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Abstract

We consider cooperative games with in�nitely many players, where: (i) the players

occupy di�erent nodes in a tree; (ii) superadditivity holds; and (iii) for each �nite

set of nodes, additivity holds on connected components. We show that, under some

regularity conditions on the characteristic function, such games have non-empty cores.

Examples are given to show that none of our conditions can be dropped without losing

non-emptiness.

1 Introduction

The core is a fundamental solution concept in cooperative game theory (Owen [1995]). In

a game in which the core is non-empty, it identi�es possible allocations of value among the

players which can arise under a free-form bargaining process. In games in which the core is

empty, this bargaining process has no stable outcome. An important question for both the

understanding and the design of cooperative games is to identify families of games for which

the core is always non-empty.

We move to some formal de�nitions. A cooperative game is a pair G = (N, ν) such that

ν : (2N \ {∅})→ R. To simplify notation, we also de�ne ν(∅) = 0, so ν has domain 2N . The

set N comprises the players in the game, and the map ν is called the characteristic function

of the game. Note that the set of players might be �nite or in�nite. The core of G is the set

of all functions x : N → R such that
∑

i∈N xi = ν(N) and
∑

i∈S xi ≥ ν(S) for all ∅ 6= S ⊆ N .
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A cooperative game will be called superadditive if for all �nite S, T ⊆ N such that S∩T = ∅
we have ν(S ∪ T ) ≥ ν(S) + ν(T ). An undirected graph is called a forest if it has no cycles

of length greater than two. A tree is a connected forest.

We are interested in cooperative games where the players occupy di�erent nodes in a tree.

Our result is that such games have non-empty cores, provided that superadditivity holds,

additivity holds on connected components for each �nite set of nodes, and the characteristic

function satis�es some regularity conditions. We go on to provide examples showing that

none of our conditions can be dropped without losing non-emptiness. For games with a �nite

number of players, non-emptiness of the core was already established by Demange (2004).

Related analyses on �nite games are Herrings et al. (2010) and Igarashi and Yamamoto

(2012).

2 The Result

We �rst prove a general result which we use to prove our result about in�nite trees. We

need an additional de�nition. If G = (N, ν) is a cooperative game and M ⊆ N , the subgame

G �M is the cooperative game H = (M,µ) such that µ(S) = ν(S) for each S ⊆M .

Theorem 1. Suppose G = (N, ν) is a cooperative game. Assume that:

• (Superadditivity) For all �nite S, T ⊆ N such that S ∩ T = ∅, we have ν(S ∪ T ) ≥
ν(S) + ν(T ).

• (Non-negativity) ν(S) ≥ 0 for every �nite S ⊆ N.

• (Continuity) If S0 ⊆ S1 ⊆ · · · is a countable increasing chain of �nite subsets of N ,

then ν(
⋃

n Sn) = limn→∞ ν(Sn).

• (Countable Character) There is a countable set C ⊆ N such that ν(S) = ν(S ∩C) for
every set S ⊆ N .

• (Finite Subgames) For every �nite set A ⊆ N there is a �nite subset B such that

A ⊆ B ⊆ N and the subgame G � B has non-empty core.

Then G has a non-empty core.

Proof. We �rst prove the result in the case that N is countable. By Superadditivity and

Non-negativity, if S ⊆ T ⊆ N then ν(S) ≤ ν(T ). Then by Finite Subgames, there is an

increasing chain C0 ⊆ C1 ⊆ · · · of �nite subsets of N such that N =
⋃

nCn and for each n,

the �nite subgame G � Cn has a non-empty core. Hence for each n, 0 ≤ ν(Cn) ≤ ν(N), and
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there is a function xn : Cn → R that belongs to the core of G � Cn. Then for each n and

S ⊆ Cn we have
∑

b∈Cn
xn(b) = ν(Cn), and

∑
b∈S xn(b) ≥ ν(S). It follows that each �nite

subset of the following set of inequalities has a solution {y(b) : b ∈ N}:∑
b∈S

y(b) ≥ ν(S) for each n ∈ N and S ⊆ Cn, (1)

∑
b∈Cn

y(b) ≤ ν(N) for each n ∈ N. (2)

Note that (1) and (2) imply that 0 ≤ y(b) ≤ ν(N) for each b ∈ N .

Claim 1: There is a function x from N into [0, ν(N)] such that (1) and (2) hold with x(·)
in place of y(·). The proof of this claim uses the compactness theorem in �rst order logic,

and is given in an appendix.

By Continuity and (1) for x(·), for each S ⊆ N we have∑
b∈S

x(b) = lim
n→∞

∑
b∈S∩Cn

x(b) ≥ lim
n→∞

ν(S ∩ Cn) = ν(S). (3)

Then by (2) and (3), x belongs to the core of G.

In the general case where N is not necessarily countable, we use Countable Character to

�nd a countable set C ⊆ N such that ν(S) = ν(S ∩ C) for all S ⊆ N . It follows that the

countable subgame G � C satis�es all the hypotheses, so by the above paragraph, G � C has

an element x in its core. Let z : N → R be the function that agrees with x on C and has

value 0 on N \ C. Then∑
i∈N

zi =
∑
i∈C

xi = ν(C) = ν(N ∩ C) = ν(N),

and for each S ⊆ N , ∑
i∈S

zi =
∑

i∈S∩C

xi ≥ ν(S ∩ C) = ν(S).

Therefore z belongs to the core of G.

We use Theorem 1 to prove the following result for cooperative games on trees.

Theorem 2. Suppose G = (N, ν) is a cooperative game and (N,E) is an undirected graph.

Assume Superadditivity, Continuity, Countable Character, and:

• (Forest) (N,E) has no cycles of length greater than two.
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• (Additivity on Components) For every �nite S ⊆ N , if S =
⋃

m<n Tm is the unique

decomposition of S into connected components, then

ν(S) =
∑
m<n

ν(Tm).

Then G has a non-empty core.

Proof. As mentioned in the Introduction, this result is known in the case that N is �nite.

We will use Theorem 1 above to get the general case. Assume �rst that G has the following

additional properties:

• Non-negativity.

• (Connectivity) Any two nodes i, j ∈ N are connected by a �nite path in (N,E).

It is clear that every �nite subgame of G satis�es all the hypotheses except perhaps

Connectivity. Since each path connecting two nodes is �nite, every �nite set of nodes A ⊆ N

is contained in a �nite connected set B ⊆ N . Then G � B satis�es Connectivity. Since the

result holds when N is �nite, the core of G � B is non-empty, so G has the Finite Subgames

property. Then by Theorem 1, the core of G is non-empty.

We now drop the Non-negativity assumption, but still assume Connectivity. Choose an

element r ∈ N , which will play the role of the root of the tree. We call a node i ∈ N even

if the length of the path from r to i is even, and odd if the length of the path from r to i

is odd. We call a node i ∈ N positive if ν({i}) > 0, and negative if ν({i}) < 0. Let U+
e

be the set of even positive nodes in N , and de�ne U+
o , U

−
e , and U

−
o analogously. Then the

sets U+
e , U

+
o , U

−
e , U

−
o are pairwise disjoint. Now let U be one of these four sets. Then each

connected component of U is a singleton. By Countable Character, there is a countable set

C ⊆ N such that ν(S) = ν(S ∩ C) for all S ⊆ N . Then U is contained in C, and hence U

is countable. By Continuity and Additivity on Components, we have ν(U) =
∑

i∈U ν({i}).
We now de�ne a new cooperative game H = (N,µ) on the same tree (N,E). For each

i ∈ N , let ui be the absolute value of ν({i}). Note that ui ≥ 0 for all i ∈ N . For each

S ⊆ N , de�ne µ(S) = ν(S) +
∑

i∈S ui. Since ν({i}) has the same sign for all i ∈ U , we have∑
i∈U ui = |ν(U)|. Therefore

∑
i∈N ui is �nite, so µ maps 2N into R and H is a cooperative

game. It is easily checked that H satis�es all the hypotheses of the theorem and also satis�es

Non-negativity and Connectivity. Hence there is a function y that belongs to the core of H.

It follows that the function xi = yi − ui belongs to the core of G.

Finally, we drop the Connectivity assumption and prove that G still has a non-empty

core. For each connected component T of (N,E), choose an element rT ∈ T . Let (N+, E+)
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be the undirected graph formed by adding a new node r to N , and adding the new edge

(r, rT ) to E for each connected component T of (N,E). The idea is that each connected

component T of (N,E) is a tree with root rT , and N+ is a tree with root r. Now let

G+ = (N+, ν+) be the cooperative game such that ν+(S) = ν(S ∩N) for each set S ⊆ N+.

In particular, ν+(N) = ν(N) = ν+(N+), and ν+({r}) = ν(∅) = 0. Hence G+ satis�es all the

hypotheses of the theorem and also satis�es Connectivity. So there is a function y : N+ → R
in the core of G+. Moreover, yr ≥ ν+({r}) = 0.

Let x be the restriction of y to N . Then∑
i∈N

xi =
∑
i∈N

yi ≥ ν+(N) = ν(N) = ν+(N+) =
∑
i∈N+

yi ≥
∑
i∈N

yi,

and for each S ⊆ N , ∑
i∈S

xi =
∑
i∈S

yi ≥ ν+(S) = ν(S).

Therefore x belongs to the core of G.

3 Examples

Each of the following is a cooperative game with an empty core that satis�es all but one of the

hypotheses of Theorem 2, and also satis�es Monotonicity, Non-negativity, and Connectivity.

• Only Superadditivity fails: N = {a, b, c}, E = {(a, b), (a, c)}, ν(a) = ν(b) = ν(c) =

ν(a, b) = ν(a, c) = 1, ν(b, c) = ν(a, b, c) = 2.

• Only Additivity on Components fails: N = {a, b, c}, E = {(a, b), (a, c)}, ν(a) = ν(b) =

ν(c) = 0, ν(a, b) = ν(a, c) = ν(b, c) = 3, ν(a, b, c) = 4.

• Only Forest fails: N = {a, b, c}, E = {(a, b), (a, c), (b, c)}, ν(a) = ν(b) = ν(c) = 0,

ν(a, b) = ν(a, c) = ν(b, c) = 3, ν(a, b, c) = 4.

• Only Continuity fails: (N,E) is a countable tree, U is a non-principal ultra�lter over

N , and ν(S) = 1 if S is in U , and 0 otherwise.

• Only Countable Character fails, and Superadditivity holds for all, even in�nite, subsets

of N : (N,E) is a tree such that N = [0, 1], and ν(S) is the Lebesgue inner measure of

S.

• Only Countable Character fails, and Continuity holds for all subsets of N : (N,E) is a

tree such that N = [0, 1], and ν(S) is the Lebesgue outer measure of S.
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• Only Countable Character fails, and all the other hypotheses of Theorem 2 hold for all

subsets of N : (N,E) is a tree and ν is a probability measure such that every subset of

N is measurable and every �nite set has measure 0. (This can happen if there is either

a measurable cardinal or a real-valued measurable cardinal less than or equal to the

cardinality of N . (See, for example, Jech [2002, Section 10].))
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Appendix: Proof of Claim 1

The compactness theorem in �rst order logic says the following (see Chang and Keisler

[2012, Section 2.1]). Let K be a set of sentences in �rst order logic. If every �nite subset of

K has a model, then K has a model. We now prove Claim 1. Let V be the vocabulary

consisting of the symbols for an ordered �eld, together with a constant symbol for each

particular real number. Let J be the set of all sentences in the vocabulary V that are true

in the ordered �eld of real numbers. Let W be the vocabulary V with additional constant

symbols {y(b) : b ∈ N}. Let K be the union of J and the sets of sentences (1) and (2),

where for each S ⊆ N , ν(S) is understood to be the constant symbol in V for the real

number ν(S) in the given game G. From the proof of Theorem 1, each �nite subset of K

has a model consisting of the �eld of real numbers and interpretations for the constant
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symbols of W . Then by the compactness theorem, the whole set K has a model F , which

will consist of a real closed ordered �eld with interpretations of the constant symbols of W .

Consider an element b ∈ N and the constant y(b) in F . Since (1) and (2) hold, we have

0 ≤ y(b) ≤ ν(N) in F . Therefore there exists a real number x(b) = sup{s ∈ R : s ≤ y(b)}
(called the standard part of y(b)). So in the real numbers, the set of sentences K is

satis�ed with x(·) in place of y(·), as required.
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