬁl1 b ) ’

even though both the numerator x*> — 1 and the denominator x + 1 approach 0 as
x approaches —1.

In other cases I'Hospital’s Rule is useful in computing limits of quotients
where both L and M are 0. Before stating ’'Hospital’s Rule, we introduce the notion
of a neighborhood of a point ¢ (Figure 5.2.1).

—ofs -
5
A neighborhood of ¢

¥

Figure 5.2.1

DEFINITION

By a neighborhood of a real number ¢ we mean an interval which contains ¢ as
an interior point,

The set formed by removing the point ¢ from a neighborhood I of ¢ is called a
deleted neighborhood of c. Thus a deleted neighborhood is the set of all points
x in I such that x # c.

L'HOSPITAL'S RULE FOR 0/0

Suppose that in some deleted neighborhood of a real number c, f'(x) and g'(x)
exist and g'(x) # 0. Assume that
lim f(x) = 0, lim g(x) = 0.

xX2C

. x) _. S
If lim oA )eXlStS or is infinite, then

x—e g'(X)
limZ ™ _ jjm L&)

m !
xoe g(X)  x—e g1(x)

(See Figure 5.2.2.) Usually the limit will be given by
S'x)_ flo)

im ="
x=e g'(x)  gle)

and in this case the proof is very simple.

fx) c

c c W
e fx)/g(x)

Figure 5.2.2 L'Hospital's Rule

——da
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Sx) [0

PROOF IN THE CASE im 2" =
x—e g(x)  gle)

Let Ax be a nonzero infinitesimal. Then f(c) = 0, g(¢) = 0, and
Jle+ Ax) _ (fle + Ax) = f(O)/Ax _ [10)
gle + Ax)  (gle + Ax) — glo))/Ax  g'(o)

Taking standard parts we get

SO _ Sy S

1m = .
w-e gx)  gle)  x-e g'(x)

Intuitively, for x &~ ¢ the graphs of f(x) and g(x) are almost straight lines of
slopes [(c), g'(¢) passing through zero, so the graph of f(x)/g(x) is almost the hori-
zontal line through f'(c)/g’'(c) (Figure 5.2.3).

g'(c) Ax
Ax l )
¢ g(c+ Ax)
4

f(x)

g(x)
/c \

Figure 56.2.3
The equation

im ') _ S
e £(X) glo)

is not always true. For example, g'(¢) might be zero or undefined.
ALCY
lim
x—e g1(x)

is sometimes another limit of type 0/0, that is,

lim f'(x) =0 and limg'(x)=0.
When this happens, ’Hospital’s Rule can often be reapplied to lim,.,. f'(x)/g'(x).
The proof of ’Hospital’s Rule in general is fairly long and uses the Mean Value
Theorem. It will not be given here.

Here are some examples showing how the rule can be applied.

(1/x) — 1

EXAMPLE 1 Find lim

x—'I\/;_].
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Both (1/x) — 1 and ./x — 1 approach 0 as x approaches 1. The limit is thus
of the form 0/0. Using "'Hospital’s Rule,

1/x) — -2
im W X1
x=1 x —1 r—»l_X !

J —1
EXAMPLE 2 Find lm¥> 1~ 1

x—0 X3

The limit is of the form 0/0. The limit of f'(x)/g'(x) as x — 0 is oo

d(i/x + 1 — 1)/dx hm%(x + )" 12
—_— =
xao O d)dx xso 3x2

Thus by I’Hospital’s Rule,

4/x+1—1=

i
xl_l:% X3
EXAMPLE 3 Find lim (x + ——)(«/x +1—=2)
x—3

This limit is not in a form where we can apply I’Hospital’s Rule. We must
first use algebra to put it in another form,

N N S BV RN E

By elementary computations, lim x(./x + 1 —2)=3.0=0.
x—3
Using I’'Hospital’s Rule,

Cox+1=2 x4+t 1
. :l _— = 7-4 1/2 = —,
i o 1 2 4

We then add the limits to get the desired answer,

( )(\/x—ﬁ——z—llmx(,/x+1—2+hm‘x+]~2
x—3

x—3 3

=0+ 1 = %.
(x—3) 4 1
. ) 4 x + 1
EXAMPLE 4 Find Ilim—————5—
x—1 (X — 1)
This limit is of the form 0/0. When "'Hospital’s Rule is used the limit is still
of the form 0/0. But when it is used a second time we can compute the limit.
x=3 011
i 4 x+1_im4 (x+1)2_1im2(x+1)_3_1
mT a1 TSN -y T 2 g

L’Hospital’s Rule also holds true for other types of limits. That is, it holds
true if x — ¢ is everywhere replaced by one of the following.

x—-ct, x-—c, X — o0, X = — .
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EXAMPLE 5 Find lim ——“x+4_2.

x—=0* \/;c
The limit as x — 0 does not exist because \/)_c is defined only for x > 0.
However, the one-sided limit as x — 0% has the form 0/0 and can be found by

"'Hospital’s Rule.

L x+4-=2 . 3x + 472 , Jx
lim Y———— = lim ~——7— = lim = 0.
x-=0* \/} x=0+ 2X ! =0t /x + 4

A second form of I’'Hospital’s Rule deals with the case where both f'(x) and
g{x) approach oo as x approaches c.

L'HOSPITAL'S RULE FOR w/w

Suppose ¢ is a real number, and in some deleted neighborhood of c, f'(x) and
g'(x) exist and g'(x) # 0. Assume that

lim f(x) = o0, lim g(x) = cc.

xX—rc

If lim S )

x—e g'(x

exists or is infinite, then

i 70 _ i L)

xoe g(x)  xme g1(X)

The rule for co/oo is exactly the same, word for word, as the rule for 0/0,
except that O is replaced by co. We omit the proof, which is more difficult in the case
o0/co. Actually, the assumption

lim f(x) = oo

x—c

is not needed.
Again, 'Hospital’s Rule for oo/os also holds for the other types of limits,

x—ct, x—c, X — w, X — — 0.

EXAMPLE 6 Find lim ERSVAIEE
s x4+ x4 1
By I’'Hospital’s Rule for oo/c0,

1
I+
x+ . /x+1 2/x
1

I
8

lim = lim

xﬂoo\/;_k /x + 1 x—r a0 | n
2/x 2 x+ 1

Warning: Before using "'Hospital’s Rule, check to see whether the limit is
of the form 0/0 or co/c0. A common mistake is to use the rule when the limit is not of
one of these forms.




EXAMPLE 7 Find lim

5.2 L'HOSPITAL'S RULE

Vx = (x)

x—=1 X

The limit has the form 0/1, so ’'Hospital’s Rule does not apply.
S Imex -
1

Correct: lim

x—1 X - lim x
x—+1
Incorrect:
_Jx = (/%) A% — (x)fdx . 1 1y 3
lim = lim =lim|—=+ =] ==
x—1 X x—1 dX/dX x—1 2\/; x? 2

PROBLEMS FOR SECTION 5.2

In Problems 1-34, evaluate the limit using "'Hospital’s Rule.

1

11

13

15

17

19

21

23

25

27

29

_ yr—1
SO+ x—3 5 i /

]' m

o x s1+12 =2t 41
limz—./x+2 4 limt+5—2t*‘—r‘3
o2 4 —x? e 3412 —172

lim\’LL—l vy -1 6 lim\/;_ 1
MRy P -1

— )4
lim(lé)—1 8 lim (: + —1)((4 — P2 —8)
x—=0 X t=0 t
+?
Iim t+1-1) 10 lim ————
i+ v I
. (u—1» .2+ 1x
M= ) £r A
31—1»1}14’1—142—!—311—3 1 }1-%13—2/)(
145 3 — 2 -t
lim _i,& 14 lim _L%_
w02 4 1/ /u w0t 2+ 4u
. 172 1/3 _ 1
fim X 16 fim LoD
x—om X X 22— 4+ D)+ 2)
Lo 1l=ye-1 . y+y !
lim —————= 18 lim ———
tveo | — /it —1) ""‘°°1+./1—y
_ fr(/nae j t+t
IR 20
e = + e Jim xS
lim smx 2 lim 1 —cosx
x>0 X x>0 x
. a2
lim sin (2x) 24 lim sin” x
x=0 X x—=0 X
. cos 0 cos (30)
_ 26
el—{rgz /2 — 0 9—1»?32 nf2 — 0
. tanf sin (26)
;1_{13 0 28 020 sin (50) (50)
i _ tz
tim &1 30 lim

-0t t—-oe—t—l

247
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2
31 lim 2 2 Jim D
-1t — 1 =0 t
xlnx . sin (2x)
33 \l'1~'1 x? —1 34 xooln(x + 1)

In Problems 35-52, evaluate the limit by "'Hospital’s Rule or otherwise.
X't _ \/)_c

35 lim —— — 36 lim
x—1 X x=1+tXx — 1
Jx =1 ATl g2
li T L
37 e x 1 38 e
. ox+x? 54+ x7!
xrx 40 b 2N
39 \ILH} 2v + x 72 Ein} 14 2x7!
. 3..2 X o)
41 lim — 2 42 i 2 X+ 2
x= \/——\'2 + 1 x—0 x—4
|- /x4 1 -
43 lim \/\ + 44 vyt -1 !

x—0 /\+4_7 x—=0 /——_I__T)_l
Jx+ 141 X1 —
vxr Tl 46 “m\/ier#

45 lim A S
0t Jx+ 1 -1 0 /x+1—1
1 1 1
47 lim (x + 5){— i S _—
am et oy 2) “* rlrél Ot )( X+ 2)
9 lim (x + S){ 5 + l 50 fim ¥, 0% =2
x— . 2x X + 2 .Vlll \ + 4
—6x — 2 oxP+d4x+ 8
51 lim ————— 52 - - -
\1{2 ,\'3 — 4x :(l—l'rln* 2x3 -2
O 53 Suppose fand g are continuous in a neighborhood of ¢ and g(e) # 0. Show that
N FAGLIC)
lim =1 —.

x—a ‘u ([)(1[ g([!)

5.3 LIMITS AND CURVE SKETCHING

By definition, lim,_, f(x) = L means that for every hyperreal number x which is
infinitely close but not equal to ¢, f(x) is infinitely close to L. What does lim ., f(x) =
L tell us about f(x) for real numbers x? It turns out that if Ilm\ﬂ f(x) = L, then for
every real number x which is close to but not equal to ¢, f(x) is close to L.

In the next section we shall justify the above intuitive statement by a math-
ematical theorem. The main difficulty is to make the word “close” precise. For the
time being we shall simply illustrate the idea with some examples.

L2
EXAMPLE 1 Consider the limit  lim 1= 2
x=0 L/X —

This limit is evaluated by letting x # 0 be infinitesimal
ZL.\‘ +1 2+«
x—1 1 —x
2/'x+1_5[(7+\) _st2 4 x) 240

sr(l—\) 1-0

_l\)

lim —-

oo I/x — |0 ] —x
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Let us see what happens if instead of taking x to be infinitely small we take
x to be a “small” real number. We shall make a table of values of

2/x +1

Jx)y=———

I/x —1

for various small x.
) L 2x+1 flx)to
¥ /9= l/x — 1 four places

0.1 21/9 2.3333
0.01 201/99 2.0303
0.001 2001/999 2.0030
0.0001 20001/9999 2.0003
-0.1 19/11 1.7364
—0.01 199/101 1.9703
—0.001 1999/1001 1.9970
—0.0001 19999/10001 1.9997

We see that as x gets closer and closer to zero, f(x) gets closer and closer to 2.
With a calculator, the student should try this for some of the limits on pages 124 and 241.

The table helps us to draw the graph of the curve y = f(x). Although the
point (0. 2) is not on the graph, we know that when x is close to 0, f{x) is close to 2,
and draw the graph accordingly. The graph is drawn in Figure 5.3.1.

Other types of limits also give information which is useful in drawing graphs.
For instance, if lim, ,, f(x) = o0, then for every number x which is close to but not
equal to ¢, the value of f(x) is large. And if lim_,  f(x) = L, then for every large real
number x, f(x) is close to L.

In both the above statements, if we replace “close” by “‘infinitely close™ and
“large” by “infinitely large” we get our official definition of a limit. We give two more
examples.

flx)
©, 2)
%+1
lim — =2
x—=0 l-1
x
IT
b +— +— —+—
-2 -1 0 1 2 x
Figure 5.3.1
. .. . 1
EXAMPLE 2 Consider the limit  lim ————— = oo.

w2 (x — 22
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For x infinitely close but not equal to 2, 1/(x — 2)? is positive infinite. Let
us make a table of values when x is a real number close to but not equal to 2.

x S
21 100
2.01 10000

2.001 1000000

1.9 100
1.99 10000
1.999 1000000

As x gets closer and closer to 2, f(x) gets larger and larger.

i
EXAMPLE 3 i l+ —) =1
it ( i 2)2)
For infinitely large x, 1 + 1/(x — 2)* is infinitely close to 1. Here is a table of
values of 1 + 1/(x — 2)? for large real x.

1
X 1+ *(X oy
12 1.01
102 1.0001
1002 1.000001
10002 1.00000001

As x gets large, 1 + 1/(x — 2) gets close to 1. Also notice that

1
li 1+ —| =
x:rjlac ( + (x - 2)2) 1’

and for large negative x, 1 + 1/(x — 2)? is close to 1.

In Chapter 3 we showed how to use the first and second derivatives to sketch
the graph of a function which is continuous on a closed interval. In the next example we
shall sketch the graph of the function f(x) = 1 4 1/(x — 2)* But this time the function
is discontinuous at x = 2, and the domain is the whole real line except for the point
x = 2. Our method uses not only the values but also the limits of the function and its
first derivative.

EXAMPLE 4 Sketch thecurve f(x)=1+ —13.
(x—2)

The first two derivatives are
)= -2x—2)7°  f'(x)=6(x—2)"*

The first and second derivatives are never zero. f(x) is undefined at x = 2.
In our table we shall show the values of f(x) and its first two derivatives at a



53 LIMITS AND CURVE SKETCHING

point on each side of x = 2. We shall also show the limits of f(x) and its first
derivative as x —» — o0, x —» 27, x —» 2%, and x — oo. (We will not need the
limits of f"(x).)

f(x) Jx) f(x) Comments

lim 1 0 horizontal
x=1 2 2 6 increasing, U
liga_ 0 o0 vertical

liI;{l* oo — w0 vertical
x = 2 -2 6 decreasing,u
lim 1 0 horizontal
X

The first line of the table, lim,_, _, shows that for large negative x the curve
is close to 1 and its slope is nearly horizontal. The second line, x = 1, shows
that the curve is increasing and concave upward in the interval (— oo, 2),
and passes through the point (1, 2) with a slope of 2. The third line, lim, _,, -,
shows that just before x = 2 the curve is far above the x-axis and its slope is
nearly vertical. Going through the table in this way, we are able to sketch the
curve as in Figure 5.3.2.

The curve approaches the dotted horizontal line y = 1 and the dotted vertical
line x = 2. These lines are called asymptotes of the curve.

(35 2)

Figure 5.3.2 y=1+(x—2)"2

Suppose the function f and its derivative f* exist and are continuous at all

but a finite number of points of an interval I. The following procedure can be used in
sketching the curve y = f(x).

Step 1

Step 2

Step 3

Step 4

First carry out the procedure outlined in Section 3.9 concerning the first
and second derivative.

Compute lim,._, _ ., f(x) and lim,_, , f(x).
(They may either be real numbers, + oo, — o0, or may not exist.)

At each point ¢ of I where f is discontinuous, compute f{(c), lim,_ . f(x)and
lim, .- f(x)-
(Some or all of these quantities may be undefined.)

Compute lim,_, , f'(x) and lim,_, _ , f'{x).
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Step 5 At each point where f' is discontinuous, compute f(c), lim, .- f’(x) and
lim,_,.- f7(x).

We shall now work several more examples; the steps in computing the limits
are left to the student.

EXAMPLE 5 [(x) = 375
Then S =372 ) = T

At the point x = 0, f(x) = 0 and J"(x) does not exist. We first plot a few
points, compute the necessary limits, and make a table.

Jx) ™ J(x) ~ Comments
lim — % 0 horizontal
= —1 —1 3/5 6/25 increasing, u
lim 0 7 vertical
x—=0-
X = : 0 undef.
lim 1 0 7 vertical
x=0* |
x =1 J | 3/5 —6/25 increasing, ~

lim 7 0 horizontal

(1,1)

_——

0,0

Figure 5.3.3 (-1,—-1 y = x35

The behavior as x approaches — =, =, and zero are described by the limits
we have computed. As x approaches either — 0 or co, f(x) gets large but the
slope becomes more nearly horizontal. As x approaches zero the curve
becomes nearly vertical, increasing from left to right, so we have a vertical
tangent line at x = 0.
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EXAMPLE 6 f(x) = x*/°.
Then Sy =875 fr(x) = —x O

f'(x) is undefined at x = 0. We make the table:

Sx) J(x) J(x) Comments

fim %“ 0 horizontal
x=—1 1 —4/5 —4/25 decreasing, N
lil'éli 0 — % vertical
x=0 0 undef.

lim 0 s vertical
x—=0*
x=1 1 4/5 —4/25 increasing, N
lim o* 0 horizontal
X x

With this information we can sketch the curve in Figure 5.3.4.

—1 0,00 1| x

p = xi/8
0,0

Figure 5.3.4

This time the limits of the derivative as x approaches zero show that there
is a cusp at x = 0, with the curve decreasing when x < 0 and increasing
when x > 0.

COs x

EXAMPLE 7 Sketch the curve f(x) = for 0 < x < 2=

sin x
f(x) and f'(x) are undefined at x = 7 because the denominator sin = is zero.
The first two derivatives are

cos x
sin® x°

)= - fx)y =2

sin? x’
Thus f'(x) is always negative, and f"(x) = 0 when x = n/2, 3n/2. Here is
the table:
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fx) 1'(x) 1) Comments

lim x - vertical
x—=0

n/d 1 —1/2 + decreasing, v

/2 0 -1 0 decreasing, inflection
3m/4 -1 —-1/2 - decreasing, N

1im» —C —x vertical

lim * - vertical

Sn/d4 1 —1/2 + decreasing, u

3n/2 0 —1 0 decreasing, inflection
Tr/4 —1 —172 - decreasing, N

lim - - vertical
x> 2n”

Notice that the table from = to 2x is just a repeat of the table from 0 to =.
This is because

cos(x + m) —cosx COsX

sin(x +7) —sinx sinx’

The curve is sketched in Figure 5.3.5.

_ Cosx
0 T 2r L Y= sinx
Figure 5.3.5
PROBLEMS FOR SECTION 5.3
1 This figure is a sketch of a curve y = f(x). At which points x = ¢ do the following

happen?
(a) [ is discontinuous at ¢

(b) lim f(x) does not exist
(¢) lim f(x)does not exist

(d) fis not differentiable at ¢
(e) lim f'(x) does not exist

(f) lim f'(x) does not exist.

X



In Problems 2-42, sketch the graph of f(x). Use a table of values of f(x), /'(x), f"(x), and limits
of f(x) and f'(x). Then check your answer by using a graphics calculator to draw the graph.

2
4
6

8

10

12

14

16

18

20

22

30
32

34

38

40

5.3 LIMITS AND CURVE SKETCHING

fx)=2-3x*
f)=x>—x
flx)=5x* = x*
1
fey=1+2
2
f(x)=x2+;

1
f(x)=x2+?

£09 =2 —x
fog=1-
-z

flx)=2—(x— 1"

=
f6 =2
S0 = g
6=

09 =2+ (c — 177
) =4/1 - x*

) =% —1

y= , O<x<2nm
cos x
y=tan’x, -n<x<n
1

y=—7———"—7""" OSXSZTE
SN XCos X

fx)=2—-/x*+4

M
C\ ———————

H

I
I
!
I
I
| /
|
4
T
:
|
|
|

3 f(x) = x% — 2x
5 flx) =x% — L3
7T S =k
. 1
9 Joy =571
W=
13 S0 =/x
1
15 -—
fx) 7
17 S0 =Ix
x—1
19 Sy = x+1
i
a1 Jix) = x2 41
X2
B f0=y
25 S0 = o - -
27 fx) = x*?

29 S(x) = /4 - x*
31 fey=1- /1 —x*

1

33 y=—, 0<x<2n
sin x
35 y=tanx, 0<x<2n
37 y ! 0<x<2n

~sinx + cos x°
39 fx)= —/x>* -4

a1 (O ———

255
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42 1) = —

\ﬁ 2

X
In Problems 43-55, graph the given function.

43 fx)=Ix — 1 44 S =1 — 2]
. "X
45 fx) = 2x — 1 46 J) =2+ 53
47 fx) = 2x + |x — 2| 48 flx) = x2 + x|
49 fx)= x>+ |x + 1 50 S =1x* =1
51 fxy =l 52 Sx) = x/Ix
X 54 /( ) ,\'3 - X
Ny =" ==
53 Sx)=x+ Il . x|
55 Jx) = xy1+ 1/x?
PARABOLAS
In this section we shall study the graph of the equation
y = ax? + bx + ¢,
which is a U-shaped curve called a vertical parabola. We begin with the general
definition of a parabola in the plane.

Recall that the distance between a point P and a line L is the length of the
perpendicular line from P to L, as in Figure 5.4.1. If we are given a line L. and a point
F not on L, the set of all points equidistant from L and F will form a U-shaped curve
that passes midway between L and F. This curve is a parabola, shown in Figure 5.4.2.

P
Distance from
Pto L
Figure 5.4.1

Parabola = set of points
Figure 5.4.2 equidistant from L and F.
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DEFINITION OF PARABOLA

Given a line L and a point F not on the line, the set of all points equidistant from
L and F is called the parabola with directrix L and focus F.

The line through the focus perpendicular to the directrix is called the axis
of the parabola. The point where the parabola crosses the axis is called the vertex.
These are illustrated in Figure 5.4.3.

As we can see from the figure, the parabola is symmetric about its axis. That
is, if we fold the page along the axis, the parabola will fold upon itself. The vertex is
just the point halfway between the focus and directrix. It is the point on the parabola
which is closest to the directrix and focus.

When a ball is thrown into the air, its path is the parabola shown in Figure
5.4.4, with the highest point at the vertex.

Telescope mirrors and radar antennae are in the shape of parabolas. This is
done because all light rays coming from the direction of the axis will be reflected to a
single point, the focus (see Figure 5.4.5). For the same reason, reflectors for search-
lights and automobile headlights are shaped like parabolas, with the light at the
focus.

Figure 5.4.3

Figure 5.4.4 Figure 5.4.5

A parabola with a vertical axis (and horizontal directrix) is called a vertical
parabola. The vertex of a vertical parabola is either the highest or lowest point,
because it is the point closest to the directrix.
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EXAMPLE 1 Find an equation for the vertical parabola with directrix y = —1 and
focus F(0, 1) (Figure 5.4.6).

Directrix y= — 1

Figure 5.4.6

Given a point P(x, y), the perpendicular from P to the directrix is a vertical
line of length /(3 + 1)%. Thus

distance from P to directrix = /(v + 1)%
Also, distance from P to focus = . /x? + (v — 1)~

The point P lies on the parabola exactly when these distances are equal,

Jo+ D=5+ (y— 1A

The equation of a parabola is particularly simple if the coordinate axes
are chosen so that the vertex is at the origin and the focus is on the y-axis. The
parabola will then be vertical and have an equation of the form y = ax?.

THEOREM 1

The graph of the equation

y = ax?

(where a # Q) is the parabola with focus F(0,1/4a) and directrix y = — 1/(4a). Its
vertex is (0, 0), and its axis is the y-axis.

PROOF Let us find the equation of the parabola with focus F(0,d) and directrix
y = —d, shown in Figure 54.7,

Our plan is to show that the equation is y = ax? where d=1/(4a). Given a

point P(x, y), the perpendicular from P to the directrix is a verucal line of
length ./(y + d)2. Thus

distance from P to directrix = /(y + d)°.
Also, distance from P to focus = . /x® + (y — d)%.

The point P lies on the parabola exactly when these distances are equal,

JO+ D =X+ (v - d)
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)7

/P (x,y)

(0, d)4

)7=—d

Figure 5.4.7

Simplifying we get
G+dP=x*+@-d°
y2 4 2yd + d?* = x* + y* — 2yd + d*

4yd = x*
.__1 2
Y=

Putting a=1/4d, we have d=1/4a where y = ax? is the equation of the parabola.

Note that if a is negative, the focus will be below the x-axis and the directrix
above the x-axis.

EXAMPLE 2 Find the focus and directrix of the parabola
y=-(1/2) x2.

In Theorem 1, a = — 12 andd=1/4a = —%. The focus is F(0, —3), and the
directrix is y = .

The next theorem shows that the graph of y = ax® + bx + ¢ is exactly
like the graph of y = ax?, except that its vertex is at the point (x,, y,) where the
curve has slope zero. The focus and directrix are still at a distance //(4a) above and
below the vertex.

THEOREM 2
The graph of the equation
y=ax*+bx +¢

(where a # 0) is a vertical parabola. Its vertex is at the point (x,, yo) where
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the curve has slope zero, the focus is F(xq, yo + 1/4a), md the directrix is
Yy =Yoo — 1/4a.

We first compute x,. The curve y = ax? 4+ bx + ¢ has slope dy/dx =
2ax + b. The slope is zero when 2ax + b = 0, x = —b/2a. Thus
X, = —b/2a.

Let p be the parabola with focus F(x,, Yo +1/4q) and directrix y = yo — /44,
Put X =x —xg and Y =y — y,. In terms of X and Y, the focus and
directrix are at

(X,Y)=(014a), Y = —1/4a
By Theorem 1, p has the equation
Y = aX?,
or ¥ — yo = a(x — x)%,
y = ax? — 2axyx + (axd + yo).
Substituting —b/2a for x,, we have
y=ax? + bx + (b*/4a + y,).

This shows that the parabola p and the curve y = ax?® + bx + ¢ differ at
most by a constant. Moreover, the point (x,, )o) lies on the curve. (xq, yo)
is also the vertex of the parabola p, where (X, Y) = (0, 0). Therefore the
curve and the parabola are the same.

EXAMPLE 3 Find the vertex, focus and directrix of the parabola

y=2x*=5x + 4
First find the point x, where the slope is 0.

dy
—=4x -5
dx *
Then 4xy — 5 =0,
Xo =3

Substitute to find y,.
Yo =2(x0)® = 5xp + 4 =3
The vertex is

(XOB .))0) = (%5 %)

We have a = 2, sc 1/4a= §. By Theorem 2, the focus is

x *—i—l —51
oYor g )T e )
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The directrix is

1
y=Yo— gz V=g

The vertex, axis, focus, and directrix can be used to sketch quickly the
graph of a vertical parabola.

GRAPHING A PARABOLA y=ax*+bx+c

Step 7 Make a table of values of x, y, dy/dx, and d*y/dx* at x > —o0, x = —b/2a
(the vertex), and x — oc.

Step 2 Compute the axis, vertex, focus, and directrix, and draw them.

Step 3 Draw the two squares with sides along the axis and directrix and a corner
at the focus. The two new corners level with the focus, P and Q, are on the
parabola because they are equidistant from the focus and the directrix.

Step 4 Draw the diagonals of the squares through P and Q. These are the tangent
lines to the parabola at P and Q. (The proof of this fact is left as a problem.)

Step 5 Draw the parabola through the vertex, P, and Q, using the table and tangent
lines. The parabola should be symmetrical about the axis x = —b/2a. See
Figure 5.4.8(a).

A horizontal parabola x = ay* + by + ¢ can be graphed by the same
method with the roles of x and y interchanged, as in Figure 5.4.8(b).

y ¥
axis
{ VIF axis
F
V
directrix
by o X
directrix
(a) Vertical (b) Horizontal

Figure 5.4.8
EXAMPLE 2 (Continued) Sketch the parabola y = —ix2

The first two derivatives are
d d?
y_ 4y
dx dx
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The only critical point is at x = 0. The table of values follows.

x y dyfdx d?yjdx? Comments
\_Lir_nac — o0 o vertical
x=0 0 0 —1 max, N
11112 - — vertical

The parabola is drawn in Figure 5.4.9, using Steps 1-5.

el
I
o~

©, -3

Figure 5.4.9

EXAMPLE 3 (Continued) Sketch the parabola y = 2x? — 5x + 4.

The first two derivatives are

4y _

dx —
dx x =5,

— =4

The only critical point is at the vertex, where x = 3. The table of values
follows.

x y dyjdx dyjdx? Comments
! lim o —cC vertical
S/4 7/8 0 + min, u
lim & oc vertical

The parabola is drawn in Figure 5.4.10, again using Steps 1-5.
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y

yv=2*-5x+4

,.
I
alon

Figure 5.4.10

We can now sketch the graph of any equation of the form
Ax* + Dx + Ey + F =0.

In the ordinary case where both 4 and E are different from zero, proceed as follows.
First, solve the equation for y, obtaining the new equation

Second, use the method in this section to sketch the graph, which will be a vertical
parabola. There are also two degenerate cases. If A = 0, the graph is a straight line.
If E =0, then y does not appear at all, and the graph is either two vertical lines,

one vertical line, or empty.
We can also sketch the graph of any equation of the form

Cy>?+Dx +Ey+ F=0.

In the ordinary case where C and D are different from zero, the graph will be a
horizontal parabola.

PROBLEMS FOR SECTION 5.4

In Problems 1-14, find the focus and directrix, and sketch the given parabola.

1 y=2x? 2 y = 3x?

3 y = —x? 4 y=2-x?

5 y=x%—-2x 6 y=x2+2x+1
7 y=2x*+x-2 8 y=x>—x+1
9 y=3+x—x? 10 y=1-—x—x?
11 y=4ix* 4+ x -1 12 y=4x? - x

13 y={x — 2)? 14 y=2x+1)*
15 x=y 16 x=2% -4

17 x=—y*+y+1 18 x=3—(y—2)?

263
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19 Find the equation of the parabola with directrix y = 0 and focus F(2, 2}.
20 Find the equation of the parabola with directrix y = —1 and focus F(0, 0).
21 Find the focus of the parabola with directrix y = 1 and vertex (1, 2).

22 Find the equation of the parabola with focus (—1. — 1) and vertex (— 1. 0).

ELLIPSES AND HYPERBOLAS

In this section we shall study two important types of curves, the ellipses and
hyperbolas. The intersection of a circular cone and a plane will always be either a
parabola, an ellipse, a hyperbola, or one of three degenerate cases—one line, two
lines, or a point. For this reason, parabolas, ellipses, and hyperbolas are called
conic sections. We begin with the definition of an ellipse in the plane.

DEFINITION OF ELLIPSE

Given two points, F, and F,, and a constant, L, the ellipse with foci F, and
F, and length L is the set of all points the sum of whose distances from F,
and F, is equal to L.

If the two foci F, and F, are the same, the ellipse is just the circle with center
at the focus and diameter L. Circles are discussed in Section 1.1.

We shall concentrate on the case where the foci F; and F, are different.
The ellipse will be an oval curve shown in Figure 5.5.1. The orbit of a planet is an
ellipse with the sun at one focus. The eye sees a tilted circle as an ellipse.

Ve
/

ay .
7 major axis

N . .
\_ minor axis
~

AN
Figure 5.5.1 Ellipse PF, + PF, = length AN

The line through the foci F; and F, is called the major axis of the ellipse.
The point on the major axis halfway between the foci is called the center. The line
through the center perpendicular to the major axis is called the minor axis.

An ellipse is symmetric about both its major and its minor axes. That is,
for any point P on the ellipse, the mirror image of P on the other side of either axis
is also on the ellipse. The equation of an ellipse has a simple form when the major
and minor axes are chosen for the x-axis and y-axis.
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THEOREM 1

For any positive a and b, the graph of the equation
x2 y2

2Tyt

is an ellipse with its center at the origin. There are three cases:

(i) a=>b. Theellipseis a circle of radius a.

(i) a > b. This is a horizontal ellipse, whose major axis is the x-axis, and
whose minor axis is the y-axis. The length is 2a. The foci are at (—c, 0)

and (c, 0), where c is found by
c? =a* — b2

(iii)) a < b. This is a vertical ellipse whose major axis is the y-axis and
whose minor axis is the x-axis. The length is 2b. The foci are at (0, —c)
and (0, c), where c is found by

¢t =b* — a2

DO\ ”
a

67 ‘0
o~ )

Horizontal Vertical
Figure 5.5.2 2 =a®— b ¢t =h*—q°

This theorem is illustrated by Figure 5.5.2. Here is the proof in case (ii),
a > b. A point P(x, y) is on the ellipse with foci (—¢, 0), (¢, 0) and length 24 if and
only if the sum of the distances from P to the foci is 2. That is,

\/(x+0)2+y2+\/(x—c)2+y2=2a_

Rewrite this as

JE =) +yP=2a— J(x + ) + y*

Square both sides:
x2 —2ex + 2+ y?=4a* —da/(x + )* + y* + x* 4 2ex + 2 + )R
Simplify:

a/(x + ¢)? + y? = a® + cx.
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Square both sides again:
a*(x* + 2cx + ¢ 4+ yH) = a* + 2a%cx + 2x%
Collect the x? and y? terms and simplify.
2a? — D) + yHa?) = a* — a*c? = a¥(d® — c2).
Using the equation b? = g? — ¢?, write this as
x2b% 4 y2a? = a?b?
Finally, divide by a?b? to obtain the required equation

x2 y2 _ 1

at bt

Setting x = 0 we see that the ellipse meets the y-axis at the two points y = +b.

Also, it meets the x-axis at x = +a. Since all terms are >0, at every point on the
ellipse we have

x
— <1, —a<x<a
a
y?

and ZJ—ZSI’ —bSySb.

Using these facts we can easily sketch the ellipse. It is an oval curve inscribed in the
rectangle bounded by the lines x = +a,y = +b.

Figure 5.5.3 shows a horizontal ellipse (where a > b) and a vertical ellipse
(where a < b).

y y
b
e |
I I
b i {
[ ~ | I |
K_ | !
|
—a :a x —-a a X
>~ \ |
—b | |
| |
LN/
—b
Horizontal ellipse Vertical ellipse

Figure 5.5.3

2
EXAMPLE 1 Sketch the curve % +y? =1

The curve is an ellipse that cuts the x-axis at +3 and the y-axis at +1. To
sketch the curve, we first draw the rectangle x = +3, y = +1 with dotted
lines and then inscribe the ellipse in the rectangle. The ellipse, shown in
Figure 5.5.4, is horizontal.
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Figure 5.5.4 9

EXAMPLE 2 Sketch the curve 4x2 + y?> =9 and find the foci.
The equation may be rewritten as

3+ =1

The graph (Figure 5.5.5) is a vertical ellipse cutting the x-axis at +3 and the
y-axis at +3.

Figure 5.5.5

By Theorem 1, the foci are on the y-axis at (0, +c¢). We compute ¢ from the
equation

c=b*—a’
a and b are the x and y intercepts of the ellipse, a = 3, b = 3. Thus
C=3-@=%
c = /% ~ 2.598.
The foci are at (0, +2.598).

We turn next to the hyperbola. A hyperbola, like an ellipse, has two foci.
However, the distances between the foci and a point on the hyperbola must have a
constant difference instead of a constant sum.
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DEFINITION OF HYPERBOLA

Given rwo distincr points, F, and F,, and a constant, I, the hyperbola with
foci Fy and F, and difference [ is the set of all points the difference of whose
distances from F| and F, is equal to l.

In this definition, / must be a positive number less than the distance between
the foci. A hyperbola will have two separate branches, each shaped like a rounded V.
On one branch the points are closer to F; than F,; and on the other branch they
are closer to F, than F,. Figure 5.5.6 shows a typical hyperbola. The path of a comet
on an orbit that will escape the solar system is a hyperbola with the sun at one focus.
The shadow of a cylindrical lampshade on a wall is a hyperbola (the section of the
light cone cut by the wall).

The line through the foci is the transverse axis of the hyperbola, and the
point on the axis midway between the foci is the center. The hyperbola crosses the
transverse axis at two points called the verrices. The line through the center perpen-
dicular to the transverse axis is the conjugate axis. The hyperbola never crosses its
conjugate axis. A hyperbola is symmetric about both axes. A simple equation is
obtained when the transverse and conjugate axes are chosen for the coordinate axes.

transver.
 tra erse
7 axis

N .
/ N conjugate
Ve axis

Figure 5.5.6 Hyperbola

THEOREM 2

For any positive a and b, the graph of the equation

X2
b a

=1

is a hyperbola with its center at the origin. Its transverse axis is the y-axis,
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and its conjugate axis is the x-axis. The vertices are at (0, +b), and the foci
are at (0, +c¢), where ¢ is found by
a* + b* =

The graph of the equation

(8

y2
b?
is a hyperbola with similar properties with the roles of x,a and y,b reversed. The
proof of Theorem 2 uses a computation like the proof of Theorem 1 on ellipses

and is omitted.
Using derivatives and limits, we can get additional information that is

helpful in sketching the graph of a hyperbola. By solving the equation

=1

Q~| ®

2 2
r_E
b a
for y as a function of x, we see that the upper and lower branches have the equations
b
upper branch: y==./a* + x2,
a
b 2 2
lower branch: y=—-Ja* + x°
a

We concentrate on the upper branch. Its first two derivatives, after some algebraic
simplification, come out to be

d b d?
y X _JZ’ = ab(a® + x?)7¥2,

dx g /a® + x>  dx
Thus the first derivative is zero only at x = 0 (the vertex), and the second derivative
is always positive. We have the following table of values for the upper branch.

X y  dy/dx d*y/dx* Comments
lim o —bfa 0 decreasing

0 b 0 bja* minimum, U
lim ®© bja 0 increasing

All the limit computations are easy except for dy/dx, which we work out for x — oc.
Let H be positive infinite.

bx

o = e
_ {L]

_ St[_b_} _b

oJPH 241] a

269
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We carry out a similar computation for the limit as x - — oo,

im 2o fim 2
xﬂ—wdx X oo a,/a2+x2
a/@ + (—H)

_ St[ b ] __b
aJa®H % + 1 a
The table shows that the upper branch is almost a straight line with slope

—b/a for large negative x and almost a straight line with slope b/a for large positive x.
In fact, we shall show now that the lines

y = bx/a, y = —bx/a

are asymptotes of the hyperbola. That is, as x approaches oo or — oo, the distance
between the line and the hyperbola approaches zero. We show that the upper branch
approaches the line y = bx/a as x — cc; that is,

b
lim [7,/a2 + x? —é{:| = 0.
x=ow | A a
Let H be positive infinite. Then
b bH b
p a? +.H2—7=5[«/(12+H2—H]
_b [(\/a2 + H* — H)(/a* + H* + H)}
a Ja*+ H* + H
b a*+ H* - H?
a./a* + H* + H
=ab(\/a* + H> + H)™ ..

This is infinitesimal, so the limit is zero. Here are the steps for graphing a hyperbola
yibt — x%*a? = 1.

X2
GRAPHING A HYPERBOLA 15— —=1

a

Step 7 Compute the values of a and b from the equation. Draw the rectangle with
sidesx = +a,y = +b.

Step 2 Draw the diagonals of the rectangle. They will be the asymptotes.
Step 3 Mark the vertices of the hyperbola at the points (0, +b).

Step 4 Draw the upper and lower branches of the hyperbola. The upper branch
has a minimum at the vertex (0, b), is concave upward, and approaches the
diagonal asymptotes from above. The lower branch is a mirror image.
See Figure 5.5.7,
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Figure 5.5.7 Figure 5.5.8

A hyperbola of the form

is graphed in a similar manner, but with the roles of x and y reversed. There is a
left branch and a right branch, which are vertical at the vertices (+a, 0).

EXAMPLE 3 Sketch the hyperbola 4y®> — x> =1 and find its foci.
First compute a and b.
dy* = y*fp*, b=}
x? =x*a*>, a=1.
The rectangle has sides x = +1, y = +3, and the vertices are at (0, +13).

The hyperbola is sketched using Steps 1-4 in Figure 5.5.8. The foci are
at (0, +-¢) where

=+ =17+F?*=125
c=./125~ 1.118.

Using the method of this section, we can sketch the graph of any equation
of the form

Ax> + Cy? + F = 0.
In the ordinary case where 4, C, and F are all different from zero, rewrite the
equation as
A4 xP+ Cyr =1,
where 4, = —A/F, C; = —C/F. There are four cases depending on the signs of
A; and C,, which are listed in Table 5.5.1.
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Table 5.5.1

A, C, Graphof 4,x* + Cy?* =1

22
>0 >0 ellipse ll + J—z =1
a b
x? P
>0 <0 hyperbola pr 1
2o ox?
<0 >0 hyperbola PR 1
a

<0 <0 empty

If one or two of A, C, and F are zero, the graph will be degenerate (two
lines, one line, a point, or empty).

PROBLEMS FOR SECTION 5.5

In Problems 1-12, find the foci and sketch the given ellipse or hyperbola.

1 x2 44yt =1 2 X2+t =1

3 Ix?2 4 42 =1 4 x4+ 2 =1

5 Ox? 4 4y? = 16 6 x2 492 =4

7 y—dx? =1 8 e

9 9y — x2 =4 10 4y —dx? =1

xZ )2
1 X yr=1 12 5-%:1
13 Prove that the hyperbola x%/a? — y*/b* = 1 has the two asymptotes y = bx/a and
y = —bx/a.

5.6 SECOND DEGREE CURVES

A second degree equation is an equation of the form
¢)) Ax?> 4+ Bxy + Cy? + Dx + Ey + F = 0.

The graph of such an equation will be a conic section: a parabola, ellipse, hyperbola,
or one of several degenerate cases. In Section 5.4 we saw that the graph of a second
degree equation of one of the forms

) Ax* + Dx+ Ey+ F=0
or
3) Cy* +Dx+Ey+F=0

is a parabola or degencrate. In Section 5.5 we saw that the graph of a second degree
equation of the form
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4) A2 + Cy* + F =0

is an ellipse, a hyperbola, or degenerate.

In this and the next section we shall see how to describe and sketch the
graph of any second degree equation. We will begin with the Discriminant Test,
which shows at once whether a nondegenerate curve is a parabola, ellipse, or
hyperbola. The next topic in this section will be translation of axes, which can change
any second degree equation with no xy-term,

) Ax* + Cy* + Dx + Ey + F =0,

into an equation of one of the simple forms (2), (3), or (4).

In the following section we will study rotation of axes, which can change
any second degree equation into an equation of the form (5) with no xy-term. We
will then be able to deal with any second degree equation by using first rotation
and then translation of axes.

Here is the Discriminant Test.

DEFINITION

The quantity B> — 4AC is called the discriminant of the equation

Ax?> 4+ Bxy + Cy>* + Dx + Ey+ F = 0.

DISCRIMINANT TEST

If we ignore the degenerate cases, the graph of a second degree equation is:

A parabola if the discriminant is zero.
An ellipse if the discriminant is negative.
A hyperbola if the discriminant is positive.

For example, the equation
xy—1=0
has positive discriminant 1> — 4 - 0 = 1, and its graph is a hyperbola. The equation
2+ xy+y*—1=0

has negative discriminant 12 — 4 2.1 = —7, and its graph is an ellipse.

The degenerate graphs that can arise are: two straight lines, one straight
line, one point, and the empty graph. The Discriminant Test alone does not tell
whether or not the graph is degenerate. However, a degenerate case can usually be
recognized when one tries to sketch the graph. For the remainder of this section
we shall ignore the degenerate cases.

We now turn to the method of Translation of Axes. This method is useful
for graphing a second degree equation with no xy-term,

Ax* + Cy* + Dx + Ey+ F =0.

If A or C is zero, the graph will be a horizontal or vertical parabola, which can be
graphed by the method of Section 5.4. If both 4 and C are nonzero, the graph turns
out to be an ellipse or hyperbola with horizontal and vertical axes X and Y, as in
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Figure 5.6.1. In the method of Translation of Axes, we take X and Y as a new pair
of coordinate axes and get a new equation for the curve in the simple form

AX 4+ CY* + F, =0.

) Y
3 Y1

L1 \
Iy AT
X X

|

|

|

i

|

E

Figure 5.6.1

This curve can be sketched as in Section 5.5. The name “Translation of Axes” means
that the original coordinate axes x and y are replaced by new coordinate axes X
and Y, which are parallel to the original axes,

The new axes are found using a procedure from algebra called “completing
the squares.” This procedure changes an expression like Ax* + Dx into a perfect
square plus a constant.

FORMULA FOR COMPLETING THE SQUARES
Let A be different from zero. Then
Ax? + Dx = AX? + K,

D —-D?
where X = S =
x+2A, K VIR

For example,
4x* — 3x = 4X? - 9/16
where X = x — 2.

We shall illustrate the method of Translation of Axes with an example and
then describe the method in general.

EXAMPLE 1 Sketch the curve 4x? — y? — 16x — 2y + 11 = 0.
Step 7 Apply the Discriminant Test to determine the type of curve,
B —44C =0>—4.4+.(-1) = 16.


hjkeisler
Text Box
9/16
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The discriminant is positive, so the graph is a hyperbola.

Step 2 Simplify by completing the squares. This is done by putting

X =x+4 D Y=y+ E
=X ﬂa _.} 2—6
and writing the original equation in terms of X and Y.
—16
X—X+m—x—2, x=X+2
Y=y+-—"—=y4+1, y=Y —1

2.(—1)

MX+22—(Y =12 16X +2)—2Y = 1)+ 11 =0
AX2+4X +4) —16(X +2) — (Y2 =2Y + 1) —2Y — 1) + 11 = 0.

The X and Y terms cancel, and

4X2 4+ 16 —32 - Y2 — 142+ 11 =0,
4X* —Y? —4=0.

Step 3 Draw dotted lines for the X and Y axes, and sketch the curve as in Section
5.5. This is a hyperbola in the (X, Y)-plane. The X-axis is the line Y = 0,
or y = —1. The Y-axis is the line X =0, or x = 2. The graph is shown

in Figure 5.6.2.

4x* —y* — 16x — 2y + 11 = 0
Figure 5.6.2 Example 1 y T

METHOD OF TRANSLATION OF AXES

When to Use  To graph an equation of the form Ax* + Cy*+Dx+Ey+F =0 where

A and C are both nonzevo.

Step 1 Use the Discriminant Test to determine the type of curve.
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Step 2 Completing the Squares: Put
X + b Y + -
= X s = V _—
24 T
and rewrite the original equation in terms of X and Y. The new equation will
have the simple form
Ax?+ Cyv2 + F, =0,
where F, is a new constant.

Step 3 Draw dotted lines for the X and Y axes and sketch the curve as in Section 5.5.

PROBLEMS FOR SECTION 5.6

In Problems 1-6, given that the graph is nondegenerate, use the Discriminant Test to determine
whether the graph is a parabola, ellipse, or hyperbola.

1 x? 4 2xy — 32 + 5x + 6y — 100 =0
4x? — 8xy + 637 + 10x — 2y — 20 =0
4+ dxy + y* + Tx + 8y =0

9x® + bxy + y* +6x —22=0
x* 4 5xy + 10> — 16 =0

4xy + 5x — 10y + 1 =90

S AW

In Problems 7-18, use the method of Translation of Axes to sketch the curve.

7 X4y —dx+3=0 8 X+ +2x—6p+6=0

9 x}— 3P 44x—2y+2=0 10 —x2 4+ F8x—6y—16=0
11 X2+ 4?2 —4dx +24y+36=0 12 4x? —9y? + 8x + 18y — 41 =0
13 Ox? — 4y% — 36x — 24y — 36 =0 14 —x? 4 4p? + 16y +12=0

15 —x? 43?2 +8x+30y+56=0 16 5x2 42y + 10x + 12y + 28 =0
17 16x% + 9y* — 320x — 108y -+ 1780 = 0

18 25x% + 4y% + 250x — 40y + 625 =0

ROTATION OF AXES

We have seen how to graph any second degree equation with no xjy-term. These
graphs are parabolas, ellipses, or hyperbolas with vertical and horizontal axes.
When the equation has a nonzero xy-term, the graph will have diagonal axes. By
rotating the axes, one can get new coordinate axes in the proper direction. The
method will give us a new equation that has no xy-term and can be graphed by
our previous method.

Suppose the x and y axes are rotated counterclockwise by an angle «, and
the new coordinate axes are called X and Y, as in Figure 5.7.1. A point P in the
plane will have a pair of coordinates (x, y) in the old coordinate system and (X, Y)
in the new coordinate system. The old and new coordinates of P are related to each
other by the equations for rotation of axes.
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EQUATIONS FOR ROTATION OF AXES

x =Xcoso — Y sino, y=Xsino+ Ycosa

These equations can be seen directly from Figure 5.7.2. If we substitute the equations
for rotation of axes into a second degree equation in x and y, we get a new second
degree equation in the coordinates X and Y.

EXAMPLE 1 Find the equation of the curve

xy—4=0,

with respect to the new coordinate axes X and Y formed by a counterclockwise
rotation of 30 degrees (Figure 5.7.3).
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In this example,
L 3
o = 30°, sinazi, cosoc:\/T—.
J3, 1 1, V3
=-¥'x__v C=oX + Yy
Thus b's > 5 ) 3 + 3
Substitute into the original equation and collect terms.
xy—4=0,
3 A
\/3 1 1 \/3
SoX - Y= =Y} -4=0
( 2 2 ) (ZX * 2 4 ’
\/3 1 \/§
YIXrP 4+ XY -YTY?-4=0.
4 + 2 4
Given any second degree equation
(D Ax* + Bxy + Cy? + Dx + Ey+ F=0

and any angle of rotation #, one can substitute the equations of rotation and collect
terms to get a new second degree equation in the X and Y coordinates,

) A X+ B XY+ C, Y+ D, X+ EY+F, =0
It can be shown that the discriminant is unchanged by the rotation; that is,
B? —4AC = B? — 44,C,.
This gives a useful check on the computations.
In Example 1 above, the original discriminant is
B2 —4AC=12—-4.0.-0=1.

The new equation has the same discriminant,

1\? /’6 \/3 1 3
2 — N _ I =1
B? —44,C, <2> - 4( 1 )( e ) il

The trouble with Example 1 is that the new equation is more complicated
than the original equation, and in particular there is still a nonzero X Y-term. We
would like to be able to choose the angle of rotation z so that the new equation
has no X Y-term, because we could then sketch the curve. The next theorem tells
us which angle of rotation is needed.

THEOREM 1

Given a second degree equation
Ax* + Bxy + Cy? + Dx + Ey + F =0

with B nonzero. Rotate the coordinate axes counterclockwise through an
angle o for which

- C

A
cot (2z) = 3
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Then the equation

A X*+B XY+ C,Y*+ D, X+EY+F =0

with respect to the new coordinate axes X and Y has XY-term B; = 0.

This theorem can be proved as follows. When the rotation equations are
substituted and terms collected, the X Y coeflicient B; comes out to be

B, = B(cos? o — sin? o) — 2(A — C)sin & cos o

From trigonometry,

cos? o — sin? o = cos (20), 2 sin o cos o = sin (2e).

Thus B, = Bcos (20) — (A — C) sin (2u).
So B, = 0 if and only if
Bcos(Qa) — (A — O)sin 20) = 0,

cos(2a) A-—-C _0
sin (2¢) B

A-C

or cot 2u) =

As shown in Figure 5.7.4, « is the angle between the original coordinate

axes and the axes of the parabola, ellipse, or hyperbola.

We are now ready to use rotation of axes to sketch a second degree curve,

We illustrate the method for the curve introduced in Example 1.

EXAMPLE 2 Sketch the curve xy — 4 = 0.
Step 7 Apply the Discriminant Test to find the type of curve.
B> —44C=1*—-4.0.-0=1.
The discriminant is positive, so the curve is a hyperbola.

Step 2 Find an angle o with

- C
B

cot 20) = 0—19 =0.

A
cot (20) =

20 = 90°, o = 45°

Step 3 Change coordinate axes using the rotation equations.

/2 /2
d

cosaz—z—, sino =
2 2
x=Xcosoc—Ysinoc=\/7‘ -——\2£Y.

V2 2y

y=Xsina + Ycosa:—z- ER
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Figure 5.7.4

Substituting, we get
xy —4=0,

NN RN N NG
=X -7 [T X+ — 4=
(fx-2)- (P + Fr)-4=0
1

1
— 2 _Z 2 _ =
2X 2Y 4=0.

As a check, the discriminant is still 02 — 4« (3) « (=) = 1.
Step 4 Draw the X and Y axes as dotted lines and sketch the curve.

The new axes are found by rotating the old axes by o = 45°. The curve is
shown in Figure 5.7.5.

METHOD OF ROTATION OF AXES

When to Use To graph an equation of the form Ax* + Bxy + Cy* + Dx + Ey + F
= 0 where B is nonzero.

Step 1 Use the Discriminant Test to determine the type of curve.
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y

Figure 5.7.5 Example 2

Step 2 Find an angle o with

A-C

cot 20) = 3

Step 3 Change coordinate axes using the Rotation Equations. The new equation
has the form

AX2+CY*+ DX+ EY+F =0,
where x = X cos oo — Y sin ¢, y=Xsina+ Y coso.

Step 4 Draw the X- and Y-axes by rotating the old axes through the angle o. The
curve can now be sketched by our previous method, using Translation of Axes
if necessary.

Here is an overall summary of the use of rotations and translations of axes.
The problem is to graph an equation of the form

Ax* + Bxy + Cy* + Dx + Ey + F = 0.
By Rotation of Axes, we get a new equation of the simpler form
A X2+ C, Y+ D, X+ EY+F =0

Ifeither A, = Oor C, = 0, the curve is a parabola that can be sketched by the method
of Section 5.4. If A, and C, are both nonzero, Translation of Axes gives us a new
equation of the simpler form

A2U2+BzV2+F2 :0.
The graph of this equation is an ellipse or hyperbola, which can be sketched by the

method of Section 5.5. The degenerate cases—two lines, one line, a point, or an
empty graph—may also occur.
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PROBLEMS FOR SECTION 5.7

In Problems 1-10, rotate the axes to transform the given equation into a new equation with
no X Y-term. Find the angle of rotation and the new equation.

1 xy+4=0 2 Mt xp4yt=2

3 X —dxy 47 =1 4 X2 4 3xy + 7 =4

5 X423y — P =T 6 Sx2— /3xy + 42 =6

= X fxy=3 8 2xP—xy -yt =1

9 4t — Sixy + 47 =5 10 2%+ Sy -y = —10

11 Prove that any second degree Equation (1) in which 4 = C can be transformed into

an equation with no X' Y-term by a 45° rotation of axes.

12 Prove that if we begin with a second degree equation with no first degree terms,
Ax? + Bxy + Cy?> + F = 0, and then rotate axes, the new equation will again have
no first degree terms.

13 Prove that the sum 4 + C is not changed by rotation of axes. That is, if Equation (2)
is obtained from Equation (1) by rotation of axes,then 4 + C = 4, + C,.

14 Prove that the discriminant of a second degree equation is not changed by rotation

of axes. That is, if Equation (2) is obtained from Equation (1) by rotation of axes, then
B2 — 44C = B? — 44,C,.

5.8 THE ¢, 6§ CONDITION FOR LIMITS

The traditional calculus course is developed entirely without infinitesimals. The
starting point is the concept of a limit. The intuitive idea of lim,_, f(x) = L is: For
every real number x which is close to but not equal to ¢, f(x) is close to L.

It is hard to make this idea into a rigorous definition, because one must clarify
the word “‘close”. Indeed, the whole point of our infinitesimal approach to calculus is
that it is easier to define and explain limits using infinitesimals. The definition of
limits in terms of real numbers is traditionally expressed using the Greek letters
& (epsilon) and & (delta), and is therefore called the ¢, & condition for limits.

The ¢, 6 condition will be based on the notion of distance between two real
numbers.

DEFINITION

The distance between two real numbers x and ¢ is the absolute value of their
difference,

distance = |x — c|.

xiswithindof cif |x —c¢|] =94,
x is strictly within é of ¢ if |x — ¢| < 6.

Notice that the distance |x — c¢| is just the difference between the larger and
the smaller of the two numbers x and c¢. This is a place where the absolute value sign
is especially convenient. The following simple but helpful lemma is illustrated in
Figure 5.8.1.
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Figure 5.8.1 (b) x strictly within 5 of ¢

LEMMA
(1) xiswithin é of c if and only if
c—8<x=<c+o.
(i) x is strictly within 6 of ¢ if and only if

c—o<x<c+ 6.

PROOF (i) Subtracting ¢ from each term we see that
c—0<x<Z<c+é

if and only if —-6<x—c<4,

which is true if and only if |[x — ¢] < 6.

The proof of (ii) is similar.

We shall repeat our infinitesimal definition of limit from Section 3.3 and then
write down the ¢, 6 condition for limits. Later we shall prove that the two definitions of
limit are equivalent to each other.

Suppose the real function f is defined for all real numbers x # ¢ in some
neighborhood of c.

DEFINITION OF LIMIT (Repeated)

The equation

lim f(x) = L

x—c

means that whenever a hyperreal number x is infinitely close to but not equal
to ¢, f(x) is infinitely close to L.

e, 8 CONDITION FOR Iin‘cl f(x) =1L

For every real number ¢ > 0 there is a real number & > Q which depends on ¢
such that whenever x is strictly within & of ¢ but not equal to ¢, f(x) is strictly
within ¢ of L. In symbols, if 0 < |x — ¢| < , then |f(x) — L| < «.
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In the & § condition, the notion of being infinitely close to ¢ is replaced by
being strictly within J of ¢, and being infinitely close to L is replaced by being strictly
within ¢ of L. But why are there two numbers ¢ and J, instead of just one? And why
should § depend on £? Let us look at a simple example.

1 v,?_
I+ Oi) — 1.
X

When x = 0, the function f(x) = 1 + 10x?%/x is undefined. When x is a real
number close to but not equal to 0, f(x) is close to 1.

Now let us be more explicit. How should we choose x to get f{(x) strictly
within £ of 17 To solve this problem we assume x is strictly within some

distance d of 0 and get inequalities for f{x).
By the lemma, we must find a 6 > 0 such that whenever

EXAMPLE 1 Consider the limit lim
x—0

—d<x<¢o and x #0,

we have -t <flxy<ti+4.
Assume —0 < x and x < 0.
Then — 105 < 10x and 10x < 106
. 10x? 10x?
— 108 < *% and Y106 ifx#£0
X X
10x? 10x?

1—105<1+)\— and 1+ —— <1+ 105
X X

1 — 105 < f(x) < [ + 106,
If we set & = &5, then
I —L<fx)<1+4
This shows that
whenever —d5 < x <35 and x #0, 1 -t<fx)<1+1
In other words,
whenever 0 < |x| < <5, |f(x) — 1] <1

A similar computation shows that for each ¢ > 0, if 0 < [x] < &/10 then
|/(x) — 1| < & Thus the ¢, 6 condition for lim,_ 4 (1 + 10x?/x) = [ is true,
and, for a given ¢, a corresponding d is § = ¢&/10.

EXAMPLE 2 In the limit
lim x? = 4,

x—2
find a 6 > 0 such that whenever 0 < |x — 2| < &, |x? — 4] < &.

By the Lemma, we must find § > 0 such that whenever
2—-0<x<2+J and x #2,
4 — {5 <x? <4+ 4.
Assume that 2-0<x and x<2+44.
As long as 2 — J and x are positive we may square both sides,

4 —45+ 6% <x?* and x*> <4 +45+ 82
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4+ (—46 +6*) < x? and x* <4+ (46 + %)
Now take § small enough so that
—& < 45+ 6% and 46+ 67 <+5.
For example, § = 5 will do. Then
4 -4 <x*<4+4.
Thus whenever 0 < |x — 2| < &5, |x? — 4] < 5.

Notice that any smaller value of 8, such as § = 145, will also work.

In geometric terms, the ¢, § condition says that for every horizontal strip (of
width 2¢) centered at L, there exists a vertical strip (of width 2§) centered at ¢ such
that whenever x # c¢ is in the vertical strip, f(x) is in the horizontal strip. The graphs
in Figure 5.8.2 indicate various horizontal strips and corresponding vertical strips.

They should be examined closely.

fix)
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There are also &, & conditions for one-sided limits and infinite limits. The
three cases below are typical.
e, &8 CONDITION FOR lim f(x) =L
X-c”
For every real number ¢ > 0O, there is a real number & > 0 which depends on &
such that whenever ¢ < x < ¢ + 9, we have |f(x) — L| < e,

Intuitively, when x is close to ¢ but greater than ¢, f(x) is close to L.

e, 8 CONDITION FOR lim f(x) = L

X7

For every real number ¢ > O there is a real number B > 0 which depends on ¢
such that whenever x > B, we have | f(x) — L| < e.

Intuitively, when x 1s large, f(x) is close to L.

g, 8 CONDITION FOR lim f(x) = =
xX— i

For every real number A > Q there is a real number B > 0 which depends on A
such that whenever x > B, we have [(x) > A.

Intuitively, when x is large, f(x) is large.

EXAMPLE 3 In the limit

3
1im2+;=2,

1=

find a real number B > 0 such that whenever t > B, (2 + 3/t) is strictly
within 1/100 of 2. '

To find B, we assume ¢ > B and ¢ > 0, and get inequalities for 2 + 3/t.

0<t, t > B
0<§w §<3
t t B

3
2<2+—[, 2+%<2+

S| w

Now choose B so that 3/B < 1/100. The number B = 300 will do. It follows
that whenever ¢ > 300,

1

3
224 <2 g
T

3. . l
and 2 + p is strictly within ¢ = — of 2.

100

EXAMPLE 4 In the limit
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find a B > 0 such that whenever x > B, x> — x > 10,000.

This time we assume x > B and get an inequality for x> — x. We may
assume B > 1.

x>B>1
x—1>B—-1>0

x(x — 1) > BB — 1)
x*—x>B?*—-B.

Now take a B such that B> — B > 10,000. The number B = 200 will do,
because (200)* — 200 = 39800. Thus whenever x > 200, x> — x > 10,000.

We conclude this section with the proof that the ¢, § condition is equivalent
to the infinitesimal definition of a limit.

THEOREM 1

Let f be defined in some deleted neighborhood of c. Then the following are
equivalent :

(@) lim,. f(x)= L.
(i) The &, & condition for lim,_,,. f(x) = L is true.

PROOF We first assume the ¢, & condition and prove that
lim f(x) = L.

x—=¢

Let x be any hyperreal number which is infinitely close but not equal to c.
To prove that f(x) is infinitely close to L we must show that

for every real ¢ > 0, If(x) —L|<e

Let ¢ be any positive real number, and let § > 0 be the corresponding number
in the ¢, 6 condition. Since x is infinitely close to ¢ and ¢ > 0 is real, we have

O0<|x—c|l <.
By the &, 6 condition and the Transfer Principle,
If(x) — L] <e
We conclude that f(x) is infinitely close to L. This proves that
lim f(x) = L.

x—c

For the other half of the proof we assume that

lim f(x) = L,
and prove the g, § condition. This will be done by an indirect proof. Assume
that the ¢, & condition is false for some real number ¢ > 0. That means that
for every real 6 > 0 there is a real number x = x(8) such that

1) x#e  x—d<d  |f(x)—Ll=e

Now let 6, > 0 be a positive infinitesimal. By the Transfer Principle,
Equation (1) holds for §,. Therefore x, = x(8,) is infinitely close but not



288

5 LIMITS, ANALYTIC GEOMETRY, AND APPROXIMATIONS

equal to ¢. But since
[flx)) — LI = ¢
and ¢ is a positive real number, f(x,) is not infinitely close to L. This con-
tradicts the equation
lim f(x) = L.

X—¢

We conclude that the ¢, § condition must be true after all.

The theorem is also true for the other types of limits.
The concept of continuity can be described in terms of limits, as we saw in

Section 3.4. Therefore continuity can be defined in terms of the real number system

only.

COROLLARY

The following are equivalent.

(i) [ is continuous at c.
(i) For every real ¢ > O there is a real § > 0 depending on & such that:

whenever |x — ¢| < 4, [f(x) — f(c)] <e.

PROOF Both (i) and (ii) are equivalent to

lim /(x) = /(e)

Intuitively, this corollary says that f is continuous at ¢ if and only if f(x) is

close to f (c) whenever x is close to ¢.

PROBLEMS FOR SECTION 5.8

1

In the limit lim.,, 10x = 40, find a & > 0 such that whenever 0 < |x — 4| < 4,
|10x — 40| < 0.01.

In the limit lim,_, (x? — 4x)/2x = —2, find a § > 0 such that whenever 0 < |x| < 4,
[(x? — 4x)/2x — (-2)| < O.1.

In the limit lim, ., I/x = /2, find a § > 0 such that whenever 0 < |x — 2| < 4,
I/x — 1/2] < 0.01.

In the limit lim,_, _, x* = —27, find a § > 0 such that whenever 0 < [x — (—=3)| < 4,
[x* — (=27)] < 0.01.

In the limit lim L+ \/: = 0, find a & > 0 such that whenever 0 < x < ¢, \ﬂ < 0.01.

—_—

In the limit lim,_,+./x* —4 = 0. find a § > 0 such that whenever 2 < x <2 + 4,
JxE—4 <0l
In the limit lim,.,- /1 — x* = 0, find a § > 0 such that whenever 1 —§ < x < I,

J1 = x* <0.001.

In the limit lim,,,- /6 — 3x =0, find a é > 0 such that whenever 2 — § < x < 2,

6 — 3x <001l

In the limit lim,,ox 2 = o¢, find a & > 0 such that whenever 0 < |x] < §,x~
10,000.

2>
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10 In the limit lim, 4 16/x* = o, find a 6 > 0 such that whenever 0 < |x| < §, 16/x* >
10,000.

11 In the limit lim, 4+ 1/10f = o0, find a 6 > 0 such that whenever 0 < ¢ < §,1/10t > 100.

12 In the limit lim,_,. 14 — t) = —oo, find a § > 0 such that whenever 4 <t < 4 + §,
1/(4 — £) < —100.

13 In the limit lim,_ 4+ l/f = o0, find a & > 0 such that whenever 0 < x < §, 1/\/;: >
100.

14 In the limit lim,_ 4. 1/x* = oo, finda § > Osuch that whenever 0 < x < §, 1/x> > 1000.

15 In the limit lim__,- 1/(1 — x?) = oo, find a § > 0 such that whenever 1 — § < x < I,
1/(1 — x%) > 100.

16 In the limit lim__,, - 5/./2 — x = oo, find a é > 0 such that whenever 2 — § < x < 2,
5//2 — x > 100.

17 In the limit lim,_, , 1/(1 + 4t) = 0, find a B > 0 such that whenever t > B, 1/(1 + 41) <
0.01.

18 In the limit lim,_, , 1/t> = 0, find a B > O such that whenever t > B, 1/t> < 0.01.

19 In the limit lim,_, ,, 2¢> — 5t = oo, find a B > 0 such that whenever ¢t > B, 2t> — 5t >
1000.

20 In the limit lim,_, , £3 + t> — 5 = co, find a B > 0 such that whenever t > B, 13 + 2 —
5 > 1000.

21 In the limit lim,_, , ./5x + 1 = oo, find a B > Osuch that whenever x > B, /5x + 1 >
100.

22 In the limit lim,,_,.¥x — 1= —oo, find a B> 0 such that whenever x < —B,
Ix—1< —100.

23 State the ¢, 6 condition for the limit lim,_, .- f(x) = L.

24 State the &, d condition for the limit lim, ,, f(x) = oo.

25 State the ¢, 6 condition for the limit lim,__, , f(x) = — 0.

26 Prove that lim,_,, f(x) = co if and only if the ¢, é condition for this limit holds: For

every A > 0O there is a B > 0 such that whenever x > B, f(x) > A.

NEWTON’'S METHOD

The Increment Theorem for derivatives shows that when f'(c) exists and x = ¢, f(x)
is infinitely close to the tangent line f(c) + f'(c)(x — ¢) even compared to x — c.
Thus intuitively, when x is real and close to ¢, f(x) is closely approximated by the
tangent line f(c) + f'(c)(x — ¢). Newton’s method uses the tangent line to
approximate a zero of f(x). It is an iterative method that does not always work
but usually gives a very good approximation.

Consider a real function fthat crosses the x-axis as in Figure 5.9.1. From the
graph we make a first rough approximation x, to the zero of f(x). To get a better
approximation, we take the tangent line at x, and compute the point x, where the
tangent line intersects the x-axis. At x,, the curve f(x) is very close to zero, so we
take x, as our new approximation. The tangent line has the equation

y=f )+ ) — xp)

We get a formula for x, by setting y = 0 and x = x, and then solving for x,.

289
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¥y

) X
\_/ xz XI

Figure 5.9.1 S&x)

0= f(x)) +f(x)(x; — x1)
. fxy)
J(xy) .
We may then repeat the procedure starting from x, to get a still better approximation
x5 as in Figure 5.9.2,

Xy =Xy

Sf(x3)
fi(x2)

X3 =X, —

y

Figure 5.9.2 Six)

NEWTON'S METHOD
When to Use We wish to approximate a zero of f(x), where f'(x) is continuous and

not close to zero, as in Figure 59.1.

Step 1 Sketch the graph of f(x), and choose a point x, near the zero of f(x). x; is
the first approximation.

Step 2 Compute f'(x).
Step 3 Compute the second approximation

X, = x. — S(xp)
SRV ACN
Step 4 For a closer approximation repeat Step 3. The (n + 1)st approximation is
given by




5.9 NEWTON'S METHOD
e e
n+t n f,(xn) '

As a rough check on the accuracy, compute f(x,) and note how close it is
to zero.

Steps 3 and 4 can be done conveniently on a hand calculator.

Warning: Since Newton’s method involves division by f'(x,), avoid
starting at a point where the slope is near zero. Figure 5.9.3 shows that when the
slope is close to zero, the tangent line is nearly horizontal and the approximation
may be poor.

y

%/,7——-—<

fx)

Figure 5.9.3

EXAMPLE 1 Approximate a zero of f(x) = x> + 2x? — 5 by Newton’s method.

Step 7 The graph is shown in Figure 5.9.4. We choose x; = 1 as our first approxi-
mation.

Step 2 f'(x) = 3x* + 4x

S0 _ (=D _9
T I R

Step 3 X, = Xx; —

Figure 5.9.4

291
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Soa) . x4axios
fix) : 3x3 + 4x,

As a check we compute

~ 1.2430

Step 4 X3 =X, —

fx3) = x3 +2x2 — 5~ 001
One more iteration gives much more accuracy:
NN (CORNIIE: ke B BN TTT
I C N
f(xq) = x3 + 2x2 — 5 ~ 0.000007

EXAMPLE 2 Approximate the fifth root of 6 by Newton’s method.

Step 7 We must find the zero of f(x) = x* — 6. The graph is shown in Figure 5.9.5.

Choose x, = L.5.
Step 2 f'(x) = 5x*
5
x7—6
Step 3 X, = X; — ~ 1.437
tep \2 Y] 5’\“;
5
x; —6
Step 4 Xy = x, — 22 ~ 143102

5x5
As a check we compute
(x3)° ~ 6.001

In this example more iterations would be necessary if our first approximation
had not been chosen as well. For instance, starting with x;, = | we would not reach

Figure 5.9.5
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the approximation 1.431 until x¢, obtaining the successive approximations

x, =1, X, =2, x5 = 1.675, x, = 1.49245,
x5 = 1.43583, xe = 1.43100.

EXAMPLE 3 Approximate the point x where sin x = In x.

As one can see from the graphs of sin x and In x in Figure 5.9.6, sin x and
In x cross at one point x, which is somewhere between x = 1 (where In x
crosses the x-axis going up) and x = n (where sin x crosses the x-axis
going down). To apply Newton’s method, we let f(x) be the function

f(x)=sinx —Inx

shown in Figure 5.9.7. We wish to approximate the zero of f(x).

Inx

sin x

Figure 5.9.6

y=sinx —Inx

Figure 5.9.7
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Step 7 Choose x; = 2 (since the zero of f(x) is between 1 and n).
Step 2 ['(x) =cosx — 1/x

sinx; — Iln x; sin2 — In 2
Step 3 x; =x; ——————— =2 — ———— ~ 223593
P N cos x; — 1/x, cos2 — 172

Step 4 Repeat Step 3. The values of x,,, f(x,), and f'(x,) are shown in the table,

n Xy S ) )

1 2.000000000 0.216150246 —~0.916146836
2 2.235934064 —0.017827280 —1.0644078%4
3 2.219185522 —0.000082645 —1.054519059
4 2.219107150 —0.000000001 —1.054472505

The answer is
x ~ 2.219107150.
On a calculator we find that

sin (2.219107150) = 0.797104929
In (2.219107150) = 0.797104930.

PROBLEMS FOR SECTION 5.9

Use Newton’s method to find approximate solutions to each of the following equations. (A
hand calculator is recommended.)

1 x345x—-10=0 2 23+ x+4=0

3 X+ xP+x=1 4 2x5 +3x=2

5 xt=x+1, x>0 6 xt=x41, x<0

7 x3—10x +4 =0, x> 1 8 x3—10x +4 =0, D<x<1
9 x4+ Jx=1 10 X+ 1i/x=3

11 et = 1/x 12 e+ x=4

13 X 4 sinx =2 14 cos x = x?, x>0

15 tan x = e, 0<x<n/2 16 e+ nx=0

510 DERIVATIVES AND INCREMENTS

In Section 3.3 we found that the derivative of f is given by the limit

fle +Ax) = f(0)

’ — l
1) A.:—omo Ax
1y . Ay
Ify = f(x), & _ lim )

dx  ax—o0 Ax’

By definition this means that when the hyperreal number Ax is infinitely close to
but not equal to zero, Ay/Ax is infinitely close to dy/dx.

By contrast, the ¢, d condition for this limit says intuitively that when the
real number Ax is close to but not equal to zero, Ay/Ax is close to dy/dx.
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The ¢, § condition for the derivative can be given a geometric interpretation,
shown in Figure 5.10.1. Consider the curve y = f(x), and suppose f'(c) exists. Draw

S(x)

AN

(¢, f1c))

.

Figure 5.10.1

the line tangent to the curve at ¢. For Ax # 0, draw the secant line which intersects
the curve at the points (c, f(c)) and (¢ + Ax, f(c + Ax)). Then the tangent line will
have slope f’(c) while the secant line will have slope
Sle+ Ax) —f(d)
Ax ’
The ¢, 6 condition shows that if we take values of Ax closer and closer to zero, then
the slopes of the secant line will get closer and closer to the slope of the tangent line.

EXAMPLE 1 Consider the curve f(x) = x/3.
Then f(x) = 4x723.
At the point x = 8, we have
=8, f{x) =2, f'(x)=+5 = 0.0833....
8+ A0Y —2 1

lim o297 =2 °
Thus Mo Ax 12

This is the slope of the line tangent to the curve at the point (8, 2). As Ax
approaches zero, the slope of the secant line through the two points (8, 2) and
(8 + Ax, (8 + Ax)'?) will approach 5. We make a table showing the slope
of the secant line for various values of Ax.

Ay . Ay 1

) = s _— = l - — =

Ax Ay = (8 + Ax) 2 Ax slope of secant line Ax D
10 0.6207 0.0621 0.0212

1 0.0801 0.0801 . 0.0032

% 0.00829 0.0830 0.0003
—-10 —3.2599 0.3260 0.2427
—1 —0.0871 0.0871 0.0038
—% —0.00837 0.0837 0.0004
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The #,6 condition for the derivative is of theoretical importance but does
not give an error estimate for the limit. When the function f has a continuous second
derivative, we can get a useful error estimate in a different way. 1t is more convenient
to work with one-sided limits,

By an error estimate for a limit

lim g(Ax) =L

Ax—0+

we mean a real function E(Ax), 0 < A x < b, such that the approximation g(Ax)
is always within E(Ax) of the limit L. In symbols,

|g(Ax) — L] < E(AX) for 0<Ax<b.

THEOREM 1

Suppose [ has a continuous second derivative and | f"(t)] < M for all t in the
interval [c, b). Then :

(i) Wheneverc < ¢ + Ax < b,f(c + Ax)iswithinsM Ax2of f(¢) + [7(c) Ax.
fle + Ax) = (o)
Ax

J(¢). That is, YM Ax is an error estimate for the right-sided limit

T A st N

Ax—o0t Ax

(i) Whenever ¢ < ¢+ Ax < b, is within M Ax of

There is a similar theorem for the left-sided limit

i LA =S

Ax—0-~ Ax

with the error estimate $M|Ax].

PROOF Let x = ¢ + Ax. Then
M f"y< M fore <r<x.

Integrating from ¢ to t,

f —~Mdr < f ey dt

—M(t —¢) < f1(1) — f(c) < M(t — ).

Integrating again from ¢ to x,

A
<
=S

J.x —M(t — )dr < fo’(r) — fleydt < fl M(r — c)dt,

v o 2 x .2
~M-(i2‘) Sj'(r)—_f"(c)t] < M9~2i,

2 B

or —M% < (f(x) = f(e) — f(e) Ax < MA“T‘.
L2 .2

—M é} < fx) — (f(&) + ['(e) Ax) < MA'T\_
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This proves part (i) (Figure 5.10.2). Dividing by Ax we get part (ii).

S

fle+ Ax)

i
1
!
|
i
!
i
!

c c+ Ax X

Figure 5.10.2

EXAMPLE 1 (Concluded) We consider once more the curve f(x) = x'/* at the point
x = 8. The second derivative is

S0 = —3x,

First consider the interval [8, 91. In this interval f”(x) has the maximum value
SO =30 =527 = ke

Thus we may take M = 117, and

LM Ax = s Ax | imate for  lim & =
3 X = 7883 X 1s an error estimate for Axl_’rr& Ax = 1—2
Ay 1 1
Th Ax =1 — = —| £ === 0.
us when Ax s A 1 788 0.0035,
1 Ay 1 1
hen Ax = — — — —| < —— = 0.00035.
when Ax =75 | ax T 12| = 2880 = %00
Next consider the interval [7, 8]. This time we take
M = |f"(D = ¥7)~ 37 = 0.0087.
Then IM|Ax| = 0.0044|Ax|
is an error estimate for the limit
. Ay 1
1 — = —.
a0 Ax 12
Ay 1
hen Ax = —1 — — —| €0.004
when Ax , A~ 12 044,
1 Ay 1]
h = - = — 1 <0 4.
when Ax o A 12‘ 0.0004

From the table in Example 1 we see that the error estimates are slightly
Ay 1 '

ter than the actual val f
greater than the actual values o A D
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We shall now turn the problem around. Instead of using the increment Ay
to approximate the derivative dy/dx, we shall use the derivative dy/dx to approximate
the increment Ay. When Ax is small, /(¢ + Ax) will be close to f(c) + f'(c) Ax even
compared to Ax. Part (i) of Theorem 1 gives the error estimate M Ax?* for this
approximation. This method is especially useful for approximating f(x) when there
is a number ¢ close to x such that both f(c¢) and f'(c) are known.

EXAMPLE 2 Find approximate values for Y9 and \¥7.9. Both these numbers arc
close to 8, whose cube root 2 comes out even. Taking f(x) = \3/,\‘ and ¢ = 8§,
we have

fley=2,  fc)=1{3 =00833....
From Theorem 1 the approximate values are
fle + Ax) ~ fle) + f'(c) Ax.

Thus
J9 ~ 2 + {4 = 20833,
FJT9~ 2 + £5(=0.1) = 1.99167.

To get an error estimate for \3/9 take the interval [8,9]. From Example |
we may take M = 1iz. Therefore by Theorem 1,

Y9 ~ 20833,  error <4.plpe 1% =0.0035,
Thus 2.0798 < Y9 < 2.0868.

To get an error estimate for ﬁ take the interval [7, 8] and M = 0.0087.
By Theorem 1,

J719 ~ 1.991667, error < $(0.0087)(0.1)* = 0.000044.

Thus 1.991623 < /7.9 < 1.991711.

EXAMPLE 3 Find an approximate value for (0.99)°.

Let fx)=x% e=1.
Then fley=15=1, ff(c)=5*=>5.
We put 0.99 = ¢ + Ax, Ax = —0.01.

Then the approximate value is
fle + Ax) ~ fle) + ['(c) Ax,
(0.99)° ~ [ + 5(~0.01) = 0.95.

To get an error estimate we see that f“(u) = 20u®, so |f"(u)| < 20 for u
between 0.99 and 1. Then M = 20, and

0.01)?
(0.99)% ~ 0.95, error < (T) (20) = 0.001,
or 0.949 < (0.99)° < 0.951.

Theorem 1 is closely related to the Increment Theorem in Section 2.2. The
relation between them can be seen when we write them next to each other.
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INCREMENT THEOREM (Repeated)

Hypotheses f’(c) exists and Ax is infinitesimal.

Conclusion  f(c + Ax) = f(c) + f'(c)Ax + s Ax for some infinitesimal ¢ which
depends on c and Ax.

THEOREM 1 OF THIS SECTION (in an equivalent form)

Hypotheses  ["(u) exists and |f"(u)] < M for all u between the real numbers ¢ and
c + Ax.

Conclusion  f(c + Ax) = f(c) + f'(c) Ax + & Ax for some real ¢ within $M|Ax| of 0.

Thus Theorem 1 has more hypotheses but also gives more specific information
about ¢in its conclusion.

PROBLEMS FOR SECTION 5.10

In Problems 1-6, find f'(¢) and an error estimate for the limit

fle + Ax) — flo)

o= n
with0 < Ax < 1.
1 fx)=x% c=1 2 f(x)=x3—5x, ¢c=10
3 fx)=2//x c=4 4 f=x/x c=4
5 fx)y=1/x, ¢=3 6 ) =1/x2+1), c=1
7 f(x) =sinx, c=0, O<Ax=<mn)
8 f(x) = tan x, c=0, (0<Ax < n/6)
9 f(x) = cos (2x), c=mn/3, (O<Ax <n)
10 f(x) = sin? (2x), c=mn/2, 0<Ax<m)
11 fx)=1Inx, c=1. O<AxZ1)
12 f(x)=xInx, c=1, 0<Ax=<1)
13 flx) = €%, c=1 (0<Ax<1)
14 flx)=¢". =0, 0<Ax=<1)

In Problems 15-20, find f’(c) and an error estimate for the limit

flc + Ax) — flc)

) :Ail—{r(}- Ax
with —1 < Ax < 0.
15 ) =/x ¢=100 16 Fx)=13x +6). c=0
17 fx)y=/x*+1, ¢=2 18 flx)=4x3 c=1
19 f=x/x+1, c=1 20 flX)=x'° ¢=2

In Problems 21-38, approximate the given quantity and give an estimate of error.

21 /65 22 1/1/50
23 (0.301)* 24 30
25 1/97 26 (99)32
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27
29

31

33

35
3
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V102 + Y102 28 (101 + /101)
(1.003)° 30 J0.9997

sin (g + 0‘004) 32 cos {g + 0.06)
tan (0.005) 34 sin (—0.003)
eOAOOZ 36 e—0.04

In (1.006) 38 In (0.98)

EXTRA PROBLEMS FOR CHAPTER 5

[n Problems 1-10. find the limit.

1

3

11
12
13
14
15
16
17
18
19

20

21

22

23

24

25

I 2%% = 3x 2 5 lim 2x + 4
o N4 sxt — x-7 5 — 3x

lim x='3 4 lim (Jx + 1~ Fxx s

3x+2 .

lim 6 lim — - —
23 3x — 2 x«l\/gk [

i N 8 Ilm\l—!—_B\ﬁl
\—l-rln‘ \/:;—1 x—+d4 \'2 - 16

: 32 32 . .*‘1'

lim (x + 1) - XU 10 Um x4+ \/\ +1

Sketch the curve y = x — I/x.

Sketch the curve y = | — x'3,

Sketch the curve y = 1/((x — 1){x — 2)).

Sketch the curve y? — 4x%2 = 9,

Sketch the curve y = |x — 1] + |x + 1].

Find the equation of the parabola with directrix y = 1 and focus F(1, —1).
Sketch the curve y = —x2 4 2x + 4.

Sketch the curve y = (1)x? + x.

Find the foci and sketch the ellipse

xl ),2
T + 9= I.
Find the foci and sketch the hyperbola
22
ANNEE AN
4 9

Use Translation of Axes to sketch the curve
4x? + 32 — 16x + 2y + 16 = 0.
Use Translation of Axes to sketch the curve
—x? 4+ 432 — 6x — 10 = 0.
Use Rotation of Axes to transform the equation xy — 9 = 0 into a second degree
equation with no X Y-term. Find the angle of rotation and the new equation.

Use Rotation of Axes to transform the equation xy — y? = 5 into a second degree
equation with no X Y-term. Find the angle of rotation and the new equation.

In the limit lim,., 1/\/x = 1/2, find a § > 0 such that whenever 0 < |x — 4| < §,
[1//'x — 12f < 0.01.
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In the limit lim,., (x> — 1)¥? = o, find a B> 0 such that whenever x > B,
(x* — V2 > 10,000.
Use Newton’s method to find an approximate solution to the equation x + x!% = 3.
Use Newton’s method to find an approximate solution to the equation cosx = In x.
Find an error estimate for the limit
. 16 + Ax)"¢ -2 1
Al{r}rg‘%—=§, 0<Ax<L
Find an error estimate for the limit
. 3+ A2 -3 2

API%‘(LA){—'Q: —e 0<AXSL
Find an approximate value for (124)*"* and give an estimate of error.
Find an approximate value for (0.9996)° and give an estimate of error.

Prove that lim_, . f(x) exists if and only if whenever H and K are positive infinite,
f(H) is finite and f(H) = f(K).

Prove that if lim,, , f(r) = L and g(x) is continuous at x = L then lim,_, , g(f(2)) = g(L).
Prove that if lim,_, .. f(z) = = and lim,_,, g(x) = o then lim,_, _ g(f(5)) = =.

Suppose lim, . f(t) = =, ¢ is a positive constant, and cg(t) = f(z) for all ¢. Prove that
lim,, . g(t) = =.

Prove that lim,. . f(x) = L if and only if for every real ¢ > 0 there is a hyperreal § > 0
such that whenever [x — ¢| < §,{f(x) — L| <e.

Let f be the function
. 1 if x is rational,
X =
0 if x is irrational.
Using the ¢ 4 condition, prove that f(x) is discontinuous at every real number x = .
Let g be the function
X if x 1s rational,
glx) = e
0 if x is irrational.
Prove that g(x) is continuous at x = 0 but discontinuous everywhere else.
Prove that the function g in the preceding problem is not differentiable at x = 0.
x?  if x is rational,
Let h(x) = .
0 if x is irrational.
Prove that h'(0) exists a-..l equals 0.
Suppose f{(r) is continuous for all t and
lim f()=A, limf()=B.
= —x 1=

If A < C < B, prove that there is a real number ¢ with f(c) = C.





