4.1

INTEGRATION

THE DEFINITE INTEGRAL

We shall begin our study of the integral calculus in the same way in which we began
with the differential calculus—by asking a question about curves in the plane.
Suppose f is a real function continuous on an interval I and consider the
curve y = f(x). Let a < b where a, b are two points in , and let the curve be above the
x-axis for x between a and b; that is, f(x) = 0. We then ask: What is meant by the
area of the region bounded by the curve y = f(x), the x-axis, and the lines x = a and
="b? That is, what is meant by the area of the shaded region in Figure 4.1.17 We
call this region the region under the curve y = f(x) between a and b.

-

Figure 4.1.1 The Region under a Curve

The simplest possible case is where f'is a constant function; that is, the curve
is a horizontal line f(x) = k, where k is a constant and & > 0, shown in Figure 4.1.2.
In this case the region under the curve is just a rectangle with height k and width
b — a, so the area is defined as

Area = k+(b — a).

The areas of certain other simple regions, such as triangles, trapezoids, and semi-
circles, are given by formulas from plane geometry.
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area = k(b — a)

Figure 4.1.2

The area under any continuous curve y = f(x) will be given by the definite
integral, which is written

J;bj(x) dx.

Before plunging into the detailed definition of the integral, we outline the main ideas.

First, the region under the curve is divided into infinitely many vertical
strips of infinitesimal width dx. Next, each vertical strip is replaced by a vertical
rectangle of height f(x), base dx, and area f(x) dx. The next step is to form the sum
of the areas of all these rectangles, called the infinite Riemann sum (look ahead to
Figures 4.1.3 and 4.1.11). Finally, the integral [4 f(x) dx is defined as the standard
part of the infinite Riemann sum.

The infinite Riemann sum, being a sum of rectangles, has an infinitesimal
error. This error is removed by taking the standard part to form the integral.

It is often difficult to compute an infinite Riemann sum, since it is a sum of
infinitely many infinitesimal rectangles. We shall first study finite Riemann sums,
which can easily be computed on a hand calculator.

Suppose we slice the region under the curve between g and b into thin vertical
strips of equal width. If there are n slices, each slice will have width Ax = (b — a)/n.
The interval [a, b] will be partitioned into n subintervals

[XO’ xl]a [.\'1 ’ XZ]’ v [xn— 1 X,,],
where Xo=a,X,=a+ Ax,x, =a+2Ax,...,x,=b.
The points xq, Xy, ..., x, are called partition points. On each subinterval [x,_ . x,.],

we form the rectangle of height f(x, ). The kth rectangle will have area
flxe_ )« Ax.

From Figure 4.1.3, we can see that the sum of the areas of all these rectangles will be
fairly close to the area under the curve. This sum is called a Riemann sum and is equal
to

Sxo)Ax + f{x)Ax + - + flx,- ) Ax.

It is the area of the shaded region in the picture. A convenient way of writing Riemann
sums is the “Z-notation” (Z is the capital Greek letter sigma),

Y SX)Ax = f(xo) Ax + f(x)Ax + -+ + [(x,_) Ax.
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Figure 4.1.3 The Riemann Sum

The a and b indicate that the first subinterval begins at a and the last subinterval ends
at b.

We can carry out the same process even when the subinterval length Ax does
not divide evenly into the interval length b — 4. But then, as Figure 4.1.4 shows, there
will be a remainder left over at the end of the interval {4, b], and the Riemann sum will
have an extra rectangle whose width is this remainder. We let n be the largest integer
such that

a+ nAx <b,
and we consider the subintervals
[xoa xl]a A {X,,_ 11 xn]a [xna b],

where the partition points are

Xo=4a, X, =a+Ax, x=a+2Ax,..., x,=a+ nAx, b.
fx)
fxs)
f(xy) |:
]
fx5) '
f(xo) fx9) y 7 i
(xy) . i
|
1
I
[

7 ///

Xg=4a x X9 X3 X4 x5 b xz+ Ax

X

Figure 4.1.4
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x, will be less than or equal to b but x, + Ax will be greater than b. Then we define
the Riemanrn sum to be the sum

T 700 Ax = flxo) Ax + fe) Ax 4 =+ flen-1) Ax + fx)(b — x,).

Thus given the function f, the interval [a, b], and the real number Ax > 0, we have
defined the Riemann sum ) ? f(x) Ax. We repeat the definition more concisely.

DEFINITION

Let a < b and let Ax be a positive real number. Then the Riemann sum
b ~ Lo ~
2P f(x) Ax is defined as the sum
b

LS Ax = f(xo) Ax + fx)Ax + o + f(x, 1) Ax + f(x,)(b — x,)

where n is the largest integer such that a + n Ax < b, and
Xo=a, x,=a+Ax, "+, x,=a-+ndlx, b

are the partition points.

If x, = b, the last term f(x,)(b — x,) is zero. The Riemann sum )’ f(x) Ax
is a real function of three variables a, b, and Ax,
b
Y J(x) Ax = S(a, b, Ax).
The symbol x which appears in the expression is called a dummy variable (or bound
variable), because the value of ) ” f(x) Ax does not depend on x. The dummy variable
allows us to use more compact notation, writing f(x) Ax just once instead of writing
fxo) Ax, f(x,) Ax, f(x;) Ax, and so on.
From Figure 4.1.5 it is plausible that by making Ax smaller we can get the
Riemann sum as close to the area as we wish.

f(x)

a b X

Figure 4.1.5

EXAMPLE 1 Let f(x) = x. In Figure 4.1.6, the region under the curve from x = 0
to x = 2 is a triangle with base 2 and height 1, so its area should be

A=13ibh=1
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flx) =

Area =1

X

-

Figure 4.1.6

Let us compare this value for the area with some Riemann sums. In Figure
4.1.7, we take Ax = 1. The interval [0, 2] divides into four subintervals
[0, 47, [%, 11, [1, £, and [3, 2]. We make a table of values of f (x) at the lower

endpoints.
Xk | 0 7 1 3
fe) 0§ & 3
¥y
Ax =-;-
\\ Riemann sum = %
o 1 3 X
3 1 3 2
Figure 4.1.7
The Riemann sum is then
2
YA =03+ iF+ 53433 =1%
0

In Figure 4.1.8, we take Ax = %. The table of values is as follows.

5 [ 0433 %3¢
Sy 10§ 3 3 83 § %
The Riemann sum is
2
LT R CE O B B B
[¢]

We see that the value is getting closer to one.

Finally, let us take a value of Ax that does not divide evenly into the interval
length 2. Let Ax = 0.6. We see in Figure 4.1.9 that the interval then divides
into three subintervals of length 0.6 and one of length 0.2, namely [0, 0.6],

[0.6, 1.2], [1.2, 1.8], [1.8, 2.0].
X, | 0 06 12 18
fix) | 0 03 06 09
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Y Ax = l Y Ax = 0.6
=3 ’
. 7 Riemann sum = .72
Riemann sum = 3 §§ §
0] 2 X ) 0.6 1.2 1.8 2 x
Figure 4.1.8 Figure 4.1.9

The Riemann sum is

2
Y f(x) Ax = 0(.6) + (3)(.6) + (6)(.6) + (9)(2) = .72.
0

EXAMPLE 2 Let f(x) = /1 — x?, defined on the closed interval I = [—1, 1]. The

region under the curve is a semicircle of radius 1. We know from plane
geometry that the area is /2, or approximately 3.14/2 = 1.57. Let us compute
the values of some Riemann sums for this function to see how close they are
to 1.57. First take Ax = § as in Figure 4.1.10(a). We make a table of values.

e | -1 =120 12

fd |0 Jy4 1 34

The Riemann sum is then

if(x)Ax:o-l/erv/ﬁ.l/er 14 1/2 + /3/4-1)2

L+V3 g

2

Next we take Ax = £. Then the interval [ —1, 1] is divided into ten subinter-
vals as in Figure 4.1.10(b). Our table of values is as follows.

« |-y 43z 1,12 34
- ] 5 5 5 5 5 5 55
. ' , 3 4 S22 S RNCTENCIE
e ’ 5 5 5 5 5 55
£(x) £(x)
, /A W %
O x O X
-1 -1 z 1 -1 1

(a) (b)

Figure 4.1.10
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The Riemann sum is

1 3 4 Ju 4 J2A 2 4 3
B R I VA VAt BT B VAt il
2 S0 Ax 5[0+5+5+ st titTg 5 ts5ts

194221+ 2,/24 s
- 25 ~ 1. .

Thus we are getting closer to the actual area /2 ~ 1.57.

By taking Ax small we can get the Riemann sum to be as close to the area
as we wish.

Our next step is to take Ax to be infinitely small and have an infinite Riemann
sum. How can we do this? We observe that if the real numbers a and b are held fixed,
then the Riemann sum

if(x) Ax = S(Ax)

is a real function of the single variable Ax. (The symbol x which appears in the
expression is a dummy variable, and the value of

é J(x) Ax
depends only on Ax and not on x.} Furthermore, the term
Zb:f(x) Ax = S(Ax)
is defined for all real Ax > 0. Therefore by the Transfer Principle,

Zb:f(x) dx = S(dx)

is defined for all hyperreal dx > 0. When dx > 0 is infinitesimal, there are infinitely
many subintervals of length dx, and we call

b
Y f(x)dx

an infinite Riemann sum (Figure 4.1.11).

f(x)

Figure 4.1.11 Infinite Riemann Sum
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We may think intuitively of the Riemann sum

b
Z f(x)dx
as the infinite sum

fxo)dx + flx)dx + -+ flxyg_dx + f(xg)(b — xg)

where H is the greatest hyperinteger such that a + H dx < b. (Hyperintegers are
discussed in Section 3.8.) H is positive infinite, and there are H + 2 partition points
Xo» X1s .. s Xg, b A typical term in this sum is the infinitely small quantity f(xx) dx
where K is a hyperinteger, 0 < K < H,and xx = a + K dx.

The infinite Riemann sum is a hyperreal number. We would next like to take
the standard part of it. But first we must show that it is a finite hyperreal number and
thus has a standard part.

THEOREM 1

Let f be a continuous function on an interval I, let a < b be two points in I, and
let dx be a positive infinitesimal. Then the infinite Riemann sum

b
Y f(x)dx
is a finite hyperreal number.

PROOF Let B be a real number greater than the maximum value of f on [a, b].
Consider first a real number Ax > 0. We can see from Figure 4.1.12 that the

—— ——b—a ————*

nedx —

| 7
Y

Figure 4.1.12 a b

finite Riemann sum is less than the rectangular area B« (b — a);
Zb:f(x)Ax < B+(b — a).

Therefore by the Transfer Principle,
if(x) dx < B+«(b — a).

In a similar way we let C be less than the minimum of f on [a, ] and show
that
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b
Y f(x)dx > C+(b — a).

Thus the Riemann sum  Y? f(x)dx is finite.

We are now ready to define the central concept of this chapter, the definite
integral. Recall that the derivative was defined as the standard part of the quotient
Ay/Ax and was written dy/dx. The “definite integral” will be defined as the standard
part of the infinite Riemann sum

b
Y. f(x) dx,

and is written [° f(x) dx. Thus the Ax is changed to dx in analogy with our differential
notation. The X is changed to the long thin §, i.e., j, to remind us that the integral is
obtained from an infinite sum. We now state the definition carefully.

DEFINITION

Let f be a continuous function on an interval I and let a < b be two points in 1.
Let dx be a positive infinitesimal. Then the definite integral of f from a to b with
respect to dx is defined to be the standard part of the infinite Riemann sum with
respect to dx, in symbols

'(bf(x) dx = st(zb:f(x) dx) .

We also define f fdx =0,

L “fl) dx = —J;bf(x) dx.

By this definition, for each positive infinitesimal dx the definite integral

wa (x) dx

is a real function of two variables defined for all pairs (4, w) of elements of I. The
symbol x is a dummy variable since the value of

| uwf(x) dx

does not depend on x.

In the notation ) f(x)dx for the Riemann sum and [® f(x)dx for the
integral, we always use matching symbols for the infinitesimal dx and the dummy
variable x. Thus when there are two or more variables we can tell which one is the
dummy variable in an integral. For example, x*¢ can be integrated from 0 to 1 with
respect to either x or ¢. With respect to x,

1
Y x*tdx = xgtdx + x}tdx + - + xj_tdx
0

183



184 4 INTEGRATION
(where dx = 1/H), and we shall see later that
1
f x2tdx = st(xgtdx + x3tdx + - + xj_ 0dx) = it
(¢}
With respect to t, however,
1
Y xPtdt = xtgdt + X2t dt + - 4+ X2, dt,
0

and we shall see later that
1
f x*rde = 4x2,
[¢]

The next two examples evaluate the simplest definite integrals. These
examples do it the hard way. A much better method will be developed in Section 4.2.

EXAMPLE 3 Given a constant ¢ > 0, evaluate the integral |} ¢ dx.

Figure 4.1.13 shows that for every positive real number Ax, the finite Riemann
sum is
b

Y cAx = c(b — a).

a

By the Transfer Principle, the infinite Riemann sum in Figure 4.1.14 has the
same value,

b
Y cdx = c(b — a).

b
fcdx

This is the familiar formula for the area of a rectangle.

Taking standard parts,

cb — a).

x x+dx

le— 1 Ax ——»

cdx |

AP

Figure 4.1.13 Figure 4.1.14
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EXAMPLE 4 Given b > 0, evaluate the integral {5 x dx.

The area under the line y = x is divided into vertical strips of width dx.
Study Figure 4.1.15. The area of the lower region A is the infinite Riemann
sum

b
(6)) area of 4 = Y xdx.
0

By symmetry, the upper region B has the same area as A4;
) area of A = area of B.

Call the remaining region C, formed by the infinitesimal squares along the
diagonal. Thus

3 area of A + area of B + area of C = b2

Each square in C has height dx except the last one, which may be smaller,
and the widths add up to b, so

4) 0 < area of C < bdx.
Putting (1)-(4) together,

b b
2) xdx <b* < (2Zxdx) + bdx.
0 0

Since b dx is infinitesimal,
b
2Y xdx = b?,
0

2

b b
gxdx x5

Taking standard parts, we have

b b2
xdx = —.
J > =3
B
A
B
B
C\——’
A \ 4

Figure 4.1.15
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PROBLEMS FOR SECTION 4.1

Compute the following finite Riemann sums. If a hand calculator is available, the Riemann sums
can also be computed with Ax = 5.

1 Y (3x + 1) Ax, Ax =14 2 20 Bx + DAx, Ax =13
3 T, @x + DAy, Ax =1} 4 2o 2x% Ax, Ax =4
5 Y, 2x7 Ax, Ax =1 6 3o (2x — 1) Ax, Ax =1
7 T3 (2x — 1) Ax, Ax =2 8 2o DAy, Ax =3
9 Y2 (x> — 1) Ax, Ax=% 10 2l (¥ = DAx, Ax =15
11 33, (5x% — 12) Ax, Ax =2 12 33, (5x% — 12) Ax, Ax =1
13 33+ 17x) Ax, Ax =4 14 351072 Ax. Ax =1
15 ¥ x*Ax, Ax =g 16 S 2x3 Ax, Ax =14
17 e /x Ax, Ax =1 18 22, 1x — 4] Ax, Ax =2
19 Y rsinx Ax, Ax =mn4d 20 Yo sin?x Ax. Ax = ;4
21 Y4 et Ax, Ax =15 22 Yo xet Ax, Ax =145
l X
23 > T nx Ax, Ax =1 24 33 2\—\ Ax. Ax =1
25 Let b be a positive real number and n a positive integer. Prove that if Ax = b/n,
b
YxAx=(1 42+ + (1 — 1)Ax~
0
L. an — 1)
Using theformula | + 2+ + (n — 1) = 5 prove that
b
Y xAx = (1 — l/n)b?2.
0
26 Let H be a positive infinite hyperinteger and dx = b/H. Using the Transfer Principle and
Problem 25, prove that %} x dx = b?%/2.
27 Let b be a positive real number, n a positive integer, and Ax = b/n. Using the formula
-1 -1
TEITIP O CRMDSPR M P i) € )6(2” &)
prove that
b - 1)@2n — 1) b?
2 Ay = a(n b~
%"’\ * 6 n?
28 Use Problem 27 to show that [§ x* dx = b3/3.

FUNDAMENTAL THEOREM OF CALCULUS

In this section we shall state five basic theorems about the integral, culminating in
the Fundamental Theorem of Calculus. Right now we can only approximate a
definite integral by the laborious computation of a finite Riemann sum. At the end
of this section we will be in a position easily to compute exact values for many definite
integrals. The key to the method is the Fundamental Theorem. Our first theorem
shows that we are free to choose any positive infinitesimal we wish for dx in the
definite integral.
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THEOREM 1

Given a continuous function f on [a,b] and two positive infinitesimals dx
and du, the definite integrals with respect to dx and du are the same,

ff(x) dx = J;bf(u) du.

From now on when we write a definite integral [2 f(x) dx, it is understood
that dx is a positive infinitesimal. By Theorem 1, it doesn’t matter which infinitesimal.

The proof of Theorem 1 is based on the following intuitive idea. Figure 4.2.1
shows the two Riemann sums Y5 f(x)dx and Y f(u) du. We see from the figure
that the difference Y5 f(x)dx — Y5 f(u)du is a sum of rectangles of infinitesimal
height. These difference rectangles all lie between the horizontal lines y = —¢& and
y = &, where ¢ is the largest height. Thus —&(b — a) < 305 f(x)dx — Y.) f(w)du <
&b — a). Taking standard parts,

b
0< fbf(x)dx - f f(wdu <0,

Lbf(x) dx = J;bf(u) du.

i

N His

f&x)

Figure 4.2.1

187



188

4 INTEGRATION

Theorem 1 shows that whenever Ax is positive infinitesimal, the Riemann
sum is infinitely close to the definite integral,

b

b
Y f(x) Ax = J 1) dx.

a a

This fact can also be expressed in terms of limits. It shows that the Riemann sum
approaches the definite integral as Ax approaches 0 from above, in symbols

b
f(x)dx = lim if(x) Ax.

Ax— 0%t a

Given a continuous function f on an interval I, Theorem 1 shows that the
definite integral is a real function of two variables @ and b,

b
A(a, b) = f f{x)dx, a,bin I,

We now formally define the area as the definite integral shown in Figure 4.2.2.

Jx)

77

a b

Figure 4.2.2

DEFINITION

If [ is continuous and f(x) = 0 on [a, b], the area of the region below the
curve y = f(x) from a to b is defined as the definite integral:

b
Area = f f(x)dx.

The next two theorems give basic properties of the integral.

THEOREM 2 (The Rectangle Property)

Suppose [ is continuous and has minimum value m and maximum value M
on a closed interval [a,b]. Then

b
mb — a) < f S dx < M — a).

That is, the area of the region under the curve is between the area of the rectangle
whose height is the minimum value of f and the area of the rectangle whose
height is the maximum value of f in the interval [a, b).
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The Extreme Value Theorem is needed to show that the minimum value m
and maximum value M exist. The rectangle of height m is called the inscribed rectangle
of the region, and the rectangle of height M is called the circumscribed rectangle.
From Figure 4.2.3, we see that the inscribed rectangle is a subset of the region under
the curve, which is in turn a subset of the circumscribed rectangle. The Rectangle
Property says that the area of the region is between the areas of the inscribed and
circumscribed rectangles.

y

M p-----

"V,

a b x

Figure 4.2.3 The Rectangle Property
PROOF By Theorem 1, any positive infinitesimal may be chosen for dx. Let us
choose a positive infinite hyperinteger H and let dx = (b — a)/H. Then

dx evenly divides b — a; that is, the interval [a, b] is divided into H sub-
intervals of exactly the same length dx. Then

b
Y mdx =m«He+dx = m(b — a),
b
Y Mdx =M-+H-dx = M(b — a).

For each x, we have m < f(x) < M. Adding up and taking standard parts,
we obtain the required formula.

b b b
Yomdx <Y f(x)dx < Y Mdx,

mb — a) < fbf(x)dx < M - a).

One useful consequence of the Rectangle Property is that the integral of
a positive function is positive and the integral of a negative function is negative:

b
If f(x) > Oon [qa,b], then 0 < m(b — a) < j f(x)dx.
b
If f(x) < O on [q, b], thenff(x)dst(b—a)<O.

The definite integral of a negative function f(x) = —g(x) from a to b is
just the negative of the area of the region above the curve and below the x axis.

This is because

S)dx = —g(x)dx,

189
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b
Y f()dx = = g(x)dx,
b ab
S dx = — f o) dx.

(See Figure 4.2.4.)

a

J)

Figure 4.2.4

THEOREM 3 (The Addition Property)

Suppose f'is continuous on an interval I. Then for all a,b,c in I,

er(x)dx = J;bf(x)dx + ch(x) dx.

This property is illustrated in Figure 4.2.5 for the case a < b < ¢. The
Addition Property holds even if the points 4, b, ¢ are in some other order on the
real line, such as ¢ < a < b.

f(x)

7

Figure 4.2.6 a b c

PROOF First suppose that a < b < ¢. Choose a dx that evenly divides the first
interval length b — a. This simplifies our computation because it makes
b a partition point, b = a + H dx. Then, as Figure 4.2.6 suggests,

c b c
Y f)dx =Y f(x)ds + 3 f(x)dx.

a a b

Taking standard parts we have the desired formula

Lc f(x)dx = f eods + ch(x) "
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7,
i

Figure 4.2.6 a b c

To illustrate the other cases, we prove the Addition Property when
¢ < a < b. The previous case gives

fbf(x)dx = J.af(x)dx + jbf(x)dx.

Since reversing the endpoints changes the sign of the integral,
~ [ = = [ 1@+ [ reax

and the desired formula

J-Cf(x)dx = fbf(x)dx + J:f(x)dx
follows.
The definite integral of a curve can be thought of as area even if the curve

crosses the x-axis. The curve in Figure 4.2.7 is positive from a to b and negative from

b to ¢, crossing the x-axis at b. The integral % f(x) dx is a positive number and the
integral {j f(x)dx is a negative number. By the Addition Property, the integral

[rwax= [ Fdx + [ ) dx

is equal to the area from a to b minus the area from b to c. The definite integral
f¢ f(x)dx always gives the net area between the x-axis and the curve, counting
areas above the x-axis as positive and areas below the x-axis as negative.

The definite integral {% f(¢)dt is a real function of two variables u and v
and does not depend on the dummy variable . If we replace u by a constant a and v
by the variable x, we obtain a real function of one variable x, given by

X
F(x) = J f©)de.
Our fourth theorem states that this new function is continuous.

fx)

Figure 4.2.7
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THEOREM 4

Ler f be continuous on an interval I. Choose a point a in I. Then the function
F(x) defined by

F(x) = f (0 de
is continuous on 1.

SKETCH OF PROOF Let ¢ be in I, and let x be infinitely close to ¢ and between
the endpoints of I. By the Addition Property,

f f@ydi = f o f o
[rwa-[roa={ rou

and Fle) — F(x) = ff(t) dt.

This is the area of the infinitely thin strip under the curve y = f(¢) between
t = x and t = ¢ (see Figure 4.2.8). The strip has width Ax = ¢ — x. By the
Rectangle Property, its area is between m Ax and M Ax and hence is infinitely
small. Therefore F(x) is infinitely close to F(c), and F is continuous on [.

() X ¢

m

N _FO = F()
F(e)

Figure 4.2.8 a ¢ b

Our fifth theorem, the Fundamental Theorem of Calculus, shows -that
the definite integral can be evaluated by means of antiderivatives. The process of
antidifferentiation is just the opposite of differentiation. To keep things simple, let ]
be an open interval, and assume that all functions mentioned have domain 1.

DEFINITION

Let f and F be functions with domain 1. If {is the derivative of F, then F is
called an antidevivative of f.
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For example, suppose a particle is moving upward along the y-axis with
velocity v = f(t) and position y = F(t) at time ¢. The position y = F(t) is an anti-
derivative of the velocity v = f(¢). We shall discuss antiderivatives in more detail
in the next section. We are now ready for the Fundamental Theorem.

FUNDAMENTAL THEOREM OF CALCULUS

Suppose f is continuous on its domain, which is an open interval I.

(i) For each point a in I, the definite integral of f from a to x considered as a
function of x is an antiderivative of f. That is,

d( f ) 110 dt) = f(x)dx.

(i) If F is any antiderivative of f, then for any two points (a,b) in I the
definite integral of f from a to b is equal to the difference F(b) — F(a),

fbf(x)dx = F(b) — F(a).

The Fundamental Theorem of Calculus is important for two reasons. First,
it shows the relation between the two main notions of calculus: the derivative, which
corresponds to velocity, and the integral, which corresponds to area. It shows that
differentiation and integration are “inverse” processes. Second, it gives a simple
method for computing many definite integrals.

EXAMPLE 1
(a) Find f’; ¢ dx. Since ¢x is an antiderivative of c,
b
f cdx =cb — ca = cb — a).
a
(b) Find [* x dx. 5x? is an antiderivative of x. Thus
b
J. xdx = Ib* — $a*.
a

The above example gives the same result that we got before but is much
simpler. We can easily go further.

EXAMPLE 2 Find [ x? dx. x3/3 is an antiderivative of x? because

de3) 3%,

dx 3
b b3 3
Therefore f x?dx = T a?'

This gives the area of the region under the curve y = x? between a and b
(Figure 4.2.9).
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Figure 4.2.9

If a particle moves along the y-axis with continuous velocity v = f(r), the
position y = F(t) is an antiderivative of the velocity, because v = dy/dr. The
Fundamental Theorem of Calculus shows that the distance moved (the change in y)
between times t = @ and ¢ = b is equal to the definite integral of the velocity,

b
distance moved = F(b) — F(a) = f f(n)de.

EXAMPLE 3 A particle moves along the y-axis with velocity v = 8t cm/sec. How
far does it move between times r = —1 and r = 2sec? The function
G(t) = 2r* is an antiderivative of the velocity v = 83, Thus the definite
integral is

2
distance moved = f t3dt =22 —2+(—1* =30 cm.
-1

EXAMPLE 4 Find [§ \/? dr (Figure 4.2.10). The function \/? is defined and con-
tinuous on the half-open interval [0, cc). But to apply the Fundamental
Theorem we need a function continuous on an open interval that contains
the limit points 0 and 4. We therefore define

0 fort <0
1) =
f( ) {\ﬁ fort > 0.
This function is continuous on the whole real line. In particular it is con-
tinuous at 0 because if t &~ 0 then f(f) & 0. The function

0 fort <0
Ft) =
0 {%t”z forr >0

O

Figure 4,210
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is an antiderivative of f. Then

4
fwﬂm=me—nm=@«@”—%mmy=%
0

In the next section we shall develop some methods for finding antiderivatives.
The antiderivative of a very simple function may turn out to be a “new” function

which we have not yet given a name.

EXAMPLE 5 The only way we can show that the function f(x) = /1 + x* has an
antiderivative is to take a definite integral

fx\/l + t* dt.
0

This is a “new” function that cannot be expressed in terms of algebraic,
trigonometric, and exponential functions without calculus.

The Fundamental Theorem can also be used to find the derivative of a
function which is defined as a definite integral with a variable limit of integration.
This can be done without actually evaluating the integral.

2 x
EXAMPLE 6 Lety = Jl/l + t*dt. Then y = —j J1+td,
X 2
and dy=—d(J 1/1+t2dt):—,/1+x2dx.
2

x2+x 1
EXAMPLE 7 Lety = f T——dl‘.
3 "+ 1

Let u = x* + x. Then

du S| dy 1
— = (2 = | ——dt, = = .
(2x + 1), ¥ J‘ £ 4+1 du  ud+ 1

dx 3
By the Chain Rule,
dy dydu 1 2x+1
S x4 l)=—
dx  du dx u3+1(x+) x>+ x)P3 41

We conclude this section with a proof of the Fundamental Theorem of

Calculus.
PROOF (i) Let F(x) be the area under the curve y = f(¢) from a to x,
F(x) = f [ dt.

Imagine that the vertical line cutting the t-axis at x moves to the right as
in Figure 4.2.11.



196

4 INTEGRATION

S

F(x) —

a X !

Figure 4.2.11

We show that the rate of change of F(x) is equal to the length f(x) of the
moving vertical line.

Suppose x increases by an infinitesimal amount Ax > 0. Then
X+ Ax
F(x + Ax) — F(x) = f f(t)dt

is the area of an infinitely thin strip of width Ax and height infinitely close to

f(x). By the Rectangle Property the area of the strip is between the inscribed

and circumscribed rectangles (Figure 4.2.12),
mAx < F(x + Ax) — F(x) < M Ax.

Flx + Ax) — F
Dividing by Ax, me FF : )=
X

Since fis continuous at x, the values m and M are both infinitely close to f(x),
and therefore
Fix + Ax) — F
Ax

() ~ f(x)

The proof is similar when Ax < 0. Hence F'(x) = f(x).

F(x+ax)-F(x)

Ax
o)
Sx) M
f(x) N\
a x !

Figure 4.2.12
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PROOF (ii) Let F(x) be any antiderivative of f. Then, by (i),

t{F@)—Jfﬂ0m>=fa)—fa)=o

In Section 3.7 on curve sketching, we saw that every function with derivative
zero is constant. Thus

F(x) — f f®dr = Cy, F(x) = fxf(t)dt+C0
for some constant C,. Then
b a
F(b) — F(a) = (J f®dt + CO) — (j f(yde + CO)
b b
- [r@a—o= [ s,

b
$O F(b) — F(a) = f f(x)dx.

PROBLEMS FOR SECTION 4.2

In Problems 1-14, find an antiderivative of the given function.

1 fx) = 8/ 2 fx) =4/ /x
3 fO=32+1 4 flx) = 5x3
5 f=4-13 6 flz) = 2/22
7 fis) =753 8 f@y=12 412
9 f(x) = (x—6)* 10 )= (5u+ 1)
1 f) =y 12 () = 2/x/x
13 S0 = |x 14 S =2t — 4
15 If F'(x) = x + x? for all x, find F(1) — F(—1).
16 If F'(x) = x* for all x, find F(2) — F(1).
17 If F'() = t'3 for all ¢, find F(8) — F(0).
Evaluate the definite integrals in Problems 18-22.
1 2
18 j 2x2 dx 19 f x3 dx
1 -2
-1 4
20 J t2dt 21 f 2/x dx
-2 0
-2
22 J —Sx*dx
-3

In Problems 23-27 an object moves along the y-axis. Given the velocity v, find how far the object
moves between the given times t, and ¢;.

23 v=2t+5, tg=0, t;, =2
24 v=4—1t, h=1 t,=4
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26
27
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r =3 o =2, t, =06
32, =1 1 =3
r =102 =1 1, =100

iard
1l

In Problems 28-32, find the area of the region under the curve y = f(x) from a to b.

28
29
30
31
32

33
34
O 35

O 36

o 37

O 38

y=4 - x2 a=-2, b=2
y=Jx+2 a= -2, b=2
3 =9x — x?, a=0, b=3

y o= \,../.\‘ - X, a=0, b=1

yo=3x"3 a=1, b=28

If F(t) = t — 1 forall r and F(0) = 2, find F(2).

IfF'(x) =1 — x?forall xand F(3) = 5, find F(—1).

Suppose F(x) and G(x) have continuous derivatives and F'(x) + G'(x) = 0 for all x.
Prove that F(x) + G(x) is constant.

Suppose F(x) and G(x) have continuous derivatives such that F'(x) < G'(x) for all x.
Prove that F(b) — Fla) < G(b) — Gla)

where a < b.

Prove that a function F(x) has a constant derivative if and only if F(x) is linear, i.e., of the
form F(x) = ax + b.

Prove that a function F(x) has a constant second derivative if and only if F(x) has the
form F(x) = ax*+ bx + c.

Suppose that F'(x) = G"(x) for all x. Prove that F(x) and G(x) differ by a linear function,
that is, G(x) = F(x) + ax + b for some real numbers ¢ and b.

4.3 INDEFINITE INTEGRALS

The Fundamental Theorem of Calculus shows that every continuous function f
has at least one antiderivative, namely F(x) = [} f(¢)di. Actually, f has infinitely
many antiderivatives, but any two antiderivatives of f differ only by a constant. This
is an important fact about antiderivatives, which we state as a theorem.

THEOREM 1

Let f be a real function whose domain is an open interval 1.

(1) If F(x) is an antiderivative of f(x), then F(x) + C is an antiderivative
of f(x) for every real number C.

(ii) If F(x) and G(x) are two antiderivatives of f(x), then F(x) — G(x) is
constant for all x in 1. That is,

G(x) = F(x) + C

for some real number C.

Discussion Parts (i) and (ii) together show that if we can find one antiderivative

F(x) of f(x), then the family of functions
F(x)+ C, C = a real number
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gives all antiderivatives of f(x). We sce from Figure 4.3.1 that the graph
of F(x) + C is just the graph of F(x) moved vertically by a distance C. The
graphs of F(x) and F(x) + C have the same slopes at every point x. For
example, let f(x) = 3x2. Then F(x) = x> is an antiderivative of 3x? because

d(x*)
dx
But x3 + 6 and x° — \/5 are also antiderivatives of 3x2. In fact, x> 4+ C is

an antiderivative of 3x? for each real number C. Theorem 1 shows that 3x2
has no other antiderivatives.

3x2.

Figure 4.3.1

PROOF We prove (i) by differentiating,

dF(x) + C) _d(F(x)) , dC B
I =g T =/ 0=/

Part (ii) follows from a theorem in Section 3.7 on curve sketching. If a
function has derivative zero on I, then the function is constant on I. The
difference F(x) — G(x) has derivative f(x) — f(x) =0 and is therefore
constant. We used this fact in the proof of the Fundamental Theorem of
Calculus.

In computing integrals of f, we usually work with the family of all anti-
derivatives of f. We shall call this whole family of functions the indefinite integral of f.
The symbol for the indefinite integral is [ f(x) dx. If F(x) is one antiderivative of f,

the indefinite integral is the set of all functions of the form F(x) + C,, C, constant.
We express this with the equation

ff(x)dx = F(x) + C.

It is an equation between two families of functions rather than between two single
functions. C is called the constant of integration. To illustrate the notation,

f3x2dx=x3 + C.

We repeat the above definitions in concise form.

199
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DEFINITION

Let the domain of f be an open interval I and suppose f has an antiderivative.
The family of all antiderivatives of f is called the indefinite integral of f and is
denoted by [ f(x) dx.

Given a function F, the family of all functions which differ from F only by a
constant is written F(x) + C. Thus if F is an antiderivative of f we write

~ff(x)dx = F(x) 4+ C.

When working with indefinite integrals, it is convenient to use differentials
and dependent variables. If we introduce the dependent variable u by v = F(x), then

du = F'(x)dx = f(x)dx.

Thus the equation ff(x) dx = F(x)+ C

can be written in the form J.du =u 4 C.

The differential symbol d and the indefinite integral symbol | behave as
inverses to each other. We can start with the family of functions u + C, form du, and
then form [ du = u + C to get back where we started. Some of the rules for differentia-
tion given in Chapter 2 can be turned around to give a set of rules for indefinite
integration.

THEOREM 2

Let u and v be functions of x whose domains are an open interval I and suppose
du and dv exist for every x in I.

(i) fdu =u + C.

(ii)  Constant Rule Jc du = cf du.

(iii)  Sum Rule fdu +dv = fdu + J‘dv.

”l+l )
(iv) Power Rule f u"dy = 1 + C, where r is rational, 1 # —1,
r

and u > O on 1.

(v) jsin udy = —cosu + C.
(vi) fcos wdu =sinu + C.

(vii) f etdu=¢e"+ C.
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1
(viii) f;du =1Inju|+ C (u # 0).

Discussion The Power Rule gives the integral of u” whenr # — 1, while Rule
(viii) gives the integral of 4" when r = —1. When we put u = f(x) and
v = g(x), the Constant and Sum Rules take the form

Constant Rule fcf(x) dx = cf f(x)dx.

Sum Rule f(f(x) + g(x))dx = ff(x) dx + fg(x) dx.

In the Constant and Sum Rules we are multiplying a family of functions
by a constant and adding two families of functions. If we do either of these
two things to families of functions differing only by a constant, we get another
family of functions differing only by a constant. For example,

TBx* 4+ C) = 21x* + 7C = 21x* + C’
is the family of all functions equal to 21x* plus a constant. Similarly,
BS/x+C) +(x—/x +D)=5x +2/x + (C+ D)= 5x + 2/x + C
is the family of all functions equal to 5x + 2\/; plus a constant.

PROOF OF THEOREM 2

(i) This is just a short form of the theorem that u + C is the family of all
functions which have the same derivative as u.

(i) We have ¢ du = d(cu), whence
fcdu=fd(cu)=cu+€=c(u+C’)=cfdu.
(ii)) du + dv =d(u + v),
Jdu+dv=jd(u+v)=u+v+C=fdu+jdv.

r+1 " r
d(u )=(7+1)udu=u’du,
r+1

41
r+1
jlt’du: “ + C.
F+1

(iv)

Rules (v)-(viii) are similar. Only the last formula, (viii), requires an explana-
tion. The absolute value in In|u| comes about by combining the two cases u > 0
and u < 0. Whenu > 0, u = [u| and
1
diln |u]) = d(Inu) = Edu.

When u < 0, In u is undefined, but ju| = —w and In |u| = In (—u). Thus

dinjul) =d(n(—u)) = — %d(—u) = %du.

201
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Thus, in both cases, when u # 0,

i
d(In |u|) = —du,
U
1
J‘fdu=ln|u|+C.
U
EXAMPLE 1 f(Zx_l + 3sinx)dx = 2In{x| — 3cosx + C.

We can use the rules to write down at once the indefinite integral of any
polynomial.

EXAMPLE 2 J(4x3 —6x2 4 2x + Ddx =x*—-2x3 4+ x2 4+ x + C.

3 302
EXAMPLE 3 J(? + \/E) dx = — 2 & _3_x3/z +C
X

Indefinite integration is much harder than differentiation, because there are
no rules for integrating the product or quotient of two functions. It often requires
guesswork. The short list of rules in Theorem 1 will help, and as this course proceeds
we shall add many more techniques for finding indefinite integrals.

dx I + x
EXAMPLE 4 Show that [ = [— .
M T o - /1 ¢

Our rules give no hint on finding this integral. However, once the answer
is given to us we can easily prove that it is correct by differentiating,

J 1+ x
I —x 41+ )1 — x)" V)

dx dx
= (L 4+ )= (=D = 072 + (1 =072+ 07
= (1407131 — ) 7320+ ) + 30— )]

1
S+ )M = xR

Here is a warning that may prevent some common mistakes.
Warning: The integral of the product of two functions is not equal to the
product of the integrals. The same goes for quotients. That is,

- Junr - [ ][ o).
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For example,

Wrong : fx(x + )dx = (f xdx) (f (x + Ddx)=

2{,.2
i(x +x)+C

212
x* X3
= 4 + 7 + C
x*  x?
Correct: .fx(x + Ddx = J(xz + x)dx = ? + 5 + C.
~fudx
u
Wrong: Zdx =2

For example,

+C

~[(x + Ddx
Wiong - J‘x + 1 _ (Z)x° + x

f\/;cdx BG)x*?
_3 f\

A%

4 2\[

)dx——x3/2+2ﬁ+c

Correct : Jx + 1dx = f(\/; + \/;

The indefinite integral can be used to solve problems of the following type.
Given that a particle moves along the y-axis with velocity v = f(¢), and that at a
certain time t = t its position is y = y,. Find the position y as a function of ¢.

EXAMPLE 5 A particle moves with velocity v = 1/t2, t > 0. At time t = 2 it is at
position y = 1. Find the position y as a function of t. We compute

1 1
J‘Udt:J‘t‘Zdtz—?-}—C

Since dy/dt = v, y is one of the functions in the family —1/t + C. We can
find the constant C by settingt =2 and y = 1,

1 1

Then the answer is

The next theorem shows that in such a problem we can always find the answer
if we are given the position of the particle at just one point of time.
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THEOREM 3

Suppose the domain of { is an open interval I and f has an antiderivative. Let
P(xq,yo) be any point with x, in I. Then f has exactly one antiderivative
whose graph passes through P.

PROOF Let F be any antiderivative of f. Then F(x) + C is the family of all anti-
derivatives. We show that there is exactly one value of C such that the
function F(x) + C passes through P(x,, yo) (Figure 4.3.2). We note that all
of the following statements are equivalent:

(1) F(x) + C passes through P(xg, yo).
(2) Flxp) + C = yg.
(3) C =yy— Flx)

Thus y, — F(x,) is the unique value of C which works.

y /\/
/\%
Plxg, yo)

Figure 4.3.2

The Fundamental Theorem of Calculus, part (ii), may be expressed briefly
as follows, where fis continuous on I.
If [f(x)dx = F(x) + C, then

b
f f(xydx = F(b) — Fl(a).
For evaluating definite integrals we introduce the convenient notation

b
F(.\'):l = F(b) — Fla).

a

It is read “F(x) evaluated from a to b.”
The Constant and Sum Rules hold for definite as well as indefinite integrals:

b b
Constant Rule j of (x)dx = cf J(x)dx.

b b b
Sum Rule f (f(x) + g(x)dx = f f(x)ydx + fg(x) dx.

The Constant Rule is shown by the computation



43 INDEFINITE INTEGRALS 205
b b
f cf (x)dx = cF(b) — cF(a) = ¢(F(b) — F(a)) = ¢ f f(x)dx.
The Sum Rule is similar.

EXAMPLE 6 Evaluate the definite integral of y = (1 + 1)/t> from t =1 to t =2
(see Figure 4.3.3).

2 2
J- lttdt=f(t_3+t_2)dt
1 ! 1
2 s 2 R [_22 Z—12
= |t dt+ft‘ dt="_| 4 —
Jas [ras Sl )

AR 11y 3.1 7
“\(2-2 (Tz)—.1>+(_—z‘?1)—§+z‘§'

Thus the area under the curve y = (1 + )/’ fromt = 1 tot = 2is &

¥y

._...
[\S]
-~

Figure 4.3.3

EXAMPLE 7 Find the area of the region under one arch of the curve y = sin x
(see Figure 4.3.4).

One arch of the sine curve is between x = 0 and x = n. The area is the
definite integral

ki m
f sin x dx = —cosx]

0 ]
= —cosmw—(—cosQ)= —(—1) —(=1)=2.

The area is exactly 2.

y

y=sinx

Figure 4.3.4
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EXAMPLE 8 Find the area under the curve y = —2x ' fromx = —5tox = — 1.
(See Figure 4.3.5.)

The area is given by the definite integral

-1
J —2x " ldx.
=5

First compute the indefinite integral
f —2x"ldx = —ZJX_ldx = —2In|x|+ C.

Now compute the definite integral.

-1 -1
J —2x"ldx = —2In|x|}
-5 -5
— —Xn|—1]—In[=5))= —2(n1 — In %)
=2In5~ 3219

Figure 4.3.5

This example illustrates the need for the absolute value in the integration rule
fx_ldx =In|x|+ C

The natural logarithm In x is undefined at x = —5and x = —1, but In | x| is defined
for all x # 0. The absolute value sign is put in when integrating x~! and removed
when differentiating In [ x|.

EXAMPLE 9 In computing definite integrals one must first make sure that the

function to be integrated is continuous on the interval. For instance,

1 1 X_l 1
Incorrect: J —dx = —] =—1—-(—(=1)= -2

X -1 94
This is clearly wrong because 1/x? > 0 so the area under the curve cannot be
negative. The mistake is that 1/x* is undefined at x = 0 and hence the
function is discontinuous at x = 0. Therefore the area under the curve and
the definite integral
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are undefined (Figure 4.3.6).

fx) Flx)

N\

X

—1 % 1 * Flx) =2

‘M

1
f)=—
Figure 4.3.6

PROBLEMS FOR SECTION 4.3

Evaluate the following integrals.

1 f(l + 2% + 3x%)dx 2 f(2x2—6x+9)dx
3 f(12t7 —3t5 + 202 + 1)dt 4 f(s +y 2 — 4y~ d)dy
5 j(r”l + )4y 6 f(Zy”a — 3234y
7 j(Zx — 3)?dx 8 J.(x — 2)(2x + 1)dx
9 f ( + 1/z dz 10 f (z - 1)z dz
1 j 5cos x dx 12 f (sin x + cos x) dx
2x? —3x + 6
X X
15 f A+ x"Hdx 16 J 3e* dx
3s+ 1
17 J G+ /0@ -2 /nd 18 f s
S
19 fﬂ;i—y—ﬁdy 20 j(3 — xA)(1 + 4x?) dx
)7

21 f(axz + bx + ¢)dx 22 J.(a3x3 + a,x* 4 ayx + ag) dx
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2 1
23 J (2x — 4x? + x%)dx 24 J. (1 4+ x% + 3x%)dx
-2 [¢]
1 1
25 f (1 + x2 4+ 3x%)dx 26 f e dx
.y -
n 2
27 f €oSs X dx 28 J cos X dx
0 0
2 5
x—1
29 f 3%~ dx 30 J T
1 2 X
-
31 f — dx
X

In Problems 32-36, find the position y as a function of r given the velocity ¢ = dy/dr and the value
of y at one point of time.

32 v =2r+3, y=0 when =0
33 =4t — 1, y=2 when =0
34 v =34 y=0 when r=—1
35 r=2sint, y=10 when t=0
36 =31 y=1 when =1

In Problems 37-42, find the position y and velocity ¢ as a function of r given the acceleration ¢ and
the valuesof pand vatr =0Qort = 1.

37 a=t1t, t=0 and y=1 when =0
38 a= —-32, t=10 and y=0 when =0
39 a = 3t%, tr=1 and y=2 when =0
40 a=1-— \/'?, v=-2 and y=1 when 1=0
41 a=1"3 t=1 and y=0 when =1
42 a = —sint, vr=0 and y=4 when t=0
43 Which of the following definite integrals are undefined?
| 21
(a) j —dx (b) J —dx
X L X
o o _
(c) J —rdy (d) AR
1 -1
2 , 2
(e) f V4= xtdx (f) J. Xt —ddx
-2 -2
1 1 -1 )
(g) J‘,l ﬁd“ (h) J‘72 \,"[ — 1dt
2 _ 3
(i) f Jit = ld (i f |x — 1] dx
2 -3
1 n
(k) j tan x dx Q) J‘ tan x dx
1 0
44 Find the function f such that /" is constant, f(0) = f'(0) and f(2) = f'(2).
45 An object moves with acceleration a = 6r. Find its position y as a function of 1, given
that y = I whent =0and y = 4 whent = 1.
46 Find the function /i such that h” is constant, #(1) = 1, h(2) = 2. and h(3) = 3.
0O 47 Suppose that F"(x) exists for all x. and let {x,.y,) and (x,.y,) be two given points.

Prove that there is exactly one function G(x) such that
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G(xo) = yo
Gx))=n
G"(x) = F'(x) for all x.
0O 48 Assume that F"(x) exists for all x, and let (x,, y,) and (x,, y,) be two points with x, # x,.

Prove that there is exactly one function G(x) such that G"(x) = F"(x) for all x, and the
graph of G passes through the two points (x,, y,) and (x,, y,).

4.4 INTEGRATION BY CHANGE OF VARIABLES

We have seen that the sum, constant, and power rules for differentiation can be turned
around to give the sum, constant, and power rules for integration. In this section we
shall show how to make use of the Chain Rule for differentiation in problems of
integration. The Chain Rule will lead to the important method of integration by
change of variables. The basic idea is to try to simplify the function to be integrated
by changing from one independent variable to another.

If F is an antiderivative of f and we take u as the independent variable, then
[ f(u) du is a family of functions of u,

ff(u) du = F(u) + C.

But if we take x as the independent variable and introduce u as a dependent variable
u = g(x), then du and { f(u) du mean the following:

du = g'(x) dx, j f(u)du = f f(g(x)g'(x) dx = H(x) + C.

The notation [ f(u)du always stands for a family of functions of the independent
variable, which in some cases is another variable such as x. The next theorem can be
used as follows. To integrate a given function of x, properly choose a new variable
u = g(x) and integrate a new function with respect to u.

DEFINITION

Let I and J be intervals. We say that a function g maps J into I if for every
point x in J, g(x) is defined and belongs to I (Figure 4.4.1).

y

g(x)

J

Figure 4.4.1 g maps J into [
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THEOREM 1 (Indefinite Integration by Change of Variables)

Suppose I and J are open intervals, f has domain I, g maps J into I, and g is
differentiable on J. Assume that when we take u as the independent variable,

jf(u) du = Fu) + C.

Then when x is the independent variable and u = g(x),

ff(u) du = F(g(x)) + C.

PROOF Let H{(x) = F(g(x)). For any x in J, the derivatives g'(x) and F'(g(x)) = f(g(x))
exist. Therefore by the Chain Rule,

H'(x) = F(g(x)g'(x) = f(g(x)g'(x).
It follows that

ff(g(x))g'(x) dx = H(x) + C = F(g(x)) - C.

So when u = g(x), we have
S(w)du = f(g(x)g'(x) dx, ff(u) du = F(g(x)) + C.

Theorem 1 gives another proof of the general power rule

ll"+1
fu"du = + C, n# -1,
n+1

where u is given as a function of the independent variable x, from the simpler power
rule

xn+1
fx”dxz + C, n# -1,

where x is the independent variable.

EXAMPLE 1 Find f(dx + 1)° + (4x + 1)> + (4x + 1)dx. Let u = 4x + 1. Then
du = 4dx, dx = 1 du. Hence

fo+U3+Mx+U2+Mx+1Mx

I Hut W W2
— 3 + 2 _71 — {7 “ o
f(u us 4 u) 4(11 ala + 3 + 5 + C
CA[Gx 4 ) Gx 1P (x4 1)
~4[ e +C.
EXAMPLE 2 FindJ~ -l
x3(1 + 1/x)? o

Letu =1+ 1/x. Then du = —1/x?dx and thus
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-1 1
—————dx = —du.
x2(1 + 1/x)? u?

—1 1 u
=fu7du:—T+C=_

So J 0+ TR >

In a simple problem such as this example, we can save writing by using the
term 1 + 1/x instead of introducing a new letter u,

St S N _a+ 10t
J'xzv(l + I/X)de - f(l + 1/x)2d(1 + x) N —1 +C

In examples such as the above one, the trick is to find a new variable 1 such
that the expression becomes simpler when we change variables. This usually must

be done by an “educated” trial and error process.
One must be careful to express dx in terms of du before integrating with

respect to u.

EXAMPLE 3 Find [(1 4+ 5x)*dx. Let u = 1 + 5x. For emphasis we shall do it
correctly and incorrectly.

Correct : du = 5dx, dx = Ldu,
1 ud 1+ 5x)°
1 5 2 d - f 2 "d = — - @° s
f( + 5x)* dx u 5 u 0 +C 15 C
_ , L (1 + 5%)°
Incorrect: (L +5x)dx=|udx = 5 +C= —3 +C
3 5 u? (1 + 5x)°
Incorrect: (14 5x)dx = | udu = £ + C = s + C.
EXAMPLE 4  Find [x*/2 — x?dx. Letu = 2 — x%, du = —2x dx, dx = du/(—2x).

We try to express the integral in terms of u.
1

d
Jx3 2 — x%dx = JX3ﬁ—3x = J. _EXZ u du.
Since u = 2 — x2, x> = 2 — u. Therefore
f —%xz\/;du = f -2 - u)\/; du = J —\/; + 3432 du

o T E e

— _%(2 _ x2)3/2 + %(2 _ x2)5/2 + C.

We next describe the method of definite integration by change of variables. In
a definite integral

fb h(x) dx

it is always understood that x is the independent variable and we are integrating
between the limits x = a and x = b. Thus when we change to a new independent
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variable u, we must also change the limits of integration. The theorem below will
show that if u = ¢ when x = g and v = d when x = b, then ¢ and d will be the new

limits of integration.

THEOREM 2 (Definite Integration by Change of Variables)

Suppose I and J are open intervals, f is continuous and has an antiderivative
on I, g has a continuous derivative on J, and g maps J into 1. Then for any two

points a and b in J,
g(b)

b
f fleNge)dx = [ fdu.

gla)

PROOF Let F be an antiderivative of f Then by Theorem 1, H(x) = F(g(x)) is an
antiderivative of h(x) = f(g(x))g'(x). Since f, g, and g’ are continuous, h is

continuous on J. Then by the Fundamental Theorem of Calculus,
2(P)

b
f S (g(x))g'(x) dx = H(b) — H(a) = F(g(b)) — F(g(a)) = S ) du.
a g(a)

EXAMPLE § Find the area under the line y = 1 4+ 3x from x = Oto x = 1. This can
be done either with or without a change of variables.

Without change of variable: [(1 + 3x)dx = x + 3x3/2 + C, s0

! x| 3.12 3.07 S
3J‘ X =X _ = —_ = —.
J;(1+ X)dx = x + 2:| (1+ 3 ) (0+ > ) >

0

With change of variable: Let u =1 + 3x. Then du = 3dx, dx = {du.
Whenx =0,u=1+30=1.Whenx=1L,u=1+3:1=4
! M| 16 1 15 S
f (1+3x)dx=f u-—du:”— = — ==
0 3 6

. ., 6 6 6 2

Example 5 shows us that [§ (I + 3x)dx = [} (/3) du; that is, the areas

shown in Figure 4.4.2 are the same.

y=1+3x

/oi x

Figure 4.4.2
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2x
T (x2-3)2

Figure 4.4.3

EXAMPLE 6 Find the area under the curve y = 2x/(x? — 3)? from x = 2 to x = 3
(Figure 4.4.3).

Let u=x? — 3. Then du = 2xdx. At x =2, u=2?>—-3=1. At x =3,
u=23%~13=6. Then

3 2x 51 11e 1 5
2 gx=| Sdu= -2 =122
L (x* — 3)? x J;uz . ul 6 6

EXAMPLE 7 Find [(./1 — x? x dx. The function ,/1 — x* x as given is only defined
on the closed interval [ — 1, 1]. In order to use Theorem 2, we extend it to the
open interval J = (— o0, o0) by

ifx< —1 or x>1,

0
h(x)z{/l—xzx if—1<x<l.

Let u =1 — x? Then du = —2xdx, dx = —du/2x. At x=0, u = 1. At
x = 1,u = 0. Therefore

1 0 [¢]
f \/l—xzxdx:J‘ \/;-(—%du)zj ~ 1 udu
0 1 1
1 1
=%j \/;du=%-%u3’2] ~1-0=1
0 0

We see in Figure 4.4.4 that as x increases from 0 to 1, u decreases from 1 to 0,
so the limits become reversed. The areas shown in Figure 4.4.5 are equal.

Figure 4.4.4 u=1—x?
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y v

/r)l\/l—x?xdx O -— 1

/O—IEﬁdu
1

Figure 4.4.5
We can use integration by change of variables to derive the formula for the

area of a circle, A = nr?, where r is the radius. It is easier to work with a semicircle
because the semicircle of radius r is just the region under the curve

y = ’.2 . XZ, —r<x < r.

To start with we need to give a rigorous definition of 7. By definition, = is the area of
a unit circle. Thus 7 is twice the area of the unit semicircle, which means:

DEFINITION
1
n :2] J1 = x*dx.
-1
The area of a semicircle of radius r is the definite integral
f VIt = x?dx.

To evaluate this integral we let x = ru. Thendx = rdu. Whenx = +r,u = +1. Thus

r 1 1
f VP — x*dx J. mrdu:f r2 /1 — u*du
— -1 -1
1
o T =t
-1

Therefore the semicircle has area nr2/2 and the circle area 7r? (Figure 4.4.6).

) too3x? o
EXAMPLE 8 Find f —\—~dx.
[¢]

1+ /x —x3
Let u=x — x> Then du = (1 —3x%)dx. When x =0, u=0—-0%=0.
Whenx =1,u=1-— 13 = 0. Then

J‘l 3x2 -1 J‘O du

————dx = - =0

ol + /x —x° o 1+ \/E

As x goes from O to 1, u starts at 0, increases for a time, then drops back to 0
(Figure 4.4.7).
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y
- -
TrT=/\/ —x?dx e / /1 —u?du
Figure 4.4.6
flx) u
é u=x—x?3

0 1 x -1 o 1 X

Figure 4.4.7

We do not know how to find the indefinite integrals in this example. Neverthe-
less the answer is 0 because on changing variables both limits of integration
become the same. Using the Addition Property, we can also see that, for

instance,
2/3 3 2 1 1 3 2 1
f _ 3 g _f X -1
2

o 14 /x—x3 al 4 J/x—x3

PROBLEMS FOR SECTION 4.4

In Problems 1-90, evaluate the integral.

1 f—l—dx 2 fmdy

(2x + 1)2
3 f(3 — 42 dz 4 f (1 = x¥ dx
5 fzz [~ fdt 6 J~—x—dx
J2x2 4+ 1
7 Jx(4 + 5x%)2 dx 8 _
i 2+ 3\2)2
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11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

4 INTEGRATION
Jsin(}\{]d,\'
~[63in(4x — 1)dx
fsinf)cos&d()

j cos*0sin 0 do
fxsin(xz + 1) dx
JM({\'

X

J@cosrd[

f e** dx

fae"' + be “dx

f xe** dx
f be™ dx

f e cos do

f (1+J)

J‘ r+4
fx3‘/x4+5dx

f W2y

f-—”—du
N

———ds
jV’SS +2

f‘_l;dx
X2/ + Ux

J-x’:‘ 3+ 5v¢ 2dx

10

12

14

16

18

20

22

24

26

28

30

32

34

38

40

42

44

46

48

S0

52

54

fcos(4 — 2x)dx

f asinx + bcosxdx
J sin?0 cos 0 df
fsin(%)) + cos(30)do
J. x? cos(x3) dx

f e' cos(e') dt

J Jteos(t/n)dr

J3el"" dx

J(e" + 1)?dx

fxel"xzdx
Jeax+bdx
fe' 1+ e'dt
2
J3—4xd\
x
J,¥‘2+1dx
1
jxl(l S Ll
1 -2t
j1+2tdt
2
x
J"Y‘3+2dx
f 1
—_  _dx
2x — 1)/l - 2x
J. ! It
22 + 1)
f(4x+1) 2x? + x + Sdx
J‘«/l—Szdz

1
—_—— d_)'
J yH1 = 4/y)?

f I
— dx
\/.\'(] + 2. /x)
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57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

Ja—vﬁz
7 dx
J2 -12-21/de

X2
_—d"
J~\/x3+4 *
X3 d
J-ﬂ/l-l—x“ ¥
ft./t+1dt

f(2s +6)1 —s5)"*ds

y?
[o e

J.*xvdx
Jax + 1
J-u 1 — 3udu
f 4x — 1
Vax 4+ 1
I—l _x4dx

o
1+ y?
6u—35 y
Gu + 2)?

jzfﬁdx

cosé
f sind do

1
fa+bxdx

sin@
1+ cos@

fm—xdx

dy
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88

90

In Problems 91-108, evaluate the definite integral.

91

93

95

97

/3
J sinf) do

0

1
f e* dx
-1

4
1
—d
1 2x *

rrlz
f sinf cos8 df

0

J.%/—tdt

1
f(3y+1)3dj
2

X
—
J:/4x3 + 1 *
J‘x3\/2 — x*dx

s
f(s+2)3ds
‘[))3,/44—)72(1}7

x5
A=
'[\/2+\/;du

1
—_—d>
f(2ﬁ+3)3 ¥

.2
j X dx

Jx =1
y3
f2—y2dy

u
[

1

dx
.[1 +\/; -

J‘e" + cosx
————dx
e* + sinx

J. tané do

J‘ 2x 4+ 1 dx

x4+ x+1
sinf — cosf

Jsin@ + cosf

1
f dx
xInx

n/4
f cos(260) do

—n/4
1
f xe*” dx
(1]
i
X
J;) 2.1 + 1dx

2n
f asin® + bcos do
0
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2 1
|
99 S Ldx 100 f NN
L e , @x+ 3P
4

1

101 f 2x + ¥ dx 102 f t(t? + 3)"%dt

0 0

1 s 2
103 f (1 + 6x)*dx 104 f ——dt

2 1 .2
105 jv 27 ¥ 9dv 1 f o dx

. v v 06 LGy dx

1 X 5
107 f ——dx 108 f x(x? + 2)13 dx

42—x /&
109 Find the area of the region below the curve y = 1/(10 — 3x) from x =1 to x = 2.
110 Find the area of the region under one arch of the curve y = sin x cos x.
111 Find the area of the region under one arch of the curve y = cos (3x).
112 Find the area of the region below the curve y = 4x\ﬁx_2 between x = 0 and x = 2.
113 Find the area below the curve y = (1 4+ 7x) between x = O and x = 1.
114 Find the area below the curve y = x/(x* + 1) between x = O and x = 3.

1 —
115 Evaluate:J. le—x_dx
ol +Yx—x

1
116 Evaluate: J 2x /(1 — x3)% + 1dx
-1
117 Let f and g have continuous derivatives and evaluate | /"(g(x))g’(x) dx.
118 A real function f is said to be even if f(x) = f(—x) for all x. Show that if f is a continuous
even function, then 2, f(x)dx = [4 f(x) dx.
119 An odd function is a real function g such that g(—x) = —g(x) for all x. Prove that for
a continuous odd function g, {*, g(x) dx = 0.
AREA BETWEEN TWO CURVES

A region in the plane can often be represented as the region between two curves.
For example, the unit circle is the region between the curves

y=—/1 — x? y=Jl—x2, —-1<x<1

shown in Figure 4.5.1. Consider two continuous functions fand g on [a, b] such that
f(x) < g(x) for all x in [a, b]. The region R, bounded by the curves

y=f(x), y=gkx), x=a x=Db,

is called the region between f(x) and g(x) from a to b. If both curves are above the
x-axis as in Figure 4.5.2, the area of the region R can be found by subtracting the
area below ffrom the area below g:

b b
arca of R = f g(x)dx — J f(x)dx.

It is usually easier to work with a single integral and write

b
area of R = f (g(x) — f(x))dx.
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y

y=VI1-x gx) /
7

R

y

-

f&)

8 +.______

Figure 4.5.1 Figure 4.5.2

In the general case shown in Figure 4.5.3, we may move the region R above the
x-axis by adding a constant ¢ to both f(x) and g(x) without changing the area, and
the same formula holds:

b b
area of R =f(g(x) + ¢)dx — f(f(x)-l—c)dx

b
- j (8(x) — /(x)) dx.

yx) + ¢

C
y
fixy + ¢
8() / g) 3
/ y [
f&) #0)
Figure 4.5.3

To sum up, we define the area between two curves as follows.
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DEFINITION

If f and g are continuous and f(x) < g(x) for a < x < b, then the area of the
region R between f(x) and g(x) from a to b is defined as

b
f (8(x) — f(x) d.

EXAMPLE 1 Find the area of the region between the curves y = 4x2 — land y = x
from x =1 to x = 2. In Figure 4.5.4, we sketch the curves to check that
Ix? — 1 < xforl < x <2 Then

2

2
A= fx—(%xz—l)dxzﬁxl—%ﬁ—l-x} =3
1 1

¥y

N N
AN
[Nk
~<

Figure 4.5.4 -

EXAMPLE 2 Find the area of the region bounded above by y = x + 2 and below
by y = x°.
Part of the problem is to find the limits of integration. First draw a sketch

(Figure 4.5.5). The curves intersect at two points, which can be found by
solving the equation x + 2 = x2 for x.

x?—(x+2)=0, (x+ D(x—-2)=0,

x=—1 and x=2.

2 2
Then A= f (x +2 — x¥dx = $x? + 2x — é,\"’] = 44,
-1

-1

>
[ S U .

Figure 4.5.5
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EXAMPLE 3 Find the area of the region R bounded below by the line y = —1 and
above by the curves y = x* and y = 2 — x. The region is shown in Figure
4.5.6.
v
(1
2 2
7, \\9
3 ~
+
/ X
R
-1, -1) y=—1 \(3,—1)
Figure 4.5.6

This problem can be solved in three ways. Each solution illustrates a different
trick which is useful in other area problems. The three corners of the region

are:
(-1, =1, where y = x® and y = —1 cross.
(3, —1), where y =2 — xand y = —1 cross.
1, 1), where y = x* and y = 2 — x cross.

Note that y = x* and y = 2 — x can cross at only one point because x* is
always increasing and 2 — x is always decreasing.

FIRST SOLUTION Break the region into the two parts shown in Figure 4.5.7:
Rifromx = —1tox =1,and R, from x = 1 to x = 3. Then

area of R = area of R, + area of R,.

1
f x* — (= 1Ddx = ix* + x]
-1

3
area of R, =f 2—x)—(=Ddx = 3x—%x2}
1

area of R=2+ 2 = 4.

1

area of R, =2

-1
3
= 2.

1

R,

(1, -1

Fl,—l)

(3, —1\

Figure 4.5.7 First solution
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SECOND SOLUT/ON Form the triangular region S between y = —land y =2 — x

from —1 to 3. The region R is obtained by subtracting from S the region S,
shown in Figure 4.5.8. Then

area of R = area of S — area of S;.

w

area of § = f

(2—x)—(-1)dx =3x — %xz} = 8.

areaofSlzj 2—-x)—x?dx = 2x — 1x? —

B
o’
L
, -
Il
s

areaof R =8 — 4 = 4,

\ S
_
00
Fi 4.5.8 o S d soluti \

THIRD SOLUTION Use y as the independent variable and x as the dependent
variable. Write the boundary curves with x as a function of y.

y=2-x becomes x = 2 — y.
yo=x3 becomes x = p!73,
The limits of integration are y = —1 and y = 1 (see Figure 4.5.9). Then

1 1
4= f @ =y —yPdy =2y -5 - %3"4/3} =4
1 -1

As expected, all three solutions gave the same answer.

»

PN PRS-

’

-1
Figure 4.5.9 / Third solution




4.5 AREA BETWEEN TWO CURVES 223

PROBLEMS FOR SECTION 4.5

In Problems 1-43 below, sketch the given curves and find the area of the region bounded by
them.

1 fx)=0, gx)=5x—x% 0=x<4

2 ) =+/% gx)=x% 1<x<4

3 f)y=x/1—-x% gx)=1 —-1<x<1
4 y=x—-2, y=3"3 0<x<1

5 y=Jx y=J/x+1, 0<x<4

6 y=\/x—2ﬁ—x, y=\/xT+—1+x, -0<x<1
7 The x-axis and the curve y = —5 + 6x — x?
8 The x-axis and the curve y = 1 — x*

9 The y-axis and the curve x = 25 — y?

10 The y-axis and the curve x = y(8 — ¥)

11 y = COs X, =2cosx, —wm2<x=<mw/2
12 y=sinxcosx, y=1 0=<x<a/2

13 y= —sinx, y=sinx, 0<x<n

14 y=sinx, y=cosx, 0<x < n/4

15 y=sinxcosx, y=sinx, 0<x<nx
16 y=sin’?xcosx, y=sinxcosx, 0<x<mn?2
17 y=x, y=¢€, 0<x<2

18 y=e¥ y=¢€, 0<x<2

19 y=—¢, y=¢, —1<x=1

20 y=xe, y=e, 0<x<1

21 y=;:1L—1, y=1 0<x<2

2 y=2x1+1’ J'l=x—:-1’ O<x=2

23 y=1/x, y=x, 1<x<2

24 y:}%’ =1 0<x<1

25 f(x) = x¥%, g(x) = x*3

26 y=x2—-2x, y=x-—2

27 y=x*-2x% y=2x*+12

28 y=x*-1, y=x>—x

29 y=xx*+ 1), y=1/x*+1)

30 y=x3/1 —x% =x/1—-x% 0<x

3 y=2x2 y=x*+4

32 x=y%, x=2-)

33 \/)_c +\/}= 1 and the x- and y-axes
34 x2y =4, x*+y=>5 (first quadrant)
35 y=x/x+1, y=2x

36 y=0, y=x+x+2, x=2

37 y=2x+4, y=2-3x, y=—X

38 y=x*—1, y=@—-12% y=0x+1)’
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39 y:\/\'. y=1 y=10—-2x

40 y=x—2 y=2-x y=4/x

41 y=—xo o p=Jx r=3x-2

42 y=—=2 y=x4+x x+4y=3

43 p=x% y=2xv"2 y=2x"7 (first quadrant)

44 Find the area of the ellipse x2/a®> + y*/b? = 1. Use the fact that the unit circle has area 7.

45 Sketch the four-sided region bounded by the lines y =1, y=1x, y=2x and
y = 6 — x and find its area.

46 Find the number ¢ > 0 such that the region bounded by the curves y = x,y = —2x,and
x = ¢ has area 6.

47 Find the number ¢ > 1 such that the region bounded by the curves y = 1, y = x~2,
and x = c has area 1.

48 Find the number ¢ such that the region bounded by the curves y = x? and y = ¢ has
area 36.

49 Find the number ¢ > 0 such that the region bounded by the curves y = x* and y = ¢x
has area 9.

50 Find the value of ¢ between — [ and 2 such that the area of the region bounded by the
lines y = —x, y = 2x,and y = | + ¢x is a minimum.

51 Find the value of ¢ such that the line y = ¢ bisects the region bounded by the curves

y=x>andy=1.
52 Find the value of ¢ such that the line y = ¢x bisects the region bounded by the x-axis
and the curve y = x — x2,

NUMERICAL INTEGRATION

In numerical integration, one computes an approximate value for the definite
integral rather than finding an exact value. In this section we shall present two
methods of numerical integration, called the Trapezoidal Rule and Simpson’s Rule.

The Fundamental Theorem of Calculus gives us a method of computing
the definite integral of a given continuous function f from a to b. The method is to
find, by trial and error, an antiderivative F of f and then to use the equation

b
f JS@ydt = F(b) — F(a).

When the method works, it provides an exact value for the integral. However, the
method succeeds only if the antiderivative happens to be a function that can be
described in a simple way. For many integrals one cannot find a formula for the
antiderivative, and the method fails. Such integrals can still be computed approxi-
mately using numerical integration.

The Trapezoidal Rule and Simpson’s Rule can always be applied and do
not use the antiderivative. They are easy to carry out on a computer or hand calculator.
We already discussed one method of approximating the definite integral in Section 4.1,
the Riemann sum. The Trapezoidal Rule is a modified form of the Riemann sum,
which gives a much closer approximation for a given amount of effort. Simpson’s
Rule is a further modification that gives still better approximations.
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Let f be a continuous function on an interval I, and let a < b in I. By
definition, for each positive infinitesimal dx the definite integral

J;b f(x)dx

is the standard part of the infinite Riemann sum
b
> () dx,
b b
J f(x)dx = st[z f(x) dx].

In Section 4.1, examples were worked out to show that the finite Riemann sums
become very close to the definite integral when Ax is smali; that is, the finite Riemann
sums approximate the definite integral. In Section 4.2, we saw that the definite
integral is the limit of the finite Riemann sums as Ax — 0*:

b b
j f(x)dx = Aling+ Z f(x) Ax.

The Riemann sum, which is a sum of areas of rectangles, is a rather inefficient
approximation of the definite integral. We can usually get a much closer approxi-
mation with the same amount of work by adding up areas of trapezoids instead of
rectangles, forming the Trapezoidal Rule suggested by Figure 4.6.1. The Trapezoidal
Rule also provides a formula, called an error estimate, which tells us how close the
approximation is to the exact value of the definite integral.

Riemann Sum Trapezoidal Approximation

Figure 4.6.1

Choose a positive integer n and divide the interval [qg, b] into r subintervals
of equal length Ax = (b — a)/n. The partition points are a = Xg, X, X3,...,X, = b.
The trapezoidal approximation is the area of the region under the broken line con-
necting the points
(Xo»f(xo))a (xl ’f(xl))s crey (xrnf(xn))'
Since all of these points lie on the curve y = f(x), the broken line closely follows the

curve. So one would expect the area of the region under the broken line to closely

approximate the area under the curve.
Consider a single subinterval [x,,, x,,, ;] of width Ax. The region under the

line segment connecting the two points

(xm’ f(xm))5 (xm+ 1> f(xm+ 1))
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is a trapezoid and its area is

f(xm) +2f(xm+ 1) A

The sum of the areas of the trapezoids is a modified Riemann sum

if(x) +f2(x + Ax)A
_ J{xo) +f(x]) n Jx) + flxy) Tt S, 2y) + f(x,) Ax
2 2 2
=[5/ (o) + fOx) + fx2) + -+ fx,- ) + 2(x,)] Ax.

We thus make the definition:

DEFINITION

Let Ax = (b — a)/n evenly divide b — a. Then by the trapezoidal approxi-
mation to the definite integral jZf (x) dx we mean the sum

if(x)%-fz(x + Ax)

Ax = [3f(xo) + f0x1) + -+ + f(x,- 1) + 5./(x)] Ax.

The Trapezoidal Approximation of an integral j,’; J(x)dx can be computed
very cfficiently on most hand calculators. First compute the sum

%f(xo) + SOc) + flxy) + -+ %f(xn)

by cumulative addition. Then multiply this sum by Ax to obtain the Trapezoidal
Approximation,

THEOREM 1

For a continuous function f on [a, b), the trapezoidal approximation approaches
the definite integral as Ax — 0%, that is,

fbf(x) dx = lim ZQM

Ax—0* 2

PROOF Comparing the formulas for the trapezoidal approximation and the Riemann
sum, we see that

b . b
5 ﬂx)_”zw = V() Ax + (B f(x,) — 1/ (x0)) Ax

For dx positive infinitesimal, the extra term
(2.f (xn) = 3/ (x0)) dx
is infinitely small. It follows that

b i . b ’
dexzzjf(x)dx%fﬂx)dx

a
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From a practical standpoint, it is desirable to have a good estimate of error.
We shall first work an example and then state a theorem which gives an error estimate
for the trapezoidal approximation.

EXAMPLE 1 Approximate the definite integral

1
J J1+ x%dx.
0

Use the trapezoidal approximation with Ax = 1. We first make a table of
values of /1 + x2. The graph is drawn in Figure 4.6.2.

y
141 FVIEX -
1.2+
//
1.0-
LIV dx~1ason
12 3 o4 x
Figure 4.6.2 3 $ 3 3
x T+ <2 Ji+x2to term in trapezoidal
four places approximation
xp =0 1 1.0000 0.5000 = 1 (x)
x, =1 J1.04 1.0198 1.0198 = f(x,)
X, =2 116 1.0770 1.0770 = f(x,)
Xy =2 1.36 1.1662 11662 = f(x3)
Xy =% 1.64 1.2806 1.2806 = f(x,)
x5 =1 V2 1.4142 0.7071 = 1 7(xs)
| 5.7507 = total

Thus, 5f(xo) +f(X1) +f(x2) + f(x3) + f(xa) + 3f(x5) = 5.7507. Since
Ax = 1, the trapezoidal approximation is

(5.7507)+ + = 1.1501,

1
f 1+ x*dx ~ 1.1501.
0

The trapezoidal approximation can be made as close to the definite integral
as we want by taking Ax small. From a practical standpoint, however, it is helpful
to know how small we should take Ax in order to be sure of a given degree of accuracy.
For instance, suppose we need to know the definite integral to three decimal places.
How small must we take Ax in our trapezoidal approximation? The answer is given
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by the Trapezoidal Rule, which gives an error estimate for the trapezoidal
approximation.

The error in the trapezoidal approximation is the absolute value of the
difference between the trapezoidal sum and the definite integral,

if(X) +fx+ AY)

Error =
2

— Lbf(x) dx|.

a

An error estimate for the trapezoidal approximation is a function E(Ax), which is
known to be greater than or equal to the error.

Thus if E(Ax) is an error estimate, the trapezoidal sum is within E(Ax) of
the definite integral. If we want to be sure that the trapezoidal approximation is
accurate to three decimal places—i.e., the error is less than 0.0005—we choose
Ax so that E(Ax) < 0.0005. We are now ready to state the Trapezoidal Rule.

TRAPEZOIDAL RULE
Let f be a function whose second derivative " exists and has absolute value
at most M on a closed interval [a, b],
[ [ <M  fora<x<hbh

If Ax evenly divides b — a, then the trapezoidal approximation of the definite
integral of f has the error estimate
b—a
12

That is,

Zf(\) +f(x +AA)

) — 9 MAx)

( f(x)dx

a

The proof is omitted.

EXAMPLE 1 (Concluded) Welet f(x)= \/T+ x%. Then

oy X
S(x) \/I—T\—z
f—l—x - 2/«/ 1

I+ X2 (1 + x?3)¥%

Therefore | f"(x)| < 1 for all x in [0, 1]. We take M = 1 and use the error
estimate given by the Trapezoidal Rule,

b —

(1)1
IMAXP = — 1|4 = =
g MAIT =t (5) 300

Thus our approximation is within an accuracy of 1/300,

S |
f 1+ x%dx - 1.150; < 1/300 ~ 0.0033.
o

This shows that the integral is, at least, between 1.146 and 1.154.
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In this particular example we can even conclude that the integral is between
1.146 and 1.150 (rounded off to three places). That is, the integral is less than its
trapezoidal approximation. This is because the second derivative /“(x) = (1 + x2)~3/2
is always greater than 0, whence the curve is concave upwards and therefore y = f(x)
is always less than or equal to the broken line used in the trapezoidal approximation.
Actually, the value to three places is 1.148. This can be found by taking Ax = ;.

EXAMPLE 2 Consider the integral

Let f(x)=./1 — x%
By Theorem 1, we have

1

. x)+ flx + Ax n

fim 3 SO S A),T
ax—0*+ 53 2 2

However, the Trapezoidal Rule fails to give an error estimate in this case

because f(x) is discontinuous at x = =+ 1.

We now turn to Simpson’s Rule, for which the number of subintervals n
must be even. As before, we divide the interval [a, b] into n subintervals of equal
length Ax with the n + 1 partition points

A= XgyXqs---, Xy = b.

We shall use subintervals of length 2 Ax rather than Ax. On each of the n/2 sub-
intervals

[xO’ x2]’ [xls X4], Ty [xn—2> xn]s

of length 2 Ax we approximate the curve y = f(x) by a parabolic arc that meets the
curve at both endpoints and the midpoint of the subinterval, as shown in Figure 4.6.3.
We then add up the areas under each of the parabolic arcs to obtain an approximation
to the area under the curve, which is the definite integral. We begin with a lemma that
gives a formula for the area of the region under one parabolic arc.

-
T

Figure 4.6.3 X X, X3 Xy X5

LEMMA

The area of the region under the parabola through three points (u, r), (u + h, s),
and (u + 2h, t) (shown in Figure 4.6.4) is

229
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(e, 1)

(u+2h,1)
w+hs)
/‘
Figure 4.6.4 u u+h u + 2h

J
31-(1' +ds + 1),

The lemma is proved at the end of this section. Using the lemma, we find
that the area of the region under one parabolic arc from x, to x,,., is

A’,
—§U09+#uﬁo+ﬂnun

It follows that the sum of the n/2 regions under the parabolic arcs is a modified
Riemann sum,

3

aMw

[f(x)+4f(x+Ax) + f(x + 2Ax)]Ax

A
=§ﬁuua+quo+ﬂnﬂ+Uu»+qug+ﬂnn+~}

A
= —;ﬁ [/ (x0) + 4F (x1) + 2f (x2) + 41 (x3) + 2f(xa) + -+ + 4 (x,-1) + [(x,)].

This modified Riemann sum is Simpson’s approximation to the definite
integral. Note the sequence of coefficients,
1,4,2,4,2,...,2,4, 1.

Like the trapezoidal approximation, it is easily computed on a computer or hand
calculator.

THEOREM 2

For a continuous function [ on [a, b], Simpson’s approximation approaches
the definite integral as Ax — 0%,

b A
[ e = tim SE07G0) + 4100 + 266+ 47Gx5) + o+ F )

Simpson’s approximation is almost as easy to calculate as the trapezoidal
approximation, but is much more accurate. Simpson’s Rule is an error estimate
that involves the fourth derivative of the function and the fourth power of Ax.
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SIMPSON'S RULE
Suppose the function f has a fourth derivative on the interval [a, b] that has
absolute value at most M,
[fPX)| < Mfora<x<b.

If [a, b] is divided into an even number of subintervals of length Ax, then
Simpson’s approximation to the definite integral has the error estimate
b—a
180

M(Ax)

EXAMPLE 3 Use Simpson’s Rule with Ax = 0.25 to approximate the integral

1
A= f e 12 dx
[}

and find the error estimate.

The curve is the normal (bell-shaped) curve used in statistics, shown in
Figure 4.6.5. We are to divide the interval [0, 1] into four subintervals of
equal length Ax = 0.25. The following table shows the values of x and y
and the coefficient to be used in Simpson’s approximation for each partition
point.

e—x’/2
>
D
7
%%%
%% é
x4
0 1 x
Figure 4.6.5 Example 3
x e~z Coefficient
0.0 1.000000 1
0.25 0.969233 4
0.5 0.882496 2
0.75 0.754840 4
1.0 0.606531 1

The sum used in the Simpson approximation is then

[1.000000 + 4 « (0.969233) + 2« (0.882496) + 4« (0.754840) + 0.606531]
= 10.267816
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To get the Simpson approximation, we multiply this sum by Ax/3:
S = (10.267816) - (0.25)/3 = 0.855651.

To find the error estimate we need the fourth derivative of

-x¥2

y=e
The fourth derivative can be computed as usual and turns out to be
y(4) - (x4 _ 6x2 + 3)6—,‘-2/2'

On the interval [0, 1], ¥ is decreasing because both x* — 6x2 + 3 and
—x?/2 are decreasing, and therefore y* has its maximum value at x = 0
and its minimum value at x = 1,

maximum: Y0y =3

minimum: Y1) = —1.213061

The maximum value of the absolute value |y*'| is thus M = 3. The error
estimate in Simpson’s Rule is then

b—a 4 1
M =
fgg A 180

This shows that the integral is within 0.000065 of the approximation; that is,

«(0.25)* « 3 = 0.000065.

1
f e dx = 0.855651 + 0.000065,
0
or using inequalities,

1

0.855586 < f e™* 12 dx < 0.855716.
0]

For comparison, a more accurate computation with a smaller Ax shows

that the actual value to six places is

1
J e~ %12 dx = 0.855624.
0

The Trapezoidal Rule for this integral and the same value of Ax = 0.25

give an approximate value of 0.85246 for the integral and an error estimate
of 0.00521.

PROOF OF THE LEMMA  The algebra is simpler if the y-axis is drawn through the
second point, so that v 4+ h = 0, and the three points have coordinates

(—h, 1), (0, s), (h, t).

Suppose the parabola has the equation y = ax? + bx + ¢. Then the area

under the parabola is
h
A= (ax*+ bx + ¢)dx
~h
_ax3+bx2+cx f
-3 2

—-h

2
=3 ah® + 2ch.
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When we substitute the coordinates of the three points (—h,r), (0,s), (h, 1)
into the equation for the parabola, we obtain the three equations
r = ah® — bh + ¢,
s=c,
t = ah®> + bh + c.
Add the first and third equations and solve for a:
¥+t =2ah?* 4+ 2c
r+t—2

4=

Finally, substitute the above expression for a and s for ¢ in the equation
for the area:

2
A= gah3 + 2ch

s S A 2¢ 2
S iy 2
th 3 1 2ch

r+t—2c+ 6¢
S

h

= g(i + 4c + 1).

h
=§(7'+ 4s + 1).

PROBLEMS FOR SECTION 4.6

Approximate the integrals in Problems 1-20 using (a) the Trapezoidal Rule and (b) Simpson’s
Rule. When possible, find error estimates. If a hand calculator is available, do the problems
again with Ax = 0.1.

2 2
1 f xdx, Ax =05 2 j x3dx, Ax =05
0

0

1

2 3y
3 j JxP - ldx, Ax =025 4 f ;dx, Ax =05
1

2 i
5 J- —lsdx, Ax = 0.25 6 J.x x + ldx, Ax =025
1 +x o
sy 1
7 f—dx, Ax = 0.5 8 f x3 4+ 1dx, Ax=1
 x+1 o
1 4
9 j./x“-}-ldx, Ax =1 10 J 14+ I/xdx, Ax=0.5
0 1
6 1 12 1
11 j dx, Ax=1 12 j dx, Ax =2
0 x+1 o 2x+3
b ! dx, A 3 ' ! dx, A 1
13 f X, Ax = 14 f x, Ax =
L oX 4 X 0 24 /x

233
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J sinf8d6, Ax=rn/2, =n/10 16 J sin? 840, Ax = m/2, =/10
0 0
1 L
j e“dx, Ax =14 18 J edx, Ax=1%
0 0
2 2
j Inxdx, Ax=1% 20 f In(1/x)dx, Ax =1
1 1

Let f be continuous on the interval [a, b] and let Ax = (b — a)/n where n is a positive
integer. Prove that the trapezoidal sum is equal to the Riemann sum plus i(f(b) —
f(a@)) Ax, that is,

b

b
L) + flx + Ax) Ax =(Zf(X) Ax

a

+3(/(b) — f(a)) Ax.

Show that if /(@) = f'(b) then the trapezoidal sum and Riemann sum are equal.

Prove that for a linear function f(x) = kx + ¢, the trapezoidal sum is exactly equal to
the integral.

Show that if f(x) is concave downward, f”(x) > O, then the trapezoidal sum is less
than the definite integral of f(x).

Show that for a quadratic function f(x) = ax? + bx + ¢, Simpson’s approximation
is equal to the definite integral.

Show that for a cubic function f(x) = ax® + bx? + cx + d, Simpson’s approximation
is still equal to the definite integral.

PROBLEMS FOR CHAPTER 4

1
Evaluate } 2 e Ax, Ax =1/4
i0 1
Evaluate }'! 2Ax% Ax=2
Evaluate 3? , 2" Ax, Ax =1

Evaluate 2 x./x + | Ax, Ax =172

If F'(x) = 1/2x ~ 1)*for all x # 1/2, find F(2) — F(I).

IfG(t) = /4t + Lforallt > —1/4, find G(2) — G(O).

A particle moves with velocity v = (3 + 2\/;)24 How far does it move from times ¢, = 1
tot, =57

A particle moves with velocity v = 2, /t* — 1. How far does it move from times ¢, = 1
tot, =47

A particle moves with velocity v = (t + 1)(2t + 3). If it has position y, = 0 at time
t =0, find its position at time r = 10.

A particle moves with acceleration a = 1/t* If it has velocity v, = 4 and position y, = 2
at time t = 1, find its position at time t = 3.

Find the area of the region under the curve y = 1/\/;, I<x<4
Find the area of the region under the curve y = \ﬂ* - x\/E, O0<x< L.

In Problems 13-30, evaluate the integral.

13

[ =00+ 14 J<z+%><2—%> ix
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X 1/3
f ——(xz Iy dx 16 J(4x + DM dx
J(u/ﬂ/l — 3u®) du 18 fx‘z‘/2+x“dx

2x + 1

J‘(\/2t+ —\/21"-1)(1[ 20 mdx
fy\/y+2dy 22 j(l — /) *dx
x .

f cos (f) dx 24 f\/)_csm ﬁdx

2
1
f e 'dt 26 J 2 dt
t—1
4 6
f (y+\/;)dy 28 J (x//x* — Ddx
0 2
1 1
f e** dx 30 f x sin (x?) dx
0 0
x 3x
Differentiatef \/mdt 32 Differentiate | (£2/(t> — 1)) dt
1 o

4 2
Differentiatef \/)‘Q /x — 1dx 34 Diﬂ’erentiateJ. (1/(x + \/})) dx

¥
Find the function F such that F'(x) = x — 1 for all x, and the minimum value of F(x)is b.
Find the function F such that F"(x) = x for all x, F(0) = 1, and F(1) = 1.

Find the function F such that F"(x) = 6 for all x, F(x) has a minimum at x = 1, and the
minimum value is 2.

Find all functions F such that F"(x}) = 1 4+ x~ 3 for all positive x.

Find the function F such that
0 if 0
Fl) = { ifx <

x ifx>0
and F(0) = 1.
Find the value of b such that the area of the region under the curve y = x(b — x),
0<x<bisl
Suppose f is increasing for ¢ < x < b, and Ax = (b — a)/n where n is a positive integer.
Show that

< [fO®) - f(a)] Ax

Zf(x)Ax—Jf(x)dx

Suppose f is continuous for a < x < b. Show that

b
< j £ () dx.

J-b f(x)dx
Find the area of the top half of the ellipse x?/a® + y?/b> = 1 using the formula
m=2f", /1~ udu

Evaluate {* | (1 — x)**(1 + x)'/? dx using the formula = = 2[* | /1 — u* du.

Find dy/dx if y = _[f) x f(t) dt.

Suppose f(t) is continuous for all r and let G(x) = {7 (x — t)f(r)de. Prove that
G'(x) = f(x).

Prove that for any continuous functions f and g,
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b

b
Jlx)gx)dx < AZJ J(xPdx + Bzf g(x)? dx.

ab

2ABJ

{

Prove Schwartz' Inequality,
b ab T
[ Slxgx)dx < Jf A/'(»\‘)Zd-\‘f g(x)* dx.

Hint: Use the preceding problem.

Suppose [ is continuous and dx is positive infinitesimal. Show that
b b
Y S+ ddx)de x J. [(x)dx.

Hint. For each positive real c,
1
flx)—c <f(x + de) <f(x) + e

Use this to show that

b b 1 b
[ Jx)dx —clb—ay <y, f’<.\‘ + de) dx < f J)dx + cb — a).

v

Suppose fis continuous, n is an integer, and dx is positive infinitesimal. Prove that

b b
Y f(x 4 ndx)dx = J f(x) dx.



