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VECTOR CALCULUS

DIRECTIONAL DERIVATIVES AND GRADIENTS

The partial derivatives dz/0x and 0z/dy are the rates of change of z = f(x, y) as the
point (x, y) moves in the direction of the x-axis and the y-axis. We now consider the
rate of change of z as the point (x, y) moves in other directions.

Let P(a, b) be a point in the (x, y) plane and let

U = cosui + sin oj

be a unit vector, o is the angle from the x-axis to U (see Figure 13.1.1). The line through
P with direction vector U has the vector equation

X=P+ U
or in parametric form,
€))] X =a+ tcosa, y=>b+ tsino.
y
U
P
X
Figure 13.1.1 The unit vector

At t = 0 we have x = g and y = b. If we intersect the surface z = f(x, y) with the
vertical plane through the line (Equation 1), we obtain the curve

z=f(a+ tcosa, b + tsina) = F(t).

785
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The slope dz/dt = F'(0) of this curve at t = 0 is called the slope or derivative of fin
the U direction and is written fy,(a, b) (Figure 13.1.2).

Figure 13.1.2 x

z The directional derivative

Here is the precise definition.

DEFINITION

Given a function z = f(x,y) and a unit vector U = cosai + sin o, the
derivative of f in the U direction is the limit

e b) = [imf(a + tcose, b + tsina) — f(a, b)
U\ - .

-0 t

Jula, b) is called a directional derivative of f at (a, b).

The partial
i and j directions:

f:\'(a3 b)

fila.b)

EXAMPLE 1 Find
vector

derivatives of f(x, y) are equal to the derivatives of f(x, y) in the

fla + Ax,b) — f(a, b)

= |

Ax—0 AX
~lim fla+tcos0,b + tsin0) — f(a, b) — [l b)
-0 I
— llm f(as b + A}‘) - f ((l, b)
Ay-0 A}'
fla+ tcosg,b + rsing — f(a, b)
= lim — — = _fJf(a. b).

=0 !

the derivative of f(x, y) = xy + 32 in the direction of the unit

3
U=%»i+2j.
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3 1
f(x+§t,y+§t) — f(x,y)

t

(x + ?l)(y + 1t) + (y + lt)h —(xy + %)

. 2 2
= lim
t—0 t

V3 \ﬁzz +yr+1r2

1
oxt + Yoy 4 M

Sl ) = lim

.2 2 4 4
=-im--
=0 t
1 \/E \ﬁ 1
:I — —_— h— -
,‘fészr 2)7+ 4t+y+4t
1 \/g
== ~— + 1)y
et [ )y

There is an easier way to find the directional derivatives of f(x, y) using the
partial derivatives. It is convenient to combine the partial derivatives into a vector
called the gradient of f.

DEFINITION

The gradient of a function z = f(x, y), denoted by grad z or grad f, is defined by

rad oz, + oz,
adz = —i + —j.
8 Ox dy
In functional notation,

grad f = f(a,b)i + f(a,b)j.

Thus grad f is the vector valued function of two variables whose x and y
components are the partial derivatives f, and f, (Figure 13.1.3). Sometimes the
notation Vf or Vz is used for the gradient.

/'
al
Cz 5 13
& ¢
tz g o
Figure 13.1.3 Ox

THEOREM 1

Suppose z = f(x, y) is smooth at (a, b). Then for any unit vector U = cosai +
sin aj, the directional derivative fy(a, b) exists and

Jola, by =U.grad f = %cosa + %sina.
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PROOF Let U = cosai + sin «j. Write x, y, and z as functions of

X=a+ tcosa, y=a+ tsinc,
z=f(a+ tcosea, b + tsinuw)

Then by the Chain Rule,

Il b)_dz_ﬁzdx+6z dy —azcosa—i—%sina
VWA =0 Toxdr Ty di T ox ay S

EXAMPLE 2 Find the gradient of f(x, y) = xy + y? and use it to find the derivative

in the direction of
\ﬁ_ 1,
U= Tl + 5.]
£l y) =y f0y) =x + 2.
grad f(x, y) = yi + (x + 2p)j.
/3 V3

l 1
Julx, y) = 7)’ + i(x + 2y) = EX + 5 + 1)}

We can use Theorem 1 to give a geometric interpretation of the gradient
vector. Let us assume that f(x, y) is smooth at a point (g, b), and see what happens
to the directional derivatives fy(a, b) as the unit vector U varies. If both partial
derivatives f.(a, b) and f/(a, b) are zero, then the gradient vector and hence all the
directional derivatives are zero. Suppose the partial derivatives are not both zero,
whence grad f # 0. Then

Ju=U-grad f = |grad f| cos 0

where 0 is the angle between U and grad f. Therefore f;, is a maximum when cos 0 = 1
and 8 = 0, a minimum when cos 8 = —1 and 6 = xn, and zero when cos 0 = 0 and
) = n/2. We have proved the following corollary.

COROLLARY 1

Suppose z = f(x, y) is smooth and grad f # 0 at (a,b). Then the length of
grad f is the largest directional derivative of f, and the direction of grad f
is the direction of the largest directional derivative of f.

On a surface z = f(x, y), the direction of the gradient vector is called the
direction of steepest ascent, and the direction opposite the gradient vector is called
the direction of steepest descenr (Figure 13.1.4).

COROLLARY 2

Suppose z = f(x, y) is smooth and 0z/dy # 0 at (a, b). Then grad f is normal
(perpendicular) to the level curve at (a,b). That is, grad [ is perpendicular
to the tangent line of the level curve (Figure 13.1.5).



13.1 DIRECTIONAL DERIVATIVES AND GRADIENTS 789

15

steepest ascent

grad f

Figure 13.1.4 X

¢

Figure 13.1.5

PROOF By the Implicit Function Theorem, the level curve
fxy) — flab)=0
has the tangent line

Oz, _ z(y _ by —
ax(x a)+ay(y b)=0.

(a, b) is on this line. Let (x,, yo) be any other point on the line. Then
D = (xo — a)i + (yo — b)j

is a direction vector of the line, and

D-grad f = (xo — a)& + (Yo — b)g; = 0.

Thus grad f is perpendicular to the direction vector D.
Water always flows down a hill in the direction of steepest descent. Thus

on a topographic map, the course of a river must always be perpendicular to the
level curves, as in Figure 13.1.6.
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Figure 13.1.6

EXAMPLE 3 A ball is placed at rest on the surface z = 2x? — 3y® at the point
(2, 1, 5) (Figure 13.1.7). Which direction will the ball roll?
The ball will roll in direction of steepest descent, given by —grad z.

gMzzgé+g§=4ﬁ—6ﬁ=8h—ﬁ

—grad z = —8i + 6j.

N

2, n

Figure 13.1.7

The unit vector in this direction is

_ St 8. 6,

T /871 62 10 " 10

Directional derivatives and gradients for functions of three variables are

similar to the case of two variables.

DEFINITION

Given a real function w = f(x, y, z) and a unit vector

U = cosai + cos fij + cos yk
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in space, the derivative of f in the direction U and the gradient of f at (a, b, c)
are defined as follows.

fl@+ tcosa,b + tcos B, ¢ + tcosy) — fla, b, c)
t 3
ow, ow

rad _6w,+ +
Bradw=ox' "oyl T %z

fula, b, c) = lim
t=>0

THEOREM 2

Suppose w = f(x, y, 2) is smooth at (a, b, ¢). Then for any unit vector
U = cosai + cos §j + cos 7k,
the directional derivative fy(a, b, ¢) exists and

ow

_I_@w 08
aycosﬁ 5, 087

i)
Sula, b,c)=U-grad f = Egcosa +

Corollaries 1 and 2 also hold for functions of three variables. In Corollary 2,
grad f is normal to the tangent plane of the level surface f(x,y,z) — f(a,b,c) =0
at (a, b, c).

EXAMPLE 4 Given the function
W=2zCcosX + zsiny

at the point (0, 0, 3), find the gradient vector and the derivative in the direction

of
2 1, 2
ow ow ow
dw =20 L oW oWy
grad w 6xl+6y"+6z

= —zsinxi + zcos yj + (cos x + sin y)k

I

—3.5in0i + 3-cos0j + (cos 0 + sin O)k
3+ k.

It

2 1 2
fU(0,0,3)=U'gradw=§-0—~~3+—-1 = —

1
3 3 3
EXAMPLE 5 Find a unit vector normal to the surface
z=x2+2y" + 1
at (1,2, 10) shown in Figure 13.1.8.
Let . fGoy,2)= —z + x* +2y* + 1.

By Corollary 2, grad f'is normal to the given surface —z 4+ x* + 2y> + 1 = 0.
We compute

grad f = 2xi + 4yj — k.
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Zl (1, 2,10

Figure 13.1.8 X

At (1,2,10), grad f = 2i + 8j — k. The required unit vector is found by
dividing grad f by its length,

248 -k 2i+8 —k

2P Jeo

PROBLEMS FOR SECTION 13.1

In Problems 1-14, find the gradient vector, grad f, and the directional derivative f;.

1 Sl yy=x*+ 2 U='\;r/2_~'

2 fy)=x2+y% U= %

3 i y) = x%y3, U= 31— 4§

4 Sy =ty U=2 JSF 4

5 f(x,y) =cosxsiny, U= 1:;323
ai + bj

6 flx,p) = e~ U= o
a® + b?

7 = ST U

Ng
9 f(X, A Z) = Xyz, U= %;2](
10 Sy z) = x2 + ¥ 4 22 p—ititk

J3
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11

12

13
14
15
16
17
18
19

20
21

22
23

25

13.2 LINE INTEGRALS

1 2 3 i—k
pz)=—+-+-, U=
fxy2) =~ ;2 NG
1 ) 1+2+3 U i—-j+k
X Y,z2) = - s =T
PEEITYT . v

flx,y,2) = /x* + y? + 22, U = cosai + cos ffj + cos yk

f(x,y,2) = Ax + By + Cz, U = cosuai + cos fij + cos yk

Find the derivative of z = \/;/y at the point (1, 1) in the direction U = (i — 3j)/\/ﬁ.
Find the derivative of z = 1/(x + y)at the point (2, 3) in the direction U = (—i — j)/ﬁ.
Find the derivative of z = 2x? + xy — y” at the point (2, 1) in the direction U = ai + bj.
Find the derivative of w = \/xyz at (1, 1, 1) in the direction U = (2i + j + 2k)/3.

Find the derivative of w= ./4 — x2 — y2 — z2 at (1,1,1) in the direction U =
i —J+K/L/3

Find the direction of steepest ascent on the surface z = 2x? 4+ 3y? at the point (1, — 1).

Find the direction of steepest descent on the surface z = ./4 — x?> — y? at the point
1 1).

Find a unit vector normal to the sphere x> + y* 4+ z? = 9 at the point (1, 2, 2).

Find a unit vector normal to the ellipsoid 4x2 + y* + 122 = 3 at the point (2, 1, 3).
Given a unit vector U = ai + bj and a function z = f(x, y) with continuous second
partials, find a formula for the second directional derivative fy(x, ), i.e., the derivative
of fi(x, y) in the direction U.

Given unit vectors U = ui + u,j and V = v,i + v,j, and a function z = f(x, y) with
continuous second partials, find a formula for the mixed second directional derivative

(fov(x, y).

LINE INTEGRALS

There are two ways to generalize the integral to functions of two or more variables.
One way is the line integral, which we shall study in this section. The other is the
multiple integral, which was studied in Chapter 12.

The line integral can be motivated by the notion of work in physics. The

work done by a constant force vector F acting along a directed line segment from
A to B is the inner product

W=F-S

where S is the vector from A to B (Figure 13.2.1).

Figure 13.2.1

793



794 13 VECTOR CALCULUS

If the force vector

F(x, ) = P(x, )i + Q(x, y)i

varies with x and y and acts along a curve C instead of a straight line S, the work
turns out to be the line integral of F along the curve C (Figure 13.2.2).

Figure 13.2.2

The intuitive idea of the line integral is an integral
W= f F-dS
C

of infinitesimal bits of work
dW = F - dS

along infinitesimal pieces dS of the curve C. We now give a precise definition.
An open rectangle is a region of the plane of the form

a, <X < d,, by <y<b,

where the a’s and b’s are either real numbers or infinity symbols (Figure 13.2.3).

yj
by

by 7

[
™

|

|

t
aj

An open rectangle
Figure 13.2.3
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DEFINITION

A smooth curve from A to B is a curve C given by parametric equations
x=g(s), y=hs) 0<s=1L,
where A= (g0,hO), B =(g(L)hL),
L = length of curve,
s = length of the curve from A to (x, y),
dx/ds and dy/ds are continuous for 0 < s < L,

We call A4 the initial point and B the terminal point of C. A smooth curve from
A to B is also called a directed curve, and is drawn with arrows.
Given s and an infinitesimal change As = ds, we let,
Ax = g(s + As) — g(s), dx = g'(s) ds,
Ay = h(s + As) — h(s), dy = K(s)ds,
AS = Axi + Ayj, dS = dxi + dyj.

Thus AS is the vector from the point (x, y) to (x + Ax, y + Ay) on C, and dS is an
infinitesimal vector tangent to C at (x, y) (Figure 13.2.4).

y
B
C
A
X
A smooth curve
Figure 13.2.4
DEFINITION
Let F(xs )’) = P(xs ,V)i + Q(xa Y).i

be a continuous vector valued function on an open rectangle D and let C be a
smooth curve in D. The line integral of ¥ along C,

JF-dSzf Pdx + Qdy,
c c

is defined as the definite integral

795
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LL( E N Qd\)

Notice that the inner product of F and dS is
F.dS = (Pi - Qj)-(dxi + dyj) = Pdx 4+ Q dy.

This is why we use both notations [ F+dS and [ P dx + Q dy for the line integral.

DEFINITION

The work done by a continuous force vector F(x, y) along a smooth curve C
is given by the line integral
W= f F.ds.
C

JUSTIFICATION We can justify this definition by using the Infinite Sum Theorem
from Chapter 6. Let W(u, v) be the work done along C froms =utos =1
(Figure 13.2.5). Then W(u, v) has the Addition Property, because the work
done from u to v plus the work done from v to wis the work done from u to w.
On an infinitesimal piece of C from s to s + As, the work done is

AW = F(x,v) - AS =~ F(x, y) - dS (compared to As).

d>
But F(x,y)-dS:de+Qdy=(P—\—FQ )

Figure 13.2.5 Work W

By the Infinite Sum Theorem,
W= f i, ) ds = j F.dS.
C

The next theorem is useful for evaluating line integrals. It shows that any
other parameter ¢ can be used in place of the length s of the curve. Figure 13.2.6
illustrates the four parts of this theorem.
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Y y B(XO) yl)
F
A(xo, o) ; B(xy, ya)
F
A(xo, o)
x
(i) Horizontal (if) Vertical
Yy
x
(#ii)y Parametric curve
¥y y
F B F B
A C A C,
J, F-as - F-ds
(iv) Reversing the curve direction
Figure 13.2.6
THEOREM

Let { F - dS be a line integral.

(i) If Cis a horizontal directed line segment xo < x < Xx;,y = yq, then

f F-dS =.f P(x, y,) dx.
C X0

(il If Cis a vertical directed line segment X = xq, Yo < y < ¥,, then

LF-dS = f: O(xg, y)dy.

(iii) If C is traced by a parametric curve

y = h(1),

x = g(t),

G <t=<¢

where dx/dt and dy/dt are continuous, then

797
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LF-dS=£U (P‘;wa )

(iv) Reversing the curve direction changes the sign of a line integral. That is,
if C, is the curve C with its direction reversed, then

j F.dsS = —J F.dS.
Cy C

Remark The integrals J P(x, yo) d j Q(xo, y)dy
are sometimes called partial integrals.

PROOF (i) and (ii) are special cases of (iii). (ili) is proved by a change of variables,

desf p dy)ds
dx dy\ds
—J;G P?+Qd)dtdt
dx
=J Pt %u )

(iv) is true because reversing the limits changes the sign of an ordinary
integral.

EXAMPLE 1 Find the line integral of
F(x, y) = sin x cos yi + ™j
along
(a) The horizontal line C,:0 < x < 7, y = =/3 (Figure 13.2.7(a)).
(b) The vertical line C,:0 < y < 1, x = 2 (Figure 13.2.7(b)).

y 14
| S T I C,
X v X
Figure 13.2.7 (a) (b)

We use partial integrals.

(a) J F~dS=J sin x cos — dx
Cy 0 3

:J Lsinxdx = —écosx} = —3—-1-1)=L

0 0
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1

1
(b) F.dS = j e?dy = %ezy} = Le? - 1).
0

Cz 0

Given two points A and B, there are infinitely many different smooth curves
C from A to B. In general the value of a line integral will be different for different
curves from A4 to B.

EXAMPLE 2 Let the force vector Fbe F = —yi + xj.
F is perpendicular to the position vector xi + yj but has the same length
as xi + yj. Find the work done by F along the following curves, shown in
Figure 13.2.8, from (0, 0) to (1, 1):
(a) C,:Theliney=x,0<x<1.
(b) C,:Theparabolay = x*0< x < 1.
(©) C;:Thecurvey = Yx,0<x < 1.

y y y
(1. (1, 1) (1,1
C
C, Cs s
0 X o X (o] x
(a) (b) (<)
Figure 13.2.8

(@ Putx=ty=rt

lef F.dS = —ydx + xdy
C1 Cl

= LI(—t +t)dt =0.

The work is zero because the force F is perpendicular to dS along C, .
(b) Putx=ty=1¢%

W, =f —ydx + xdy
Ca

1 1
=J (—t2+t-2t)dt=f t2dt = 1.
0

¢}

() Putx=1y=rt

1
W3=f —ydx+xdy=J. (—t362 + t3 dt
. Cs 0

1
:f —283dt = -1

[
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A piecewise smooth curve is a curve C that can be broken into finitely many
smooth pieces C;, C,, ..., C, where the terminal point of one piece is the initial
point of the next (Figure 13.2.9). For example, a curve formed by two or more sides
of a rectangle or a polygon is piecewise smooth. The line integral of F(x, y) over a
piecewise smooth curve C is defined as the sum

JF-dS= F.dS + F-ds+---+f F.dS.
C Cy

Ca n

Y B
Cy

Cs

Cl C2

Figure 13.2.9 A Piecewise Smooth Curve from A to B

EXAMPLE 3 Find the line integral

j xydx + x?ydy
c

where C is the rectangular curve from (2, 5) to (4, 5) to (4, 6).

We see in Figure 13.2.10 that C is a piecewise smooth curve made up of a
horizontal piece

C;:2 < x <4,

<
I
o

and a vertical piece
Cyix =4, 5<y<e.

The line integral is the sum of two partial integrals,

(4, 6)

2,5
@24 5)

Figure 13.2.10
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4 6
fF.dsz F-dS+J F-dS:f x-5dx+f 4*.ydy
C Cy C2 2 3
4 6
2 5

A simple closed curve is a piecewise smooth curve whose initial and terminal
points are equal and that does not cross or retrace its path. Examples of simple
closed curves are the perimeters of a circle, a triangle, and a rectangle. The value
of a line integral around a simple closed curve C depends on whether the length s
1s measured clockwise or counterclockwise, but does not depend on the initial point
(Figure 13.2.11). The clockwise and counterclockwise line integrals of F around a
simple closed curve C are denoted by

3@ F.dS, 95 F.dS.
C C

C
F F
gg F-dS @ F-dS
C F F
gng-ds gIgF-ds

Figure 13.2.11 Integrals around Simple Closed Curves

THEOREM 2

If C is a simple closed curve, then

fﬁ FodS = —9€F-ds
C C

and the values do not depend on the initial point of C.

PROOF The equation in Theorem 2 holds because reversing the direction of the
curve changes the sign of the line integral. Suppose C has the initial point A,
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and its direction is clockwise. Let A, be any other point on C, and let C,
and C, be as in Figure 13.2.12.

With the initial point A4,

éF-dS= F.dS + F . ds.
C Cy

Cz

With the initial point A,,

‘:ﬁF-dS=J F-dS-{-J~ F.d4Ss.
c Cy Cy

These are equal as required.

Ce

Figure 13.2.12

EXAMPLE 4 Find the line integral

é; —ydx + xdy
C

where C is the circle x2 + y* = 4, shown in Figure 13.2.13.

N
N

We may start at any point of C. Take (2, 0) as the initial point. Then C has
the parametric equations

x = 2cosf, y = 2sin 0, 0<0<2n

Figure 13.2.13

As # goes from O to 2n, (x,y) goes around C once counterclockwise as
required.
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2n dx dy
éc—ydx+xdy=J.o ( d9+x—)d9

2n

= (—2sin 8(—2sin 8) + 2 cos 6(2 cos B)) do
0
2n 27

= 4sin20+400329d9=J 440 = 8x.

0 0

Line integrals in space are developed in a similar way. Instead of an open
rectangle we work in an open rectangular solid. A smooth curve C in space has three
parametric equations with continuous derivatives,

x = g(s), y = h(s), z = [(s), 0<s< L
Given a continuous vector valued function
F(x, y,z) = P(x, y, 2)i + Q(x, y, 2)j + R(x,y, 2)k

and a smooth curve C in space, we define the line integral of F along C, in symbols,

fF-dS:f Pdx + Qdy + Rdz,
(o

dx dz
R— |ds.
as L (Pd + Q + ds) s

EXAMPLE 5 Find the line integral
J. (x + y)dx + Edy + xydz
c x

along the spiral C given by

IA
IA

X = COSt, y =sint, z =2, 0

YIS

The line integral is

/2 2t
f (cost + sint) d(cost) + —— d(sin t) + (cos ¢ sin ) d(2t)
0 cos ¢
/2
= f (—costsint — sin?t + 2t + 2cos ¢t sint) dt
0

1. 2 1 1. 2 2 w2
= ——SM“f — |t — -sinfcost| + t° + sin“ ¢
2 20 2 0

1'zt 1t+1sit £+ 2 "

= —SIin - = —SIn it Cos

2 2772 o
2

L
4 .

B} =
1A

803
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PROBLEMS FOR SECTION 13.2

Evaluate the following line integrals.

1

10

11

12

13

14

15

16

17

18

19

20

Jxe"dx+x2ydy, C:0<x<2y=3

c

Jxe"dx+x2)vd)', C:0<y<4,x=4

c

fxe"dx+x2}'(1)’, C:ix=3ty=120<t<1
c

jxe"dxi—xzydy, Cix=6,y=¢,-1<1t<1
c

j(cosxi+sinyj)-dS, Cix=ty=10=<r<1
C

f (i + ! ) «dS, C is the rectangular curve from (1, 1) to (3, 1) to (3, 6).
ciXxy x+y

fi+ Llds, Cox=2uy=5,1<1<4
clxy Tx 4y

j(iju ) )-dS, Cix=ty=t1<1<4
c\xy x4y

é ydx — xdyand{j; ydx — xdy, C:x*+y? =1
C C
ﬂg ydx + xy¥dy, C:x2+y2=4
C
€§ (x + y)dx — 3xydy, C:x*+y* =4
C
é; (e cos yi + e"sin pj) +dS, C is the square with vertices (0, 0), (1,0), (1, 1), (0, 1),
C
SE (/Xyi + x2y%)-dS. C is the triangle with vertices (0, 0), (1, 1), (1, 0).
C

Jyzdx—k xzdy + xydz, Cix=ty=t3z=030<r<1,
C

J yzdx + xzdy + xydz, C:x=costy =sint,z=tant,0 <t < n/4,
c

j (xI + yj + zk)-dS, C is the rectangular curve from (0,0,0) to (1,0,0) to (1, 1,0
C
to (L, 1, 1)

Find the work done by the force F = (xi + yj)/(x* + y?) acting along a straight line
from (1,1) to (2,5)

Find the work done by the force F = (i/(y + 1)) — (j/(x + 1)) acting along the parabola
xX=ty= 20<r <1,

Find the work done by the force F = x2i + y?j + z°k acting along a straight line from
(0,0,0) to (3, 6, 10).

Find the work done by the force F = yi + zj + xk along the curve x = \/? y = 1/\ﬂ,
z=11=<1<4
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13.3 INDEPENDENCE OF PATH

For functions of one variable, the Fundamental Theorem of Calculus shows that
the integral is the opposite of the derivative. In this section we shall see that the line
integral is the opposite of the gradient.

By a vector field we mean a vector valued function

F(x,y) = P(x, y)i + Q(x, y)i

where P and Q are smooth functions on an open rectangle D.

For example, if f(x, y) has continuous second partials on D then its gradient
grad f is a vector field.

Many vector fields are found in physics. Examples are gravitational force
fields and magnetic force fields, in which a force vector F(x, y) is associated with each
point (x, y). Another example is the flow velocity V(x, y) of a fluid. A vector field in
economics is the demand vector

D(x’y) = Dl(xs }’)i -+ DZ(X’ y)j,

where D,(x, y) is the demand for commodity one and D,(x, y) is the demand for
commodity two at the prices x for commodity one and y for commodity two. All of
the examples above have analogues for three variables and three dimensions (and
the demand vector for n commodities has n variables and n dimensions).

DEFINITION

f(x, y) is a potential function of the vector field Pi + Qj if the gradient of f is
Pi + 0Qj.

Not every vector field has a potential function. Theorem 1 below shows
which vector fields have potential functions, and Theorem 2 tells how to find a
potential function when there is one.

Using the equality of mixed partials, we see that if the vector field Pi + Qj
has a potential function, then dP/0y = 0Q/0x. If fis a potential function of Pi + Qj,

we have
of . of, . .
df=>2 Zi=—p !
grad f 6Xl-ﬁ-ayj 1+ Qj

oP f  f 00

dy  dyox 0Oxdy Ox’

EXAMPLE 1 The vector field — yi + xj has no potential function, because

o_d-y_ , 0Q_ox_

dy oy ’ ox  ox
THEOREM 1
P40

A vector field Pi + Qj has a potential function if and only if 6_y =
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We have already proved one direction. We postpone the proof of the other
direction until later.

By definition, grad f = Pi + Qj if and only if df = P dx + Q dy. In general,
an expression P dx + Q dy is called a differential form. A differential form is called
an exact differential if it is equal to the total differential df of some function f(x, y).

Using this terminology, Theorem 1 states that: Pdx + Qdy is an exact
differential if and only if 0P/0y = 0Q/0x.

EXAMPLE 2 Test for existence of a potential function:
x?yi + sin x cos yj.
cP o o(x%y)

ey dy

-2

(o)

dQ  O(sin x cos y)
— = —————— = COS XCOS J.
éx Cx

There is no potential function.

EXAMPLE 3 Test for existence of a potential function:
323+ (yF + 2x7y)
opP _ 8(3x%y?) _ 62

o

Q0 Ay* + 2x%y) 2
— =" = 6x%y
Ox Cx

There is a potential function.

THEOREM 2 (Path Iindependence Theorem)

Let Pi + Qj be a vector field such that 6P/dy = 0Q/0x and let A and B be
two points of D.

(i) Let f be a potential function for Pi 4+ Q]. For any piecewise smooth
curve C from A to B,

f Pdx + Qdy = f(B) — f(A).
C

Since the line integral in this case depends only on the points A and B and
not on the curve C (Figure 13.3.1), we write

B
J. Pdx + Qdy = j Pdx + Qdy.
¥ c
(ii) g is a potential function for Pi + Qj if and only if g has the form

(x,y)
g(x,_v):f Pdx+ Qdy + K

A

for some constant K.
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/ABP dx +Q dy

Figure 13.3.1 Independence of path

Theorem 2 is important in physics. A vector field of forces which has a
potential function is called a conservative force field. The negative of a potential
function for a conservative force field is called a potential energy function. Gravity,
static electricity, and magnetism are conservative force fields. Part (i) of the theorem
shows that the work done by a conservative force field along a curve depends only
on the initial and terminal points of the curve and is equal to the decrease in potential
energy.

Mathematically, Theorem 2 is like the Fundamental Theorem of Calculus,
It shows that the line integral of grad f along any curve from A to B is equal to the
change in the value of ffrom A to B. When 4 = B, we have an interesting con-
sequence:

If f(x,y) has continuous second partials then the line integral of the gradient
of f around a simple closed curve is zero,

9€ grad f+dS = 0.
C

Using part (ii), we can find a potential function f(x, y) for a vector field
Pi + Qjin three steps.

oP oQ
— == D.
When to Use 3y ax on

Step 7 Choose an initial point A(a, b) in D.

Step 2 Choose and sketch a piecewise smooth curve C from A4 to an arbitrary
point X{(xq, yo)-

Step 3 Compute f(xq, yo) by evaluating the line integral

Fiosye) = L Pdx + Qdy.

We postpone the proof of Theorem 2 to the end of this section.

EXAMPLE 3 (Continued) Find a potential function for the vector field

32+ (0 + 2X3Y)i

807
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oP 0
We have already shown that — = _Q
dy  0Ox
Step 1 Pick (0, 0) for the initial point.

Step 2 Let C be the rectangular curve from (0,0) to (0, yo) to (xq, o), shown in
Figure 13.3.2.

Y
(0, ¥o) C > (x0, yo)
C
0,0) X
Figure 13.3.2
Step 3 A potential function is
(%0, v0) = | 3x%y?dx + (y* + 2x%y)dy

fy) =
As a check we may compute grad /.

) i)
ii 4 _f] = 3x2y2i + (y2 + 2x3y)j-
Ox ay

We can get the same answer by choosing another curve in Step 2.

grad [ =

FIRST ALTERNATE SOLUTION

Step 2 Let C, be the rectangular curve from (0,0) to (x4, 0) to (xg, yo), shown in
Figure 13.3.3.

{x0, ¥0)

o
&

0, 0) (%0 0) X

Figure 13.3.3
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Step 3 f(xo,y0) = | 3x%p?dx + (y* + 2x3y) dy
Cy
X0 yo
=J 3x?+0%dx + J (* + 2x3y)dy
Jo 0
=0+ (3¥3 + x3¥o)
Sy =39 + x°y2
SECOND ALTERNATE SOLUTION

Step 2 Let C, be the straight line from (0, 0) to (x4, yo), shown in Figure 13.3.4.
It has parametric equations

X = tXq, ¥y = tyo, 01
y
o (xg, ¥g)
Cs
(0, 0) x
Figure 13.3.4
Step 3 f(xg,y0) = | 3x*y*dx + (y* + 2x°y)dy

Ca

1
=f[wnﬂ%ﬁ%+U%P+%mfwwmm
[4]

1
= J 3xdyatt + 2y3 + 2t xdyd dt
0

_3.3.2 , 1.3 4, 2.3.2 _ 3.2 , 1.3
= 3$Xo¥o + 3¥o + 5XpYo = Xo¥o t+ 3Vo>

flx,y) = x*y* + 3y°

EXAMPLE 4 An object at the origin (0, 0) has a gravity force field with magnitude
proportional to 1/(x* + y?) and the direction of —xi — yj. Show that this
force field is conservative and find a potential function.

The force vector is

—xi— il k
F(x, y) = (——’) T, 3
xE 4 pAxT Yy

—kx(x* + y*) 70— ky(x? + y?)

I

for some constant k. F(x, y) is undefined at (0, 0) but is a vector field on the
open rectangle 0 < x.
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oP = —kx(2y)(—é (x? + yH)752 = 3kxyp(x? + yH) 732
dy 2
O B e D
ox 2

Therefore F is conservative.
Step 7 Take the initial point (1, 0).

Step 2 Let C be the rectangular curve from (1,0) to (1, yo) to (g, ¥o), shown in
Figure 13.3.5.

y
(1, yo)
C + (X0, Yo)
C
(1,0 X
Figure 13.3.5

—ky(l + y*) ™32 dy + f — kx(x* + y3) ¥ dx
1

+ k(x? + yé)“zJ

Yo

Step 3 f(xg, Yo) = f
0

= k(1 + yz)”z}
0 1

= k(1 + yo) 1% — ke + k(xF + v3) "V — k(1 + y§)~ 172
= k(x2 + y3)~'? + constant,

Yo X0

. k
S(x, y) = ———=—=—== + constant.
\/xz + 2
Any choice of the.constant will give a potential function. The same method
works on the open rectangle x < 0.

An exact differential equation is an equation of the form
P(x, y)dx + Q(x,y)dy = 0,

where ¢P/0y = 0Q/0x. Exact differential equations can be solved using Theorem 2.

EXAMPLE 5 Solve the differential equation
(x* + siny)dx + (x + 1)cos ydy = 0.

First we test for exactness.

d(x* + sin y) A(x + Dcosy)
—ay—zcosy, e = cosy

Next we find a function with the given total differential. That is, we find a
potential function for the vector field

(x? + sin )i + (x + 1) cos yj.
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Step 7 Take (0, 0) for the initial point.

Step 2 Let C be the rectangular curve from (0,0) to (0, yy) to (x4, ¥o), sShown in
Figure 13.3.6.

(0, yo) s e (X0, Yo)

0, 0) x

Figure 13.3.6

Yo X0
Step 3 f(xp, Vo) = J 0+ Dcecosydy + f (x? + sin y,) dx
4] s}

= sin y, + $x3 + Xo Sin yg,
flx,y) =siny + ix> + xsiny.
Step 4 f(x,y) is a constant k because df = 0. The general solution is
Ix3 + xsiny + siny =k,
k — ix3
x+1

sin y =

B

1.3

. X
y = arcsin 3.k constant.
x+1

We conclude this section with the proofs of Theorems 1 and 2. The proof
of Theorem 1 uses a lemma about derivatives of partial integrals.

LEMMA

Suppose P(x, y) is smooth on an open rectangle containing the point (a, b). Then

if P(t, y) dt = P(x, y),
dx J,

-

o

* *OP
5}_[, P, y)dt = J; E(f, y)de.

PROOF The first formula follows at once from the Fundamental Theorem of
Calculus. For the second formula, let Ay be a nonzero infinitesimal and let

z= f P, y) dt.
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As y changes to y + Ay, we have

f Pty + Ayydr — f P(t, y) dt
Az B

a

by~ Ay
*p — P(1 *oP
=f (t,y + Ay) P(r,y)d[ *f 9Py
a Ay a Oy
Taking standard parts é‘i_J"éP([ ) dt
aking standard parts, - 3y , y)dt.

PROOF OF THEOREM 1 We must find a potential function for Pi + Qj.

Assume 0P/dy = 8Q/0x. Pick a point (a, b) in D, and let f(x,, ¥o) be the line
integral of Pi + Qjon the rectangular curve C from (g, b) to (a, yo) to (xq, ¥o)
(Figure 13.3.7). Thus

ﬂ%»@=fpw+gw
C

Yo X0
=fQ@mMy+meme
b a

.V
(@, yo) ¢ - —>s (X0, Yo)
C
(a, b)
X
Figure 13.3.7
By the Lemma,
of ol x
—_— = = d = ’).
A ax(L Qa, y)dy + f P(x, y) dx) P(x, y)

> 20 ’
= ewnar+ [ ronas

a

*0
=wa+f§mww

=Qmw+f%mww
= 0(a, ) + [Q003) — O, )] = Q(x, 7).

J 0
Thus % = P(x, y), % = Q(x, y),

and df = Pdx + Qdy.
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PROOF OF THEOREM 2

(i) Let C have the parametric equations
x = g(t), v = A1), ¢, <t < c,.
Then A = (g(c,), h(c;)) and B = (g(c,), A(c,)). By the Chain Rule,

dz 0Ozdx 0Ozdy
— = — 4+ — — = Pg’ K(2).
dt  Ox dt + dy dt g(t) + Ok (1)

Then f P(x,y)dx + Q(x,y)dy = sz Pg'(t) + QK (t)dt
C c1

“2dz
= —dt
. dt

= f(glea), hlcy)) — f(gley), hler))
= f(B) — f(A).

A similar computation works for piecewise smooth curves. This proves (i).

(ii) Define f(x, y) by
X

o0 = [ pax+oay
A

where A = (4, b), X = (x, y). Let C be the rectangular curve from (g, b)

to (a, y) to (x, y). Then

flx,y) = Lde—k Qdy.

We already showed in the proof of Theorem 1 that this function
f(x, y) is a potential function for Pi + Qj. To complete the proof we
note that the following are equivalent.

gradg = Pi + Qj,
o g B

ox  Ox an dy dy’
=) _y g 28-S
ox Jy

g — f depends only on y and only on x,

g(xs y) - f(xa y) = constant,
X

g(x, y) = f Pdx + Q dy + constant,
A

:0’

Theorems 1 and 2 also hold for three variables. For three variables a vector
field has the form

F(x,y,2z) = P(x, y, 2)i + Q(x, y,2)i + R(x, y, z)k.

Theorem 1 for three variables reads as follows.
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THEOREM 1 (Three Variables)

A vector field Pi + Qj + Rk has a potential function if and only if
oP 0Q oP 0OR aQ 0OR

by ox> 0z ox 9z oy’

Theorem 2 is modified in the same way.

PROBLEMS FOR SECTION 13.3

Test the following vector fields for existence of a potential function and find the potential function
when there is one.

=T NS I~ 7 T S FC R S

P e et
N = O

13

14
15
16
17
18
19

20
21

(2x + yHi + (2 + 2p)

X0 —

i + 2xj

xe'i + ye'j

XY+ (x>0,y>0

ycos xi + ysin xj

ycos xi + sin xj

e+ )

—2i + 6)

y P H Y+ xS/ (x> 0,y >0)

293+ xy4
Y,
=
X
(3x + Sy + (5x — 2y)j
y2

—i+2ylnxj (x> 0)
X

+%j (x>0,y>0)

sinh x cosh yi + cosh x sinh yj

Jyxi+ Jxyi (x> 0,y>0)

Show that every vector field of the form P(x)i + Q(y)j has a potential function.

Show that every vector field of the form f(x + y)(i + j) has a potential function.
Show that every vector field of the form f(x2 + y?)(xi + yj) has a potential function.
Show that every vector field of the form f{xy)(yi + xj) has a potential function.

Show that the sum of two conservative force fields is conservative.

In Problems 22-31 solve the given exact differential equation.

22
23
24
25

e*dx + sinydy =20
(3x + 4y)dx + (4x — 2y)dy =0
(3 + 2xy + yHdx + (x2 + 2xy + ) dy =0

(/x + /W dx + (x/2/y)dy = 0
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26 2xsinydx + (y + x*cos y)dy = 0
y 2 —
27 e 1dx + (y* + arctan x)dy = 0
28 (ax + by)dx + (bx + ¢cy)dy =0
29 sin x sin ydx — cos xcos ydy = 0

arcsin y dx + In x
Ji=7
31 x+/x+ydx+y+/x+pdy=0

30 dy =0

32 Find a function Q(x, y) such that \/;y3 dx + Q(x, y)dy is an exact differential.

33 Find a function P(x, y) such that P(x, y)dx + sin? x cos y dy is an exact differential.

34 The gravity force field of a point mass in three dimensions has magnitude proportional
to 1/(x* + y* + z2) and the direction of —xi — yj — zk. Show that the force field is
conservative.

13.4 GREEN’'S THEOREM
Green’s Theorem gives a relationship between double integrals and line integrals.
It is a two-dimensional analogue of the Fundamental Theorem of Calculus,

b
F(b) — Fla) = J. F'(x) dx,

and shows that the line integral of F(x, y) around the boundary of a plane region D
is equal to a certain double integral over D.
Let D be a plane region

a; £ x <a,, bi(x) <y < by(x).

The directed curve which goes around the boundary of D in the counterclockwise
direction is denoted by 0D and is called the boundary of D (Figure 13.4.1).

y

aD

Figure 13.4.1 The boundary of D

If b,(x) and b,(x) have continuous derivatives, 8D will be a piecewise smooth
curve and thus a simple closed curve (see Section 13.1).

GREEN'S THEOREM

Let P(x,y) and Q(x, y) be smooth functions on a region D with a piecewise
smooth boundary. Then :
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00 oP
SE de+Qd)>=Jf€—Q—0—dA,
oD ex
D

dy

) —Q(1x+PdJ)=ff£+g(1A.
2D 5){ 6)‘
D

(See Figure 13.4.2))

Y Pdx+Q dy

Figure 13.4.2

The second formula follows at once from the first formula by replacing
P by —Q and Q by P. We shall prove the theorem only in the simplest case, where

D is a rectangle.
PROOF FOR D A RECTANGLE D isshown in Figure 13.4.3.

y
by t--

bl_ ______

Figure 13.4.3

The line integral around 8D is a sum of four partial integrals,
b

56 Pdx + Qdy = f PO b)dx + | Qlag, y)dy

cD @ b

ay by

+ [ P, by)dx + | Olay,y)dy

Jas b

b ax

= | 0 = 0y dy — [ Pl by — Pix by ds

hy
By the Fundamental Theorem of Calculus,

[N a
Qlay, y) — Qlay, y) = f —=dx,

h> a
P(x,by) — P(x, by) =j % 4.

Y
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Therefore

b> pa> ay pba
9(; de+Qdy=f f a—dedy—J J a—dedx
éD ai

SR & (-

We may apply Green’s theorem to evaluate a line integral by double
integration, or to evaluate a double integral by line integration.

EXAMPLE 1 Compute the line integral
§ x2ydx + (x + y)dy
aD

by Green’s Theorem, where D is the rectangle shown in Figure 13.4.4,

0<x<2, 0<y=<1.

¥

Figure 13.4.4

By Green’s Theorem,

§xWW+u+w@ “wu+w ﬁ”
oD
”(1_xz)dA fj1—x dy dx

=f I —x? dx-——%.
0

As a check, we also compute the line integral directly.

2
fﬁszydx + (x + y)dy =J

1
xZ'de+f 2+ ydy
0

[¢]

0 0
+f x*+1dx +f 0+ ydy
1

2

Lt

=0+3-3-32=~
EXAMPLE 2 Evaluate by Green’s Theorem the line integral

I dx + 2xyd
§, s+ d

817
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where D is the region bounded by the curve y = x* and the line y = x,
shown in Figure 13.4.5.

JaD

Figure 13.4.5

D is the region 0<x<1, x*<y<x
)/x+1)

(ﬁ‘ ) dx + 2xydy = ff 2Yy
D oy
= J.J‘ 2y — —71— dA
x + 1
f f 2y — ’—~~dyd>x
2

X
_J x? — x* + dx
0 x+1 x+1

—2In2 — 4.

As a corollary to Green’s Theorem we get a formula for the area of D.

COROLLARY

If D has a piecewise smooth boundary, then the area of D is

A=9 xdyzsg — ydx.
oD aD

PROOF By Green’s Theorem,

% 0
fﬁ‘ xdy = JJE — i)dA, = jfdA = A,
oD 53( ay
D D
# —y(Ix—J o0 G(Ty)dAzjfdAzA.
eD ax oy
D

EXAMPLE 3 Use Green’s Theorem to find the area of the ellipse shown in Figure
13.4.6,

(]

X2
7.+_

N
D‘\‘-:
[\ ]
IA
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iy,
N

Figure 13.4.6

The boundary of the ellipse is the parametric curve
X = aCcost, y = bsint, 0<+t<2m

By the corollary,
2n

2z dy
A= xdy = f X*dt = j
ggaz) Y dr 0

0

(a cost)(bcost)dt

2n
=ab J- cos?t dt = nab.
[¢]

Green’s theorem has a vector form which is convenient for physical applica-
tions. We define two new functions obtained from a vector field, the curl and the

divergence.
DEFINITION
Given a vector field F(x, y) = P(x, y)Ji + Q(x, y)j in the plane.
The curl of F is curl F = 0 _ 6_P
dx  dy
The divergence of F is divF = 6£ + a—Q
ox Oy

On the boundary 8D, the differential forms Pdx + Q dy and —Q dx + Pdy

may be written in the vector form
Pdx+ Qdy=F-Tds,
—Qdx + Pdy = F-Nds,

T = unit tangent vector to 9D,

where
T ds = dxi + dyj,
and N = unit outward normal vector to 8D,
Nds = dyi — dxj.

T and N are shown in Figure 13.4.7.
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Y T N

aD

Figure 13.4.7

Substituting the vector notation into the original form of Green’s Theorem,
we get the following.

GREEN’S THEOREM (Vector Form)

Given a vector field ¥(x.y) = Pi + Qj on a region D with a piecewise smooth

boundary,
99 F.-Tds = JJ curl F dA,
éD

b

ff" F.Nds = JJ divF dA.
éD

D

The physical meaning of Green’s theorem can be explained in terms of the
flow of a fluid (a liquid or gas). Let the vector field F(x, y) represent the rate and
direction of fluid flow at a point (x, y) in the plane. Consider a plane region D and
element of area AD containing (x, y) (Figure 13.4.8).

Figure 13.4.8

We first explain the formula

# F.-Tds = jfcurleA.
véD D

The line integral {ﬁ F + T ds of the flow component in the direction tangent to the
éD

boundary is called the circulation of ¥ around 0D. Green’s Theorem states that the
circulation of F around the boundary of D equals the integral of the curl of F over D
(Figure 13.4.9).
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Figure 13.4.9
When we apply Green’s theorem to an element of area AD we get

MDF «Tds =~ curl F AA (compared to AA).
Thus the curl of F at (x, y) is equal to the circulation per unit area at (x, y).

If curl F is identically zero, the fluid flow F is called irrotational. By the
Exactness Criterion, F is irrotational if and only if P dx + Q dy is an exact differential.
The circulation of an irrotational field around any 0D is zero.

Next we explain the formula

36 F-Nds = ”dideA.
éD

D

The line integral F - N ds of the flow component in the direction of the outward
&b

normal vector is called the flux across 8D. The flux is the net rate at which fluid is

flowing from inside D across the boundary and is therefore equal to the rate of

decrease of the mass inside D. Green’s Theorem states that the flux of F across the

boundary of D equals the integral of the divergence of F over D (Figure 13.4.10).

Figure 13.4.10

When we apply this to AD we get
(JE F:Nds ~ divF A4 (compared to AA).
¢AD

821
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Therefore the divergence of F at (x, y) is the net rate of flow of fluid away from (x, y),
and is equal to the rate of decrease in density at (x, y). Positive divergence means that
the density is decreasing, and negative divergence means that the density is increasing.

If div F is identically zero, the fluid flow is called solenoidal, or incompressible.
By the Exactness Criterion, F is incompressible if and only if —Qdx + Pdy is an
exact differential. The flux of an incompressible field across any 9D is zero.

EXAMPLE 4 A fluid is rotating about the origin with angular velocity w radians
per second. Find the curl and divergence of the velocity field F(x, y).

As we can see from Figure 13.4.11, the velocity at a point (x, y) is

F(x,y) = o(—yi + xj) = —owyi + wxj.

—yit+xj

f \ (x,%)
AP <

Figure 13.4.11

dwx) B N—wy)

Then curl F = . P = 2w,
divi = A=) a(i‘ix) —0.
; dy

Thus a purely rotating fluid is incompressible and its curl at every point is
equal to twice the angular velocity.

EXAMPLE 5 A fluid is flowing directly away from the origin at a rate equal to a
constant b times the distance from the origin (Figure 13.4.12). Find the
curl and divergence of the flow field.

\| s A~

N

Figure 13.4.12
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xi + yj
We have F(x,y) = \/__, /x* + y* = bxi + byj.

aby) _ abx)

url F = o 3y = 0.
divF:@+9@=2b.
Ox dy

The fluid flow field is irrotational and the divergence at every point is 2b.

PROBLEMS FOR SECTION 13.4
In Problems 1-12, find the line integral by Green’s Theorem.

1 2ydx + 3xdy, D:0<x<1,0<y<1
D

2 (ﬁ xydx + xydy, D:0<x<1,0<y<1
oD

3 fﬁ e dx  e¥dy, D:—2<x<2, —-1<y<l1
oD

4 é yecosxdx + ysinxdy, D:0<x<7w2,1<y<2
ob

5 ﬁbxzydx+xy2dy, D:0<x<1,0<y<x

6 fﬁwx\/;dx+\/mg!y, Di1<x<22x<y<4

7 0D(x/y)dx+(2+3x)dy, D:1<x<21<y<x?

8 ﬁnsinydx+sinxdy, D:0<x<n2,x<y<nR2

9 é‘;wx]nydx, Dil<x<2e<y<e”

10 ipmdy, Di—1<x<Lx*<y<l

11 ?%szydx—xyzdy, D:x?+y?<1 Hint : Use polar coordinates.

12 iuy3dx+2x3dy, D:x*+y*<4

In Problems 13-18, find (a) curl F, (b)% F.Tds, (c)divF, (d)é F +Nds.
oD oD

13 Flx,y)=xyi —xyj, D:0<x<1,0<y<1

14 Fix,y) =ax®i + by}, D:0<x<1,0=<y<I1

15 Fix,y) = ay’i + bx?, D:0<x<1,0<y<x

16 F(x,y) =sinxcosyi + cosxsinyj, D:0<x<7#2,0<y<x
17 Fix,y)=yi —xj, D:x?+)y*<1

18 Fix,y))=xi+yj, D:x*+y* <1
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Use Green’s Theorem to find the area inside the curve r = a + cos 8, (a = 1).

Use Green’s Theorem to find the area inside the ellipse x2/a? + y?/b? = 1 and above

theliney =¢c (0 < c¢ < b).

Show that if D has a piecewise smooth boundary, the areaof Dis A = %96 —ydx + xdy.
. oD

Show that for any continuous function f(z) and constants «, b, ¢,

9@ af(x* + v dx + bf(x*> + y)dy =0
oD

where D is the circle x2 + y? < ¢

Find the value of the line integral
é; (a;x + byy)dx + (arx + byy)dy
ap

where D is a region with area A.
Show that any vector field of the form

F(x, y) = x{(x* + y2)i + pf (x* + y2)j
is irrotational.
Show that any vector field of the form

F(x, ) = yf(x* + y)i — xf(x* -+ p2)
is incompressible.
Show that any vector field of the form

F(x,y) = f(0i + g(y)j

is irrotational.

SURFACE AREA AND SURFACE INTEGRALS

In Chapter 6 we were able to find the area of a surface of revolution by a single
integral. To find the area of a smooth surface in general (Figure 13.5.1), we need a
double integral.

We call a function f(x, y), or a surface z = f(x, y), smooth if both partial

derivatives of f are continuous.

il

Figure 13.5.1 x
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DEFINITION
The area of a smooth surface

z=f(x,), (x,y)inD

is S_” /(gi) (a}) + 1dxdy.

JUSTIFICATION Let S(D,) be the area of the part of the surface with (x, y) in D,.
S(D,) has the Addition Property, and S(D,) = 0. Consider the piece of the
surface AS above an element of area AD (Figure 13.5.2). AS is infinitely close
to the piece of the tangent plane above AD, which is a parallelogram with
sides

-~

P
U=Axi + —Axk, V= A+ Z Ak
ox ay

Figure 13.5.2

The quickest way to find the area of this parallelogram is to use the vector
product formula (Section 10.4, Problem 39),

Area = |U x V|.
i i k
Then Area = [[Ax 0 —Ax
0 Ay F™ Ay

~

9
— Ay Axi — AxZE Apj + Ax Ak
ox ay

dz\? oz\?
= — — 1 Ax Ay.
\/(6x) * (5)7) - A




826 13 VECTOR CALCULUS

oz\? 0z\2
Therefore AS x 7x + @_y 1 Ax Ay (compared to Ax Ay),

and by the Infinite Sum Theorem,
éz\? 0z\?
= — — 1dxdy.
s= ] _/(ax) +(ay) b dxdy
D

EXAMPLE 1 Find the area of the triangle cut from the plane 2x + 3y +z =1
by the coordinate planes.

Step 7 Sketch the region as in Figure 13.5.3.

Figure 13.5.3

Step 2 The plane intersects the (x, y) plane on the line

1 -2
24y =1 y= *
Thus D is the region
_ 2y
0<x<4, os}rsLB“’\
Step 2 On the surface,
0 %)
r=1—2x-3y ZL-o_3 %_-_3
Ox dy
{oz\2 " [az\*
Then S = jf\/(ﬁvz) + (~Z + ldxdy
ox dy
D

= ”,/4+ 9+ Ldxdy = ﬂfjdxdy
D D

172 a(l=2x)/3 V21 _2 14
[ e P
0 0

YO

EXAMPLE 2 Find the area of the portion of the hyperbolic paraboloid z = x* — y
which is inside the cylinder x* + y* = 1.
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Step 7 Sketch the region (Figure 13.5.4).

Figure 13.5.4 ﬁ :

Step 2 D is the region
—l1l<x<1, —J1=-x*<y=< /1 —x%
or in polar coordinates,

0560 < 2n, 0<r<1.

G,
Step 3 — = 2x, — = -2y

02\>  [9z)2
Then S:” 2V ) 4 taxdy
0x Oy
D
:” /ax% 1 4y% + 1dx dy.
D

It is easier to use polar coordinates, where
Va4 + 1= Jar? 1 1
27 1
S =J- f Ja4r? 4+ 1rdrdb.
0 0
Put u=42+1, du=8dr,

2n 51
S=J f ~Jududd
0 18

—r’rl(sw2 1)d0 = Z(5¥2 — 1
Je 12 ydb = >

[

The line integral has an analogue for surfaces called the surface integral.
The form of the line integral which is most easily generalized to surfaces is the vector
form

J- F-Nds:f —Qdx+ Pdy
C C

where N is the unit normal vector of C. This is convenient because surfaces also have
unit normal vectors.
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Before stating the definition we motivate it with a fluid flow interpretation.
Remember that in the plane the line integral

[. F.Nds

v

is equal to the flux, or net rate of fluid flow across the curve C in the direction of the
normal vector N,
Consider a fiuid flow field

F(x,y,z) = Pi + Qj + Rk

and a surface S in space. Call one side of S positive and the other side negative, and
at each point of § let N be the unit normal vector on the positive side of S. The surface

integral
ff F.-NdS
S

will be the flux, or net rate of fluid flow across the surface S from the negative to the
positive side (Figure 13.5.5).

With this interpretation in mind we shall define the surface integral and then
justify the definition. First we need the notion of an oriented surface.

DEFINITION
An oriented surface S is a smooth surface

z = glx,y)

over a plane region D with a piecewise smooth boundary, together with an
orientation that designates one side of the surface as positive and the other
side as negative. (See Figure 13.5.6.)

z
z
¥y
x
x An oriented surface
Figure 13.5.5 Figure 13.5.6
DEFINITION

Let S be an oriented surface z = g(x, y) over D and let

F(x,y,z) = Pi + Qj + Rk
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be a vector field defined on S. The surface integral of F over S is defined by

”F Nds_+” P——Q © ¥ RdA,

+ if the top sxde of S is positive, — if the top side of S is negative.

Thus a change in orientation of S changes the sign of the surface integral.

JUSTIFICATION We show that this definition corresponds to the intuitive concept
of flux, or net rate of fluid flow, across a surface. Suppose S is oriented so
that the top surface of S is positive.

Let B(D) be the flux across the part of S over a region D. Consider an element
of area AD and let AS be the area of S over AD. Then AS is almost a piece of
the tangent plane. The component of fluid flow perpendicular to AS is
given by the scalar product F «+ N where N is the unit normal vector on the
top side of AS (Figure 13.5.7). Thus the flux across AS is

ABx=F-NAS (compared to AA4).

Figure 13.5.7

This suggests the surface integral notation

JjF-NdS.
s

Let us find F, N, and AS. The vector F at (x, y, z) is
) F(x,y,z) = Pi + Qj + Rk.

From Section 13.1, one normal vector at (x, y, z) is

The unit normal vector N on the top side of AS has positive k component
and length one, so
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@
From our study of surface areas,
Oz oz
3 AS x (T) + ( ) + 1 AA (compared to AA).
ox Oy

When we substitute Equations 1--3 into F « N AS, the radicals cancel out and
we have

AB%(— ;i—Q~+R)AA (compared to AA).

Using the Infinite Sum Theorem we get the surface integral formula

B(D) = JJ A%—Q R

EXAMPLE 3 Evaluate the surface integral

j F-NdS,

where § is the surface z = ¢* > over the region D given by
0<x<1, x<y<I,
S is oriented with the top side positive, and
F(x, y,z) = 2i +j + 2%k
The region is sketched in Figure 13.5.8. The first step is to find dz/dx and

dz/dy.
A . S
ax ’ dy
y
D
X
Figure 13.5.8

By definition of surface integral,
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ffF-NdS=J-f—2§Z~—%+zsz
dx Oy
D

S
D
1 p1
=f j — Y 4 T Wy dx
0 x
1

=f —L et e ldx =4 — et 4 de” 2
0

The same surface integral with S oriented with the top side negative has
minus the above value.

PROBLEMS FOR SECTION 13.5

1

" & WN

10
11
12
13

14

15

16

Find the area of the triangle cut from the plane x 4+ 2y + 4z = 10 by the coordinate
planes.
Find the area cut from the plane 2x + 4y + z = 0 by the cylinder x* + y* = 1.
Find the area of the surface of the paraboloid z = x® + y? below the plane z = 1.
Find the area of the surface of the cone z = ./x? + y? below the plane z = 2.
Find the susface area of the part of the sphere x? 4+ y* + z? = ¢® which lies in the
first octant;ie,x =0,y =20,z > 0.
Find the surface area of the part of the sphere x> + y? 4+ z> = a® which is above the
circle x> + y¥> < b2 (b < a).
Find the surface area cut from the hyperboloid z = x? — y? by thecylinder x2 + y? = 42
Find the area cut from the surface z = xy by the cylinder x? + y* = a2
Find the surface area of the part of the sphere r* + z2 = a2 above the circle r = a cos 6.
Find the surface area of the part of the cone z = ¢r above the circle r = acos 8.
Find the area of the part of the plane z = ax + by + ¢ over a region D of area A.
Find the surface area of the part of the cone z = ¢,/x? + y* over a region D of area A.
Find the surface area of the part of the cylinder x? + z? = a2 cut out by the cylinder
x? + y* < g% )
Find the surface area of the part of the cylinder x*> + z? = a® above and below the
square —b < x<bh,—-b<y<b(®b<=<a)
Evaluate the surface integral

ff(zi — 3j + 4k)-NdS,

S
where S is the surface z = x> + y2, —1 < x <1, —1 < y < 1, oriented with the top
side positive.
Evaluate the surface integral

H(xi+yj+3k)-Nds
S

where S is the surface z = 3x — Sy over the rectangle 1 < x < 2,0 < y < 2, oriented
with the top side positive.

831
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17 Evaluate the surface integral

(xi + yj — 2k)+Nd4S
s

2

where Sisthesurface z = 1 — x2 — v% x? + 2 < |, oriented with the top side positive.

18 Evaluate the surface integral

ff(xyi + yzj + zxk) N dS

N
where S is the surface z = x + 2 + 2, 0 < x < 1, x < y < |, oriented with the top
side positive.

19 Evaluate the surface integral
f f(e-“i+ &*j + zk)«NdS
s

where S is the surface z = xy, 0 < x < [, —x < y < x, oriented with the top side
positive.

20 Evaluate the surface integrai

j[xzi + yzj + zk

5
where S is the surface z = \/a* — x* — ¥, x? + y*> < b, oriented with the top side
positive (b < a).
0 21 Show that if S is a horizontal surface z = ¢ over a region D, oriented with the top side
positive, then the surface integral over S is

~

J f(P(x, 1.2+ Olx, , 2)i + R(x, y, 2)k) - NdS = fJ‘R(x, 3, ¢)dA.

S D

13.6 THEOREMS OF STOKES AND GAUSS

Both Stokes’ Theorem and Gauss’ Theorem are three-dimensional generalizations
of Green’s Theorem. To state these theorems we need the notions of curl and
divergence in three dimensions. The curl of a vector field in the plane is a scalar field,
while the curl of a vector field in space is another vector field. However, the divergence
in both cases is scalar.

DEFINITION

Given a vector field F(x,y,z) = Pi + Qj + Rk

in space. The curl of F is the new vector field

curl F = (@ mg)l + (LP *0)13)' + (CQ _Fz)k

~ A “ ~

cy Nz cz ox éx cy

This can be remembered by writing the curl as a “determinant”

i j k
curl F = ﬂC i ﬁi,
ox 0Oy 07!

[P Q R
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The divergence of F is the real valued function

divF = or 00

a)(-*-g;-l-gz*.

EXAMPLE 1 Find the curl and divergence of the vector field

F(x, y,z) = xyi + yzj + zxk.

i j k
g ad 0
curl F = E a_y 82

Xy yz zx
0

_ (o _ava), (o) o)
Jy oz 0z 0x

= —yi — zj — xk.

dive =90 ova) o)
0x Jdy 0z

oyz) a(xy))k
O0x dy

Two interesting identities are given in the next theorem.
THEOREM 1

Assume the function f(x, y, z) and vector field F(x, y, z) have continuous second
partials. Then

curl(grad /) = 0, div(curl F) = 0.

PROOF We use the equality of mixed partials.

_9 L Y Y
grad f 1 + 6yJ + (?zk'
i j k
a d0 0
curl (grad f) = o o Ee
od o
0x 0y Oz
I T A O s A A )
“\dyodz dzoy dzdx &x0z Oxdy 0Oyodx

=0

The other proof is similar and is left as a problem.

Stokes’ Theorem relates a surface integral over S to a line integral over the
boundary of S. It corresponds to Green’s Theorem in the form

- F-Tds=chr1FdA.
oD o
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Let S be an oriented surface over a region D, The boundary of S, 88, is the
simple closed space curve whose direction depends on the orientation of S as shown

in Figure 13.6.1.
The notation

ﬁSF-Tds or ?de—l—Qdy#-Rdz,
28

denotes the line integral around S in the direction determined by the orientation of S.

a8

X X
Figure 13.6.1 The Boundary of §

STOKES’ THEOREM

Given a vector field F(x, y, z) on an oriented surface S,

vfypsF-Tds=fJ'cur]F-NdS.
S

(See Figure 13.6.2.)

Figure 13.6.2 X

To put this equation in scalar form, let

F = Pi + Qj + Rk, curl F = Hi + Lj + Mk.

Then F-Tds=Pdx + Qdy + R dz,
and if S is oriented with the top side positive,
carl FeNdS = —HZ — 1% 4 M| aa.
0x oy
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Thus Stokes’ Theorem has the scalar form

SEPdA+Qdy+Rdz—J-J-( H#—Lg + M| dA.

Stokes’ Theorem has two corollaries which are analogous to the Path
Independence Theorem.

-COROLLARY 1

If f(x,y,2) has continuous second partials, then the line integral of grad f
around the boundary of any oriented surface is zero,

9€as grad /- Tds = 0.
(See Figure 13.6.3.)

PROOF curl(grad /) = 0, so
SE grad £+ T ds = ”curl(gradf)-Nds =”0ds —0.
oS
S S

COROLLARY 2

The surface integral of curlF over an oriented surface depends only on the
boundary of the surface. That is, if 0S, = S, then

”curlF-N1 as, =” curl F - N, dS, .
S S2

(See Figure 13.6.4.)

grad f

Ay
B

48, =958,

.
Noo

d8
T

‘ 56;)5 grad /T ds =0 /.
Figure 13.6.3 Figure 13.6.4

PROOF By Stokes’ Theorem, both surface integrals are equal to the line integral

F-. Tds-—Cf F.Tds.

as, Jas,

835
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For fluid flows, Stokes’” Theorem states that the circulation of fluid around
the boundary of an oriented surface S is equal to the surface integral of the curl
over S.

We shall not prove Stokes’ Theorem, but will illustrate it in the following
examples.

EXAMPLE 2 Let S, be the portion of the plane
z=2x+2y -1
and S, the portion of the paraboloid
z=x*+ y?

bounded by the curve where the plane and paraboloid intersect. Orient both
surfaces with the top side positive, so they have the same boundary

C =08, =98,.
Let F(x,y,z) = zi + xj + yk.

Evaluate the integrals

(a) j‘fcurlF-N, ds,.
St

(b) ffcurlF-deSz.
S

2

(c) SECF - T ds.

By Stokes’ Theorem, all three answers are equal, but we compute them
separately as a check.

The regions are drawn in Figure 13.6.5. First we find the plane region D
over which §; and §, are defined. The two surfaces intersect at
2x + 2y — 1 = x2 + y?,
x—1)+@y-1)*=1

Figure 13.6.5



13.6 THEOREMS OF STOKES AND GAUSS

So D is the unit circle with center at (1, 1) shown in Figure 13.6.6; that is,

0<x<2, 1—J1—(x—1)2?<y<1+4+ /1 —(x-12%

a1

Figure 13.6.6

Next we compute curl F.

(a) Onthesurface z = 2x + 2y — 1,
62_ 62_
ox 7 dy
Thus churlF-NldSl =ff—2 —24+1dA = —3JJdA = —37
S D D

(b) On the surface z = x? + 2,
62 0z

Thus ffcurlF-deSF”—zx—zer 1dA

1+/1—(x—-1)2
J.J —2x — 2y + 1dydx
1

-J1—(x—1)2
1+/1 —(x—1)2
:J- —2xy — y? +y] dx
0 1-J1—x—1)2
2 I
:f /T — (= 1) — 2/1 = (x — 1) dx
0

= —3m
(c) The boundary curve C = 3S; = 05, is a space curve on the plane
- = 2x + 2y — 1 and over the circle
x—1D2+@ -1y =1
Thus C has the parametric equations
x=1+4+cosfl, y=1+sin0, z=2cos0 + 2sinf+3, 0<( <2z

Then dx = —sin 6 d6, dy = cos 8d6,
dz = (—2sinf) + 2 cos 0) df.

837
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?RT¢=§2M+x@+yW
¢ C

= fzn[(ZCOSQ 4+ 2sin0 + 3)(—sin0) + (I + cosO)cos
’ + (I +sin0)(—2sin 0 + 2cos )] d0
= fzn(l +3cos® — 5sin0 — 5sin?0)do = — 37
Notice that (a) wag much easier than (b) or (c).

Gauss’ Theorem shows a relationship between a triple integral over a region
E in space and a surface integral over the boundary of E. It corresponds to Green’s

Theorem in the form
3€ F.Nds =ff divF dA.
c¢D

D

Before stating Gauss’ Theorem, we must explain what is meant by the surface
integral over the boundary of a solid region E. In general, the boundary of E is made
up of six surfaces corresponding to the six faces of a cube (Figure 13.6.7). Sometimes
one or more faces will degenerate to a line or a point,

/ y
Figure 13.6.7 x

The top and bottom faces of E are (x, y) surfaces, that is, they are given by equations
z = ¢(x, y). However, the left and right faces of E are (x, z) surfaces y = b(x, z), while
the front and back faces of E are (y, z) surfaces of the form x = a(y, z). Surface integrals
over oriented (x, z) and (y, z) surfaces are defined exactly as for (x, y) surfaces except
that the variables are interchanged.

In the following discussion E is a solid region all of whose faces are smooth
surfaces.

DEFINITION

The boundary of E, OE, is the union of the six faces of E oriented so that
the outside surfaces are positive. The surface integral of a vector field F(x, y, z)

over OF,
JJF~Nd&
¢E

is the sum of the surface integrals of F over the six faces of E. (See Figure
13.6.8.)
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Boundary of E
Figure 13.6.8

We are now ready to state Gauss’ Theorem.

GAUSS’ THEOREM

Given a vector field F(x, y, z) and a solid region E,

[[penas=[[[avrar

oE E

This equation may also be written in the form

ffF-NdS:fffaf+€—Q+aARdV.
ox 8y 0Oz
E

AE

Gauss’ Theorem is sometimes called the Divergence Theorem.

For fluid flow, Gauss’ Theorem states that the outward rate of flow across
the boundary of E is equal to the integral of the divergence over E (Figure 13.6.9).
As in the two-dimensional case, the divergence is the rate at which the density is
decreasing.

Figure 13.6.9 X

The following corollary is another analogue of the Path Independence
Theorem.

839
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COROLLARY 3

If K(x,y,z) has continuous second partials, the surface integral of curlF
over the boundary of E is zero. In symbols,

”curlF-NdS ~0.
cE

PROOF Since div(curl F) = 0,
” curl F - N dS = f”div(curm)dv:fﬂ 0dV = 0.
oF Y E E

EXAMPLE 3 Use Gauss’ Theorem to evaluate the surface integral

H F.NdS,

ck
where F(x, y,z) = e¥i + &5 + xyzk
and E is the unit cube in Figure 13.6.10.

0<x<1, 0<y<I, 0<z< 1.

Figure 13.6.10 X

By Gauss’ Theorem,

JJF-NdS = fff divF dV
éE E
= J-Jf et + e + xydV

E
1 i 1

=J f f e+ e + xydzdydx
0 Yo YO

1 1
= j J "+ e + xydydx
0 Jo

i
=J ¥4+ e — 1+ ixdx
0

2
28-—1.
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PROBLEMS FOR SECTION 13.6
In Problems 1-6, find the curl and divergence of the vector field.

1

~N NN R W

10

11

12

13

14

15

F(x, y,2) = x%1i + % + 2’k

F(x,y,z) = xcoszi + ysin zj + zk
Fi,v,2)=(x+y+2i+(y+2j+zk
F(x, y,z) = yzi + xzj + xyk

F(x,y,2z) = xe**%i + ye ¥ + ze* 7k
Fx,y,z) =yi+ xj + k

Prove that for every vector field Fix,y,z) with continuous second partials,
div(curl F) = 0.

Given a function f(x, y, z) with continuous second partials, show that

: 3
div(grad /) = e + ay? + FE
Use Stokes’ Theorem to evaluate the surface integral [fgcurl F - N dS where 5 is the
portion of the paraboloid z = 1 — x> — y* above the (x,y) plane and F(x, y, z) =
xy*i — x%yj + xyzk. (S is oriented with the top side positive.)

Use Stokes’ Theorem to evaluate the line integral
45 i+ zj—xk)+Tds
s

where S is the portion of the plane z = 2x + 5y inside the cylinder x* + y* = 1 oriented
with the top side positive.

Use Stokes’ Theorem to evaluate the line integral
56 (ax +by+cz)(i+j+k)-Tds
s

where S is the portion of the plane z = px + gy + r over a region D of area A, oriented
with the top side positive.

Use Stokes” Theorem to show that the line integral
45 (PO + 0O)j + REK) + Tds = 0
&8

for any oriented surface S.

Use Gauss’ Theorem to compute the surface integral
”(xli + ¥4 + 2?k)-NdS
oE

where E is the rectangular box 0 < x < g, 0<y<h0<z<c

Use Gauss’ Theorem to compute the surface integral
Ji[ (2xyi + 3xyj + ze"**k) - N dS
éE

where E is the rectangular box 0 = x < 1,0<y < 1,0 <z < |.

Use Gauss’ Theorem to evaluate
f (xi + 2y) + 3zk)-NdS
¢E

where Eistheregion0 < x<1,0<y=<x,0<z=<x+y

841
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16

17

18

19
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Use Gauss® Theorem to evaluate

Jj(xz'i + 3 4 2%k)-NdS
cE
where E is the sphere x2 + y? + 22 < 4.

Use Gauss® Theorem to evaluate
jf(\/xz + ¥y + 200+ j+kNdS
cE

where E is the hemisphere 0 < z < /1 — x% — y2

Use Gauss’ Theorem to evaluate

jJ (xy*4 + pzj + x?zk) - NdS

where S is the cylinder x2 + y?> < 1,0 < z < 4.
Use Gauss’ Theorem to evaluate

J.(xcos2 zi + ysin? zj + /x% + y* zk) N dS

[

where E is the part of the cone z = | — . /x* + y* above the (x, y) plane.
PROBLEMS FOR CHAPTER 13
Find the derivative of z = cos x + sin y in the direction of the unit vector U = cos ai

+ sin aj.
Find grad f and f, if

f(x,y) = cosh x sinh y, U= =

Find grad f and f, if

Slx, p) = €%, U = cosai + sinaj.
Find the derivative of z = In (x? 4+ y?) at the point (—1, 1) in the direction of the unit
vector U = ai + bj.

Find a unit vector normal to the surface z = xy at the point (2, 3, 6).

Evaluate the line integral
f (cos xi — sin yj) - dS
c

where Cis thecurve x = 2,y = 3,0 <1 < [

R R

where C is the rectangular curve from (1, 2) to (4, 2) to (4, 4).

Evaluate the line integral

Evaluate the line integral
f (xi + yj + zk)-dS
C

where Cisthelinex =2,y =3t,z= -, 0 << 1.
Find the work done by the force F = y%i + x?j acting once counterclockwise around
the circle x* + y? = 1.

Find a potential function for y cosh xi + sinh xj.
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EXTRA PROBLEMS FOR CHAPTER 13

Find a potential function for (ylny + Inx)i + (xIny + x)j.
Solve the differential equation

(2x — 6x%y + y)dx + (—2x> + 3xy? + 1)dy =0.
Solve the differential equation e ¥ sin x dx + (e” ¥ cos x + 3y)dy.

Use Green’s Theorem to evaluate the line integral
é sin x sin y dx + cos x cos y dy,
oD

D:nj6 < x < n/3,n/6 <y < mn/3
Use Green’s Theorem to evaluate the line integral
2xy?dx 4+ 3x%y3dy, D:0<x<1,x*<y<2x
éD
Use Green’s Theorem to find the area of the region bounded by the parametric curve
x = acos’ 0, y = asin® 0, 0<0<2n

Find the area of the part of the surface z = x* + y which lies over the triangular region
0<x<L0<y=<«x

Find the area of the part of the surface z = xy which is inside the cylinder x* + y* = 4.
Evaluate the surface integral

ff(xi+yj+zk)-NdS,

S
where S is the upper half of the sphere x* + y* + z? = 1, oriented with the top side

positive.
Find the curl and divergence of the vector field
F(x, y) = xe’i + yefi.
Find the curl and divergence of the vector field
F(x, y, 2) = xyzi + xy?z2%] + x*yzk.

Use Gauss® Theorem to evaluate the surface integral

ff (xy?i + yz%j + x*yk) - NdS

o8
where Eis theregion x> + p> < I,x* + y* <z < 1.
The gravitational force of a point mass m, acting on another point mass m, has the

direction of the vector D from m, to m and has magnitude proportional to the inverse
square of the distance [D|. Thus

_ amym,D
F="Ipp

where ¢ is constant. Use the Infinite Sum Theorem to show that the gravitational force
of an object with density h(x, y, z) in a region E on a point mass m at (a, b, ¢) is

F = Pi + Qj + Rk,
cmh(x, y,z)(x — a)
where P= L[J (x—af +(y— b+ (z— 7 av,
cmh(x, y,z)(y — b)
¢ ZJJJ x—a?+@—b’+(~ c)2]3/de,

cmh(x, y, 2)(z — ¢)
R = fJJ[(X (b + (2 — 0)2]3/2(11/_

843
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13 VECTOR CALCULUS

Suppose z = f(x, y) is differentiable at (a, b). Prove that the directional derivatives
Sfula, b) exist for all U. (See also extra Problem 36 in Chapter 11.)

Let U = cosai + sinaj. Suppose that z = f(x,y) has conunuous second partial
derivatives. Prove that the second directional derivative of f in the direction U is given
by
. *f o . &*f .,
,¥) = —5cos‘a + 2 cosasino + -5 sin” o.

Juulx, 3) ox? + 0x Oy oy?
Second Derivative Test for two variables. Suppose

(@) f(x, y) has an interior critical point (a, b) in a rectangle D.

) “2/ sz ‘\2f
(b) Throughout D, - i At Ay Ay A€ continuous and
vy ex dy
n2p A2 A27 A2r 24\ 2
¢ ¢ &f e d
«fz>0, sz>0, 4‘/2;/; «{ > 0.
ox éy ox* Cy Oxdy

Prove that f has a minimum in D at (a, b). Hint: Use the preceding problem to show
that all the second directional derivatives fyu(x, y) are positive so that the surface
z = f(x,y) has a minimum in every direction at (a, b). In the case cosuxsina > 0,
use the inequality

[224

A, /

a’f [C .
0= /A‘2c031~ [ =3 sina
N Ex Ny

and use a similar inequality when cosasinz < 0.

2

Given a sphere of mass m, and constant density, and a point mass m, outside the
sphere at distance D from the center. Show that the gravitational force on m, is the same
as it would be if all the mass of the sphere were concentrated at the center. That is,
F points toward the center and has magnitude
CHiM,

D2
Hint: For simplicity let the center of the sphere be at the origin and let m, be at the
point (0,0, D) on the z-axis. Let the sphere have radius b and density A, so

| =

h = m,/volume = 3m,/d4nb®, b < D,

By symmetry the i and j components of the force are zero. Use spherical coordinates
to find the k component,

_ cmlh (z—D)
R= H[x v+ - o

2n = cnyhip cos ¢ — D)p? sin ¢
f J f [p? + D? — 2Dp cos ¢]*?
A region D in the plane has a piecewise smooth boundary 0D and area A. Use Green’s
Theorem to show that an object with constant density k in D has center of mass
_ 1 ) Iy
X=_— dy, V= —— 2 dx.
" 2Af£,,x oY= ALt
Show that the object in the preceding exercise has moment of inertia about the origin
k
I=-@ —y*dx+ x3dy.
3Jip

Use the Infinite Sum Theorem to show that the mass of a film of density p(x, y) per unit
area on a surface z = f(x, y), (x, y) in D, is

I?I—jf —
DV (7'

d¢ dp 4o,

+ 1 p(x, y)dxdy.
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EXTRA PROBLEMS FOR CHAPTER 13

Show that the volume of a region E is equal to the surface integral

V= %fj(xi + yj + zk)- N dS.
SE
Show that the gravity force field of a mass m at the origin,
m xi + yj+ zk
F = >
WIATILVEE iy g 2

is irrotational (except at the origin). Use Stokes’ Theorem to show that

F(x,y,2) « Tds =0

o8
where S is any oriented surface not containing the origin.
Show that for any smooth closed curve C around the origin,
—y x _
é:xz 5 yzdx + = +yzdy = 21
Assume for simplicity that C has the parametric equation
Cir=f(0,0<6<2n where 0 < f(0), f(0) = f(2n).
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