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Abstract

In this paper, we provide an epistemic characterization of iterated admissibility (IA),
i.e., iterated elimination of weakly dominated strategies. We show that rational-
ity and common assumption of rationality (RCAR) in complete lexicographic type
structures implies IA, and that there exist such structures in which RCAR can be
satisfied. Our result is unexpected in light of a negative result in Brandenburger,
Friedenberg, and Keisler C()(E)E) BFK) that shows the impossibility of RCAR in com-
plete continuous structures. We also show that every complete structure with RCAR
has the same types and beliefs as some complete continuous structure. This en-
ables us to reconcile and interpret the difference between our results and [BEK's.
Finally, we extend|BEK’s framework to obtain a single structure that contains a com-
plete structure with an RCAR state for every game. This gives a game-independent
epistemic condition for IA.
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1 INTRODUCTION

Analysis of games typically begins under the premise that all players are rational. Fur-
thermore, it is often supposed, at least implicitly, that the rationality of the players is

common knowledge in the sense of |LEMU.SJ (h%_d) andlAum.anA (|l§i7ﬁl)—that is, all play-

ers know it, all players know that all players know it, and so on. It is then natural to ask

which strategic choices are consistent with common knowledge of rationality (CKR).

Bernheim (|1§18_4|) and |RQaLC_4 (|l§i8_4|) gave an influential response to this question in
which they argued that their notion of rationalizability exactly captures the implications

of CKR on behavior. The rationalizable set is essentially the iteratively undominated
(IU) set—that is, the set of strategy profiles surviving iterated elimination of strongly
dominated strategies—with the added virtue of being defined in a way that more starkly

emphasizes its intuitive connections to CKR

Bernheim (|1984J) and |PearceJ (|1984]) motivated their analysis as an extension of Sav-

age’s _195_4]) Bayesian decision theory, in which rational actors maximize subjective ex-
pected utility (SEU) subject to probabilistic beliefs about the states of the world. There-
fore, in these and subsequent papers, CKR is often used interchangeably with rationality
and common belief of rationality (RCBR), an analogous concept that is better suited for
use in Bayesian settings

More formal analyses followed in Brandenburger and nggi (IQQZA) and Tan and

Werlang ( ), who showed that RCBR is an epistemic condition that characterizes the

IU set. In other words, RCBR implies that IU strategies are played and every IU strategy
can be played in some state where RCBR holds. A key fact underpinning this relation-
ship is that SEU maximization characterizes avoidance of strongly dominated strategies.
However, it is prima facie reasonable that rationality should incorporate an admissibil-
ity requirement—that is, avoidance of weakly dominated strategies. A long tradition in
statistical decision theory, going as far back as M ), has advocated admissibility
as a minimal criterion of rationality.

'When we refer to rationalizability in this paper, we will mean correlated rationalizability, which omits
the independence assumptions of the original definition. The correlated rationalizable set is exactly the
1U set.

2An event is commonly believed if all players are certain of it, all players are certain that all players are
certain of it, and so on, where certainty is understood to mean belief with probability 1. In the literature,
common belief is also called common certainty, common belief with probability 1, and common 1-belief.

See Brandenburger and Dekel M); Monderer and ngg]l M).
$Von Neumann and Mgrggnslgrﬂ (1944) justify the requirement from a staunchly objectivist point of

view on probability while prefacing the development of their theory of two-person zero-sum games. Fur-




In light of the preceding facts, it was intuitively appealing to conjecture that iter-
atively admissible (IA) strategies—that is, strategies surviving iterated elimination of
weakly dominated strategies—could be characterized by RCBR if rationality incorpo-
rates admissibﬂityH However, E_amebiﬂ dmﬁ) demonstrated that such a conjecture
would have significant obstacles associated with the limitations of SEU theory. Admis-

sibility is typically obtained by requiring that players consider all states of the world to
be probabilistically possible. However, a player who believes that her opponents are ra-
tional would exclude their inadmissible strategies from consideration. Elegant examples
in[S_amJJ.eLs_Qn| (Ilﬁ_ﬁj) illustrated the frustrating fact that, in many games, an inadmissible
strategy may maximize her SEU under such beliefs.

Brandenburger, Friedenberg, and Keisler (2008) (Iﬂ) solved this puzzle by adopt-
ing a model of Bayesian rationality that permits the expression of a more general set

of beliefs than the set allowed by SEU theory. They defined the notions of a lexico-
graphic type structure and of assuming an event, which is immune to the aforemen-
tioned shortcomings of probability 1 belief that were pointed out by[&amu_elsp_d dliﬂﬂ)-
In that framework, formulated a condition, rationality and common assumption of

rationality (RCAR), that gives intuitive support for the IA set as a solution concept. Given
that an admissibility requirement partially reflects the view that rational players should
rule out nothing, it is reasonable to consider the consequences of RCAR in model envi-
ronments, such as complete lexicographic type structures, which, by virtue of describ-
ing sufficiently rich state spaces, do not presume much knowledge on the players’ part
about what Igg called “prior history or context”. showed that this restriction is a
meaningful one by proving that RCAR in many incomplete type structures yields predic-
tions outside the IA set.

In this paper we address two crucial issues that were left unresolved by.

First, left open the question of whether there is a complete type structure in
which RCAR is possible. More broadly speaking, this first question can be subsumed
under the question of whether “RCAR in complete type structures” is an epistemic con-

dition for IA. That is, if we look across all complete type structures, is the set of strategies

thermore, later surveys by|Arrow (1951) and [Luce and Raiffa (1957) are uniform in their rejection of inad-

missible decision rules.

“It is well-known that the order of eliminating weakly dominated strategies matters, whereas the order
does not matter when eliminating strongly dominated strategies. When we refer to IA strategies in this
paper, we will mean the strategies obtained by simultaneously deleting every weakly dominated strategy
of every player in each round.




played under RCAR exactly the IA set? We answer this question in the affirmative with
our Theorems[3.2land 3.4

The second issue can be paraphrased as one of “game independence”. While the con-
dition above—RCAR in complete type structures—is fine from the perspective a game
theorist who looks across all complete type structures, it is not fully satisfactory from
the perspective of a player who considers possible only those states of the world that
are described by her type structure. It is therefore both natural and important to ask if
there is a single “context-free” model environment (e.g., a complete type structure) in
which an epistemic condition for IA (e.g., RCAR) can be satisfied for all games. We re-
solve this issue by showing that enough complete type structures can be embedded in a
single larger model environment such that a natural generalization of RCAR is an epis-
temic condition for IA across all games. A complete type structure in which common
assumption of rationality, as defined with respect to a given game, is possible can then
be intuitively interpreted as the set of states in which there is common knowlege of that
game.

The results in this paper were unexpected in the light of an impossibility theorem
in that left a decidedly negative message. showed that, in type structures that
are both complete and continuous, no state of the world can satisfy RCAR. The issues
leading to this nonexistence result are independent of those that were raised in Samuel-
son ‘1353). This result appeared to cast doubt on the existence of any complete type

structure in which the RCAR set is nonempty. However, our results here show that RCAR

is possible when the requirement that the type structure is continuous is dropped. In
the process, we also identify some of the conceptual issues that help us to reconcile the
positive results herein with the negative conclusions of .

Toward that end, we prove that, given each (discontinuous) type structure, there ex-
ists a continuous type structure with the same type sets that describes the exact same
sets of beliefs. Where the two type structures, despite being equivalent in the sense that
they have the same types and beliefs, differ is in how they classify what beliefs assume a
given event. Given a beliefin a discontinuous type structure, the same beliefin an equiv-
alent continuous type structure will, in general, assume fewer events. One implication
of this difference is that beliefs in the continuous type structure must meet a higher stan-
dard in order to “rule out nothing”. We argue that the discussion of these differences can

be conveniently subsumed under the umbrella of fopological distinguishabililyH

SWe caution the reader that, despite the similarity in nomenclature, these issues are completely unre-



Additionally, we give a topological characterization of an RCAR tower, which is a fam-
ily of finite-order rationality sets—that is, the sets in which there is rationality and m-th
order assumption of rationality (RmAR)—in complete type structures with RCAR.

The proofs in this paper illustrate the virtues of two key mathematical results in con-
structing type structures with desirable properties: the Borel Isomorphism Theorem,
and Tarski’s celebrated theorem that every relation that is first order definable in the
field of real numbers is semi-algebraic. We anticipate that these methods will prove use-
ful in showing various existence results in other settings.

2 THE UNDERLYING FRAMEWORK

In this section, we briefly review the concepts we will need from. We fix a finite game

of complete information
G=(s%8"n%n"),

where S%,S? are strategy spaces and 7%, "

are payoff functions. The indices a and b
stand for Ann and Bob, respectively. Whenever we state a definition or result involving a
and/or b (Ann and/or Bob), it will be understood that we also make the analogous state-

ment with a and b reversed.

2.1 ADMISSIBILITY

Ann’s strategy s € S* is admissible (i.e., not weakly dominated) in the game G if and
only if s* is optimal under some full-support probability measure defined over S”. Let
S{ denote the set of Ann’s admissible strategies. Given nonempty subsets X < S* and
Y c SP, let G(X,Y) denote the reduced game (X, Y, 7% ). We can then inductively
define Ann’s m-admissible strategy set S% as follows: To get the induction started we
write §§ = §%. For each m € N, let S ., be the set of Ann’s admissible strategies in the
reduced game G(S%,, Sbm). In other words, qu 41 is the set of Ann’s strategies that are
admissible with respect to S x S” .

Note that $% , | < % for all m € N. We put S& =(%°_, S%. The set S x SZ_ is called
the iteratively admissible set (henceforth IA set). Since the sets S%, S b are finite, we have

Se =S4y and Sh = Sﬁ,[ for some M €N, and hence the IA set is nonempty.

lated to those raised by the extensive literature on strategic topology.



2.2 LEXICOGRAPHIC PROBABILITY SYSTEMS

Recall that a Polish space is a separable topological space that is completely metrizable.
Let Q) denote the space of uncertainty faced by the decision maker (e.g., Ann). For now,
let us assume only that Q is Polish and fix a compatible metric. In the conventional
Bayesian theory of choice under uncertainty, a decision maker’s beliefs are represented
by a Borel probability measure on Q. The set of all Borel probability measures on Q is
denoted by .4 (Q).

Following an alternative theory developed inhlum&ndsﬂmrgex&n.dﬂd&ej (|l§i9_lﬁ|),

adopted the convention that a decision maker’s beliefs are represented by a lexico-

graphic probability system. Lexicographic probability systems (henceforth LPS’s) are
generalizations of probability measures. An LPS on Q is any finite sequence of proba-
bility measures on €2, e.g.,

n times
.

0= (Hoy ey fin—1) € M(Q) X -+ x M (Q),

that satisfies mutual singularity—that is, there exist disjoint Borel sets Uy,...,U,-1 in
Q such that y;(U;) = 1 and u;(U;) = 0 for i # j[ The set of all LPS’s on Q is denoted by
Z(Q). Itisimmediate that 4 (Q2) C Z£(Q)). Additional notation, which will be convenient
later, follows below.

n times

A

Ny (Q) = M (Q) % -+ x MQ);
MQ) = | N (Q);

neN

Zn(Q) = L(Q) N AN, ().

We define a Polish topology on A(Q) by following the usual conventions. First, we
give ./ (Q)) its weak* topology, which makes it a Polish space. Second, we give .4,,(Q2) =
[1};_, 4 (Q) the product topology. Then we may view #(Q) as a countable topological
union of disjoint Polish spaces .A4},(Q2). A(Q) with this topology is again a Polish space.

An LPS o = (o, ..., n—1) represents an ordered sequence of mutually contradictory
hypotheses. We interpret y as being infinitely more likely than u,, which in turn is
infinitely more likely than p,, and so on. The primary hypothesis o, being more likely
than all other hypotheses, can be regarded as the prior belief. The secondary hypothesis

SThe definition of LPS’s in Blume, Brandenburger, and Dekel (19914) did not require mutual singularity.

The definition above is frorn.




(1 can be regarded as the conditional belief in the a priori zero-probability (i.e., po-null)
event that uq is false. More generally, u; is the conditional belief in the event that all a
priori more likely hypotheses (i.e., all i such that k < j) are false. Such an event would
be pi-nullforall k < j.

LPS’s generalize the notion of probability measures in a straightforward manner. Not
surprisingly, concepts defined with respect to probability measures often have obvious
analogs that are defined with respect to LPS’s.

The support of an n-tuple of measures o € A(Q) is the union of the supports of the

measures that comprise it—that is, the support of o = (o, ..., ts—1) is simply

n-1

Suppo = | Suppy;.
j=0

We say that o has full support if Suppo = Q. Equivalently, o has full support if, for each
open U, there exists j < nsuch that u;(U) > 0. The set of all full-support LPS’s is denoted
by £7*(Q). The set A" (Q) is defined similarly.

Similarly, Bayesian optimization under belief o is a straightforward extension of ex-
pected utility maximization. Given an act f, for each j < nlet u; be the expected utility
of choosing f with respect to pj. Then the vector u = (uy, ..., u,-1) is called the lexico-
graphic expected utility (henceforth LEU) of f under o. The order on the hypotheses
that comprise o suggests an obvious way to compare LEU vectors. Given that, for i < j,
w; is infinitely more likely than wj, it is natural to assign infinitely more importance to
the expected utility of an act under y; than one would to its expected utility under y;.

We write
(UOr---r Ui’l—l) =SV>LEX U= (u()r---r ul’l—l)

and say that v is lexicographically greater than u if there exists k < n such that vy > uy,
and v; = u; for all j < k. LEU maximization is simply the maximization of LEU with
respect to the lexicographic order. Throughout this paper, we use the terms LEU and

payoff interchangeably in appropriate contexts.

2.3 ASSUMPTION

The idea of certainty (i.e., belief with probability one) admits more than one obvious
analog with respect to LPS’s. If the decision maker is certain of event E < Q then she
considers E to be infinitely more likely than its complement Q \ E. introduced a

new epistemic notion, called assumption, to capture this property in LPS’s. Intuitively



speaking, a decision maker with belief o = (uy,..., t;—1) assumes an event E if she be-
lieves every part of E to be infinitely more likely than its complement Q \ E. Formally,
a Borel set E is assumed under o at level j if the following three conditions are met (cf.
Proposition 5.1 in EI

(a) pi(E)=1foreachi<j;

(b) w;i(E)=0foreachi> j;and

(c) IfUisopenwith UNE # @ then y;(UNE) >0 for some i < n.
Note that, even if E is assumed under o, it need not be the case that Q\ E is o-null. In
contrast, if a decision maker is certain of E then Q \ E is necessarily a null event.

It is clear that if an event E is assumed under an LPS o = (uy, ..., 4s-1) then the level

at which E is assumed is unique, is less than n, and is the greatest j such that y;(E) = 1.
It is also clear that if u = (o, ..., tn—1) and v = (vy,...,v,—1) are LPS’s of the same length
n,and uj,v; have the same null sets for each j < n, then y and v assume the same events
ateach level j < n. Verbally, the events that an LPS p assumes depend only on the length
of p and the null sets of the u;.

2.4 LEXICOGRAPHIC TYPE STRUCTURES

LPS’s and associated constructs were used in to build a framework in which the
rationale for iterated admissibility can be expressed formally (i.e., in the language of set
theory).

Recall the finite game G = ($%,S?, 7%, 7?). In the context of the game G, Ann is un-
certain of what strategy Bob will choose, what Bob believes about Ann’s strategy choice,
what Bob believes about what Ann believes about Bob’s strategy choice, and so on. To
give a parsimonious description of Ann’s beliefs about the pair consisting of Bob’s strat-
egy and Bob’s beliefs while sidestepping the inherent problem of self-reference, fol-
lowed the convention of implicitly representing beliefs as types!d Ann’s type t“ is an
element of a Polish space T%, called her type space. The belief that Ann’s type repre-
sents is given by a Borel map A% : T% — £(S? x T?), where T denotes Bob’s type space.
Similarly, Bob’s types are interpreted through a Borel map A?: T? — (8% x T%). Taken

together, these objects form a 6-tuple

T= (59,8, 7%,T,2%,A),

"BFK defined assumption only when o has full-support, but we adopt this definition for all o.
8An innovation due tom (1967).



which is called an (S%, S?)-based lexicographic type structure. Members of S x T% x
SP x T? are called states of the world.

The type structure T is called complete if £(S” x T?) = range A% and £(S% x T%) =
rangeA” ép A complete type structure contains all beliefs about beliefs

2.5 RATIONALITY

The definition of rationality in combines two requirements. The first is Bayesian op-
timality, which is captured by LEU maximization. The second, which might be roughly
described as a form of agnosticism, is reflected in full-support beliefs. Intuitively, in
a complete type structure, a player with full-support beliefs will consider all possibili-
ties. Formally, the LEU of a strategy s* € S* under the LPS o = (uy, ..., 1) is the vector
(7*(s%vp),...,m*(s%vy)) of payoffs, where v; = margg, i;, and s is optimal under o if
the LEU of s* under o is maximal among all strategies in S%. A strategy-type pair (s%, t%)
is rational if 1%(¢%) is a full-support LPS, and s“ is optimal under A%(¢t%). The set of all

rational pairs (s¢, 1) is denoted by R{. For each m > 0, define R;;, inductively by

_ b
R% =R N|S*x A“R))|,

m+1 —

where A%(R?) is the set of Ann’s types in t% € T% such that R, is assumed under 14(¢%).

If a state (s%, %, sY,t?) e R x R

o1 % Ry ., then we say that it satisfies rationality and m-th

order assumption of rationality (henceforth RmAR).
We write R? = S? x T?, and RY = Nymen RY,. Note that S? x T? is trivially assumed
under every full-support LPS on S” x T?. It is shown in that each of the sets R%, R%

is Borel (so the players are able to assume these sets), and that

R%L =R{n|S%x ] A“(RY)

i<m

In words, Ry, is the set of states for which Ann is rational and assumes that Bob is i-th
order rational for each i < m. If a state (s%, t4, s?, %) belongs to R x Rf)’o then it satisfies
rationality and common assumption of rationality (henceforth RCAR). In words, each
player is rational and assumes that the other player is m-th order rational for each me N.
It is shown in that any LPS that assumes each of a countable sequence of events
assumes their intersection. It follows that for any RCAR state, each player assumes that

9In[BFK, a type structure is called complete if £*(S? x T?) C range A% and £* (5% x T%) C rangeAP.
This difference is immaterial with respect to both their results and ours.
10But not necessarily all hierarchies of beliefs.



the other player is rational at order oo, that is, Ann assumes R2 and Bob assumes R% .

3 STATEMENTS OF RESULTS

Section [3.1] states our main existence results, which 1) show that there exist complete
type structures with RCAR; 2) establish that RCAR in complete type structures is an epis-
temic condition for IA; and 3) reconcile these facts with the negative conclusions found
in the literature. Section3.2]states some complementary results that relate beliefs about
strategies to iterated admissibility. We need these results to prove our existence theo-
rems, but they also merit independent consideration because they reveal certain struc-
tural commonalities of finite-order reasoning about rationality across complete type
structures. In Section[3.3] we state a sharper form of our main existence theorem that
gives a topological characterization, for a fixed game G, of the RmAR sets in complete
type structures in which the RCAR set is nonempty. Finally, Section[3.4lprovides a game-
independent condition for IA that captures the line of reasoning that RCAR describes.
In order to easily distinguish new results from previous results from the literature,
we will reserve the name “Proposition” for previous results from the literature, and use

“Theorem”, “Corollary”, and “Lemma” for new results.

3.1 RCARAND ITERATED ADMISSIBILITY

Consider the following infinite sequence of statements.

(al) Annisrational (bl1) Bobis rational
(a2) (al) and Ann assumes (b1) (b2) (bl) and Bob assumes (al)
(a3) (a2) and Ann assumes (b2) (b3) (b2) and Bob assumes (a2)

For eac'l.l' m > 1, the statement “a(m + 1) and b(m”+. 1)” corresponds to rationality
and m-th order assumption of rationality. The conjunction of this infinite sequence of
statements corresponds to rationality and common assumption of rationality.

A type structure T = (8%,8?, T4, T?, 14, AP) for G provides precise interpretations of
these statements by implicitly defining the possible belief hierarchies of each player.
found that if the universe of beliefs implied by ¥ is rich enough—thatis, ¥ is a com-
plete structure—then the set of strategies played when RmAR holds coincides exactly
with the set of (m + 1)-admissible strategies. Proposition[3.1I]below is the formal state-

ment of this result.



Proposition 3.1 (Theorem 9.1 in. Fix a finite game G and a complete lexicographic
type structure X for G. Then for each m € N,

projga R%, x projgs R2, = 8%, x S,

It is natural to ask whether there is an analogous result that characterizes iterated
admissibility using RCAR. Our main results, Theorems [3.2] and 3.4l below, establish the
epistemic foundations of IA along those lines. In particular, Corollary [3.3] shows that
there exists a complete type structure in which the RCAR set is nonempty, answering an
open question that was asked in .

Theorem 3.2 (Existence Theorem). For each finite game G = {S%, S, n% n’) and un-
countable Polish spaces T%, T?, there exist Borel functions A*, AP such that
T = (S“, st ra Tb A4 Ab> is a complete lexicographic type structure for G in which RZ x

RY is nonempty.

Corollary 3.3. Fix a finite game G. There exists a complete lexicographic type structure’®

for G in which R% x RY. is nonempty.

Theorem 3.4. Fix a finite game G and suppose X is a complete lexicographic type struc-

ture for G such that R x R is nonempty. Then
projga R% x projgs RZ = 82 x Sb..

In words, Corollary[3.3]says that there exists a complete type structure for G with at
least one state that belongs to the RCAR set. Theorem [3.4] says that, in every complete
type structure for G in which the RCAR set is nonempty, the set of strategies played when
RCAR holds is exactly equal to the IA set. Together, Theorems[3.2]land [3.4]say that “RCAR
in complete type structures” is an epistemic condition for IA since 1) every IA strategy
is played under RCAR in some complete type structure; and 2) the strategies that are
played under RCAR in any complete type structure must be IA strategies.

However, it is not the case that every complete type structure for G has a nonempty

RCAR set. Consider the following two results from )

Proposition 3.5 (Theorem 10.1 inlﬂ). Fix a finite game G and a complete lexicographic
type structure T for G such that the maps A*, AP are continuous. If there exist r®,s®,s”

such that m®(r%, s?) # n%(s% sP) then R x R?. = .

10



Proposition 3.6 (Proposition 7.2 in. For each finite game G there exists a complete
lexicographic type structure X for G such that the maps A*, A" are continuous

These two results together show that there are complete type structures for G in
which the RCAR set is empty. So the set of strategies played when RCAR holds is empty,
but of course the IA set is nonempty.

How do we reconcile our results with Proposition[3.5F In particular, how should we
understand the fact that complete type structures having nonempty RCAR sets cannot
have continuous type-belief maps? To do so, we give an improvement of Proposition[3.6]
By a Borel refinement of a Polish space T, we mean a Polish space U such that U has the
same set of points and the same Borel o-algebraas T, and every open setin T is open in
U. Thus U has the same Borel sets but more open sets.

Theorem 3.7. Let T = (S%,S?, T4, TP, 1%, AP) be a complete lexicographic type structure
for a finite game G. Then there exist Borel refinements U%, U” of T%, T? such that the maps

A% U — L(SP x Ub), AP Ub — L84 x UY
are continuous.

It follows that 4 = (§%,S?, U4, U?, 14, AP) is again a complete type structure for G, so
Theorem[3.7limplies Proposition[3.6 Since the Borel o-algebras are unchanged, the sets

of LPS are unchanged, i.e.,
LS x U = LS TY, LS x UPy = £(S? x TP).

However, more open sets have been added to their topologies.

No state satisfying RCAR exists in the type structure 4 by Proposition[3.5l Note that
while £(S? x T?) = 2(S? x UP), it is not the case that £ (S? x T?) = £*(S? x UP). This
is because full-support LPS’s must assign positive measure to every open set and U”
contains more open sets than T? does. Effectively, there are fewer full-support types in
U*“ than there are in T“. So the operation of refining the topologies of the type spaces in
this fashion shrinks the set of states in which every player is rational.

The shrinking of the set of full-support types is a consequence of a more basic change.
Recall that, to assume an event, it is necessary to assign positive measure to every “part”
of it. Any two disjoint parts of an event are topologically distinguishable from each

USince our definition of complete is slightly different from the definition in [BFK, the proof must use
Theorem 13.7 instead of Theorem 7.9 in@é (1995).

12Two events are topologically indistinguishable if one approximates the other and vice versa—that is,
if they have identical closures.

11



other. It follows that refining the topology on the state space raises the standards of as-
sumption for the players. From such a perspective, continuous type structures are type
structures with high standards for assumption.

The description of continuous type structures in as type structures in which
neighboring full-support LPS’s are associated with neighboring full-support types, while
equivalent, does not immediately call this property to attention. Our interpretation of
continuous type structures is that they describe players who are more finicky about say-
ing that they assume something. They are more agnostic than players in discontinuous
type structures in this sense.

One early interpretation of ’s negative result was that RCAR is impossible when

players know too little about each other (since complete type structures are very rich).

i ) had previously shown that compact, complete, and continuous stan-
dar type structures contain all hierarchies of beliefs. While this result had not been
extended to lexicographic type structures, it was reasonable to suppose that the nonex-
istence of RCAR in complete continuous lexicographic type structures was due to the
presence of foo many hierarchies of beliefs.

Our Theorem B.7] says that any complete type structure—even one with nonempty
RCAR—contains exactly the same set of hierarchies of beliefs as some complete continu-
ous type structure. It permits us to isolate the issue of missing hierarchies and conclude
that RCAR is impossible in complete continuous type structures because players are too
cautious about assuming events in such type structures, and not because they know too
little about their opponents.

The Existence Theorem[3.2]is not fully satisfactory in the sense that it only says that if
we fix a game, we can find a complete type structure in which RCAR for that fixed game
is nonempty. It is silent on whether, given a pair of finite strategy sets (S%, SP), there is a
single complete type structure in which RCAR for every game G on (S%, §?) is nonempty.

We will remedy this shortcoming in another way in Theorem [3.25)]

3.2 STRATEGIC BELIEFS AND ITERATED ADMISSIBILITY

In this section, we give an alternate definition of the IA set in the style of rationalizability

via an iterative refinement of the players’ strategic beliefs—that is, their marginal beliefs

13i.e., type structures with standard probabilities, not lexicographic probabilities.

12



over opponents’ strategies We will show that this refinement process captures some
of the structural properties of RmAR sets that are conveniently invariant across all com-
plete type structures. In other words, RmAR sets can be described as having the same
“shape” in a sense across all such type structures. These properties are incredibly useful
in proving the existence theorems of Section[3.1land their generalization in Section[3.3]

We suppose throughout that G = (S“, Sb @ b ) is a finite game in strategic form. We
first introduce some notation. For r%, s* € S and a sequence v = (vy,...,V,) € N(SP), we
say that s is preferred to r* under v, and write s* >, r¢, if the LEU of s? under v is
greater than that of r*—that is, 7%(s%,v) > gx n7%(r%,v), where n%(s%v) is the (n + 1)-
tuple (7%(s% vg),...,m%(s% v,)). Note that the leftmost term 7%(s%, v() has the highest
priority. Intuitively speaking, under belief v = (vy,...,v;,), for each k < n the strategies in
the support of (vy,...,vy) are infinitely more likely than the strategies outside the sup-
port of (vg,..., V).

Given p,v € ASP), we write u ~* v iffor all r%, s* € §¢, 5% >, r%ifand onlyif s >, r?.
In other words, i ~* v if and only if they induce the same preference ordering over pure
strategies. It is easy to see that ~* is an equivalence relation. If u = (uo,..., n,) and
v = (vy,...,vy) then the concatenation of ¢ and v is defined as the sequence

uv = (Voo UV man+1) = Mos ooy By Vor -+ ) Vi)
We note that if u ~* v and u’ ~* v/ then uv ~* u'v'. Now, let
Pi= NS = {V:VEJV(Sb)ASuppV: Sb}
and define the following for each m > 0.

Pt = {vv’:veﬂ(sb) ASuppv = qu/\v’eP,‘;}.

m+l =
The set P{ can be interpreted as the set of strategic beliefs held by rational types.
Fix a complete type structure (S“, sb Ta b pa 2b ) If Ann is rational then she has a
full-support belief u € £*(S? x T?) and her strategic belief is margg, u. Then the set of
strategic beliefs that may be held by rational Anns is

{margsb e LSk x T”)} = A" (SP) = P2,

We will call Py the set of Ann’s rational strategic beliefs. It readily follows that S{ is the

set of strategies played by rational Anns.

“The refinement process may succinctly be described as set-valued lexicographic rationalizability,
given its similarity to éié:i’s (@) notion of lexicographic rationalizability.
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Following the intuitive description given above, we can say that if Ann holds a strate-
gic belief v € PJ then she considers the event that Bob is rational to be infinitely more
likely than the event that he is not. Furthermore, we can say that v = margg, 1 for some
full-support belief p of Ann that assumes that Bob is rational. An inductive argument
shows that if v € PJ) |

that m-th order assumes rationality.
For each v € A(S?), let O(v) denote the set of all s* € §% such that s% is optimal under

then v is the marginal on S” of some full-support belief of Ann

>, (i.e., s* maximizes LEU under v). Note that if u ~* v then O(u) = O(v). For each
m >0, define

X4 ={0W):vePy}.

We have the following characterization of m-admissible strategies as strategies that

are optimal under strategic beliefs in P} .

Theorem 3.8. For each m >0, UX% = S%. Each s* € S%, belongs to some X% € X% , and

X4 is a set of subsets of S%,.

Note that Theorem 3.8 allows us to rewrite the definition of Pj, ., without reference

to the m-admissible set S2 . In fact, all results in this section would continue to hold

a

even if we had started with the following definition of Py .

a = {vv’:veﬂ(sb) ASuppv = @(P,bn) AV eP,‘;},

m+l =
where O(P2) = U{O(w) : p€ P2},

We are also able to show that for every full-support belief u of Ann who m-th order
assumes rationality, there is some v € P;, _; such that margg ¢ and v induce the same
preferences over Ann’s strategies—that is, the strategic beliefs in P¢ | are representative
of Ann’s preferences over her strategies in states of the world satisfying RmAR in a com-

plete type structure. Theorem[3.91below gives a precise statement of this relationship.

Theorem 3.9. In a complete lexicographic type structure for a finite game, for each m > 0,
(i) If (s t*) € RS, then3v € P% such that margg, A%(t) ~* v; and
(i) Ifv e P{, then3(s%, t*) € R4, such that margg, A%(t%) = v.

By definition, a strategy s is optimal under 1%(¢%) if and only if s* is optimal under

margq» A*(¢%). Thus we have the following corollary.
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Corollary 3.10. In a complete lexicographic type structure for a finite game G, for each
m >0, aset X* < §* belongs to X%, if and only if there is a state (s*, t) € R such that X*

is the set of all optimal strategies under A“(t®). Moreover, for each m we have X7, 2 X% ..

Theorems[B.8landB.9]tell us something about the “shape” of the RmAR sets in a com-
plete type structure for G. To see this, we consider an arbitrary relation Q < S* x T% and
subset X“ < S%, and define

r“X4Q ={r*e1%: X={s": (s, t“ € Q}}.
In words, I'*(X4, Q) is the set of all t* € T such that the section of Q at t* is exactly X“.
Itis clear that for each set Q = §% x T%, the family of sets {I'*(X?, Q) : X* < §%} is pairwise
disjoint, and the union of the family is 7%. Thus the nonempty sets in this family form a
finite partition of T%.

It follows that in any type structure for G, and for each nonempty set X < S% and
m >0, I'(X% R%) is the set of all types t“ for Ann such that X is the set of optimal
strategies for 1%(¢%), and Ann is open-minded and assumes k-th order rationality for
Bob for all k < m

The next corollary shows that the RmAR sets have similar “shapes” in all complete

type structures for a given finite game G.

Corollary 3.11. In a complete lexicographic type structure for a finite game, for each
nonempty X < S%, the following statements hold.
(i) The sequence{l'*(X%, R%): m >0} is a decreasing chain of Borel sets of T%;
(ii) For each m>0,T'%(X% R%) is nonempty if and only if X% € X%,; and
(iii) The sequence {T%(&,R%): m> 0} is an increasing chain of nonempty Borel sets of
T4,

CorollaryB.ITlgives us the following useful formula for the RmAR sets in a complete

type structure for a finite game.

RS = J{XxT*X% Ry) : X e X§,}.

3.3 ALLPOSSIBLE RCAR SETS

In this section we state a sharper form of the Existence Theorem 3.2l Consider a com-
plete type structure such that RCAR obtains in some state. Below, we define an RCAR

15Bob is k-th order rational if he is rational and (k — 1)-th order assumes rationality.
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tower to be the family of RmAR sets in any such type structure. The results of this sec-
tion give a list of topological properties that characterize RCAR towers.

The sequences of RmAR sets depend on the type structure T as well as the game G.
To indicate this dependence, we will sometimes write R% (G, %) instead of R%,, RZ (G, %)
instead of RZ . Throughout this section, we fix a finite game G and a pair of uncountable
Polish spaces T¢, TP,

Definition 3.12. An RCAR tower for (G, T%, T?) is a pair of sequences {Q% : m >0} and
{Qb : m > 0} of sets such that
(i) Theintersections Q% =, Q%, Q2 =N, QL. are nonempty; and
(ii) There exist maps A% AP for which T = (S%,8?, T4 T, A% AV is a complete lexico-
graphic type structure for G, and for all m > 0, Q% = R% (G, %) and Qb = RY (G,%).

Thus every complete type structure with RCAR gives rise to an RCAR tower. The
Existence Theorem 3.2l implies that there exists an RCAR tower. CorollaryB.11]gives a
limitation on the possible RCAR towers—they must have the right “shape”. Property 6.2
in gives a second limitation—two events assumed at the same level must be topo-
logically indistinguishable, so the set Q% x Q2 must be topologically indistinguishable
from Qf, x QJIQ for some M. Lemma E.2 in gives a third limitation—for each open-
minded type t“ for Ann, there are uncountably many other open-minded types that
have the same optimal strategies and assumptions as %, and hence each “part” of Q¢
that is not in QY ., must be uncountable. The following sharp existence theorem says
exactly which families of sets are RCAR towers. In words, it says that a family of sets is an

RCAR tower if and only if it satisfies the three limitations above.

Theorem 3.13. The pair of sequences {Q% : m>0},{QL : m>0} is an RCAR tower for
(G, T% T?) if and only if for each nonempty X* < S%,
(@) {T%X% Q%) : m> 0} is a decreasing chain of Borel subsets of T%;
(ii) Foreachm>0,T“(X% Q%) #90 — X%eX%;
(iii) For some M >0, Q% = Q%,;
(iv) T2, Q7)) is uncountable;
(v) X?eXj, = I''(X?, Q) \T“(X% Q4 .,) is uncountable; and
i) X?e Xy = I'(X% Q%) is uncountable;

and similarly for b.

Theorem [3.13shows that the property of being an RCAR tower depends only on the

a

a Xb . As shown in Section[3.Z} these sets capture properties that are

optimality sets X
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universal to all complete type structures. Indeed, their definitions make no reference
to type structures at all. Thus the property of being an RCAR tower is partially robust.
Theorem[B.I3]also shows that one has a great deal of control over the properties that the
RmAR sets will have.

Furthermore, Theorem[3.14] which is stated below, shows that any family of sets that
is an RCAR tower is also the family of RmAR sets in some complete one-to-one type
structure for G. By a one-to-one type structure for G we mean a type structure T for G

in which the mappings A%, A? are one-to-one.

Theorem 3.14. The pair of sequences {Q% : m>0},{Qb : m >0} is an RCAR tower for
(G, T% T?) if and only if
i) Q% =N,,Q% and Q% =N, QL are nonempty; and
(ii) There exist mappings A%, A? such that < = (§%,S?, T%, T?, A%, A?) is a complete one-
to-one lexicographic type structure for G, and for all m > 0, Q% = R4%(G,%) and
Qb =R2(G,%).

A consequence of Theorem B.13lis that the proof of the Existence Theorem[3.2lis re-
duced to the problem of finding a family of sets that fits the topological characterization
of RCAR towers. The following lemma about Polish spaces, together with Theorem 313}
implies Theorem

Lemma 3.15. For any finite game G and uncountable Polish spaces T T?, there is a
family of open sets {Q%,: m > 0}, {QL, : m > 0} such that Q%, Q% are open and Conditions
1-6 of Theorem[3.13 hold.

This gives us a complete one-to-one type structure ¥ with the additional property
that all the RmAR sets R% (G, %), R? (G,%) and the RCAR sets R% (G, T), R2 (G, %) are open
and uncountable. By choosing other RCAR towers, one can get a ‘T with various other
properties.

Theorem B.I3lis a very strong result and no comparable analog is in the literature
about standard type structures and RCBR. It is well-known that the sets of states that
satisfy rationality and m-th order belief of rationality (RmBR) being compact for each m

is sufficient for the existence of RCBR (cf. , ). However, there is no

topological characterization of the RmBR sets in standard type structures with RCBR.
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3.4 A GAME-INDEPENDENT CONDITION FOR RCAR

The results of the previous sections have shown that, given any game G, there is a large
class of complete type structures such that RCAR is nonempty when rationality is de-
fined with respect to the specific game G. Furthermore, if we fix a type structure T in
this class then the play of the game under RCAR is exactly the IA set of G. However, it
will not necessarily be the case that the RCAR set is nonempty in ¥ when rationality is
defined with respect to another game G with the same strategy sets (5%, S?).

In the aforementioned type structure ¢, players can commonly assume rationality
with respect to G but perhaps not with respect to another game. Our main results of the
earlier sections do not guarantee the existence of any complete type structure in which,
for all games G, some state satisfies the condition “RCAR with respect to G”.

This form of game-dependence raises the following question: Is there a model envi-
ronment in which the set of states with common knowledge of the game G is isomorphic
to a complete type structure (e.g., ¥) in which common assumption of rationality with
respect to G is possible? In this section, we answer this question in the affirmative. To
do so, we first extend the framework to include moves of nature, which choose the
game G.

Definition 3.16. A lexicographic type structure with nature is a structure

v =(0,5%,8", v, VP19,
where S%,S? are nonempty finite sets, © is the space of games over (8% 8?), V4, V? are
Polish spaces, and A%, AP are Borel functions

AV L@ x SPx VD), APVl — 2@ % $*x V).

We say that*Q is complete if the mappings A%, A? are onto, and one-to-one if the map-
pings A%, AY are one-to-one.

Hereafter, 20 will denote a lexicographic type structure with nature, and G will denote

agame in 0.

Definition 3.17. We say that a type v* € V* believes an event E < © x S’ x V¥ and write
vie CYE)if

AT (w")(E) =1,

where 1 denotes a finite sequence of 1s. We say that v* believes a game G and write v* €
CX(G) if v believes {G} x S” x VY, that is, v* € C*({G} x S? x V'?).
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We now define common belief of G. Informally, there is common belief of G if each
player believes G, believes that the other player believes G, believes that the other player

believes that, and so on.

Definition 3.18. We say that v* has common belief of G if v* € CZ (G), where
Vvm>0, C%..(G)=C%G)NCY O xS’ xChGy;
C(G) = ) CL(G).

m>0
If both v* and v’ have common belief of G, we say that the pair (v%, v?) has common
belief of G. We say that there is common knowledge of G at state (0, s%, v?, s?, v?) if0 =G
and (v, v?) has common belief of G. In other words, common knowledge is equivalent to

true common belief. The common knowledge set for a at G is the set
K“(G) ={G} x 8% x CL(G).

One can easily verify that the common knowledge sets K%(G) and K”(G) are Borel
(but possibly empty). We say that 0 admits common knowledge of G if the sets K“(G)
and K?(G) are nonempty Polish spaces Clearly, K“(G) is a Polish space if and only if
C% (G) is a Polish space.

Definition 3.19. Suppose‘U admits common knowledge of G. Uy is the structure
Vg = (8%, 8", V&, V8, A8, A8)

such that V& = C4,(G), and for each v* € V& and event E < Sb x VGb,
AWM (E) = A" (v))(© x E).

Lemma 3.20. If*0 admits common knowledge of G, then A{,: Vi — £ (SP x VGb), 50U is

an ordinary lexicographic type structure.

We formulate an analog of RCAR with respect to a given game G in type structures
with nature by extending the definitions of assumption and rationality to type structures

with nature as follows.

Definition 3.21. We say that a type v* € V* assumes an event E < O x S” x V? in0, and
write v* € A“(E), if A*(v*) = (U1, ..., Un-1) Such that
(a) pi(E)=1foreachiz< j;

16Note that common knowledge of G is equivalent to “G and common belief of G
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(b) pi(E)=0 foreachi> j;and
(c) IfU isopen withUNE # & then u;(UNE) >0 for somei < n.
It is easily seen that a pair (s, v9) is rational for G in Ug if and only if (s%,v%) €
S%x V&, v assumes Shx V(I;] in Yg, and s* maximizes LEU with respect to A¢,(v?). Our

definition below of G-rationality in *U follows this pattern.

Definition 3.22. We say that the triple (0,s% v?%) is G-rational, and write (0,s%, v%) €
R(G), if

(i) 0,s5% v* e K“G), i.e., there is common knowledge of G,

(i) v* assumes K?(G) (common knowledge of G) in*0; and

(iii) s maximizes LEU with respect to A*(v%).

Definition 3.23. We say that the triple (0, s v?) is G-rational and commonly assumes
G-rationality (G-RCAR) if (0, s% v®) € R% (G), where

vmeN, R%. . (G)=RL(G)N(OxS*x AYR"(G)
RL(G) =[] Ry(G)

m>0

When 20 admits common knowledge of G, the following result gives the relationships
between assumption in ‘U and in U, and between iterated G-rationality in *J and iter-

ated rationality for G in Y.

Theorem 3.24. Suppose that*0 admits common knowledge of G, and let v® € V{. Then
(i) Forall Borel E < S” x VGb, v* assumes{G} x E in*U ifand only if v* assumes E in*Ug;
(i) R{(G) ={G}x R{(G,Vq);
(iii) Vm >0, R%(G)={G}xR%(G,BVg);
and similarly for b.

We can now state our result that there is a model environment in which, for every game
G, G-RCAR epistemically characterizes the IA set of G. In this environment, which is
a complete lexicographic type structure with nature, G-RCAR may be described as a

game-independent condition in the sense that it can be satisfied for every game G.

Theorem 3.25. For each pair (S S?) of finite strategy sets, there is a complete one-to-
one lexicographic type structure with nature, 0 = (©,5%, 8%, V4 VP 14 AP), such that
for every game G € O,
(i) *U admits common knowledge of G;
(ii) U is a complete one-to-one lexicographic type structure; and
(iii) projsa R%(G) x projgs RZ(G) = S (G) x SL.(G).
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4 DISCUSSION

Here, we give the results of this paper further context by considering their relationship
with other results in the literature.

RCAR as an Epistemic Condition As explained in , the RCAR concept corresponds
to a “line of reasoning” where each player considers all possibilities about the beliefs of
the other players. We focus on the question of whether RCAR can provide an epistemic
basis for the IA solution concept. We will compare our results with the literature on the
corresponding question of whether RCBR provides epistemic conditions IU.
Brandenburger and Dekel 41%14) essentially give us the following fact.

Fix a game.
(i) For each type structure, the set of strategies consistent with RCBR is a
subset of the IU strategies.
(ii) There exists a finite type structure such that the set of strategies con-
sistent with RCBR is exactly the IU set.

This says that if we look at RCBR across all type structures, we get the IU set. Taken
together, our Theorems[3.2land [3.4]limply the following analogous fact.

Fix a game.
(i) For each complete lexicographic type structure, the set of strategies
consistent with RCAR is a subset of the IA strategies.
(ii) There exists a complete lexicographic type structure such that the set

of strategies consistent with RCAR is exactly the IA set.

This says that if we look at RCAR across all complete lexicographic type structures, we
get the IA set

It may appear that this is the end of the matter. However, under the epistemic game
theory (EGT) theory approach, the beliefs that the players deem possible—and therefore
the type structure that generates them—are part of the description of the strategic sit-
uation. From the perspective of the players, the type structures other than the one that
describes their strategic situation are simply irrelevant. Such extraneous type structures
may exclude types that the players consider possible or include types that the players

consider impossible.

BFK showed, if we look at RCAR across all lexicographic type structures, we do not get the IA set.
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While an analyst can find a justification for each IU strategy by looking across all
type structures, the player, whose perception is confined to the boundaries defined by
the type structure that describes her situation, is not assured of being able to the same.

This raises a question: Can the players themselves see all the IU strategies as the
result of the line of reasoning captured by RCBR? This requires a type structure that is
“rich enough” so that each IU strategy is justified by some RCBR state. Indeed, many
type structures fail to satisfy such a richness condition.

Brandenburger and Dekel (|19§_7_4) showed that, given a fixed game G, one can tailor
the type structure so that the IU strategies of G are the output of RCBR E Since this
construction depends on the game G, it may be the case that this type structure is not
“rich enough” to give us the IU strategies of another game G’ as the output of RCBR.

However, from the perspective of EGT, a good epistemic condition should involve
a line of reasoning for the players that is game-independent (i.e., the reasoning is the
same for all games). This implies that the type structure should be rich enough so that
RCBR produces the IU set for every game. IIan_an_dJALeﬂ.ané dl%_é) identified one such
richness condition: In the so-called “universal type structure”, the IU set is character-
ized by RCBR, regardless of the game in question. Friedenberé deLj) showed that any
complete, compact, and continuous type structure also has this property.

This result has no direct analog with respect to RCAR and the IA set. showed
that if a lexicographic type structure is complete and continuous then it contains no
state that satisfies RCAR

) Therefore, if we fix an arbitrary complete type structure, we
cannot say that RCAR is an epistemic condition for IA.

We resolve this issue by showing that there is a type structure that is rich enough in
the sense that it embeds enough complete type structures so that for each game, RCAR
in at least one of the embedded type structures yields the IA set as output. This structure
can be viewed as a model environment in which players can look across many complete
type structures like the aforementioned imaginary analyst so that “RCAR in complete
type structures” is a game-independent epistemic condition for IA. Our Theorem
shows the existence of such a structure in which an embedded complete type structure
with RCAR for a game G can be interpreted as describing the set of states with common

knowledge of G. We make this interpretation explicit in our formal treatment, which

18|an_dﬂnburgﬂr_and_llekd (1987a) uses finite partitions, not finite type structures. However, a finite

partition structure is essentially equivalent to some finite type structure.
9n fact, a complete, compact, and continuous lexicographic type structure does not even exist.
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introduces moves of nature that choose the game G.

Continuity The pessimism in with respect to finding an epistemic condition for IA
strategies was due principally to their finding that complete continuous type structures
must have empty RCAR sets. Our Theorem[3.2revived the research program by showing
that there are complete type structures with nonempty RCAR sets. In these type struc-
tures, the belief maps cannot be continuous. This suggested that continuity, which had
appeared to be a technical condition ex ante, changes the players’ reasoning in some
significant way. By contrast, the much weaker requirement that the belief mappings are
Borel is a technical condition that provides the structure needed to obtain results.

Our Theorem[3.7gives a striking way to isolate the effects of continuous belief maps
by showing that, given any complete lexicographic type structure there is a correspond-
ing complete and continuous structure that describes exactly the same beliefs—that is,
the two type structures are equally rich in at least one sense.

The difference between a complete structure T and its continuous counterpart &l
given by Theorem 3.7]is that of topological distinguishability, which affects the classifi-
cation of beliefs rather than changing them. Thus it turns out that a type structure in the
framework captures more information than just the players’ possible hierarchies of
beliefs.

In Theorem 3.7, 4 gives a finer topologization of the state space than ‘T does. How
should we interpret this difference? The topology on a state space, say , is essentially
the set of events that open-minded Bayesians must consider in their decision making.
However, we find it more convenient to start with the interpretation that a topology sep-
arates and distinguishes hypotheses about the true state of world. Consider two hy-
potheses, which are respectively represented by events E and E’. If their closures are
equal, as determined by a topology I~ on (, then it may be said that E and E’ are indis-
tinguishable in 9~ because E approximates E’ in an arbitrarily fine way and vice versa.

Whether an event is assumed by a given belief is sensitive to the topology on the state
space. As this topology is successively refined, a given belief will be classified as assum-
ing fewer and fewer events. We might then informally describe the difference between
T and U as follows: The players in the environment described by the latter are more
cautious about assuming things than the players in the environment described by the
former. This relationship gives an intuitively appealing reconciliation of ’s negative

result with our positive result. Players described by continuous type structures are just
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too cautious to commonly assume rationality.

Furthermore, it is apparent that a decision maker who assigns a non-zero probability
to each open set is simply giving proper consideration to all distinguishable hypotheses.
Therefore, it is even the case that the rational players described by {{ must be more open-
minded than the rational players described by .

Other Approaches Alternate routes to an epistemic condition for IA may also exist.
The most direct path of attack would be to ask, as we did at the end of Subsection 3.1}
whether there exists a single complete lexicographic type structure—perhaps an analog
of the universal type structure—in which the IA set of every game is the output of RCAR.

A second option would be to weaken the criteria for assumption so that they are
not sensitive to variations in topological distinguishability. However, we do not want
to weaken assumption so much that we no longer get IA as an output of RCAR. Ana-
lyzing the complete lexicographic type structures constructed in this paper may pro-
vide some hints on how to achieve these goals. Roughly speaking, beliefs that manifest
the so-called Best Rationalization Principle that was articulated inlﬂall_igaﬁ M) also
satisfy common assumption of rationality in our constructions. In other words, if Ann

attributes each admissible choice s” of Bob to a rational decision based on the high-
est order mutual assumption of rationality that is consistent with it, then her beliefs
satisfy common assumption of rationality. Ann, if her beliefs reflect the Best Rational-
ization Principle, can be viewed as assigning ex-ante explanations of all possible actions
of Bob—explanations that preserve as much higher order assumption of rationality as
possible.

Yang (|2Q1d) uses lexicographic type structures with a fixed finite bound M on the
length of LPS’s, and introduces a notion of weak assumption in place of assumption.
This gives an alternative epistemic characterization of IA where the players do not con-
sider possibilities involving iterated beliefs longer than M.

A third option is to adopt an approach in which admissibility itself is not justified

on an epistemic basis, thus skirting around the inclusion-exclusion problem. Barelli

and Galanis _ZD_ld) gives an alternative epistemic condition for IA that is built on event-
rationality, which, like LEU, is an extension of the standard model of Bayesian rational-
ity. An event-rational decision maker evaluates acts based on her standard probability
beliefs and break ties using her personal list of tie-breakers. In that approach, admissi-

bility is obtained by requiring that her tie-breaker list has sufficient coverage, rather than
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by requiring that she has full-support beliefs (i.e., an open-minded epistemic state).

A PROOFS OF THEOREMS[3.4AND3.7]

A Borel refinement of a Polish space T is a Polish space U such that U has the same
points as T, and every open set in T is open in U. To prove Theorem [3.7] we need the
following results about Borel refinements.

PropositionA.1 (15.4 in )). If T is a Polish space and U is a Borel refinement

of T, then T and U have the same Borel sets.

Proposition A.2 (13.11 in )). Suppose T is a Polish space, Y is a second

countable space, and f : T — Y is a Borel function. Then there is a Borel refinement U of

T such that f: U — Y is continuous ﬁ

Proposition A.3 (13.3 in @)). Let T be a Polish space and for each n € N,
let T,, = (T,9,) be a Borel refinement of T. Let Too = (T,9&) Where I, is the topology
generated by Upen Iy Then Ty, is a Borel refiement of T. We say that Ty, is the coarsest
Borel refinement of the family {T,, : n € N}.

Proposition A.4 (Portmanteau theorem, 17.20 in @)). Let X be a Polish space,
let 4 (X) be the space of Borel probability measures on X, and let G be an open basis for
X. A sequence iy weakly converges to u in 4 (X) if and only ifliminfy ui(0) = u(O) for
everyOe0.

This result is stated for all open sets in ), but the version stated here
with an open basis follows from the proof.

Proof of TheoremB7 Let T¢ = T and T{ = T?. Using Proposition[A.2] countably many

a

times, we obtain sequences of Polish spaces T4, T,Il’ such that foreach n, T .1 is a Borel

n
refinement of T¢ (and hence of T%), and A* is continuous from T | to £(S” x T?). Let
U be the coarsest Borel refinement of {T,,: n € N}, and define U” analogously. Since
each opensetin T7, , isopenin U“, 1* is continuous from U“ to L(S? x TP) for each n.

Suppose that u;’ converges to u” in U”. Then for each n, A*(u})) converges to 1“(u“)
in £(SP x T,ll’). For some ¢, we have A%(u®) € A,(S? x UY). Then A“(uz) € Np(SP x UY)

for all but finitely many k, so we may assume this holds for all k. Let y ,, be the m-th

20Note that each subspace of a Polish space is second countable.
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coordinate of 1“(u}), and let u, be the m-th coordinate of A“(u“). Hence for each n and
each m < ¢, . ,, weakly converges to i, in .4 (S” x T?). By the Portmanteau theorem,
liminfy, 1, £ (0) = w,,(0) for each m, n and each open set O in S? x T?. Since the open
setsin S? x T?, n e N form an open basis for S” x U?, it follows from the other direction
of the Portmanteau theorem [A.4] that for each m < ¢, py ,, weakly converges to i, in
(S x UY). Therefore, )L“(uZ) converges to A*(u“) in L(SY x UP). This shows that 1% is

continuous from U® to £(S? x U?). O
To prove Theorem[3.4] we need two results from about assumption.

Proposition A.5 (Property 6.2 inlﬂ). Let X be a Polish space, E, F be Borel subsets of X,
and o = (U, ..., tm-1) a full-support LPS on X. If o assumes both E and F the same level,
thenE =F.

Proposition A.6 (Property 6.3 in . Let X be a Polish space, k € N, and 0 € £* (X).
Suppose E;,, n € N are Borel sets in X, and E,, is assumed under o at level k for each n € N.
ThenN,en Ey, is assumed under o at level k

Proof of Theorem[34. By the premise, 3(s%, t%,s?, t?) € R% x R2. Furthermore, the LPS
o = A%(t%) has full-support and assumes each set in the infinite sequence (R?, Ré’ yeee)

It follows that there exists a smallest k such that o assumes R, at level k for infinitely
many m, and a smallest M such that o assumes RJIQ at level k. By Propositions [A.6]
and[A5} o assumes RZ at level k and @ = @.

Since {s?} x T is open for all s” € S?, Rb = @ implies that projg, R%, = projg, R, =
S]I{,I. Therefore S]I{,I = SP_since R < RY for all m = M. By analogous arguments, proj g R% =
S&. O

B PROOFS OF THEOREMS[(3.8 AND[3.9

For convenience we let S§ = S* and R = S x T“, and similarly for b.

LemmaB.1. Foreach m >0,

m

PS = {vm_l...vo Vk<m, vFe MS")ASuppvF= Sz}.

Proof of LemmalB.1l The proof is by induction. The base case (m = 1) holds trivially.

a

Assume the result for m. Then by definition, the following are equivalent to u € Py, , ;.

2lThe proof in BF@ establishes the result as stated here, but the statement in did not mention the
level.
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> u=vv forsomev,v' € A(SP) such that Suppv = S2 and v' € P%;

> op=vmymel v for some v0,..., v~ v™ € M(SP) such that Suppv* = Sz for
all k= m.
This completes the induction. O
Lemma B.2. For each m >0 we have P},  , < P;,.
Proof. Suppose p€ P% . By LemmalB.] u can be written as v"v™!...v0 where v¥ €
MSP) and Suppv* = Si for all k < m. Then Suppv™v™ ! =S?  and by Lemma[B.I
we have u € Pjj,. O

We will need the following result, which is Proposition 1 in Blume, Brandenburger,

and Dekel »lﬂﬂlﬂ)-

Proposition B.3. For each v € A(SP) there is a probability measure p € 4 (S") such that

Supp p = Suppv and (p) ~* v.

Lemma B.4. Foreach meNando € P, _,,

thatv ~* o and Suppv i = SZ foreach k <m (sove Py, | by LemmalB.1).

there exists v = (Vg, ..., V) € Nm+1(SP) such

Proof of LemmalB4. We argue by induction on m. The result for m = 0 follows from
Proposition[B.3l Suppose the result holds for m, and let o0 € P? . ,. Then o = 0’0" where
o' € MSY), Suppo’ = S ., and 0" € P?

mal .1+ By inductive hypothesis, there exists v =

(Viyeo oy Vime1) € Nims1(SP) such that v ~* ¢” and Suppv,s1—k = Sz for each k < m. By
Proposition[B.3/there exists vo € .4 (S?) such that Supp vy = Suppo’ = S% ,  and vy ~* o’
Then

VoV = (VO,Vl, oo yVm+1) ~* g,
so the result holds for m + 1. O
Lemma B.5. Ifv,v' € A(SP) then O(vv') S O(v).

Proof of LemmalB.5. 1t is easily seen that if r? >, s% then r% >,/ s%. If s* € O(vv') then
there is no r such that r% >, s%, so there is no r% such that r¢ >, s%, and thus s% €
Ov). O

Proof of Theorem[3.8. The proofis by induction on m. The base case: Since Pj' = A" )
and S is the set of Ann’s admissible strategies, we have

Ux¢=J{ow) :ve P{} =S5
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Now fix an m > 1 and assume the induction hypothesis that S, = UX%. We will show
that S¢

o1 =UX% | intwo steps.

Step 1: We want to show that S7 ., 2 UX% . Equivalently, we want to show that
O <S4 ., forany p e P4 . By Lemma B.4l there exists v = (vo,...,Vp) € Nna1(SP)
such that v ~* g and Suppv,,_ = SZ for each k < m. Then O(v) = O(u). By Lemmal[B.5
@(u) =0(v) € O(vp). By LemmalB.2] p € P{, so O(w) € X%,. By the induction hypothesis

= JX%, we then have O(u) € S%. We note that Suppvo = S2,, so by the definition of

S4 1 0vo)N Sy, =84 . But O(u) € 0(vo) NSy, 50 Ou) <

Step 2: We want to show that §% | cUX% .. Equivalently, we want to show that, for

then for each k <

m+1

each s“€ S}, thereexistsau€ Py, 1suchthats eO(p). Ifs“e 84

m+1’ m+1’
m we have s“ € S7_ |, so there exists vke =/$/1(Sb) such that Supp vk = Sb and s € O(vX).
By LemmalB.5} s* € O(u) where g =v™v™ 1. v0. By LemmalB.I} pe P2 . O

For the proof of Theorem[3.9] we will need the following two results. The result below
is an immediate consequence of Lemma E.2 in .

Proposition B.6. For each LPS o € £*(S? x T?) there are continuum-many é € £*(S? x
T?) such that

(i) margg, 0 = margg, 0;

(i) Foreach Borel set E < S” x T and each k € N, E is assumed under o at level k if and

only if E is assumed under ¢ at level k.

Proposition B.7 (Lemma E.3 in . In a complete lexicographic type structure for G,

for each m € N we have projg» Rb = projgn (R2 \RP 1)
Proof of Theorem[3.9 Proof of (i). We want to show that (s, t*) € R |, = 3Ive Pl |

such that margg, A%(t%) ~* v. Let o = (Uo, ..., Un) = A%(t%). For each k < m, let [k] denote

the level at which o assumes RIIZ. Then n = [0] = --- = [m]. For the proof of (i) only, let

k

v = margg,(Uo, ..., Uik) for each k < m. Then VO = margg, 0. Since o assumes Rllz at

level [k], we see from Proposition BI] that Suppv* = proj sb R,lc’ = SZ. Note that for each

k+1

k < m, vF*1 is an initial segment of v*. It is readily verified that if v is an initial segment

of v/ then vv' ~* v/, It follows by induction that v""v""*~ 1 vk ~*vk foreach k < m, and
hence v"v™~1 .. V0 ~* V0 = margg, 0. By Lemma[BI, v™v" ! ...v%e P4 .
Proof of (ii). We want to show thatve P? |, = 3(s%, 1) € R,‘;Hl s.t. margg, A4 (1) =
v. By Lemmal[BI] we can write v as v"v" 1 .. .v%, where SuppvF = SZ for all k < m.
We first consider v". We can write v""" = (v(',...,v};') where each v;.” is a probabil-

ity measure on S”. By PropositionB.I] Suppv”™ = S2, = projg, R2,. By Proposition [B.6
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for each s” € S&, the set ({s”} x T?) n R?, is uncountable. Since S” is finite and T? is
separable, R,’jl has a countable dense subset. We may therefore pick sets Yy, ..., Y, such
that

> The sets Y; are countable and pairwise disjoint;

> The union Yy U---UY,, is a dense subset of R,lZl; and

> For each i < n, projg Y™ = Suppv".
For each s” € S” and i < n, we can assign positive measures to the points of ({sb} x
T?)nY; that add up to v/"({s"}). This gives probability measures " € ./ (S” x T") such
that Suppu* 2 Y;, u*(Y;) = 1, and margg, u" = v["*. Then the measures u}",i < n are
mutually singular, so the (n + 1)-tuple u™ = (ug’, ..., u;") is an LPS such that Supp u™ 2
Rb, W™RE) =1, and margg, u™ = v™™.

b
k+1)'

By the above construction with R,IC] \ R,IC] ., in place of RY | we obtain an LPS u* such that

We now consider v¥ for k < m. By PropositionB.Z, Suppv* = S,’z = projsb(R,’z \R

Suppuf 2 RI\RY |, u*(RPAR? ) =1, and margg pu* = v*.
Now, let 1 be the concatenation u = p™u™1... u% Then margg, 1 = v, and p is a full-

support LPS that assumes R,lc’ for all k < m. By completeness, there exists a type t% € T¢
such that 1%(t%) = u. Since p has full support, there exists an s* € S* such that (s%, %) isa
rational pair. Then (s%, t%) satisfies rationality and m-th order assumption of rationality,
so (s t*) € R® 0

m+1-
For each o € £(S? x T?), let O(0) be the set of all strategies s € S that are optimal

under margg, o

Proof of Corollary310. Note that for each o € £(S? x T?), we have 0(¢) = O(margg, 7).
Then by Theorem[3.9]

X% ={0M) :ve P4} = {0 (1Y) : (59, t%) € R}, -
Proof of Corollary[3.11. Proof of (i). By Lemma C.4 in , each of the sets R? is Borel.

Since S is finite, each of the sets I'“(X“,RY,) is Borel. Let U}, is the set of Ann’s full-

support types that assume k-th order rationality of Bob for all k < m, i.e.,
Ug ={t*eT*: 3sY (%t e RS}

Then for each nonempty X% < §%,
‘(X% R3) ={re Us:0A%(tY) = X“}.

s a
Since Rm +1

cRZ, U

m+1

€ Uy, and therefore I'*(X“, R ) < T'*(X“, Ry,). This proves (i).
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Proof of (ii). By Corollary[3.10] the following equivalences hold.
X%eXl — At eRY) [X =004 (tY)]
= @At"e UL [X =0 (tY)] = @t [t" eT* (X, R%)]

Proof of (iii). Since ¥ is complete, there exists t* € T¢ such that Ann is not open-
minded, so there is no s“ such that (s%, t“) € R{ and hence ¢“ € I'(@, R{"). T“(@, Ry}) is
the complement of the union of the sets I'*(X%, R%,) with X“ nonempty. Thus by (i),
{T%(@,R%) : m> 0} is an increasing sequence of Borel sets. O

C POLISH SPACES AND ASSUMPTION

In this section we establish some useful properties of Polish spaces and assumption. A
topological space (X, .7) is called Polish if it is separable and completely metrizable. It
is well known that all uncountable subsets of Polish spaces have cardinality equal to 220
(i.e., the cardinality of the continuum). This is a consequence of Proposition[C.I|below.
The Cantor space ¥ is the set {0, 1}N endowed with the product topology. Itis a Polish
space of cardinality 2%, A Cantor set C in a topological space X is a homeomorphic copy
of € in X—thatis, (C, 7 |C) is homeomorphic to €, where 7 |C={UNC:U € 7} is the
subspace topology on C. A subset of a topological space is perfect if it is closed and has

no isolated points.

Proposition C.1 (The Perfect Set Theorem for Borel Sets, 13.6 in , @). Let X be
a Polish space and A < X be Borel. Then either A is countable, or else A contains a Cantor
set and has cardinality 2%°.

Proposition C.2 (Cantor-Bendixson, 6.4 in , ). Let X be a Polish space. Then
X has a unique perfect subset P such that X \ P is countable and open. Furthermore, every

open neighborhood of every x € P is uncountable.

Lemma C.3. Let X be an uncountable Polish space and n € N. Then there exist disjoint
open sets Uy,...,U, in X such that

(i) U; is uncountable for all i; and

(ii) X\J{Uq,...,U,} is uncountable.

Proof of LemmalC.3. By Proposition X has a perfect subset P such that X \ P is
countable and open. We can choose n + 1 distinct points xi,...,x,+1 € P. Since X is

metrizable, it is normal—that is, any two disjoint closed sets in X have disjoint open
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neighborhoods. It follows that there exist disjoint open sets Uy, ..., Uy such that x; €
U; for all j. By Proposition[C.2} Uy,..., U,y are uncountable. Finally, X \J{Uj,..., Uy}
is uncountable since it contains U, 1, which is itself uncountable. O

Lemma C.4. € =4,n Ky, where (Ko, Ky, ...) is a sequence of disjoint uncountable com-

pact sets.

Proof of LemmalC4 Define Ky, K3, ... as follows.
Ko={0Nufce€:co=1};
Vn>0, K,={ce¥€¢:Vk<n)c,=0Ac,=1}.

For each n > 0, K}, is a Cantor set, and therefore it is uncountable and compact. Kj is the
union of a Cantor set and a single point, therefore it is also uncountable and compact.

By construction, € = #,en Ky, and (Ky, K7, ...) is a sequence of disjoint sets. O

Given a Polish space (X,0 (X)), a Borel subspace of X is a topological space (A,0(A))
where A is a nonempty Borel subset of X endowed with the subspace topology G(A) =
{UNnA:Ue0(X)}.

Proposition C.5 (Borel Isomorphism Theorem, Theorem 15.6 in , @)). Let
A, B be Borel subspaces of Polish spaces. If card(A) = card(B), then there is a one-to-one
Borel mapping from A onto B

Lemma C.6. Let X, Y be Polish spaces, and let{X,, : n € N} and {Y;, : n € N} be be countable
partitions of X, Y into Borel sets such that card(X},) = card(Y,) for each n € N. Then there

is a one-to-one Borel mapping from X onto Y that maps X, onto Yy, for each n € N.

Proof of LemmalC.6. Each of the sets X, Y;, with its subspace topology is a Borel sub-
space of a Polish space. By Proposition[C.5] for each n € N there is a one-to-one Borel
mapping 1, from X, onto Y},. Then the union A = U,en A, is @ one-to-one Borel map-
ping from X onto Y that sends X;, onto Y}, for each n € N, as required. O

We will need the following facts from about assumption.

Proposition C.7 (Lemma C.3 in ). For each Polish space X and Borel set E in X, the
setof o € £ (X) such that E is assumed under o is Borel.

221n, m, this result is stated in terms of standard Borel spaces, which are the measure spaces
associated with Borel subspaces of Polish spaces.
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Proposition C.8 (Lemma B.1 in ). Let X be a Polish space, E be a Borel subset of X,
o = (Mo, ---,Mn-1) be a full-support LPS on X, and k < n. Then o assumes E at level k if
and only if the following conditions are met.
(i) wi(E)=1 foreachi<k;
(ii) w;(E)=0 foreachi > k; and
(iii) E <U;i<k Supp ;.

In a topological space, a set D is said to be dense in a set E if D € E and D = E. Note
that if D, is dense in E; and D» is dense in E», then D; U D> is dense in E; U E». Also, if D
isdensein E and D € F € E, then D is dense in F and F is dense in E.

Lemma C.9. Let X be a Polish space, and E an uncountable Borel set in X. Then there

exists a Cantor set C < E such that E\ C is uncountable and E\ C is dense in E.

Proof of LemmalC.9 The Cantor space € contains the Cantor set {(0,0), (1, DN and the
complement of this set is uncountable and dense in 6. By Proposition[C.1} E contains
a Cantor set D. It follows that D contains a Cantor set C such that D\ C is uncountable

and densein D. But D € E,so C € E, and E\ C is uncountable and dense in E. O

Lemma C.10. Let X be a Polish space, and Uy an uncountable open set in X. Then there
exists a decreasing sequence of open sets (Uy, Uy, U>,...) such that
(i) ForallneN, U, \ U, is uncountable;
(i) Uoo =nen U is an uncountable open set; and
(iii) Uy isdensein Uy.

Proof of LemmalC.10 By Lemma|C.9] there exists a Cantor set C < Uy such that Uy \ C
is uncountable and dense in Uy. By LemmalC4] there exists a sequence (Ky, K1,...) of
disjoint uncountable compact sets such that 4,y K;, = C. For each n > 0, define U, =
Uo\Wj<, Kj. Then Uy is open, and Uy \ Un+1 = Kj, which is uncountable. Moreover,

Uso = Uy \ C, so Uy is uncountable, open, and dense in Uj. O

Lemma C.11. Let X,Y be Polish spaces, X finite, and let Zy = X x Y. Letv = (vy,..., V) €
N1 X). If (21, Zo,..., Zm+1) is a decreasing sequence of nonempty Borel subsets of Z
such that

Vk<m, projyZi=projy(Zi\ Zis1) and Suppvy,_i = projy Zx

then there exists i = (i, ..., m) € £\, . (Z) such that

Z3The proof in BEK establishes this fact, but statement of Lemma B.1 was garbled in[BFK.
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(i) margypu="v;
(ii) Yk <m, passumesZy atlevel m—k;
(iii) p does not assume Z,+1; and
(iv) VX €Projy Zm+1, Ho(Zm+1N({x} xY))>0.

Proof of LemmalCI1L Using the fact that Polish spaces are separable, there is a count-
able subset U of Z; such that Un Z,,,; is dense in Z,,.1, and U N (Z; \ Z;+1) is dense in
Zi\ Z41 for each k < m. It follows that U N Z; is dense in Z; for each k < m.

Choose any p € 4 (Zp) such that p(U) =1 and p({u}) > 0 for each u € U. Since U is
dense in Zy, p € M"(Zy). For all k € N, let Xj = projy Zi. Forall x € X and k € N, let
Zi(x) = Zi. n ({x} x Y). This set is clearly Borel. Since X is finite, it readily follows that

Vxe X, k=0, Zi(x)NnU # @ and dense in Z;(x);
Vxe X, k<sm, (Zr(x)\Zii1(x)NU # 3 and dense in Zi.(x) \ Zp41 (x).

Note that, for every Borel set V of Z; such that V' n U is nonempty, the conditional mea-
sure p(:|V) is well-defined. We define py, ..., i, as follows.
Vk<m, pmiE)= Y Vip-k(0)PpE[Z(x0)\ Zis (1)); and

xe Xy

to(E)= Y vo(x)p(E|Zp(X)).

X€Xm

It is clear from these definitions that ¥}  ux and p are mutually absolutely con-
tinuous. Therefore u = (uo,..., n) is a full-support LPS on Z,. It is also clear that
Ho(Zm+1(x)) >0 for each x € X;;,41, and that margy puy = v for all k < m.

For each k < m, Z; < Supp(uo, ..., tm-1), because Z; N S is dense in Zi. Using Propo-
sition[C.8] we can easily verify that for all k < m, yu assumes Zy atlevel m—k. Z,,;, \ Z41
has a nonempty intersection with U, so p gives the set positive probability. However,
since po(Zy) = 1, it follows that po(Z,+1) < 1. Proposition[C.8/makes it clear that y does

not assume Z; when k > m. O

Lemma C.12. Let X,Y be Polish spaces with X be finite, and let Zy = X x Y. Letv =
Vo, Vm) € Nm1(X), and let (Z1,2,,...) a strictly decreasing sequence of nonempty
Borel subsets of Zy, such that

Vk=0, projyZi=projy(Zi\ Zis1);

Vk=m, Suppv;,_i=DprojyZ;

Zoo =[{Zk : k €N} is dense in Zy,.
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Then there exists jt = (o, ..., km) € £, .1 (Z) such that
(i) Forallk < m, p assumes Zy at level m — k;
(i) Forall k > m, u assumes Zj. at level 0;

(iii) margy L ="v.

Proof of LemmalC 12 For each k € NU {oo}, let X} = projy Zi, and for each x € X, let
Zi(x) = Zrn ({x} x Y). Since Z, is dense in Z,,, and X is finite, we have X, = X;;;, and
for each x € X,;;, Zo(x) is dense in Z,,(x). By LemmalC.11] there exists ¢ = (¢o, ..., Pm) €
< .1(Z) such that

> margy ¢ =v;

> for each k < m, ¢ assumes Z atlevel m — k;

> foreach x € X;;;, 1o (Zoo(x)) > 0.
Then the conditional probability ¢ (-|Z«(x)) is well-defined for each x € X,,,. For each
0 < k < m,let uy = ¢pi. Define pg in the following way.

Ho(E) = Z Vo (X) o (E| Zoo(X)).

xeXm

By construction, Supp po = SUppPo (-1 Zeo) = Zoo = Zm = Suppeo. Therefore, it is read-
ily apparent that Supp(uo, ..., tm) = Supp(®y,...,om) = Zp. We have Suppvy = Xy, so
1o (Zoo) = o (Zm) = Vo(Xm) = 1.

By Proposition[C.8] we can easily verify that u assumes Z; atlevel 0 forall k= m. O

D PROOFS OF THEOREMS[3.2,[3.13, AND[3.14]

Theorem[3.13]says that a necessary and sufficient condition for a family of sets to be an
RCAR tower is that the sets have the right “shape”, that the intersections are topologically
indistinguishable from the sets at some finite level, and that each “part” is uncountable.
The ingredients for the proof are given in the preceding two subsections. To prove ne-
cessity, we must show for that in every complete type structure for G, the RmAR sets
must satisfy conditions (i)-(vi) of Theorem [3.I3l To prove sufficiency, one must start
with a given family of sets that satisfy conditions (i)-(vi), and construct a pair of Borel
mappings A% A? such that the resulting type structure has the given sets as its RmAR
sets. Our construction will produce mappings that are one-to-one, so we will get a proof
of Theorem [3.14] as well. The idea is to construct these mappings by gluing together
countably many Borel mappings from pieces of 7% to corresponding sets of beliefs about
Shx TP,
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As we have done throughout the paper, we fix the underlying game G. We also fix T

and T? and assume that they are uncountable Polish spaces.

Lemma D.1 (Necessity half of Theorem B.13). Let T¢, TP be uncountable Polish spaces.
Every RCAR tower for (G, T, T?) satisfies (i)-(vi) of Theorem|[3.13.

Proof of LemmalD. Let {Q% : m>0},{Q2,: m >0} form an RCAR tower for (G, T%, T?).
Therefore, there is a complete type structure T for G with RCAR such that for each m > 0,
Q% = R% and Q% = R%. Conditions (i) and (ii) follow from Corollary 31T}

Proof of (iii). Since T has RCAR, there is a state (s%, t*) € R%. Then o = 1%(¢) has full
support, and R?, is assumed under o for each m > 0. Then by the same argument that
was used in the proof of Theorem[3.4] we see that @ = @ for some M > 0, as required.

Proof of (iv.) Since T? is uncountable, there are uncountably many LPS’s on S” x T?
that do not have full support. ¥ is complete, so there are uncountably many t% € T¢
such that A%(¢“) do not have full support, and hence “ € I'(&, Qf).

Proof of (v). Let X% € X4 . This means that there exists v € Pj;, such that O(v) = X“.
By Lemma [B.4] we may take v to be of the form v = (vy,...,v,,—1) where each vy is a
measure on S”. By Lemma (B} for each k < m we have Suppv,,_i_x = SZ. By Propo-
sition 3.1} each of the sets RZ is nonempty, and projg» R,lc’ = SZ. By Lemma[C.11] there
exists € £*(S? x T?) such that

> margg (L =V;

> forall k < m, yu assumes R,lc’ atlevel m—-1-k;

> 1 does not assume R? .

Because ¥ is complete, there exists t* € T% such that A*(t%) = u. It follows that % €
(T(X4 Ry)\T4(X* R4 . 1), so this set is nonempty. Finally, by Proposition[B.6} (I'“ (X%, R{/)\
(X% Ry ) is uncountable.

Proof of (vi). Let X € X2, and let M be large enough so that X“ € X]‘Q and (iii) holds
for M. As in the preceding paragraph, there exists v € PI‘\I,I of the form v = (vy,...,vy—1)
such that O(v) = X%. By LemmalC.12} there exists y € £ (S” x T?) such that

> marggy L = V;

> forall k < M, u assumes Rllz atlevel M —1-k;

> forall k= M, p assumes RZ atlevel 0.

By Proposition[A.6] u assumes Rfo at level 0. As before, because ¥ is complete, there ex-
ists t* € T% such that A% (¢%) = u. It follows that t* e I'“(X%, R%), so this set is nonempty,
and by Proposition[B.6] I'*(X“, R%) is uncountable. O
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Lemma D.2 (Sufficiency half of Theorems 3.13] and B.14). Let G be a finite game and

T%, TP be uncountable Polish spaces. For every family of sets
2=({Q%:m>0}{Qh :m >0}

that satisfies (i)-(vi) of Theorem[3.13, there is a complete one-to-one lexicographic type
structure ¥ for G such that R% = Q% and R, = Q2 for all m > 0, and the RCAR set is

nonempty.

Proof of LemmalD.2. We must find a pair of one-to-one Borel mappings A%, A? such that
T is a complete one-to-one type structure for G, and R% = Q%,R2 = Qb for all m > 0.
(vi) will guarantee that ¥ has an RCAR state.
By (i)-(vi), the following family of sets is a partition of 7% into countably many un-
countable Borel sets.
(a) T“2,Q);
() Vm>0, VX%eX?

m+1’
(c) Vm>0, VX% e Xy \X% .,
(d) VX%eX%, T%X%Q%).
We now introduce notation for the sets of beliefs that correspond to the sets of types
(X%, Q). Foreach m > 0and each X% € X% ,let A% (X%, 2) be the set of all u such that
> pe LTS x Th);
> O(u) = X%
> Forall k < m, QY is assumed under y.
We also let AY(2,2) = L(SP x T?)\ 27 (8P x T?), and let

T4(X% Q%) \T4(X%, Q% );
T4(X%, Q%);

VXPeXL, AL(X42)= () ALXY2).

m>0

It follows from Proposition [C.7] that for each m > 0 and X? € X%, the set A%, (X% 2) is
Borel. Therefore, the following family of sets is a countable partition of £(S” x T?) into
Borel sets.

(a’) A{(2,2);

(b’) Vm>0, VX?eX? |, ALX%L2)\AY (X4

(c?) Ym>0, VX eX4\X% |, A%LX92);

(d’) VX%eX%, AZ(X% ).

We show that each of the sets listed in (a’)-(d’) is uncountable. The case (c’) is listed
separately because in that case A% | (X%, 2) is empty. By Proposition[B.6} it is enough to

show that each of these sets is nonempty. It will be convenient to put Qj = §% x T¢, Q(’)’ =
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St x b,
(@) Since T? is infinite, there are probability measures on SP x TP which do not have

full support, so the set A{ (<, 2) is nonempty.
(b’) Let m > 0 and X* € X¢

o1 By (i) and (ii), Q{], ...,QP is a strictly decreasing se-

quence of nonempty Borel subsets of Sbx TP, By (v), we have for each k < m, projg» Q,Iz =
projsb(Q,lZ \ QIIZ+1)'

By Lemma [C.11] there exists u € £*(S? x T?) such that O(u) = X, and Q,Ig is as-
sumed under u for all k < m, but Qﬁl is not assumed under u. This shows that the set
AL (XT,2)\AY (X4 2) is nonempty.

() Let m > 0and X“ € X%\ X4

o .1- By the same argument as above, the set A}, (X%, 2)

is nonempty.

(d) Let X“ € X4 By (i) and (ii), Q{” , Qé’ ,... is a strictly decreasing sequence of nonempty
Borel subsets of S” x T?; and by (v), we have for each k€ N, projgs Q,Ij = projg (QZ \ QZH).
By (iii), there exists M > 0 such that Q2 is dense in QII{,I. Then by Lemmal[C.12] there ex-
ists € £*(S? x T?) such that O(u) = X%, and QIIZ is assumed under pu for all k € N.
Therefore, the set A% (X%, 2) is nonempty.

We can now apply Lemma to obtain a bijective Borel map A? from T“ onto
£(S? x T?) such that A% maps
(a”) T'“(,Q) onto A{(,2);
(0’) Ym>0,VX%eX? |, THX% QY \I(X%Q%, )onto A% (XY 2)\A% (X% 2);
() Vm>0, VX?e X7 \X9 ., T4X%Qp) onto A, (X4, 2);
(@) VX%e X%, T%X%Q%)ontoA% (X% 2).
Amapping A?: T? — £(S% x T%) can be constructed similarly. The resulting type struc-
ture ¥ is a complete one-to-one type structure for G. Using the definition of R{,, it fol-

lows by induction that Q% = R% for all m > 0. Therefore, 2 is an RCAR tower. O
TheoremsB.I13land B.14 both follow immediately from Lemmas[D.Iland[D.2l

Proof of Lemmal3.15 By LemmalC.3] we may choose a finite family of disjoint uncount-
able open sets
X914 XeX{

such that the complement of their union is also uncountable.
Let M be large enough so that X{, = XZ . Consider an X“ € X{\X{,. There is aunique
m < M such that X% € X%, \ X% .. By Lemmal[C.I0, there is a finite decreasing chain of

m+1°
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uncountable open sets
(X2 (XY 2...T,,X%

such that the difference I'.(X%) \ ' 41 (X%) is uncountable whenever 0 < k < m. Now,
consider an X“ € X{,. By Lemma [C.10] again, there is an infinite decreasing chain of
uncountable open sets I'y (X%) 2T2(X%) 2... such that

> (X4 \Tis1 (X9 is uncountable whenever k > 0;

> Too(X%) =Nk k(X9 is an uncountable open set;

> I'so(X%) is densein I'p;(X%).

For each m > 0, define Qj), = Uxaexa X x 'y, (X?). Then Qy, is open for each m >0,
and Q% is open. It follows from our construction that I';,(X%) = T'*(X“, Q%) for each
m>0and X? e X%, and that (i)-(vi) of Theorem[3.I3/hold.

Theorem[3.2lnow follows at once from Theorem[3.13]and Lemma[3.151 O

E PROOF OF THEOREM3.24]

Proof of Lemmal3.20 Let v € Vg and let A*(v*) = o = (0y,...,0k). Then )Lg(v“) is the
marginal p = (g, ..., px) of 0 on S? x V?, so A¢ is a Borel map from V“ into N (S x VD),
o is mutually singular, so there are pairwise disjoint Borel sets U; € © x S? x V? such that
o;(U;) = 1 for each i < k. The G-sections W; = {(s?, v?) : (G, s?, v?) € U;} are Borel and
pairwise disjoint. Since v € V& < C{(G), o0 ({G} x SP x V%) =1. Therefore p;(W;) = 1 for
each i < k, and hence p € £(S? x V?). O

LemmakE.1l. Let©®, X,Y be Polish spaces, whereY < X, and let G € ©. Then
(i) For each open U in the topology of {G} x X, there exists an open W in the topology
of ® x Y such that W =Un ({G} x Y); and
(ii) For each open W in the topology of ® x Y, there exists an open U in the topology of
{G} x X such thatW =Un ({G} x Y).

Proof of LemmalE]l Both (i) and (ii) follow immediately from the definition of subspace
topology. O

Proof of Theorem[3.24. Proof of (i). Since v € V& = CX(G), A*(v)m({G} x S" x V?) = 1.
Therefore (/lg(v“))(E) =AM O x E) = A*(v*"))({G} x E). So if v* assumes E in U or
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{G} x Ein*Yg, then

()L?;(U“))(E) =(1,...,1,0,...,0) = A*(v9)({G} x E).
Therefore conditions (a) and (b) hold for assuming E in *¥ if and only if they hold for
assuming {G} x E in . Furthermore, Lemma[EIlimplies that for every Borel F < S x
V2, F=EnU # @ for some open U € S” x V2 if and only if {G} x F = W N ({G} x E) # @
for some open W < © x S? x V?. So condition (c) for assuming E in U is equivalent to
condition (c) for assuming {G} x E in Y.

Proof of (ii). It is quite trivial that s maximizes LEU with respect to 1%(v%) if and
only if s maximizes LEU with respect to A% (v%). A%(v) has full support in S? x V? if
and only if v* assumes S? x VGb in V. By (i), this holds if and only if A4(v%) assumes
KP(G) = {G} x S? x V2 in 2. This proves (ii).

Proof of (iii). The base case is handled by (ii). Assume the induction hypothesis for
M>1:

Ym<M, RL(G)={G}xR%(G, Vs

By (i) and (ii), for all v € projy.« R{'(G) = projVGa R{(G,U), v* assumes {G} x RK/I(G, )
in ¥ if and only if v* assumes Rllf,[(G, U) in Y. Therefore,

RY;,1(G) = R, (G) N (O x S% x A*(RY,(G)))
= [{G} x R};(G, V)| n

® x % x A°({G} x R,(G, %G))]
= (G} x [Rf@,(cmc) N (S% x A“(R}’V,(Gmc)))]
= (G} x R, (G, V). O

F PROOF OF THEOREM3.25

To prove Theorem[3.25] we will first show that it is a consequence of Theorem [ETlbelow.
The proof of Theorem[Ellis much longer, and is given in the next section.

Fix the finite strategy sets (S%, S?). Recall from Section B4 that we identify a game
G with strategy sets (S%, S?) with the N-tuple of real numbers that represents the pair
(1%, %) of payoff functions, where N = 2-|S% x SP|. Therefore, we let the space of all
games on (5% S?) be ® = RV, We maintain this definition of ® throughout this paper.
Theorem [EIl says there is a “Borel family” of type structures ¥ indexed by G € © such
that each T has RCAR for G.
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Given Polish spaces X, Y, Z and a Borel function f: X x Y — Z, welet f), : X — Z be
the Borel function defined by f),(x) = f(x, y).

Theorem E1. Let T%, T? be uncountable Polish spaces. There exist Borel maps
K T%x 0 — LS x ), kTP x @ — £(8% x T

such that for every G € ©, T = (S“, sb Ta, Tb,Kg,Kg> is a complete one-to-one lexico-

graphic type structure such that
projgsa R% (G, %) x projgs RZ (G, %) = S%(G) x SL(G).

This result would follow immediately from Theorems[3.21and [3.4lif we only required
that the map «¢, is Borel in ¢ for each fixed G, and similarly for b. The extra difficulty
lies in finding maps x* and x? that are Borel in both variables. Intuitively, {T;: G € ©}
is a Borel family of type structures indexed by G € ©. Ann’s beliefs depend on both the
game G and a type %, and Bob’s beliefs depend on both a game G and a type ¢”.

To prepare for the proof of Theorem we first prove an easier intermediate re-
sult, in which the requirement that *J is complete is omitted. Theorem 3.25Ican then be
proved by carefully embedding this U into a complete type structure so that, for each
game G € O, the set of states in which there is common knowledge of G remains unal-

tered.

Theorem E2. There is a one-to-one lexicographic type structure with nature,
U =(0,8% 8, v, vb A% AbY | such that for every game G € ©,
(i) *U admits common knowledge of G;
(i) ForeverygameG € 0, U is a complete one-to-one lexicographic type structure such
that

projsa R% (G, W) x projss RL (G, W) = S (G) x SL.(G); and
(iii) Any pair of types (v%, v?) that believes G has common belief of G.

Proof of Theorem[E2 from Theorem[E]l Let S¢, Sb T4 TV x4 xP be as in Theorem[E1l Let
Ve=Tx0and V? = T? x ©. We will define Borel maps 1%, A? so that
U = (0,5%8%, V4 VP, 14 AP) has the required properties. The plan will be to make
T“ x {G} be the set of types that have common belief of G.

Define the function

al: LS x TV x0 — LO x S? x VD)
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as follows. For each (g, G) € £(S8” x T?) x©, let a” (0, G) be the unique € L(© x S? x V?)
such that

> G x 8P x (T? x {G}) =1; and

> For each Borel set E< S” x T?, u({G} x E x {G}) = 0 (E).
Note that E x {G} € S? x V?, 50 {G} x Ex {G} @ x S? x Vb,

Claim. a?

is a continuous map.

Proof of Claim: Suppose 0, — 0 in £(S” x T?), and G,, — G in ©, where — indicates
weak convergence. We must prove that ab(a,,, G, — al(o,G). Tt suffices to prove this
in the case that each 0, and o have length one, because it would then follow that each
coordinate of a’ (0, G,,) converges to the corresponding coordinate of a? (o, G).

Let §: 0 — /4 (0) be the map H — 6, where 6 y({H}) = 1. We have B(G,) — B(G),
because for every continuous f: 0 — R, [ fdbg, = f(Gp) converges to [ fddc = f(G).

We note that
a?(01,Gp) = (Gn) 0,8 B(Gy), a’(0,G)=P(G) &0 p(G).
Therefore, we have a’ (0, G,) — a?(o,G), which proves the claim.

Now, define 14(t%, G) = a? x?(t%,G),G). Since k% is Borel and «a? is continuous, 14
is a Borel map, and hence U is a type structure with nature. Let G € ©. We see from
the definition of A¢ that a type v? € V¥ believes G if and only if v* = (t%,G) for some
t* € T Thus C{(G) = T x {G}. Moreover, C5(G) = C{(G), and hence by induction,
Cr,(G) = C{(G). Therefore, U has the property that C{(G) = C%(G) = Vg, that is, every
v? that believes G has common belief of G. It follows that 25 admits common knowledge
of G. Finally, the mappings t* — (t%,G), t? — (¢?,G) are topological homeomorphisms
from T to V{ and T? to VGb that give an isomorphism from the type structure T of
Theorem [E1l to U;. Therefore, U has the same properties as T. In particular, Ug is
a complete one-to-one type structure such that projg. R% (G,U) x projgs RY (G,V¢) =
S% (G) x S (G). 0

Proof of Theorem[3.25 from Theorem[E1l Let S¢, SP T4 TV x2 xP be as in Theorem [E1L
Let V* be the topological union

V4=10,1)w([1,00) x®)w (T* x O),

where the three parts of the union are disjoint and clopen in V*. Note that V% = [0,1) v
(([1,00) w T%) x ©). Define V? analogously. We will define Borel mappings 14, A? so that
U =(0,5% 58" v vb 1% Ab) has the required properties.
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For each G € ©, our plan will be to let T% x {G} be the set of types having common
belief of G; let [m, m + 1) x {G} be the set of types having m-th order, but not (m + 1)-th
order, belief of G; and let [0, 1) be the set of types not having belief of G. We will use the
Borel Isomorphism Theorem (Proposition[C.5), as we did in the proof of TheoremB.131

For each m > 0, let Ty, = [m,00) w T%. Then T{ 2 Tj! 2 -+, and T% = ;50 T}, Ac-
cording to our plan, T}, x {G} will be the set of types having m-th order belief of G. These
types will be mapped to the beliefs in set J2,(G), which we define inductively as follows.

(G ={oe 2©xS"xVh):0(G}x " x V") =1}
T3t (G) = {0 € J(G): 0 (1G) x S x (T} x (G) =1}
Intuitively, J ,Ijl(G) is the set of LPS’s that have m-th order belief of G. We also write
JE=20©xS"x v\ | JP(G).
GeO
Now, let a? : L(S? x T?) x © — £(0 x S? x V) be as in the proof of Theorem[E2l We
will construct a one-to-one Borel function 1%: V* — £(0 x S” x V?) such that
M A%(0,1)) = J&;
(I) Foreach m>1and Ge 0, A4(T% x {G}) = J4 (G); and
(Il)) Foreach Ge® and %€ T4, A%(t%,G) = a? k% (1%, G), G).
Note that (I) and (II) imply that the map A¢ is onto. Since A“ will be one-to-one, (I)
and (IT) will also imply that for each G € ©, A*(T* x {G}) = (Nm>0 ],lzl(G).
Itis clear that the set ]é] has the cardinality of the continuum. We show that ]é] is also

Borel. To see this, let

¥l LSP x V) x © — L(© x SP x V)
be the function such that y’ (o, G) is the unique p € £(0 x S x V?) such that p({G} x S? x
v?) =71 and for each Borel set E < S? x V?, 1({G} x E) =0 (E). Note that

VGe®, YIS x v x{G)=T0(G)

Therefore, the range of y? is Ugeo J {’ (G) and the complement of the range of y” is ](I)’ .
Arguing as in the proof of the Claim in Theorem [E2} we see that y” is a continuous
map. It is also clear that y” is one-to-one. By Corollary 15.2 in ), images
of Borels sets under such maps are Borel sets themselves. Therefore, for every Borel
F < 2£(S"x VP) x ©, yP(F) is Borel. In particular, the range of y” is Borel, and therefore

its complement ](I)] is Borel.
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By the Borel Isomorphism Theorem, there is a one-to-one and onto Borel map A :
[0,1) — ]é” . This will take care of (I) since we will eventually let A* coincide with A{ on
[0,1).

For each G € © and each m > 0, the difference /2 (G) \ J fjl +1(G) clearly has the car-
dinality of the continuum. Moreover, since J2,(G) is the image under y” of a Borel set,
J2 (G) is Borel. Hence the difference sets /2 (G)\ Zl +1(G) are Borel as well. By the Borel
Isomorphism Theorem, there is a one-to-one Borel function from [m, m + 1) x {G} onto
this difference. However, since there are uncountably many G’s, we cannot in general
glue these functions together into a single Borel function.

To get around this problem, we introduce mappings that translate the games and
keep everything else unchanged. Let Gy be the particular game whose payoff functions
are everywhere zero. Given two games G, H € 0, let G+ H be the game obtained by
adding the payoff functions of G and H pointwise at each strategy profile. Note that
Go + H = H for each H € ©. For each H € ©, the map G — G+ H is a homeomorphism
from O to itself that sends G, to H.

For He ©, lety{,: V¥ — V% be the map defined by
. (t,G+H) ifr=(%G) e T x6;
U/H(r) =
r if r € 10,1).
Then v, is a homeomorphism from V* to V* and we have
Vm>0, w4(T%x{Go}) = TS x {H}.

Moreover, (v, H) — y¢,(v?) is a continuous map from V' x © onto V.
Let ¢?, be a function from £(©x S?x V?) to itself such that for each o € £(©x S?x V'?)
and Borel set E€® x S? x Vb,

(Y (o)) ({(G + H,s",yl (") : (2,0, G) € E}) = o (B).

Then cplbq is a homeomorphism from Z(0O x SP x vb) onto itself such that for each m > 1,
PP (Jb(Go)) = TL,(HD.

By the Borel Isomorphism Theorem, for each m > 0, there is a one-to-one Borel func-
tion p, from [m, m+ 1) x {Go} onto J5,(Go) \ J2 . | (Go). Let

A% m,m+1)x 0 — L©O x S” x V)

be the mapping given by A% (r, H) = cp%(pm(a, Go)). It follows that A% is one-to-one and
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Borel, and for each H € 0,
A% (Im, m+1) x {H}) = J2(H)\ J2 .| (H).
Let A4 : T x @ — £(0O x S? x V?) be the mapping given by
A8.(t%,G) = a’ (1%, G), G).
It is clear that A% is one-to-one. Since a? is continuous and «“ is Borel, A% is Borel.
Also, for each H € ©, A% (T x {H}) =N, J5 (H).
It follows that the union A% = A$ U (U, A%,) UAZ is a one-to-one Borel mapping from
V% onto £(0x SP x V) that satisfies (I)-(I11). Therefore Y is a complete one-to-one type
structure with nature.
It follows from (II) that for each H € ©, C{'(H) = T} x {H}. We then see by induction

that for each m > 0 and H € ©, C% (H) = T2 x {H}. Therefore, the set of v* € V¢ with
common belief of H is

Vi =C4(H) =(Ts x {H} = T* x {H}.

So ¥ admits common knowledge of every game H € ©. As in the proof of Theorem [E2]
for each G € O, the type structure U is isomorphic to T. Therefore U is a complete

one-to-one type structure such that
projsa R% (G,U¢) x projss RL (G, W) = S (G) x SL.(G).
By applying Theorem[3.24] we get
projsa R% (G) x projgs RZ (G) = S%(G) x S2.(G). O

G PROOF OF THEOREMIEI

Note that each of the objects P4, O(v), X% defined in Section 3.2l depends on a game
G € 0. In this section, we will let P{ (G), O(G,v), X4 (G) denote these objects to indicate
the dependence on G.

By the Existence Theorem[3.2land Theorem[3.4] for each game G € O there is a com-

plete type structure

T= (888, 1%, 18,28, 1¢)
such that R% (G, %) and RZ (G, %) are nonempty. Our task will be to choose such maps
g, /12 for each G € © so that (G, u”) — A¢(u?) is a Borel map from © x T* into L(SP x
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T?), and similarly with @ and b reversed. If the set of games © were countable, then we
could directly appeal to the Borel [somorphism Theorem and glue the maps A together.
However, we will need to choose the maps A more carefully since © is uncountable.

The following lemma improves Theorem B.2] by specifying in advance the length of
A%(t*) for each type t? € T“. For the remainder of this section, let M = |S4| + |SP.

Lemma G.1. Let T%, T? be uncountable Polish spaces and let {T% : n > 0} and {T? : n > 0}
be countable partitions of T®, T”. For each game G € O, there exists a complete one-to-one
lexicographic type structure T = (8%, S?, T, T, A4 AY) such that for each k> M +1,

RL(G,T)N(S*x T{) # 2, RL(G, NS x T) £ 2;

and for each k>0, t* € T, t” € TP, A*(t%) and A" (¢") have length k.

Proof of LemmalG.1l The proof is a routine modification of the proofs of Lemma
and Theorem[B.I3]so that for each k > 0, types in T}’ are mapped to LPS’s of length k. By
the method of Lemma[3.15] one can build a family of sets

Q% :m >0}, Q2 :m>0)

such that (i)-(vi) of Theorem [3.13]hold within T ,f for each k = min(m, M). That is, we
have the following for each nonempty X“ < S and each k > 0, and similarly for b.
(i) {r*(X% Q)N T{:m>0}isadecreasing chain of Borel subsets of T¢;
(ii) Foreach m>0,I*(X% Q) NT{#T < (X*eX§, Ak =min(m, M));
(i) I'“(X4Q%L)n T,? isdense in I'*(X¢, QJ‘\‘/IH) NnTY
(iv) I'(z,Q)n T,? is uncountable;
(v) If X*e X% and k = min(m, M) then

X, Qu\ T (X%, Qpy NN T

is uncountable, and if m < M then T'(X“, Q% _,) is not even dense in I'“(X%, Qy,);
(vi) If X4 e X% and n = M then I'*(X% Q%) n X4 is uncountable;
Condition (v) is upgraded to insure that for k < M, no LPS in £(S” x T?) of length k can
assume all of Qg,...,Q¢. Then each piece of T, will have the same cardinality of the
corresponding piece of £ (S” x T?). The Borel Isomorphism Theorem can now be used
as in the proof of Theorem[B.I3/to construct the required mappings A% and A?. O

Next, we show that the games G € © can be classified into finitely many shapes. We
say that two games G, H € © have the same shape if X4 (G) = X%,(H) and X2,(G) = X4 (H)
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for all m. By Theorem [B.8] if G and H have the same shape, then S% (G) = S% (H) and
Sb (G) = S (H) for each m.
The next lemma shows that the sequences S%,(G) and X% (G) stabilize at M = |S%| +

|S?|, and hence there are only finitely many possible shapes of games in ©.

Lemma G.2. Foreach G € © and m = M we have
(i) $4,(G)=S%(G) =S4 (G) and S5, (G) = SL,(G) = SL(G);
(i) X4(G)=X%,,,(G) =X%L(G) and X5, (G) =x4, . (G) =XL(G).

Hence there are only finitely many shapes of games in ©.

Proof of LemmalG.2 Proof of (i). If S%,(G) = §4 1(G) and S%(G) = Sgﬂl (G), then we see
from the definition of % (G) that §%(G) = S%(G) and S (G) = S2(G) for all n = m. More-
over, S¢(G) = $” and SE(G) = S?, and the sets S%(G), S%,(G) decrease with m. Therefore,
the pair of sets (S%,(G), S%(G)) can change at most M times, and (i) follows.

Proof of (ii). Let m > M and X“ € X%,(G). Then X“ = O(G, p) for some p € P}, (G). We
have u = vv' for some v € A (S?) with Supp(v) = Sbm_1 (G) and some v' € P | (G). By 1.,
S2(G) =St (G),so i =vue P4(G). Itis clear that O(G, u') = O(G, p), so X € X% ., (G).
This proves (ii). O

LemmalG.2]shows that the shape of G depends only on X%,(G), X2 (G) for m < M + 1.
We may therefore define the shape of G as follows. Given a sequence

b b
S=X4,..., X4, X0, xE D),

we say that G has shape S, and write S(G) = S, if X% = X% (G) and X2, = X% (G) for
m=1,...,M+1. And we say that S is a game shape if there exists a game G € O such that
S =S(G).

The intuitive idea of our proof of Theorem [EI] will be to build the type structures
T in such a way that they can be glued together by an inductive construction on the
length of LPS’s. For each fixed length k > 0, we will see that the set © of games can be
partitioned into finitely many classes such that within each class, the length k parts of
the type structures ¥ can be chosen to be the same up to a Borel transformation, and
thus can be combined into a single type structure.

To do this, we will need some results from the literature about definable sets in the
ordered field of real numbers. We letF = (R, 0, 1, +, -, <) be the ordered field of real num-
bers. A set of n-tuples A < R" is said to be definable (in F) if A is the set of all n-tuples

that satisfy a first order formula ¢(x;,..., x,, ¢) in F that has the variables xy,...,x, and a
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finite tuple ¢ of parameters in R. Given two definable sets A <R, B< R" inF, a function
f:B— Aissaid to be definable (in [) if its graph {(%, 7) : f(X) = J} is definable.

The celebrated classical result of ) shows that a set is definable in [ if and
only if it is semi-algebraic (i.e., definable by finite collections of equations and inequali-

ties between polynomials). Tarski’s theorem has the following easy consequence.

Proposition G.3.
(i) F is o-minimal, that is, every set A < R that is definable in [ is the union of finitely
many open intervals and singletons.
(ii) Everyset A< R* that is definable inF is Borel.

We refer to the monograph Ilan_@an_DrlejJ (IM) for an exposition of o-minimal
structures, but we will only need the particular o-minimal structure F. We will need a
result of @ ), which says that every definable function can be partitioned into
finitely many definable pieces that each look like the projection of a product of two sets
onto one of the factors. This result was generalized to o-minimal structures (see van den
Dries, |l£i9ji chap. 9, Theorem 1.2).

Definition G.4. Suppose A< R™,B < R", g: B— A is definable, and g maps B onto A.
We say that g is definably trivial if there exists a definable set C < R* for some k and a de-
finable function h: B — C such that the function (g, h) : B— A x C is a homeomorphism.

Proposition G.5 (@ M)). Let ACR™ B<R", and g: B — A be definable, and sup-
pose g maps B onto A. Then there exists a finite partition {A,, ..., Ap} of A into definable
sets such that for each i < p, the restriction of g to g~ (A;) is definably trivial.

In the above proposition, note that for each i, the set B; = g (A;) and the restriction
gi of g to B; are also definable. The result says that there is a definable set C; and a
definable function h; : B; — C; such that (g;, h;) : B; — A; x C; is ahomeomorphism, i.e.,
one-to-one, onto, and bi-continuous.

We now look at definable properties of games and tuples of probability measures.
Recall that .# (S?) is the set of all probability measures on S”. We may identify a prob-
ability measure v € . (S?) with the real vector (v(s?) : s € S?) € RIS’ and note that this
tuple satisfies the first order formulas 0 < v(s?) < 1 and ¥ v v(s?) = 1. Similarly, for
each fixed k, the k-tuple of probability measures v € JVk(Sb) is identified with a k-|S?|-

tuple of reals in the obvious way.
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By a k-fold support in S? we mean a k-tuple Y = (Yp,..., Yi_1) of nonempty sets
Y; € S? such that U j<kYj= SP. The k-fold support of a k-tuple

V=Wo,.n,Vio1) € N(SD)

is the k-tuple Suppy (v) = (Supp(vo), ..., Supp(ve-1))-
The next lemma shows that for each fixed k, certain relations involving games and

k-tuples of probability measures on S” are definable.

Lemma G.6. For each k, the following sets are definable.
(i) Foreach n, the set{(G,v) € © x A;(S?) : v e PH4G)};
(ii) For each k-fold supportY in S, the set {v € A1.(S) : Supp,(v) = Y};
(iii) For each X* < S%, the set {(G,v) € © x A(S?): O(G,v) = X?}; and
(iv) For each game shapeS = (X{,...,X%,, ,X2,..,X2 ), theset{Ge ©:S(G) =S}.

Proof of LemmalG.6. Proof of (i-iii). These can be seen by writing the definitions for-
mally in first order logic.

Proof of (iv). By Lemmal[B.4] for each n and each set X“ < S%, we have X“ € X4(G) if
and only if there exists an v € A} 1 (S?) N P4(G) such that O(G,v) = X%. The point is that

we need only consider v’s of length M + 1. The result now follows from (i) and (iii). O

Definition G.7. A k-good partition of © is a finite partition {A,,..., Ap} of © such that
foreachi<p,
(i) Aj; is definable;
(i) AS;VGe A;, S(G)=S;, i.e, all the games in A; have the same shape;
(iii) For each set X < S* and each k-fold support Y in SP, the projection function from
the set

Bix,y =1(G,v) € A; x N (S?) : O(G,v) = X A Y = Supp; (v)}
to A; is definably trivial.
Remark G.8. For each k-good partition of ©, the family of sets
{Bixy:i<pAX<SS*AY =Supp;(v)}

indexed by (i, X,Y) in (iii) is a finite partition of © x A (S?) into definable sets. The set
B; x,y may be empty for some values of (i,X,Y).

LemmaG.9. Suppose{A,..., Ay} isa k-good partition of ©. Leti < p; G; € A;, X< S% Y
be a k-fold support in S°; g be the projection function from B; x,y to A;; and let C; x,y =

48



{v € N(SP): (Gi,v) € B,-,X,y} Then thereis a definable function h: B; x,y — C; x,y such
that the function (g, h) : B; x,y — A; x C; x,y is a homeomorphism.

Proof of LemmalG.9 By (iii) in Definition[G.7] the projection function g from B; x,y to
A; is definably trivial, so there is a set D and a definable function f : B; x,y — D such
that the function (g, f) : B; x,y — A; x D is a homeomorphism. Then the restriction of
f to {G;} x C; xy is a homeomorphism from {G;} x C; x,y to D. Therefore, there is a
definable homeomorphism ¢ from D to C; x,y, and hence the composition iz = ¢ o f has

the required properties. O
Proposition[G.5lgives us the following lemma about game-LPS pairs.
Lemma G.10. For each k > 0, there exists a k-good partition of ©.

Proof of LemmalG.10 By LemmalG.6] for each game shape S and k > 0, the sets
As={GEO:S(G) =S}, Bs = As x N:(S?)

are definable. It suffices to prove that for each game shape S, the set As admits a finite
partition into definable sets {Al, cee) Ap} such that (iii) holds for each i < p. If so then
the union of these partitions will be a k-good partition of ©.

Now fix a game shape S, and let g be the projection function from Bs onto As. Since
the sets S and S? are finite, there are only finitely many (X, Y) such that X € S* and Y
is a k-fold support in S?. For such (X, Y), let

Bxy ={(G,v) € Bs: 0(G,v) = X and Supp(v) = Y}.

By Lemmal[G.6] each set By,y is definable, and hence the restriction of g to By y is defin-
able. By Proposition[G.5] there is a finite partition {AL XY Ag, ny} of Ag into defin-
able sets such that for each j < g, the restriction of g to (g7 (A;,x,v)) N B,y is definably
trivial. Let us say that two games G, H € A are equivalent if

{(,X,Y):GeAjxy}={(,X,Y): HE Aj xv}.

Each equivalence class in As is definable and there are finitely many equivalence classes.
Therefore, this equivalence relation implicitly defines a finite partition of As into defin-

able sets {Ay,..., A,} and this partition satisfies (iii) as required. 0

We are now ready to prove Theorem[EIl

24j.e., C; x v is the fiber in B; x,y above G; with respect to g.
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Proof of Theorem|EIl. We will construct a pair of Borel functions
K@ x T — L(S" x T, k?:0x TP — £(8" x T%

with the required properties in several steps. Steps 3 and 5 will require additional proof.

1. First, choose partitions {T¢ : k >0} and {T{: k> 0} of T% and T” into continuum-
large Borel sets so that T* =4y~ T}’ and TY = Wi T,f.

2. Foreach k, we can choose a k-good partition {Alyk, . Ap(k),k} of ® by LemmalG.10l
Recall that for all 7, games in A; ;. have the same shape.

3. Next, for each (i, k), we construct a Borel map x“: A; . x T — £L(S” x T?) such
that for all G € A; i, “(G, T{) = Li(S? x T?). We will subdivide the domain even
further in this step.

4. By joiningsuch maps for all i < p(k), we will geta Borel map x* : @ x T} — Lr(SPx
T?) since p(k) is finite. Finally, we will join such maps for all k € N, to get a Borel
map k®:0 x T% — L(S? x TP).

5. Lastly, we will verify that ¥ and x” satisfy the desired properties.

Step 3. We begin by fixing k, a k-good partition {A; ..., Ay} 0of ©, and i < p(k).
By Lemma [G.1] for each game G € ©, we can choose a complete one-to-one type
structure g = (84,82, T4, T?, A¢, Aé) such that for each j > M +1,

RE(G Ua) N (S x T # 2, RY(GUe) N (8" x T)) # &

and foreach j >0, %€ T]?l, th e T;’, )Lg(t“) and )ng;(tb) have length j.

If we could glue together the map A, for each G € A; i to define a Borel map (G, 1) —
Ac(t%) then we would be done. However, there are uncountably many G’s in A; , so we
cannot appeal to the Borel Isomorphism Theorem.

In order to get around this problem, we fix some G; € A; ;. and the associated type
structure g, . For the sake of avoiding subscripts of subscripts, we will let 4; = g,
)LZ e = )Lgi’k, and /1? = Agi,k' We will soon show that the structural properties shared by
the games in A; ;. allow us to define a Borel map x“ on A; ;. x T,? from the mapping )L;f r
so that k¥ has the desired properties.

For each X < §% and each k-fold support Y in S?, let

Bixyr= {(G, V)€ Aj p x Ni(SP) : O(G,v) = X A Supp,(v) = Y}; and
Cixyk= {V W ACKHE (GiV) € Bi,X,y,k} as in LemmalG.9 and

Dixyi= {t“ € T : marggr (A%, (t%) € C,-,X,M}.
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Note that the sets B; x y x and C; x,y i are definable. By Proposition[G.3] B; x,y i is Borel,

and hence D; x vy x S T,? is Borel as well. We note that for each i < p(k), the family of sets
{Di,X,y,k : X cS“and Y is a k-fold support in Sb}

is a partition of T} into finitely many Borel sets, some of which may be empty.

We will define the restriction of k“ to A; x x D; x v x. We fix X < §%, and a k-fold sup-
port Y in SP. Let g be the projection function from B; x y  to A; k. By LemmalG.9 there
is a definable function h : B; x v x — C; x,v,k such that the function (g,h) : B; x y r —
A; % Ci x,v,k is ahomeomorphism.

Since Y is a k-fold support in SP, we can write Y = (Yp,..., Yx_1). Now, let Ly =
{ue (S x T?): Supp; margg, =Y} and My = {ve .4 (S") :Supp,v="Y}. Let ¢y :
Ly x My — Ly be the function that maps (i, v) to ¢y (i, v) such that the j-th compo-
nent of [¢y]; is defined as follows for each j < k.

[y (u, V] (E) = Z i (E | sP1x D) -vj(sb) for each Borel set E < S? x T?.
shey;
That is, ¢y (i, v) is the measure such that its marginal on SPis equal to v; and for each
s? € Y;, its beliefs conditional on {s”} x T? is the same as those of y. It is clear that ¢y is
Borel and that y and ¢y (i, v) have idential null sets. Furthermore, ¢y (y,-) is a one-to-
one map Lastly, note that for all G,G' € A; .,

¢y ({re Ly : O(G margg )} x {ve My : 0(G,v)}) = {u e Ly : O(G', margg w)} .

We define x: A; x x Di x v,k — L (SP x TP) as the following composition of Borel
maps, where (g, h)~! denotes the inverse function of (g, h) and 7 (st is the projection
function onto JVk(Sb ).

kUG, 1Y) = by (AL (1,7 ) [ (8,7 (G, margg A7 (1) )
Therefore k¢ is Borel. We also let Kg(t“) =x4(G, t%. k%G, t*) has marginal beliefs such
that X is the optimal set under it in game G; and it also has the same null sets as )LZ k(t“)
at every level? An important implication of this is that x%(¢%) € £*(S" x T?)
AZ (N eZ * (8P x T?) and they assume the same events at each level.
Claim. For each G€ A; k, Kg is a one-to-one mabp.
Proofofclaim. Let 1,7 € D; x y i, t* # r® and consider the case when marggs A;’y LD #

marggy A{ | (r®). Then margg ¢, (t%) # margg k& (r“) since it is clear that the map 7 _y; v, [(§, ™' (G, )]

¢y (-,v) is not one-to-one.
261n comparison, A (1) has marginal beliefs such that X is the optimal set under it in game G; .
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is one-to-one from the properties of (g, h). Therefore, x{.(t%) # x%(r%). Now, consider
the case when marggy A7, (1) = margg A7, (r®). If (1) = x(r?) then A7, () and
Af 1 (r®) induce the same conditional beliefs on sets of the form {sb} x T? for each s” € S.
However, if so then margg, A7 (1) = margg A7 (r") = Af (1) = A7, (rY) <= 1“ =
r. Therefore, Kg(t“) # Kg(r“).

Claim. x% maps D; v, onto the set {o € £ (S” x T?) : (G, margg»(0)) € B; x,v,k}-

Proof of claim. This follows immediately from the previous two claims.

Step 4. Since the sets A; ;. x D; x v,k ranging over (i, X, Y) partition © x T,? into finitely
many Borel sets, the union of the parts of k* on each of these sets is a Borel function from
O x T,? into % (S? x T?). Since each of the functions A?,k maps T,? onto L (S? x TY), K¢
maps to T} onto £ (8P x TP) for each G € A; .. Moreover, since the sets X and Y can
be recovered from each game G and LPS 0 € ffk(Sb x TP), and Kg is one-to-one on each
Di x vk, it follows that x{, is one-to-one on T}'.

We now define the full function x“ on ® x T* by taking the union of the pieces we
have defined on each © x T,?. Since the sets T,f are disjoint Borel sets, this union is a
Borel function from © x T% onto £(S? x T?), and for each geo, Kg is a one-to-one Borel
mapping from 7% onto £(S” x T?). Thus for each G € ©, T = (S%, 8%, T4, TV, x%,x2) is
a complete one-to-one type structure.

Step 5. We now complete the proof by showing that for every game G € 9,
projsa R% (G, %) x projgs R (G, %) = S%(G) x SL.(G).

We do this by proving two claims.
Claim. Let k> 0,7 < p(k),and G€ A, . Then

RY(Gix, i) N (8 x TY) = RY (G, T) N (8 x T},

Proof of claim. Let s% € S% and t% € T,?. For some X,Y we have t“ € D; x yx. Then
the following are equivalent to (s%, t) € R{(G; i, ; ).
s € 0(Gj e, AY (1Y) and A8, (1) € L (S” x T?);
s € 0(G,x%(t") and k% (t) € £, (S” x T);
(s% 1% € RY(G,%¢).
Claim. Let k> 0,i < p(k),and G€ A, . Then
R%(Gi ki ) N (S? x T = RE (G, Te) N (S* x T).

Proof of claim. We prove the result for a and b together by induction on m. The
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case m = 1 is proved in the preceding claim. We suppose the claim holds for m with b
instead of a. Let s* € S* and t“ € D; x v . Then the following are equivalent to (s%, t%) €

Ry (G i k).
(s, 1Y) € R% (G r, U 1) and A2, (+7) assumes R, (G r, i 1);

2

(s% t*) € R% (G, %) and x%(t) assumes RY (G, T¢);

(s“t") € Ry 1 (G, o).

This proves our claim.

Now, take k = M +1 and let G € ©. Then G € A; ; for some i < p(k). We chose the
type structure l;  so that RS, (G, ) N (S“ x T}!) # &. By the preceding claim, we have
R4 (G, Tp)N(S**T ,f) # &, and similarly for b. The result now follows by TheoremB.4l [
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