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Abstract

In this paper, we provide an epistemic characterization of iterated admissibility (IA),

i.e., iterated elimination of weakly dominated strategies. We show that rational-

ity and common assumption of rationality (RCAR) in complete lexicographic type

structures implies IA, and that there exist such structures in which RCAR can be

satisfied. Our result is unexpected in light of a negative result in Brandenburger,

Friedenberg, and Keisler (2008) (BFK) that shows the impossibility of RCAR in com-

plete continuous structures. We also show that every complete structure with RCAR

has the same types and beliefs as some complete continuous structure. This en-

ables us to reconcile and interpret the difference between our results and BFK’s.

Finally, we extend BFK’s framework to obtain a single structure that contains a com-

plete structure with an RCAR state for every game. This gives a game-independent

epistemic condition for IA.
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1 INTRODUCTION

Analysis of games typically begins under the premise that all players are rational. Fur-

thermore, it is often supposed, at least implicitly, that the rationality of the players is

common knowledge in the sense of Lewis (1969) and Aumann (1976)—that is, all play-

ers know it, all players know that all players know it, and so on. It is then natural to ask

which strategic choices are consistent with common knowledge of rationality (CKR).

Bernheim (1984) and Pearce (1984) gave an influential response to this question in

which they argued that their notion of rationalizability exactly captures the implications

of CKR on behavior. The rationalizable set is essentially the iteratively undominated

(IU) set—that is, the set of strategy profiles surviving iterated elimination of strongly

dominated strategies—with the added virtue of being defined in a way that more starkly

emphasizes its intuitive connections to CKR.1

Bernheim (1984) and Pearce (1984) motivated their analysis as an extension of Sav-

age’s (1954) Bayesian decision theory, in which rational actors maximize subjective ex-

pected utility (SEU) subject to probabilistic beliefs about the states of the world. There-

fore, in these and subsequent papers, CKR is often used interchangeably with rationality

and common belief of rationality (RCBR), an analogous concept that is better suited for

use in Bayesian settings.2

More formal analyses followed in Brandenburger and Dekel (1987a) and Tan and

Werlang (1988), who showed that RCBR is an epistemic condition that characterizes the

IU set. In other words, RCBR implies that IU strategies are played and every IU strategy

can be played in some state where RCBR holds. A key fact underpinning this relation-

ship is that SEU maximization characterizes avoidance of strongly dominated strategies.

However, it is prima facie reasonable that rationality should incorporate an admissibil-

ity requirement—that is, avoidance of weakly dominated strategies. A long tradition in

statistical decision theory, going as far back as Wald (1939), has advocated admissibility

as a minimal criterion of rationality.3

1When we refer to rationalizability in this paper, we will mean correlated rationalizability, which omits

the independence assumptions of the original definition. The correlated rationalizable set is exactly the

IU set.
2An event is commonly believed if all players are certain of it, all players are certain that all players are

certain of it, and so on, where certainty is understood to mean belief with probability 1. In the literature,

common belief is also called common certainty, common belief with probability 1, and common 1-belief.

See Brandenburger and Dekel (1987b); Monderer and Samet (1989).
3Von Neumann and Morgenstern (1944) justify the requirement from a staunchly objectivist point of

view on probability while prefacing the development of their theory of two-person zero-sum games. Fur-
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In light of the preceding facts, it was intuitively appealing to conjecture that iter-

atively admissible (IA) strategies—that is, strategies surviving iterated elimination of

weakly dominated strategies—could be characterized by RCBR if rationality incorpo-

rates admissibility.4 However, Samuelson (1992) demonstrated that such a conjecture

would have significant obstacles associated with the limitations of SEU theory. Admis-

sibility is typically obtained by requiring that players consider all states of the world to

be probabilistically possible. However, a player who believes that her opponents are ra-

tional would exclude their inadmissible strategies from consideration. Elegant examples

in Samuelson (1992) illustrated the frustrating fact that, in many games, an inadmissible

strategy may maximize her SEU under such beliefs.

Brandenburger, Friedenberg, and Keisler (2008) (BFK) solved this puzzle by adopt-

ing a model of Bayesian rationality that permits the expression of a more general set

of beliefs than the set allowed by SEU theory. They defined the notions of a lexico-

graphic type structure and of assuming an event, which is immune to the aforemen-

tioned shortcomings of probability 1 belief that were pointed out by Samuelson (1992).

In that framework, BFK formulated a condition, rationality and common assumption of

rationality (RCAR), that gives intuitive support for the IA set as a solution concept. Given

that an admissibility requirement partially reflects the view that rational players should

rule out nothing, it is reasonable to consider the consequences of RCAR in model envi-

ronments, such as complete lexicographic type structures, which, by virtue of describ-

ing sufficiently rich state spaces, do not presume much knowledge on the players’ part

about what BFK called “prior history or context”. BFK showed that this restriction is a

meaningful one by proving that RCAR in many incomplete type structures yields predic-

tions outside the IA set.

In this paper we address two crucial issues that were left unresolved by BFK.

First, BFK left open the question of whether there is a complete type structure in

which RCAR is possible. More broadly speaking, this first question can be subsumed

under the question of whether “RCAR in complete type structures” is an epistemic con-

dition for IA. That is, if we look across all complete type structures, is the set of strategies

thermore, later surveys by Arrow (1951) and Luce and Raiffa (1957) are uniform in their rejection of inad-

missible decision rules.
4It is well-known that the order of eliminating weakly dominated strategies matters, whereas the order

does not matter when eliminating strongly dominated strategies. When we refer to IA strategies in this

paper, we will mean the strategies obtained by simultaneously deleting every weakly dominated strategy

of every player in each round.
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played under RCAR exactly the IA set? We answer this question in the affirmative with

our Theorems 3.2 and 3.4.

The second issue can be paraphrased as one of “game independence”. While the con-

dition above—RCAR in complete type structures—is fine from the perspective a game

theorist who looks across all complete type structures, it is not fully satisfactory from

the perspective of a player who considers possible only those states of the world that

are described by her type structure. It is therefore both natural and important to ask if

there is a single “context-free” model environment (e.g., a complete type structure) in

which an epistemic condition for IA (e.g., RCAR) can be satisfied for all games. We re-

solve this issue by showing that enough complete type structures can be embedded in a

single larger model environment such that a natural generalization of RCAR is an epis-

temic condition for IA across all games. A complete type structure in which common

assumption of rationality, as defined with respect to a given game, is possible can then

be intuitively interpreted as the set of states in which there is common knowlege of that

game.

The results in this paper were unexpected in the light of an impossibility theorem

in BFK that left a decidedly negative message. BFK showed that, in type structures that

are both complete and continuous, no state of the world can satisfy RCAR. The issues

leading to this nonexistence result are independent of those that were raised in Samuel-

son (1992). This result appeared to cast doubt on the existence of any complete type

structure in which the RCAR set is nonempty. However, our results here show that RCAR

is possible when the requirement that the type structure is continuous is dropped. In

the process, we also identify some of the conceptual issues that help us to reconcile the

positive results herein with the negative conclusions of BFK.

Toward that end, we prove that, given each (discontinuous) type structure, there ex-

ists a continuous type structure with the same type sets that describes the exact same

sets of beliefs. Where the two type structures, despite being equivalent in the sense that

they have the same types and beliefs, differ is in how they classify what beliefs assume a

given event. Given a belief in a discontinuous type structure, the same belief in an equiv-

alent continuous type structure will, in general, assume fewer events. One implication

of this difference is that beliefs in the continuous type structure must meet a higher stan-

dard in order to “rule out nothing”. We argue that the discussion of these differences can

be conveniently subsumed under the umbrella of topological distinguishability.5

5We caution the reader that, despite the similarity in nomenclature, these issues are completely unre-
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Additionally, we give a topological characterization of an RCAR tower, which is a fam-

ily of finite-order rationality sets—that is, the sets in which there is rationality and m-th

order assumption of rationality (RmAR)—in complete type structures with RCAR.

The proofs in this paper illustrate the virtues of two key mathematical results in con-

structing type structures with desirable properties: the Borel Isomorphism Theorem,

and Tarski’s celebrated theorem that every relation that is first order definable in the

field of real numbers is semi-algebraic. We anticipate that these methods will prove use-

ful in showing various existence results in other settings.

2 THE UNDERLYING FRAMEWORK

In this section, we briefly review the concepts we will need from BFK. We fix a finite game

of complete information

G =

〈

Sa ,Sb ,πa ,πb
〉

,

where Sa ,Sb are strategy spaces and πa ,πb are payoff functions. The indices a and b

stand for Ann and Bob, respectively. Whenever we state a definition or result involving a

and/or b (Ann and/or Bob), it will be understood that we also make the analogous state-

ment with a and b reversed.

2.1 ADMISSIBILITY

Ann’s strategy sa ∈ Sa is admissible (i.e., not weakly dominated) in the game G if and

only if sa is optimal under some full-support probability measure defined over Sb . Let

Sa
1 denote the set of Ann’s admissible strategies. Given nonempty subsets X ⊆ Sa and

Y ⊆ Sb , let G(X ,Y ) denote the reduced game
〈

X ,Y ,πa ,πb
〉

. We can then inductively

define Ann’s m-admissible strategy set Sa
m as follows: To get the induction started we

write Sa
0 ≡ Sa . For each m ∈ N, let Sa

m+1 be the set of Ann’s admissible strategies in the

reduced game G(Sa
m ,Sb

m). In other words, Sa
m+1 is the set of Ann’s strategies that are

admissible with respect to Sa
m ×Sb

m .

Note that Sa
m+1 ⊆ Sa

m for all m ∈N. We put Sa
∞ ≡

⋂∞
m=0 Sa

m . The set Sa
∞×Sb

∞ is called

the iteratively admissible set (henceforth IA set). Since the sets Sa ,Sb are finite, we have

Sa
∞ = Sa

M
and Sb

∞ = Sb
M

for some M ∈N, and hence the IA set is nonempty.

lated to those raised by the extensive literature on strategic topology.
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2.2 LEXICOGRAPHIC PROBABILITY SYSTEMS

Recall that a Polish space is a separable topological space that is completely metrizable.

Let Ω denote the space of uncertainty faced by the decision maker (e.g., Ann). For now,

let us assume only that Ω is Polish and fix a compatible metric. In the conventional

Bayesian theory of choice under uncertainty, a decision maker’s beliefs are represented

by a Borel probability measure on Ω. The set of all Borel probability measures on Ω is

denoted by M (Ω).

Following an alternative theory developed in Blume, Brandenburger, and Dekel (1991a),

BFK adopted the convention that a decision maker’s beliefs are represented by a lexico-

graphic probability system. Lexicographic probability systems (henceforth LPS’s) are

generalizations of probability measures. An LPS on Ω is any finite sequence of proba-

bility measures on Ω, e.g.,

σ= (µ0, . . . ,µn−1) ∈

n times
︷ ︸︸ ︷

M (Ω)×·· ·×M (Ω),

that satisfies mutual singularity—that is, there exist disjoint Borel sets U0, . . . ,Un−1 in

Ω such that µi (Ui ) = 1 and µ j (U j ) = 0 for i 6= j .6 The set of all LPS’s on Ω is denoted by

L(Ω). It is immediate that M (Ω)(L(Ω). Additional notation, which will be convenient

later, follows below.

Nn(Ω) ≡

n times
︷ ︸︸ ︷

M (Ω)×·· ·×M (Ω);

N(Ω) ≡
⋃

n∈N

Nn(Ω);

Ln(Ω) ≡L(Ω)∩Nn(Ω).

We define a Polish topology on N(Ω) by following the usual conventions. First, we

give M (Ω) its weak* topology, which makes it a Polish space. Second, we give Nn(Ω) =
∏n

k=1
M (Ω) the product topology. Then we may view N(Ω) as a countable topological

union of disjoint Polish spaces Nn(Ω). N(Ω) with this topology is again a Polish space.

An LPS σ = (µ0, . . . ,µn−1) represents an ordered sequence of mutually contradictory

hypotheses. We interpret µ0 as being infinitely more likely than µ1, which in turn is

infinitely more likely than µ2, and so on. The primary hypothesis µ0, being more likely

than all other hypotheses, can be regarded as the prior belief. The secondary hypothesis

6The definition of LPS’s in Blume, Brandenburger, and Dekel (1991a) did not require mutual singularity.

The definition above is from BFK.
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µ1 can be regarded as the conditional belief in the a priori zero-probability (i.e., µ0-null)

event that µ0 is false. More generally, µ j is the conditional belief in the event that all a

priori more likely hypotheses (i.e., all µk such that k < j ) are false. Such an event would

be µk-null for all k < j .

LPS’s generalize the notion of probability measures in a straightforward manner. Not

surprisingly, concepts defined with respect to probability measures often have obvious

analogs that are defined with respect to LPS’s.

The support of an n-tuple of measures σ ∈ N(Ω) is the union of the supports of the

measures that comprise it—that is, the support of σ= (µ0, . . . ,µn−1) is simply

Suppσ≡

n−1⋃

j=0

Suppµ j .

We say that σ has full support if Suppσ=Ω. Equivalently, σ has full support if, for each

open U , there exists j < n such thatµ j (U ) > 0. The set of all full-support LPS’s is denoted

by L
+(Ω). The set N

+(Ω) is defined similarly.

Similarly, Bayesian optimization under belief σ is a straightforward extension of ex-

pected utility maximization. Given an act f , for each j < n let u j be the expected utility

of choosing f with respect to µ j . Then the vector u = (u0, . . . ,un−1) is called the lexico-

graphic expected utility (henceforth LEU) of f under σ. The order on the hypotheses

that comprise σ suggests an obvious way to compare LEU vectors. Given that, for i < j ,

µi is infinitely more likely than µ j , it is natural to assign infinitely more importance to

the expected utility of an act under µi than one would to its expected utility under µ j .

We write

(v0, . . . , vn−1) = v >LEX u = (u0, . . . ,un−1)

and say that v is lexicographically greater than u if there exists k < n such that vk > uk ,

and v j = u j for all j < k. LEU maximization is simply the maximization of LEU with

respect to the lexicographic order. Throughout this paper, we use the terms LEU and

payoff interchangeably in appropriate contexts.

2.3 ASSUMPTION

The idea of certainty (i.e., belief with probability one) admits more than one obvious

analog with respect to LPS’s. If the decision maker is certain of event E ⊆ Ω then she

considers E to be infinitely more likely than its complement Ω \ E . BFK introduced a

new epistemic notion, called assumption, to capture this property in LPS’s. Intuitively
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speaking, a decision maker with belief σ = (µ0, . . . ,µn−1) assumes an event E if she be-

lieves every part of E to be infinitely more likely than its complement Ω \ E . Formally,

a Borel set E is assumed under σ at level j if the following three conditions are met (cf.

Proposition 5.1 in BFK)7(a) µi (E )= 1 for each i ≤ j ;(b) µi (E )= 0 for each i > j ; and() If U is open with U ∩E 6=∅ then µi (U ∩E ) > 0 for some i < n.

Note that, even if E is assumed under σ, it need not be the case that Ω \ E is σ-null. In

contrast, if a decision maker is certain of E then Ω\ E is necessarily a null event.

It is clear that if an event E is assumed under an LPS σ= (µ0, . . . ,µn−1) then the level

at which E is assumed is unique, is less than n, and is the greatest j such that µ j (E ) = 1.

It is also clear that if µ= (µ0, . . . ,µn−1) and ν= (ν0, . . . ,νn−1) are LPS’s of the same length

n, andµ j ,ν j have the same null sets for each j < n, thenµ andν assume the same events

at each level j < n. Verbally, the events that an LPS µ assumes depend only on the length

of µ and the null sets of the µ j .

2.4 LEXICOGRAPHIC TYPE STRUCTURES

LPS’s and associated constructs were used in BFK to build a framework in which the

rationale for iterated admissibility can be expressed formally (i.e., in the language of set

theory).

Recall the finite game G =
〈

Sa ,Sb ,πa ,πb
〉

. In the context of the game G , Ann is un-

certain of what strategy Bob will choose, what Bob believes about Ann’s strategy choice,

what Bob believes about what Ann believes about Bob’s strategy choice, and so on. To

give a parsimonious description of Ann’s beliefs about the pair consisting of Bob’s strat-

egy and Bob’s beliefs while sidestepping the inherent problem of self-reference, BFK fol-

lowed the convention of implicitly representing beliefs as types.8 Ann’s type t a is an

element of a Polish space T a , called her type space. The belief that Ann’s type repre-

sents is given by a Borel map λa : T a →L(Sb ×T b), where T b denotes Bob’s type space.

Similarly, Bob’s types are interpreted through a Borel map λb : T b → L(Sa ×T a). Taken

together, these objects form a 6-tuple

T=

〈

Sa ,Sb ,T a ,T b ,λa ,λb
〉

,

7BFK defined assumption only when σ has full-support, but we adopt this definition for all σ.
8An innovation due to Harsanyi (1967).
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which is called an (Sa ,Sb)-based lexicographic type structure. Members of Sa ×T a ×

Sb ×T b are called states of the world.

The type structure T is called complete if L(Sb ×T b) = rangeλa and L(Sa ×T a) =

rangeλb .9 A complete type structure contains all beliefs about beliefs.10

2.5 RATIONALITY

The definition of rationality in BFK combines two requirements. The first is Bayesian op-

timality, which is captured by LEU maximization. The second, which might be roughly

described as a form of agnosticism, is reflected in full-support beliefs. Intuitively, in

a complete type structure, a player with full-support beliefs will consider all possibili-

ties. Formally, the LEU of a strategy sa ∈ Sa under the LPS σ = (µ0, . . . ,µn) is the vector

(πa(sa ,ν0), . . . ,πa(sa ,νn)) of payoffs, where νi = margSb µi , and sa is optimal under σ if

the LEU of sa under σ is maximal among all strategies in Sa . A strategy-type pair (sa , t a)

is rational if λa(t a) is a full-support LPS, and sa is optimal under λa (t a). The set of all

rational pairs (sa , t a) is denoted by Ra
1 . For each m > 0, define Ra

m inductively by

Ra
m+1 ≡ Ra

m ∩

[

Sa
× Aa(Rb

m)
]

,

where Aa (Rb
m) is the set of Ann’s types in t a ∈ T a such that Rb

m is assumed under λa(t a ).

If a state (sa , t a , sb , t b) ∈ Ra
m+1 ×Rb

m+1 then we say that it satisfies rationality and m-th

order assumption of rationality (henceforth RmAR).

We write Rb
0 ≡ Sb ×T b , and Rb

∞ ≡
⋂

m∈N Rb
m . Note that Sb ×T b is trivially assumed

under every full-support LPS on Sb ×T b . It is shown in BFK that each of the sets Ra
m ,Rb

m

is Borel (so the players are able to assume these sets), and that

Ra
m = Ra

1 ∩

[

Sa
×

⋂

i<m

Aa(Rb
i )

]

.

In words, Ra
m is the set of states for which Ann is rational and assumes that Bob is i-th

order rational for each i ≤ m. If a state (sa , t a , sb , t b) belongs to Ra
∞×Rb

∞ then it satisfies

rationality and common assumption of rationality (henceforth RCAR). In words, each

player is rational and assumes that the other player is m-th order rational for each m ∈N.

It is shown in BFK that any LPS that assumes each of a countable sequence of events

assumes their intersection. It follows that for any RCAR state, each player assumes that

9In BFK, a type structure is called complete if L
+(Sb ×T b ) ( rangeλa and L

+(Sa ×T a) ( rangeλb .

This difference is immaterial with respect to both their results and ours.
10But not necessarily all hierarchies of beliefs.
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the other player is rational at order ∞, that is, Ann assumes Rb
∞ and Bob assumes Ra

∞.

3 STATEMENTS OF RESULTS

Section 3.1 states our main existence results, which 1) show that there exist complete

type structures with RCAR; 2) establish that RCAR in complete type structures is an epis-

temic condition for IA; and 3) reconcile these facts with the negative conclusions found

in the literature. Section 3.2 states some complementary results that relate beliefs about

strategies to iterated admissibility. We need these results to prove our existence theo-

rems, but they also merit independent consideration because they reveal certain struc-

tural commonalities of finite-order reasoning about rationality across complete type

structures. In Section 3.3, we state a sharper form of our main existence theorem that

gives a topological characterization, for a fixed game G , of the RmAR sets in complete

type structures in which the RCAR set is nonempty. Finally, Section 3.4 provides a game-

independent condition for IA that captures the line of reasoning that RCAR describes.

In order to easily distinguish new results from previous results from the literature,

we will reserve the name “Proposition” for previous results from the literature, and use

“Theorem”, “Corollary”, and “Lemma” for new results.

3.1 RCAR AND ITERATED ADMISSIBILITY

Consider the following infinite sequence of statements.

(a1) Ann is rational (b1) Bob is rational

(a2) (a1) and Ann assumes (b1) (b2) (b1) and Bob assumes (a1)

(a3) (a2) and Ann assumes (b2) (b3) (b2) and Bob assumes (a2)

. . . . . .

For each m > 1, the statement “a(m + 1) and b(m + 1)” corresponds to rationality

and m-th order assumption of rationality. The conjunction of this infinite sequence of

statements corresponds to rationality and common assumption of rationality.

A type structure T =
〈

Sa ,Sb ,T a ,T b ,λa ,λb
〉

for G provides precise interpretations of

these statements by implicitly defining the possible belief hierarchies of each player.

BFK found that if the universe of beliefs implied by T is rich enough—that is, T is a com-

plete structure—then the set of strategies played when RmAR holds coincides exactly

with the set of (m +1)-admissible strategies. Proposition 3.1 below is the formal state-

ment of this result.
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Proposition 3.1 (Theorem 9.1 in BFK). Fix a finite game G and a complete lexicographic

type structure T for G. Then for each m ∈N,

projSa Ra
m ×projSb Rb

m = Sa
m ×Sb

m .

It is natural to ask whether there is an analogous result that characterizes iterated

admissibility using RCAR. Our main results, Theorems 3.2 and 3.4 below, establish the

epistemic foundations of IA along those lines. In particular, Corollary 3.3 shows that

there exists a complete type structure in which the RCAR set is nonempty, answering an

open question that was asked in BFK.

Theorem 3.2 (Existence Theorem). For each finite game G =
〈

Sa ,Sb,πa ,πb
〉

and un-

countable Polish spaces T a ,T b , there exist Borel functions λa ,λb such that

T=
〈

Sa ,Sb ,T a ,T b ,λa ,λb
〉

is a complete lexicographic type structure for G in which Ra
∞×

Rb
∞ is nonempty.

Corollary 3.3. Fix a finite game G. There exists a complete lexicographic type structure T

for G in which Ra
∞×Rb

∞ is nonempty.

Theorem 3.4. Fix a finite game G and suppose T is a complete lexicographic type struc-

ture for G such that Ra
∞×Rb

∞ is nonempty. Then

projSa Ra
∞×projSb Rb

∞ = Sa
∞×Sb

∞.

In words, Corollary 3.3 says that there exists a complete type structure for G with at

least one state that belongs to the RCAR set. Theorem 3.4 says that, in every complete

type structure for G in which the RCAR set is nonempty, the set of strategies played when

RCAR holds is exactly equal to the IA set. Together, Theorems 3.2 and 3.4 say that “RCAR

in complete type structures” is an epistemic condition for IA since 1) every IA strategy

is played under RCAR in some complete type structure; and 2) the strategies that are

played under RCAR in any complete type structure must be IA strategies.

However, it is not the case that every complete type structure for G has a nonempty

RCAR set. Consider the following two results from BFK.

Proposition 3.5 (Theorem 10.1 in BFK). Fix a finite game G and a complete lexicographic

type structure T for G such that the maps λa ,λb are continuous. If there exist r a , sa , sb

such that πa(r a , sb) 6=πa(sa , sb) then Ra
∞×Rb

∞ =∅.
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Proposition 3.6 (Proposition 7.2 in BFK). For each finite game G there exists a complete

lexicographic type structure T for G such that the maps λa ,λb are continuous.11

These two results together show that there are complete type structures for G in

which the RCAR set is empty. So the set of strategies played when RCAR holds is empty,

but of course the IA set is nonempty.

How do we reconcile our results with Proposition 3.5? In particular, how should we

understand the fact that complete type structures having nonempty RCAR sets cannot

have continuous type-belief maps? To do so, we give an improvement of Proposition 3.6.

By a Borel refinement of a Polish space T , we mean a Polish space U such that U has the

same set of points and the same Borel σ-algebra as T , and every open set in T is open in

U . Thus U has the same Borel sets but more open sets.

Theorem 3.7. Let T =
〈

Sa ,Sb ,T a ,T b ,λa ,λb
〉

be a complete lexicographic type structure

for a finite game G. Then there exist Borel refinements U a,U b of T a ,T b such that the maps

λa : U a
→L(Sb

×U b), λb : U b
→L(Sa

×U a)

are continuous.

It follows that U=
〈

Sa ,Sb ,U a ,U b ,λa ,λb
〉

is again a complete type structure for G , so

Theorem 3.7 implies Proposition 3.6. Since the Borel σ-algebras are unchanged, the sets

of LPS are unchanged, i.e.,

L (Sa
×U a) =L (Sa

×T a), L (Sb
×U b) =L (Sb

×T b).

However, more open sets have been added to their topologies.

No state satisfying RCAR exists in the type structure U by Proposition 3.5. Note that

while L(Sb ×T b) =L(Sb ×U b), it is not the case that L
+(Sb ×T b) =L

+(Sb ×U b). This

is because full-support LPS’s must assign positive measure to every open set and U b

contains more open sets than T b does. Effectively, there are fewer full-support types in

U a than there are in T a . So the operation of refining the topologies of the type spaces in

this fashion shrinks the set of states in which every player is rational.

The shrinking of the set of full-support types is a consequence of a more basic change.

Recall that, to assume an event, it is necessary to assign positive measure to every “part”

of it. Any two disjoint parts of an event are topologically distinguishable 12 from each

11Since our definition of complete is slightly different from the definition in BFK, the proof must use

Theorem 13.7 instead of Theorem 7.9 in Kechris (1995).
12Two events are topologically indistinguishable if one approximates the other and vice versa—that is,

if they have identical closures.
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other. It follows that refining the topology on the state space raises the standards of as-

sumption for the players. From such a perspective, continuous type structures are type

structures with high standards for assumption.

The description of continuous type structures in BFK as type structures in which

neighboring full-support LPS’s are associated with neighboring full-support types, while

equivalent, does not immediately call this property to attention. Our interpretation of

continuous type structures is that they describe players who are more finicky about say-

ing that they assume something. They are more agnostic than players in discontinuous

type structures in this sense.

One early interpretation of BFK’s negative result was that RCAR is impossible when

players know too little about each other (since complete type structures are very rich).

Friedenberg (2010) had previously shown that compact, complete, and continuous stan-

dard13 type structures contain all hierarchies of beliefs. While this result had not been

extended to lexicographic type structures, it was reasonable to suppose that the nonex-

istence of RCAR in complete continuous lexicographic type structures was due to the

presence of too many hierarchies of beliefs.

Our Theorem 3.7 says that any complete type structure—even one with nonempty

RCAR—contains exactly the same set of hierarchies of beliefs as some complete continu-

ous type structure. It permits us to isolate the issue of missing hierarchies and conclude

that RCAR is impossible in complete continuous type structures because players are too

cautious about assuming events in such type structures, and not because they know too

little about their opponents.

The Existence Theorem 3.2 is not fully satisfactory in the sense that it only says that if

we fix a game, we can find a complete type structure in which RCAR for that fixed game

is nonempty. It is silent on whether, given a pair of finite strategy sets (Sa ,Sb), there is a

single complete type structure in which RCAR for every game G on (Sa ,Sb) is nonempty.

We will remedy this shortcoming in another way in Theorem 3.25.

3.2 STRATEGIC BELIEFS AND ITERATED ADMISSIBILITY

In this section, we give an alternate definition of the IA set in the style of rationalizability

via an iterative refinement of the players’ strategic beliefs—that is, their marginal beliefs

13i.e., type structures with standard probabilities, not lexicographic probabilities.
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over opponents’ strategies.14 We will show that this refinement process captures some

of the structural properties of RmAR sets that are conveniently invariant across all com-

plete type structures. In other words, RmAR sets can be described as having the same

“shape” in a sense across all such type structures. These properties are incredibly useful

in proving the existence theorems of Section 3.1 and their generalization in Section 3.3.

We suppose throughout that G =
〈

Sa ,Sb ,πa ,πb
〉

is a finite game in strategic form. We

first introduce some notation. For r a , sa ∈ Sa and a sequence ν= (ν0, . . . ,νn) ∈N(Sb), we

say that sa is preferred to r a under ν, and write sa ≻ν r a , if the LEU of sa under ν is

greater than that of r a—that is, πa(sa ,ν) >LEX πa(r a ,ν), where πa(sa ,ν) is the (n + 1)-

tuple (πa(sa ,ν0), . . . ,πa(sa ,νn)). Note that the leftmost term πa(sa ,ν0) has the highest

priority. Intuitively speaking, under belief ν= (ν0, . . . ,νn), for each k ≤ n the strategies in

the support of (ν0, . . . ,νk ) are infinitely more likely than the strategies outside the sup-

port of (ν0, . . . ,νk ).

Given µ,ν ∈N(Sb), we writeµ∼⋆ ν if for all r a , sa ∈ Sa , sa ≻µ r a if and only if sa ≻ν r a .

In other words, µ∼⋆ ν if and only if they induce the same preference ordering over pure

strategies. It is easy to see that ∼⋆ is an equivalence relation. If µ = (µ0, . . . ,µm) and

ν= (ν0, . . . ,νn) then the concatenation of µ and ν is defined as the sequence

µν≡ ((µν)0, . . . , (µν)m+n+1) = (µ0, . . . ,µm ,ν0, . . . ,νn).

We note that if µ∼⋆ ν and µ′ ∼⋆ ν′ then µν∼⋆ µ′ν′. Now, let

P a
1 ≡N

+(Sb) =
{

ν : ν ∈N(Sb)∧Suppν= Sb
}

and define the following for each m > 0.

P a
m+1 ≡

{

νν′ : ν ∈N(Sb)∧Suppν= Sb
m ∧ν′ ∈ P a

m

}

.

The set P a
1 can be interpreted as the set of strategic beliefs held by rational types.

Fix a complete type structure
〈

Sa ,Sb ,T a ,T b ,λa ,λb
〉

. If Ann is rational then she has a

full-support belief µ ∈ L
+(Sb ×T b) and her strategic belief is margSb µ. Then the set of

strategic beliefs that may be held by rational Anns is
{

margSb µ : µ ∈L
+(Sb

×T b)
}

=N
+(Sb) = P a

1 .

We will call P a
1 the set of Ann’s rational strategic beliefs. It readily follows that Sa

1 is the

set of strategies played by rational Anns.

14The refinement process may succinctly be described as set-valued lexicographic rationalizability,

given its similarity to Stahl’s (1995) notion of lexicographic rationalizability.
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Following the intuitive description given above, we can say that if Ann holds a strate-

gic belief ν ∈ P a
2 then she considers the event that Bob is rational to be infinitely more

likely than the event that he is not. Furthermore, we can say that ν= margSb µ for some

full-support belief µ of Ann that assumes that Bob is rational. An inductive argument

shows that if ν ∈ P a
m+1 then ν is the marginal on Sb of some full-support belief of Ann

that m-th order assumes rationality.

For each ν ∈N(Sb), let O(ν) denote the set of all sa ∈ Sa such that sa is optimal under

≻ν (i.e., sa maximizes LEU under ν). Note that if µ ∼⋆ ν then O(µ) = O(ν). For each

m > 0, define

X
a
m ≡

{

O(ν) : ν ∈P a
m

}

.

We have the following characterization of m-admissible strategies as strategies that

are optimal under strategic beliefs in P a
m .

Theorem 3.8. For each m > 0,
⋃
X

a
m = Sa

m . Each sa ∈ Sa
m belongs to some X a ∈ X

a
m , and

X
a
m is a set of subsets of Sa

m .

Note that Theorem 3.8 allows us to rewrite the definition of P a
m+1 without reference

to the m-admissible set Sb
m . In fact, all results in this section would continue to hold

even if we had started with the following definition of P a
m+1.

P a
m+1 ≡

{

νν′ : ν ∈N(Sb)∧Suppν=O(P b
m)∧ν′ ∈P a

m

}

,

where O(P b
m) =

⋃
{O(µ) : µ ∈P b

m}.

We are also able to show that for every full-support belief µ of Ann who m-th order

assumes rationality, there is some ν ∈ P a
m+1 such that margSb µ and ν induce the same

preferences over Ann’s strategies—that is, the strategic beliefs in P a
m+1 are representative

of Ann’s preferences over her strategies in states of the world satisfying RmAR in a com-

plete type structure. Theorem 3.9 below gives a precise statement of this relationship.

Theorem 3.9. In a complete lexicographic type structure for a finite game, for each m > 0,

(i) If (sa , t a) ∈ Ra
m then ∃ν ∈P a

m such that margSb λa(t a) ∼⋆ ν; and

(ii) If ν ∈P a
m then ∃(sa , t a) ∈ Ra

m such that margSb λa(t a) = ν.

By definition, a strategy sa is optimal under λa(t a) if and only if sa is optimal under

margSb λa(t a ). Thus we have the following corollary.
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Corollary 3.10. In a complete lexicographic type structure for a finite game G, for each

m > 0, a set X a ⊆ Sa belongs to X
a
m if and only if there is a state (sa , t a) ∈Ra

m such that X a

is the set of all optimal strategies under λa(t a). Moreover, for each m we have Xa
m ⊇X

a
m+1.

Theorems 3.8 and 3.9 tell us something about the “shape” of the RmAR sets in a com-

plete type structure for G . To see this, we consider an arbitrary relation Q ⊆ Sa ×T a and

subset X a ⊆ Sa , and define

Γ
a(X a ,Q) ≡

{

t a
∈T a : X a

=
{

sa : (sa , t a) ∈Q
}}

.

In words, Γa(X a ,Q) is the set of all t a ∈ T a such that the section of Q at t a is exactly X a .

It is clear that for each set Q ⊆ Sa×T a , the family of sets
{

Γ
a(X a ,Q) : X a ⊆ Sa

}

is pairwise

disjoint, and the union of the family is T a . Thus the nonempty sets in this family form a

finite partition of T a .

It follows that in any type structure for G , and for each nonempty set X a ⊆ Sa and

m > 0, Γa(X a ,Ra
m) is the set of all types t a for Ann such that X a is the set of optimal

strategies for λa (t a), and Ann is open-minded and assumes k-th order rationality for

Bob for all k < m.15

The next corollary shows that the RmAR sets have similar “shapes” in all complete

type structures for a given finite game G .

Corollary 3.11. In a complete lexicographic type structure for a finite game, for each

nonempty X a ⊆ Sa , the following statements hold.

(i) The sequence
{

Γ
a(X a ,Ra

m) : m > 0
}

is a decreasing chain of Borel sets of T a ;

(ii) For each m > 0, Γa(X a ,Ra
m) is nonempty if and only if X a ∈X

a
m ; and

(iii) The sequence
{

Γ
a(∅,Ra

m) : m > 0
}

is an increasing chain of nonempty Borel sets of

T a .

Corollary 3.11 gives us the following useful formula for the RmAR sets in a complete

type structure for a finite game.

Ra
m =

⋃{

X a
×Γ

a(X a ,Ra
m) : X a

∈X
a
m

}

.

3.3 ALL POSSIBLE RCAR SETS

In this section we state a sharper form of the Existence Theorem 3.2. Consider a com-

plete type structure such that RCAR obtains in some state. Below, we define an RCAR

15Bob is k-th order rational if he is rational and (k −1)-th order assumes rationality.
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tower to be the family of RmAR sets in any such type structure. The results of this sec-

tion give a list of topological properties that characterize RCAR towers.

The sequences of RmAR sets depend on the type structure T as well as the game G .

To indicate this dependence, we will sometimes write Ra
m(G ,T) instead of Ra

m , Ra
∞(G ,T)

instead of Ra
∞. Throughout this section, we fix a finite game G and a pair of uncountable

Polish spaces T a ,T b .

Definition 3.12. An RCAR tower for (G ,T a ,T b) is a pair of sequences
{

Qa
m : m > 0

}

and
{

Qb
m : m > 0

}

of sets such that

(i) The intersections Qa
∞ ≡

⋂

m Qa
m , Qb

∞ ≡
⋂

m Qb
m are nonempty; and

(ii) There exist maps λa ,λb for which T =
〈

Sa ,Sb ,T a ,T b ,λa ,λb
〉

is a complete lexico-

graphic type structure for G, and for all m > 0, Qa
m = Ra

m(G ,T) and Qb
m = Rb

m(G ,T).

Thus every complete type structure with RCAR gives rise to an RCAR tower. The

Existence Theorem 3.2 implies that there exists an RCAR tower. Corollary 3.11 gives a

limitation on the possible RCAR towers—they must have the right “shape”. Property 6.2

in BFK gives a second limitation—two events assumed at the same level must be topo-

logically indistinguishable, so the set Qa
∞×Qb

∞ must be topologically indistinguishable

from Qa
M
×Qb

M
for some M . Lemma E.2 in BFK gives a third limitation—for each open-

minded type t a for Ann, there are uncountably many other open-minded types that

have the same optimal strategies and assumptions as t a , and hence each “part” of Qa
m

that is not in Qa
m+1 must be uncountable. The following sharp existence theorem says

exactly which families of sets are RCAR towers. In words, it says that a family of sets is an

RCAR tower if and only if it satisfies the three limitations above.

Theorem 3.13. The pair of sequences
{

Qa
m : m > 0

}

,
{

Qb
m : m > 0

}

is an RCAR tower for

(G ,T a ,T b) if and only if for each nonempty X a ⊆ Sa ,

(i)
{

Γ
a(X a ,Qa

m) : m > 0
}

is a decreasing chain of Borel subsets of T a ;

(ii) For each m > 0, Γa(X a ,Qa
m) 6=∅ ⇐⇒ X a ∈X

a
m ;

(iii) For some M > 0, Qa
∞ =Qa

M
;

(iv) Γ
a(∅,Qa

1 ) is uncountable;

(v) X a ∈X
a
m =⇒ Γ

a(X a ,Qa
m) \Γa (X a ,Qa

m+1) is uncountable; and

(vi) X a ∈X
a
∞ =⇒ Γ

a(X a ,Qa
∞) is uncountable;

and similarly for b.

Theorem 3.13 shows that the property of being an RCAR tower depends only on the

optimality sets X
a
m ,Xb

m . As shown in Section 3.2, these sets capture properties that are
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universal to all complete type structures. Indeed, their definitions make no reference

to type structures at all. Thus the property of being an RCAR tower is partially robust.

Theorem 3.13 also shows that one has a great deal of control over the properties that the

RmAR sets will have.

Furthermore, Theorem 3.14, which is stated below, shows that any family of sets that

is an RCAR tower is also the family of RmAR sets in some complete one-to-one type

structure for G . By a one-to-one type structure for G we mean a type structure T for G

in which the mappings λa ,λb are one-to-one.

Theorem 3.14. The pair of sequences
{

Qa
m : m > 0

}

,
{

Qb
m : m > 0

}

is an RCAR tower for

(G ,T a ,T b) if and only if

(i) Qa
∞ ≡

⋂

m Qa
m and Qb

∞ ≡
⋂

m Qb
m are nonempty; and

(ii) There exist mappings λa ,λb such that T= 〈Sa ,Sb ,T a ,T b ,λa ,λb〉 is a complete one-

to-one lexicographic type structure for G, and for all m > 0, Qa
m = Ra

m(G ,T) and

Qb
m = Rb

m(G ,T).

A consequence of Theorem 3.13 is that the proof of the Existence Theorem 3.2 is re-

duced to the problem of finding a family of sets that fits the topological characterization

of RCAR towers. The following lemma about Polish spaces, together with Theorem 3.13,

implies Theorem 3.2.

Lemma 3.15. For any finite game G and uncountable Polish spaces T a ,T b , there is a

family of open sets
{

Qa
m : m > 0

}

,
{

Qb
m : m > 0

}

such that Qa
∞,Qb

∞ are open and Conditions

1–6 of Theorem 3.13 hold.

This gives us a complete one-to-one type structure T with the additional property

that all the RmAR sets Ra
m(G ,T),Rb

m(G ,T) and the RCAR sets Ra
∞(G ,T),Rb

∞(G ,T) are open

and uncountable. By choosing other RCAR towers, one can get a T with various other

properties.

Theorem 3.13 is a very strong result and no comparable analog is in the literature

about standard type structures and RCBR. It is well-known that the sets of states that

satisfy rationality and m-th order belief of rationality (RmBR) being compact for each m

is sufficient for the existence of RCBR (cf. Tan and Werlang, 1988). However, there is no

topological characterization of the RmBR sets in standard type structures with RCBR.
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3.4 A GAME-INDEPENDENT CONDITION FOR RCAR

The results of the previous sections have shown that, given any game G , there is a large

class of complete type structures such that RCAR is nonempty when rationality is de-

fined with respect to the specific game G . Furthermore, if we fix a type structure TG in

this class then the play of the game under RCAR is exactly the IA set of G . However, it

will not necessarily be the case that the RCAR set is nonempty in TG when rationality is

defined with respect to another game G with the same strategy sets (Sa ,Sb).

In the aforementioned type structure TG , players can commonly assume rationality

with respect to G but perhaps not with respect to another game. Our main results of the

earlier sections do not guarantee the existence of any complete type structure in which,

for all games G , some state satisfies the condition “RCAR with respect to G”.

This form of game-dependence raises the following question: Is there a model envi-

ronment in which the set of states with common knowledge of the game G is isomorphic

to a complete type structure (e.g., TG ) in which common assumption of rationality with

respect to G is possible? In this section, we answer this question in the affirmative. To

do so, we first extend the BFK framework to include moves of nature, which choose the

game G .

Definition 3.16. A lexicographic type structure with nature is a structure

V=

〈

Θ,Sa ,Sb ,V a ,V b ,λa ,λb
〉

where Sa ,Sb are nonempty finite sets, Θ is the space of games over (Sa ,Sb), V a ,V b are

Polish spaces, and λa ,λb are Borel functions

λa : V a
→L (Θ×Sb

×V b), λb : V b
→L (Θ×Sa

×V a).

We say that V is complete if the mappings λa ,λb are onto, and one-to-one if the map-

pings λa ,λb are one-to-one.

Hereafter,Vwill denote a lexicographic type structure with nature, and G will denote

a game in Θ.

Definition 3.17. We say that a type v a ∈V a believes an event E ⊆Θ×Sb ×V b and write

v a ∈C a(E ) if

(λa(v a))(E )=~1,

where~1 denotes a finite sequence of 1s. We say that v a believes a game G and write v a ∈

C a
1 (G) if v a believes {G}×Sb ×V b , that is, v a ∈C a({G}×Sb ×V b).
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We now define common belief of G . Informally, there is common belief of G if each

player believes G , believes that the other player believes G , believes that the other player

believes that, and so on.

Definition 3.18. We say that v a has common belief of G if v a ∈C a
∞(G), where

∀m > 0, C a
m+1(G) =C a

m(G)∩C a(Θ×Sb
×C b

m(G));

C a
∞(G) =

⋂

m>0

C a
m(G).

If both v a and v b have common belief of G, we say that the pair (v a , v b) has common

belief of G. We say that there is common knowledge of G at state (θ, sa , v a , sb , v b) if θ =G

and (v a , v b) has common belief of G. In other words, common knowledge is equivalent to

true common belief. The common knowledge set for a at G is the set

K a(G) = {G}×Sa
×C a

∞(G).

One can easily verify that the common knowledge sets K a (G) and K b(G) are Borel

(but possibly empty). We say that V admits common knowledge of G if the sets K a(G)

and K b(G) are nonempty Polish spaces.16 Clearly, K a(G) is a Polish space if and only if

C a
∞(G) is a Polish space.

Definition 3.19. Suppose V admits common knowledge of G. VG is the structure

VG =

〈

Sa ,Sb ,V a
G ,V b

G ,λa
G ,λb

G

〉

such that V a
G
=C a

∞(G), and for each v a ∈V a
G

and event E ⊆ Sb ×V b
G

,

(λa
G (v a))(E ) = (λa(v a))(Θ×E ).

Lemma 3.20. If V admits common knowledge of G, then λa
G : V a

G →L (Sb ×V b
G ), so VG is

an ordinary lexicographic type structure.

We formulate an analog of RCAR with respect to a given game G in type structures

with nature by extending the definitions of assumption and rationality to type structures

with nature as follows.

Definition 3.21. We say that a type v a ∈V a assumes an event E ⊆Θ×Sb ×V b in V, and

write v a ∈ Aa (E ), if λa (v a) = (µ1, . . . ,µn−1) such that(a) µi (E )= 1 for each i ≤ j ;

16Note that common knowledge of G is equivalent to “G and common belief of G”.
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(b) µi (E )= 0 for each i > j ; and() If U is open with U ∩E 6=∅ then µi (U ∩E )> 0 for some i < n.

It is easily seen that a pair (sa , v a) is rational for G in VG if and only if (sa , v a) ∈

Sa ×V a
G

, v a assumes Sb ×V b
G

in VG , and sa maximizes LEU with respect to λa
G

(v a). Our

definition below of G-rationality in V follows this pattern.

Definition 3.22. We say that the triple (θ, sa , v a) is G-rational, and write (θ, sa , v a) ∈

Ra
1 (G), if

(i) (θ, sa , v a) ∈K a (G), i.e., there is common knowledge of G;

(ii) v a assumes K b(G) (common knowledge of G) in V; and

(iii) sa maximizes LEU with respect to λa (v a).

Definition 3.23. We say that the triple (θ, sa , v a) is G-rational and commonly assumes

G-rationality (G-RCAR) if (θ, sa , v a) ∈ Ra
∞(G), where

∀m ∈N, Ra
m+1(G) = Ra

m(G)∩ (Θ×Sa
× Aa(Rb

m(G)))

Ra
∞(G) =

⋂

m>0

Ra
m(G)

WhenV admits common knowledge of G , the following result gives the relationships

between assumption in V and in VG , and between iterated G-rationality in V and iter-

ated rationality for G in VG .

Theorem 3.24. Suppose that V admits common knowledge of G, and let v a ∈V a
G

. Then

(i) For all Borel E ⊆ Sb×V b
G , v a assumes {G}×E in V if and only if v a assumes E in VG ;

(ii) Ra
1 (G) = {G}×Ra

1 (G ,VG );

(iii) ∀m > 0, Ra
m(G) = {G}×Ra

m(G ,VG);

and similarly for b.

We can now state our result that there is a model environment in which, for every game

G , G-RCAR epistemically characterizes the IA set of G . In this environment, which is

a complete lexicographic type structure with nature, G-RCAR may be described as a

game-independent condition in the sense that it can be satisfied for every game G .

Theorem 3.25. For each pair (Sa ,Sb) of finite strategy sets, there is a complete one-to-

one lexicographic type structure with nature, V =
〈

Θ,Sa ,Sb ,V a ,V b ,λa ,λb
〉

, such that

for every game G ∈Θ,

(i) V admits common knowledge of G;

(ii) VG is a complete one-to-one lexicographic type structure; and

(iii) projSa Ra
∞(G)×projSb Rb

∞(G) = Sa
∞(G)×Sb

∞(G).
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4 DISCUSSION

Here, we give the results of this paper further context by considering their relationship

with other results in the literature.

RCAR as an Epistemic Condition As explained in BFK, the RCAR concept corresponds

to a “line of reasoning” where each player considers all possibilities about the beliefs of

the other players. We focus on the question of whether RCAR can provide an epistemic

basis for the IA solution concept. We will compare our results with the literature on the

corresponding question of whether RCBR provides epistemic conditions IU.

Brandenburger and Dekel (1987a) essentially give us the following fact.

Fix a game.

(i) For each type structure, the set of strategies consistent with RCBR is a

subset of the IU strategies.

(ii) There exists a finite type structure such that the set of strategies con-

sistent with RCBR is exactly the IU set.

This says that if we look at RCBR across all type structures, we get the IU set. Taken

together, our Theorems 3.2 and 3.4 imply the following analogous fact.

Fix a game.

(i) For each complete lexicographic type structure, the set of strategies

consistent with RCAR is a subset of the IA strategies.

(ii) There exists a complete lexicographic type structure such that the set

of strategies consistent with RCAR is exactly the IA set.

This says that if we look at RCAR across all complete lexicographic type structures, we

get the IA set.17

It may appear that this is the end of the matter. However, under the epistemic game

theory (EGT) theory approach, the beliefs that the players deem possible—and therefore

the type structure that generates them—are part of the description of the strategic sit-

uation. From the perspective of the players, the type structures other than the one that

describes their strategic situation are simply irrelevant. Such extraneous type structures

may exclude types that the players consider possible or include types that the players

consider impossible.

17BFK showed, if we look at RCAR across all lexicographic type structures, we do not get the IA set.
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While an analyst can find a justification for each IU strategy by looking across all

type structures, the player, whose perception is confined to the boundaries defined by

the type structure that describes her situation, is not assured of being able to the same.

This raises a question: Can the players themselves see all the IU strategies as the

result of the line of reasoning captured by RCBR? This requires a type structure that is

“rich enough” so that each IU strategy is justified by some RCBR state. Indeed, many

type structures fail to satisfy such a richness condition.

Brandenburger and Dekel (1987a) showed that, given a fixed game G , one can tailor

the type structure so that the IU strategies of G are the output of RCBR.18 Since this

construction depends on the game G , it may be the case that this type structure is not

“rich enough” to give us the IU strategies of another game G ′ as the output of RCBR.

However, from the perspective of EGT, a good epistemic condition should involve

a line of reasoning for the players that is game-independent (i.e., the reasoning is the

same for all games). This implies that the type structure should be rich enough so that

RCBR produces the IU set for every game. Tan and Werlang (1988) identified one such

richness condition: In the so-called “universal type structure”, the IU set is character-

ized by RCBR, regardless of the game in question. Friedenberg (2010) showed that any

complete, compact, and continuous type structure also has this property.

This result has no direct analog with respect to RCAR and the IA set. BFK showed

that if a lexicographic type structure is complete and continuous then it contains no

state that satisfies RCAR.19 Therefore, if we fix an arbitrary complete type structure, we

cannot say that RCAR is an epistemic condition for IA.

We resolve this issue by showing that there is a type structure that is rich enough in

the sense that it embeds enough complete type structures so that for each game, RCAR

in at least one of the embedded type structures yields the IA set as output. This structure

can be viewed as a model environment in which players can look across many complete

type structures like the aforementioned imaginary analyst so that “RCAR in complete

type structures” is a game-independent epistemic condition for IA. Our Theorem 3.25

shows the existence of such a structure in which an embedded complete type structure

with RCAR for a game G can be interpreted as describing the set of states with common

knowledge of G . We make this interpretation explicit in our formal treatment, which

18Brandenburger and Dekel (1987a) uses finite partitions, not finite type structures. However, a finite

partition structure is essentially equivalent to some finite type structure.
19In fact, a complete, compact, and continuous lexicographic type structure does not even exist.
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introduces moves of nature that choose the game G .

Continuity The pessimism in BFK with respect to finding an epistemic condition for IA

strategies was due principally to their finding that complete continuous type structures

must have empty RCAR sets. Our Theorem 3.2 revived the research program by showing

that there are complete type structures with nonempty RCAR sets. In these type struc-

tures, the belief maps cannot be continuous. This suggested that continuity, which had

appeared to be a technical condition ex ante, changes the players’ reasoning in some

significant way. By contrast, the much weaker requirement that the belief mappings are

Borel is a technical condition that provides the structure needed to obtain results.

Our Theorem 3.7 gives a striking way to isolate the effects of continuous belief maps

by showing that, given any complete lexicographic type structure there is a correspond-

ing complete and continuous structure that describes exactly the same beliefs—that is,

the two type structures are equally rich in at least one sense.

The difference between a complete structure T and its continuous counterpart U

given by Theorem 3.7 is that of topological distinguishability, which affects the classifi-

cation of beliefs rather than changing them. Thus it turns out that a type structure in the

BFK framework captures more information than just the players’ possible hierarchies of

beliefs.

In Theorem 3.7, U gives a finer topologization of the state space than T does. How

should we interpret this difference? The topology on a state space, say Ω, is essentially

the set of events that open-minded Bayesians must consider in their decision making.

However, we find it more convenient to start with the interpretation that a topology sep-

arates and distinguishes hypotheses about the true state of world. Consider two hy-

potheses, which are respectively represented by events E and E ′. If their closures are

equal, as determined by a topology T on Ω, then it may be said that E and E ′ are indis-

tinguishable in T because E approximates E ′ in an arbitrarily fine way and vice versa.

Whether an event is assumed by a given belief is sensitive to the topology on the state

space. As this topology is successively refined, a given belief will be classified as assum-

ing fewer and fewer events. We might then informally describe the difference between

T and U as follows: The players in the environment described by the latter are more

cautious about assuming things than the players in the environment described by the

former. This relationship gives an intuitively appealing reconciliation of BFK’s negative

result with our positive result. Players described by continuous type structures are just
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too cautious to commonly assume rationality.

Furthermore, it is apparent that a decision maker who assigns a non-zero probability

to each open set is simply giving proper consideration to all distinguishable hypotheses.

Therefore, it is even the case that the rational players described byUmust be more open-

minded than the rational players described by T.

Other Approaches Alternate routes to an epistemic condition for IA may also exist.

The most direct path of attack would be to ask, as we did at the end of Subsection 3.1,

whether there exists a single complete lexicographic type structure—perhaps an analog

of the universal type structure—in which the IA set of every game is the output of RCAR.

A second option would be to weaken the criteria for assumption so that they are

not sensitive to variations in topological distinguishability. However, we do not want

to weaken assumption so much that we no longer get IA as an output of RCAR. Ana-

lyzing the complete lexicographic type structures constructed in this paper may pro-

vide some hints on how to achieve these goals. Roughly speaking, beliefs that manifest

the so-called Best Rationalization Principle that was articulated in Battigalli (1996) also

satisfy common assumption of rationality in our constructions. In other words, if Ann

attributes each admissible choice sb of Bob to a rational decision based on the high-

est order mutual assumption of rationality that is consistent with it, then her beliefs

satisfy common assumption of rationality. Ann, if her beliefs reflect the Best Rational-

ization Principle, can be viewed as assigning ex-ante explanations of all possible actions

of Bob—explanations that preserve as much higher order assumption of rationality as

possible.

Yang (2010) uses lexicographic type structures with a fixed finite bound M on the

length of LPS’s, and introduces a notion of weak assumption in place of assumption.

This gives an alternative epistemic characterization of IA where the players do not con-

sider possibilities involving iterated beliefs longer than M .

A third option is to adopt an approach in which admissibility itself is not justified

on an epistemic basis, thus skirting around the inclusion-exclusion problem. Barelli

and Galanis (2010) gives an alternative epistemic condition for IA that is built on event-

rationality, which, like LEU, is an extension of the standard model of Bayesian rational-

ity. An event-rational decision maker evaluates acts based on her standard probability

beliefs and break ties using her personal list of tie-breakers. In that approach, admissi-

bility is obtained by requiring that her tie-breaker list has sufficient coverage, rather than
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by requiring that she has full-support beliefs (i.e., an open-minded epistemic state).

A PROOFS OF THEOREMS 3.4 AND 3.7

A Borel refinement of a Polish space T is a Polish space U such that U has the same

points as T , and every open set in T is open in U . To prove Theorem 3.7, we need the

following results about Borel refinements.

Proposition A.1 (15.4 in Kechris (1995)). If T is a Polish space and U is a Borel refinement

of T , then T and U have the same Borel sets.

Proposition A.2 (13.11 in Kechris (1995)). Suppose T is a Polish space, Y is a second

countable space, and f : T → Y is a Borel function. Then there is a Borel refinement U of

T such that f : U → Y is continuous.20

Proposition A.3 (13.3 in Kechris (1995)). Let T be a Polish space and for each n ∈ N,

let Tn = (T,Tn) be a Borel refinement of T . Let T∞ = (T,T∞) where T∞ is the topology

generated by
⋃

n∈NTn . Then T∞ is a Borel refiement of T . We say that T∞ is the coarsest

Borel refinement of the family {Tn : n ∈N}.

Proposition A.4 (Portmanteau theorem, 17.20 in Kechris (1995)). Let X be a Polish space,

let M (X ) be the space of Borel probability measures on X , and let O be an open basis for

X . A sequence µk weakly converges to µ in M (X ) if and only if lim infk µk(O) ≥ µ(O) for

every O ∈O .

This result is stated for all open sets in Kechris (1995), but the version stated here

with an open basis follows from the proof.

Proof of Theorem 3.7. Let T a
0 = T a and T b

0 = T b . Using Proposition A.2 countably many

times, we obtain sequences of Polish spaces T a
n ,T b

n such that for each n, T a
n+1 is a Borel

refinement of T a
n (and hence of T a), and λa is continuous from T a

n+1 to L(Sb ×T b
n ). Let

U a be the coarsest Borel refinement of {Tn : n ∈N}, and define U b analogously. Since

each open set in T a
n+1 is open in U a , λa is continuous from U a to L(Sb ×T b

n ) for each n.

Suppose that ua
k

converges to ua in U a . Then for each n, λa (ua
k

) converges to λa(ua)

in L(Sb ×T b
n ). For some ℓ, we have λa(ua) ∈ Nℓ(Sb ×U b). Then λa(ua

k
) ∈ Nℓ(Sb ×U b)

for all but finitely many k, so we may assume this holds for all k. Let µk,m be the m-th

20Note that each subspace of a Polish space is second countable.
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coordinate of λa (ua
k

), and let µm be the m-th coordinate of λa(ua). Hence for each n and

each m ≤ ℓ, µk,m weakly converges to µm in M (Sb ×T b
n ). By the Portmanteau theorem,

lim infk µm,k (O) ≥ µm(O) for each m,n and each open set O in Sb ×T b
n . Since the open

sets in Sb ×T b
n , n ∈N form an open basis for Sb ×U b , it follows from the other direction

of the Portmanteau theorem A.4 that for each m ≤ ℓ, µk,m weakly converges to µm in

M (Sb ×U b). Therefore, λa(ua
k

) converges to λa (ua) in L(Sb ×U b). This shows that λa is

continuous from U a to L(Sb ×U b).

To prove Theorem 3.4, we need two results from BFK about assumption.

Proposition A.5 (Property 6.2 in BFK). Let X be a Polish space, E ,F be Borel subsets of X ,

and σ= (µ0, . . . ,µm−1) a full-support LPS on X . If σ assumes both E and F the same level,

then E = F .

Proposition A.6 (Property 6.3 in BFK). Let X be a Polish space, k ∈ N, and σ ∈ L
+(X ).

Suppose En ,n ∈N are Borel sets in X , and En is assumed under σ at level k for each n ∈N.

Then
⋂

n∈N En is assumed under σ at level k.21

Proof of Theorem 3.4. By the premise, ∃(sa , t a , sb , t b) ∈ Ra
∞×Rb

∞. Furthermore, the LPS

σ=λa(t a) has full-support and assumes each set in the infinite sequence (Rb
1 ,Rb

2 , . . . ).

It follows that there exists a smallest k such that σ assumes Rb
m at level k for infinitely

many m, and a smallest M such that σ assumes Rb
M at level k. By Propositions A.6

and A.5, σ assumes Rb
∞ at level k and Rb

∞ = Rb
M

.

Since
{

sb
}

×T b is open for all sb ∈ Sb , Rb
∞ = Rb

M
implies that projSb Rb

∞ = projSb Rb
M

=

Sb
M . Therefore Sb

M = Sb
∞ since Rb

∞ ⊆ Rb
m for all m ≥ M . By analogous arguments, projSa Ra

∞ =

Sa
∞.

B PROOFS OF THEOREMS 3.8 AND 3.9

For convenience we let Sa
0 ≡ Sa and Ra

0 ≡ Sa ×T a , and similarly for b.

Lemma B.1. For each m > 0,

P a
m =

{

νm−1 . . .ν0 : ∀k < m, νk
∈N(Sb)∧Suppνk

= Sb
k

}

.

Proof of Lemma B.1. The proof is by induction. The base case (m = 1) holds trivially.

Assume the result for m. Then by definition, the following are equivalent to µ ∈P a
m+1.

21The proof in BFK establishes the result as stated here, but the statement in BFK did not mention the

level.
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⊲ µ= νν′ for some ν,ν′ ∈N(Sb) such that Suppν= Sb
m and ν′ ∈ P a

m ;

⊲ µ = νmνm−1 . . . . . .ν0 for some ν0, . . . ,νm−1,νm ∈ N(Sb) such that Suppνk = Sb
k

for

all k ≤ m.

This completes the induction.

Lemma B.2. For each m > 0 we have P a
m+1 ⊆ P a

m .

Proof. Suppose µ ∈ P a
m+1. By Lemma B.1, µ can be written as νmνm−1 . . .ν0 where νk ∈

N(Sb) and Suppνk = Sb
k

for all k ≤ m. Then Suppνmνm−1 = Sb
m−1, and by Lemma B.1,

we have µ ∈P a
m .

We will need the following result, which is Proposition 1 in Blume, Brandenburger,

and Dekel (1991b).

Proposition B.3. For each ν ∈ N(Sb) there is a probability measure ρ ∈M (Sb) such that

Suppρ = Suppν and (ρ) ∼⋆ ν.

Lemma B.4. For each m ∈N and σ ∈ P a
m+1, there exists ν= (ν0, . . . ,νm) ∈ Nm+1(Sb) such

that ν∼⋆ σ and Suppνm−k = Sb
k

for each k ≤ m (so ν ∈ P a
m+1 by Lemma B.1).

Proof of Lemma B.4. We argue by induction on m. The result for m = 0 follows from

Proposition B.3. Suppose the result holds for m, and let σ ∈ P a
m+2. Then σ=σ′σ′′ where

σ′ ∈ N(Sb), Suppσ′ = Sb
m+1, and σ′′ ∈ P a

m+1. By inductive hypothesis, there exists ν =

(ν1, . . . ,νm+1) ∈ Nm+1(Sb) such that ν ∼⋆ σ′′ and Suppνm+1−k = Sb
k

for each k ≤ m. By

Proposition B.3 there existsν0 ∈M (Sb) such that Suppν0 = Suppσ′ = Sb
m+1 andν0 ∼

⋆ σ′.

Then

ν0ν= (ν0,ν1, . . . ,νm+1) ∼⋆ σ,

so the result holds for m +1.

Lemma B.5. If ν,ν′ ∈N(Sb) then O(νν′) ⊆O(ν).

Proof of Lemma B.5. It is easily seen that if r a ≻ν sa then r a ≻νν′ sa . If sa ∈ O(νν′) then

there is no r a such that r a ≻νν′ sa , so there is no r a such that r a ≻ν sa , and thus sa ∈

O(ν).

Proof of Theorem 3.8. The proof is by induction on m. The base case: Since P a
1 =N

+(Sb)

and Sa
1 is the set of Ann’s admissible strategies, we have

⋃

X
a
1 ≡

⋃{

O(ν) : ν ∈ P a
1

}

= Sa
1 .
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Now fix an m > 1 and assume the induction hypothesis that Sa
m =

⋃
X

a
m . We will show

that Sa
m+1 =

⋃
X

a
m+1 in two steps.

Step 1: We want to show that Sa
m+1 ⊇

⋃
X

a
m+1. Equivalently, we want to show that

O(µ) ⊆ Sa
m+1 for any µ ∈ P a

m+1. By Lemma B.4 there exists ν = (ν0, . . . ,νm) ∈ Nm+1(Sb)

such that ν∼⋆ µ and Suppνm−k = Sb
k

for each k ≤ m. Then O(ν) =O(µ). By Lemma B.5,

O(µ) =O(ν) ⊆O(ν0). By Lemma B.2, µ ∈ P a
m , so O(µ) ∈X

a
m . By the induction hypothesis

Sa
m =

⋃
X

a
m , we then have O(µ) ⊆ Sa

m . We note that Suppν0 = Sb
m , so by the definition of

Sa
m+1, O(ν0)∩Sa

m ⊆ Sa
m+1. But O(µ) ⊆O(ν0)∩Sa

m , so O(µ) ⊆ Sa
m+1.

Step 2: We want to show that Sa
m+1 ⊆

⋃
X

a
m+1. Equivalently, we want to show that, for

each sa ∈ Sa
m+1, there exists a µ ∈ P a

m+1 such that sa ∈O(µ). If sa ∈ Sa
m+1, then for each k ≤

m we have sa ∈ Sa
k+1

, so there exists νk ∈ N1(Sb) such that Suppνk = Sb
k

and sa ∈O(νk ).

By Lemma B.5, sa ∈O(µ) where µ= νmνm−1 . . .ν0. By Lemma B.1, µ ∈P a
m+1.

For the proof of Theorem 3.9, we will need the following two results. The result below

is an immediate consequence of Lemma E.2 in BFK.

Proposition B.6. For each LPS σ∈L
+(Sb ×T b) there are continuum-many σ̂ ∈L

+(Sb ×

T b) such that

(i) margSb σ= margSb σ̂;

(ii) For each Borel set E ⊆ Sb×T b and each k ∈N, E is assumed under σ at level k if and

only if E is assumed under σ̂ at level k.

Proposition B.7 (Lemma E.3 in BFK). In a complete lexicographic type structure for G,

for each m ∈N we have projSb Rb
m = projSb (Rb

m \ Rb
m+1).

Proof of Theorem 3.9. Proof of (i). We want to show that (sa , t a) ∈ Ra
m+1 =⇒ ∃ν ∈ P a

m+1

such that margSb λa(t a ) ∼⋆ ν. Let σ= (µ0, . . . ,µn) =λa(t a). For each k ≤ m, let [k] denote

the level at which σ assumes Rb
k

. Then n = [0] ≥ ·· · ≥ [m]. For the proof of (i) only, let

νk = margSb (µ0, . . . ,µ[k]) for each k ≤ m. Then ν0 = margSb σ. Since σ assumes Rb
k

at

level [k], we see from Proposition 3.1 that Suppνk = projSb Rb
k
= Sb

k
. Note that for each

k ≤ m, νk+1 is an initial segment of νk . It is readily verified that if ν is an initial segment

of ν′ then νν′ ∼⋆ ν′. It follows by induction that νmνm−1 . . .νk ∼⋆ νk for each k < m, and

hence νmνm−1 . . .ν0 ∼⋆ ν0 = margSb σ. By Lemma B.1, νmνm−1 . . .ν0 ∈ P a
m+1.

Proof of (ii). We want to show that ν ∈P a
m+1 =⇒ ∃(sa , t a) ∈Ra

m+1 s.t. margSb λa (t a) =

ν. By Lemma B.1, we can write ν as νmνm−1 . . .ν0, where Suppνk = Sb
k

for all k ≤ m.

We first consider νm . We can write νm = (νm
0 , . . . ,νm

n ) where each νm
i

is a probabil-

ity measure on Sb . By Proposition 3.1, Suppνm = Sb
m = projSb Rb

m . By Proposition B.6,
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for each sb ∈ Sb
m , the set (

{

sb
}

×T b)∩Rb
m is uncountable. Since Sb is finite and T b is

separable, Rb
m has a countable dense subset. We may therefore pick sets Y0, . . . ,Yn such

that

⊲ The sets Yi are countable and pairwise disjoint;

⊲ The union Y0 ∪·· ·∪Yn is a dense subset of Rb
m ; and

⊲ For each i ≤ n, projSb Y m
i

= Suppνm
i

.

For each sb ∈ Sb and i ≤ n, we can assign positive measures to the points of (
{

sb
}

×

T b)∩Yi that add up to νm
i

(
{

sb
}

). This gives probability measures µm
i
∈M (Sb ×T b) such

that Suppµm
i

⊇ Yi , µm
i

(Yi ) = 1, and margSb µm
i

= νm
i

. Then the measures µm
i

, i ≤ n are

mutually singular, so the (n +1)-tuple µm ≡ (µm
0 , . . . ,µm

n ) is an LPS such that Suppµm ⊇

Rb
m , µm(Rb

m) =~1, and margSb µm = νm .

We now consider νk for k < m. By Proposition B.7, Suppνk = Sb
k
= projSb (Rb

k
\ Rb

k+1
).

By the above construction with Rb
k

\ Rb
k+1

in place of Rb
m , we obtain an LPS µk such that

Suppµk ⊇ Rb
k

\ Rb
k+1

, µk (Rb
k

\ Rb
k+1

) =~1, and margSb µk = νk .

Now, let µ be the concatenation µ≡µmµm−1 . . .µ0. Then margSb µ= ν, and µ is a full-

support LPS that assumes Rb
k

for all k ≤ m. By completeness, there exists a type t a ∈ T a

such thatλa(t a) =µ. Since µ has full support, there exists an sa ∈ Sa such that (sa , t a ) is a

rational pair. Then (sa , t a ) satisfies rationality and m-th order assumption of rationality,

so (sa , t a) ∈ Ra
m+1.

For each σ ∈ L(Sb ×T b), let O(σ) be the set of all strategies sa ∈ Sa that are optimal

under margSb σ

Proof of Corollary 3.10. Note that for each σ ∈L(Sb ×T b), we have O(σ) =O(margSb σ).

Then by Theorem 3.9,

X
a
m =

{

O(ν) : ν ∈P a
m

}

=
{

O(λa(t a )) : (sa , t a) ∈Ra
m

}

.

Proof of Corollary 3.11. Proof of (i). By Lemma C.4 in BFK, each of the sets Ra
m is Borel.

Since Sa is finite, each of the sets Γ
a(X a ,Ra

m) is Borel. Let U a
m is the set of Ann’s full-

support types that assume k-th order rationality of Bob for all k < m, i.e.,

U a
m =

{

t a
∈T a : (∃sa)(sa , t a) ∈Ra

m

}

.

Then for each nonempty X a ⊆ Sa ,

Γ
a(X a ,Ra

m) =
{

t ∈U a
m : O(λa (t a)) = X a

}

.

Since Ra
m+1 ⊆ Ra

m , U a
m+1 ⊆U a

m , and therefore Γ
a(X a ,Ra

m+1) ⊆ Γ
a(X a ,Ra

m). This proves (i).
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Proof of (ii). By Corollary 3.10, the following equivalences hold.

X a
∈X

a
m ⇐⇒ (∃(sa , t a ) ∈Ra

m)
[

X a
=O(λa (t a))

]

⇐⇒ (∃t a
∈U a

m)
[

X a
=O(λa (t a))

]

⇐⇒ (∃t a)
[

t a
∈Γ

a(X a ,Ra
m)

]

Proof of (iii). Since T is complete, there exists t a ∈ T a such that Ann is not open-

minded, so there is no sa such that (sa , t a) ∈ Ra
1 and hence t a ∈ Γ(∅,Ra

1 ). Γ
a(∅,Ra

m) is

the complement of the union of the sets Γ
a(X a ,Ra

m) with X a nonempty. Thus by (i),
{

Γ
a(∅,Ra

m) : m > 0
}

is an increasing sequence of Borel sets.

C POLISH SPACES AND ASSUMPTION

In this section we establish some useful properties of Polish spaces and assumption. A

topological space (X ,T ) is called Polish if it is separable and completely metrizable. It

is well known that all uncountable subsets of Polish spaces have cardinality equal to 2ℵ0

(i.e., the cardinality of the continuum). This is a consequence of Proposition C.1 below.

The Cantor space C is the set {0,1}N endowed with the product topology. It is a Polish

space of cardinality 2ℵ0 . A Cantor set C in a topological space X is a homeomorphic copy

of C in X —that is, (C ,T |C ) is homeomorphic to C , where T |C =
{

U ∩C : U ∈T
}

is the

subspace topology on C . A subset of a topological space is perfect if it is closed and has

no isolated points.

Proposition C.1 (The Perfect Set Theorem for Borel Sets, 13.6 in Kechris, 1995). Let X be

a Polish space and A ⊆ X be Borel. Then either A is countable, or else A contains a Cantor

set and has cardinality 2ℵ0 .

Proposition C.2 (Cantor-Bendixson, 6.4 in Kechris, 1995). Let X be a Polish space. Then

X has a unique perfect subset P such that X \P is countable and open. Furthermore, every

open neighborhood of every x ∈P is uncountable.

Lemma C.3. Let X be an uncountable Polish space and n ∈ N. Then there exist disjoint

open sets U1, . . . ,Un in X such that

(i) Ui is uncountable for all i ; and

(ii) X \
⊎

{U1, . . . ,Un} is uncountable.

Proof of Lemma C.3. By Proposition C.2, X has a perfect subset P such that X \ P is

countable and open. We can choose n + 1 distinct points x1, . . . , xn+1 ∈ P . Since X is

metrizable, it is normal—that is, any two disjoint closed sets in X have disjoint open
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neighborhoods. It follows that there exist disjoint open sets U1, . . . ,Un+1 such that x j ∈

U j for all j . By Proposition C.2, U1, . . . ,Un+1 are uncountable. Finally, X \
⊎

{U1, . . . ,Un}

is uncountable since it contains Un+1, which is itself uncountable.

Lemma C.4. C =
⊎

n∈N Kn , where (K0,K1, . . . ) is a sequence of disjoint uncountable com-

pact sets.

Proof of Lemma C.4. Define K0,K1, . . . as follows.

K0 = {0}N∪ {c ∈C : c0 = 1};

∀n > 0, Kn = {c ∈C : (∀k < n)ck = 0∧cn = 1} .

For each n > 0, Kn is a Cantor set, and therefore it is uncountable and compact. K0 is the

union of a Cantor set and a single point, therefore it is also uncountable and compact.

By construction, C =
⊎

n∈N Kn , and (K0,K1, . . . ) is a sequence of disjoint sets.

Given a Polish space (X ,O (X )), a Borel subspace of X is a topological space (A,O (A))

where A is a nonempty Borel subset of X endowed with the subspace topology O (A) =

{U ∩ A : U ∈O (X )}.

Proposition C.5 (Borel Isomorphism Theorem, Theorem 15.6 in (Kechris, 1995)). Let

A,B be Borel subspaces of Polish spaces. If card(A) = card(B), then there is a one-to-one

Borel mapping from A onto B.22

Lemma C.6. Let X ,Y be Polish spaces, and let {Xn : n ∈N} and {Yn : n ∈N} be be countable

partitions of X ,Y into Borel sets such that card(Xn) = card(Yn) for each n ∈N. Then there

is a one-to-one Borel mapping from X onto Y that maps Xn onto Yn for each n ∈N.

Proof of Lemma C.6. Each of the sets Xn ,Yn with its subspace topology is a Borel sub-

space of a Polish space. By Proposition C.5, for each n ∈ N there is a one-to-one Borel

mapping λn from Xn onto Yn . Then the union λ =
⋃

n∈Nλn is a one-to-one Borel map-

ping from X onto Y that sends Xn onto Yn for each n ∈N, as required.

We will need the following facts from BFK about assumption.

Proposition C.7 (Lemma C.3 in BFK). For each Polish space X and Borel set E in X , the

set of σ ∈L
+(X ) such that E is assumed under σ is Borel.

22In Kechris, 1995, this result is stated in terms of standard Borel spaces, which are the measure spaces

associated with Borel subspaces of Polish spaces.
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Proposition C.8 (Lemma B.1 in BFK23). Let X be a Polish space, E be a Borel subset of X ,

σ = (µ0, . . . ,µn−1) be a full-support LPS on X , and k < n. Then σ assumes E at level k if

and only if the following conditions are met.

(i) µi (E )= 1 for each i ≤ k;

(ii) µi (E )= 0 for each i > k; and

(iii) E ⊆
⋃

i≤k Suppµi .

In a topological space, a set D is said to be dense in a set E if D ⊆ E and D = E . Note

that if D1 is dense in E1 and D2 is dense in E2, then D1∪D2 is dense in E1∪E2. Also, if D

is dense in E and D ⊆ F ⊆ E , then D is dense in F and F is dense in E .

Lemma C.9. Let X be a Polish space, and E an uncountable Borel set in X . Then there

exists a Cantor set C ⊆ E such that E \C is uncountable and E \C is dense in E .

Proof of Lemma C.9. The Cantor space C contains the Cantor set {(0,0), (1,1)}N and the

complement of this set is uncountable and dense in C . By Proposition C.1, E contains

a Cantor set D. It follows that D contains a Cantor set C such that D \C is uncountable

and dense in D. But D ⊆ E , so C ⊆ E , and E \C is uncountable and dense in E .

Lemma C.10. Let X be a Polish space, and U0 an uncountable open set in X . Then there

exists a decreasing sequence of open sets (U0,U1,U2, . . . ) such that

(i) For all n ∈N, Un \Un+1 is uncountable;

(ii) U∞ ≡
⋂

n∈NUn is an uncountable open set; and

(iii) U∞ is dense in U0.

Proof of Lemma C.10. By Lemma C.9, there exists a Cantor set C ⊆ U0 such that U0 \ C

is uncountable and dense in U0. By Lemma C.4, there exists a sequence (K0,K1, . . . ) of

disjoint uncountable compact sets such that
⊎

n∈N Kn = C . For each n > 0, define Un ≡

U0 \
⊎

j<n K j . Then Un is open, and Un \Un+1 = Kn , which is uncountable. Moreover,

U∞ =U0 \C , so U∞ is uncountable, open, and dense in U0.

Lemma C.11. Let X ,Y be Polish spaces, X finite, and let Z0 = X ×Y . Let ν= (ν0, . . . ,νm) ∈

Nm+1(X ). If (Z1, Z2, . . . , Zm+1) is a decreasing sequence of nonempty Borel subsets of Z0

such that

∀k ≤ m, projX Zk = projX (Zk \ Zk+1) and Suppνm−k = projX Zk

then there exists µ= (µ0, . . . ,µm) ∈L
+
m+1(Z ) such that

23The proof in BFK establishes this fact, but statement of Lemma B.1 was garbled in BFK.
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(i) margX µ= ν;

(ii) ∀k ≤ m, µ assumes Zk at level m −k;

(iii) µ does not assume Zm+1; and

(iv) ∀x ∈projX Zm+1, µ0(Zm+1 ∩ ({x}×Y )) > 0.

Proof of Lemma C.11. Using the fact that Polish spaces are separable, there is a count-

able subset U of Z0 such that U ∩Zm+1 is dense in Zm+1, and U ∩ (Zk \ Zk+1) is dense in

Zk \ Zk+1 for each k ≤ m. It follows that U ∩Zk is dense in Zk for each k ≤ m.

Choose any ρ ∈ M (Z0) such that ρ(U ) = 1 and ρ({u}) > 0 for each u ∈U . Since U is

dense in Z0, ρ ∈ M
+(Z0). For all k ∈ N, let Xk ≡ projX Zk . For all x ∈ X and k ∈ N, let

Zk (x) = Zk ∩ ({x}×Y ). This set is clearly Borel. Since X is finite, it readily follows that

∀x ∈ Xk ,k ≥ 0, Zk (x)∩U 6=∅ and dense in Zk (x);

∀x ∈ Xk ,k ≤ m, (Zk (x) \ Zk+1(x))∩U 6=∅ and dense in Zk (x) \ Zk+1(x).

Note that, for every Borel set V of Z0 such that V ∩U is nonempty, the conditional mea-

sure ρ(·|V ) is well-defined. We define µ0, . . . ,µm as follows.

∀k < m, µm−k (E )≡
∑

x∈Xk

νm−k (x)ρ(E |Zk (x) \ Zk+1(x)); and

µ0(E )≡
∑

x∈Xm

ν0(x)ρ(E |Zm (x)).

It is clear from these definitions that
∑m

k=0
µk and ρ are mutually absolutely con-

tinuous. Therefore µ = (µ0, . . . ,µm) is a full-support LPS on Z0. It is also clear that

µ0(Zm+1(x)) > 0 for each x ∈ Xm+1, and that margX µk = νk for all k ≤ m.

For each k ≤ m, Zk ⊆ Supp(µ0, . . . ,µm−l ), because Zk ∩S is dense in Zk . Using Propo-

sition C.8, we can easily verify that for all k ≤ m, µ assumes Zk at level m −k. Zm \ Zm+1

has a nonempty intersection with U , so µ0 gives the set positive probability. However,

since µ0(Zm) = 1, it follows that µ0(Zm+1) < 1. Proposition C.8 makes it clear that µ does

not assume Zk when k > m.

Lemma C.12. Let X ,Y be Polish spaces with X be finite, and let Z0 = X ×Y . Let ν =

(ν0, . . . ,νm) ∈ Nm+1(X ), and let (Z1, Z2, . . . ) a strictly decreasing sequence of nonempty

Borel subsets of Z0, such that

∀k ≥ 0, projX Zk = projX (Zk \ Zk+1);

∀k ≤ m, Suppνm−k = projX Zk ;

Z∞ ≡
⋂

{Zk : k ∈N} is dense in Zm .
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Then there exists µ= (µ0, . . . ,µm) ∈L
+
m+1(Z ) such that

(i) For all k ≤ m, µ assumes Zk at level m −k;

(ii) For all k > m, µ assumes Zk at level 0;

(iii) margX µ= ν.

Proof of Lemma C.12. For each k ∈ N∪ {∞}, let Xk ≡ projX Zk , and for each x ∈ X , let

Zk (x) = Zk ∩ ({x}×Y ). Since Z∞ is dense in Zm and X is finite, we have X∞ = Xm , and

for each x ∈ Xm , Z∞(x) is dense in Zm(x). By Lemma C.11, there exists φ= (φ0, . . . ,φm) ∈

L
+
m+1(Z ) such that

⊲ margX φ= ν;

⊲ for each k ≤ m, φ assumes Zk at level m −k;

⊲ for each x ∈ Xm , µ0(Z∞(x)) > 0.

Then the conditional probability φ0(·|Z∞(x)) is well-defined for each x ∈ Xm . For each

0 < k ≤ m, let µk =φk . Define µ0 in the following way.

µ0(E ) ≡
∑

x∈Xm

ν0(x)φ0(E |Z∞(x)).

By construction, Suppµ0 = Suppφ0(·|Z∞) = Z∞ = Zm = Suppφ0. Therefore, it is read-

ily apparent that Supp(µ0, . . . ,µm) = Supp(φ0, . . . ,φm) = Z0. We have Suppν0 = Xm , so

µ0(Z∞) =µ0(Zm) = ν0(Xm) = 1.

By Proposition C.8, we can easily verify that µ assumes Zk at level 0 for all k ≥ m.

D PROOFS OF THEOREMS 3.2, 3.13, AND 3.14

Theorem 3.13 says that a necessary and sufficient condition for a family of sets to be an

RCAR tower is that the sets have the right “shape”, that the intersections are topologically

indistinguishable from the sets at some finite level, and that each “part” is uncountable.

The ingredients for the proof are given in the preceding two subsections. To prove ne-

cessity, we must show for that in every complete type structure for G , the RmAR sets

must satisfy conditions (i)–(vi) of Theorem 3.13. To prove sufficiency, one must start

with a given family of sets that satisfy conditions (i)–(vi), and construct a pair of Borel

mappings λa ,λb such that the resulting type structure has the given sets as its RmAR

sets. Our construction will produce mappings that are one-to-one, so we will get a proof

of Theorem 3.14 as well. The idea is to construct these mappings by gluing together

countably many Borel mappings from pieces of T a to corresponding sets of beliefs about

Sb ×T b .
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As we have done throughout the paper, we fix the underlying game G . We also fix T a

and T b and assume that they are uncountable Polish spaces.

Lemma D.1 (Necessity half of Theorem 3.13). Let T a ,T b be uncountable Polish spaces.

Every RCAR tower for (G ,T a ,T b) satisfies (i)–(vi) of Theorem 3.13.

Proof of Lemma D.1. Let
{

Qa
m : m > 0

}

,
{

Qb
m : m > 0

}

form an RCAR tower for (G ,T a ,T b).

Therefore, there is a complete type structureT for G with RCAR such that for each m > 0,

Qa
m = Ra

m and Qb
m = Rb

m . Conditions (i) and (ii) follow from Corollary 3.11.

Proof of (iii). SinceT has RCAR, there is a state (sa , t a) ∈ Ra
∞. Then σ≡λa (t a) has full

support, and Rb
m is assumed under σ for each m > 0. Then by the same argument that

was used in the proof of Theorem 3.4, we see that Rb
∞ = Rb

M
for some M > 0, as required.

Proof of (iv.) Since T b is uncountable, there are uncountably many LPS’s on Sb ×T b

that do not have full support. T is complete, so there are uncountably many t a ∈ T a

such that λa (t a) do not have full support, and hence t a ∈Γ(∅,Qa
1 ).

Proof of (v). Let X a ∈ X
a
m . This means that there exists ν ∈ P a

m such that O(ν) = X a .

By Lemma B.4 we may take ν to be of the form ν = (ν0, . . . ,νm−1) where each νk is a

measure on Sb . By Lemma B.1, for each k < m we have Suppνm−1−k = Sb
k

. By Propo-

sition 3.1, each of the sets Rb
k

is nonempty, and projSb Rb
k
= Sb

k
. By Lemma C.11, there

exists µ ∈L
+(Sb ×T b) such that

⊲ margSb µ= ν;

⊲ for all k < m, µ assumes Rb
k

at level m −1−k;

⊲ µ does not assume Rb
m .

Because T is complete, there exists t a ∈ T a such that λa(t a ) = µ. It follows that t a ∈

(Γa(X a ,Ra
m)\Γa(X a ,Ra

m+1), so this set is nonempty. Finally, by Proposition B.6, (Γa(X a ,Ra
m)\

Γ
a(X a ,Ra

m+1) is uncountable.

Proof of (vi). Let X a ∈X
a
∞, and let M be large enough so that X a ∈X

a
M

and (iii) holds

for M . As in the preceding paragraph, there exists ν ∈ P a
M of the form ν = (ν0, . . . ,νM−1)

such that O(ν) = X a . By Lemma C.12, there exists µ ∈L
+(Sb ×T b) such that

⊲ margSb µ= ν;

⊲ for all k < M , µ assumes Rb
k

at level M −1−k;

⊲ for all k ≥ M , µ assumes Rb
k

at level 0.

By Proposition A.6, µ assumes Rb
∞ at level 0. As before, because T is complete, there ex-

ists t a ∈ T a such that λa (t a) =µ. It follows that t a ∈ Γ
a(X a ,Ra

∞), so this set is nonempty,

and by Proposition B.6, Γa(X a ,Ra
∞) is uncountable.

35



Lemma D.2 (Sufficiency half of Theorems 3.13 and 3.14). Let G be a finite game and

T a ,T b be uncountable Polish spaces. For every family of sets

Q = ({Qa
m : m > 0}, {Qb

m : m > 0})

that satisfies (i)–(vi) of Theorem 3.13, there is a complete one-to-one lexicographic type

structure T for G such that Ra
m = Qa

m and Rb
m = Qb

m for all m > 0, and the RCAR set is

nonempty.

Proof of Lemma D.2. We must find a pair of one-to-one Borel mappingsλa ,λb such that

T is a complete one-to-one type structure for G , and Ra
m = Qa

m ,Rb
m = Qb

m for all m > 0.

(vi) will guarantee that T has an RCAR state.

By (i)–(vi), the following family of sets is a partition of T a into countably many un-

countable Borel sets.(a) Γ
a(∅,Qa

1 );(b) ∀m > 0, ∀X a ∈X
a
m+1, Γ

a(X a ,Qa
m) \Γa(X a ,Qa

m+1);() ∀m > 0, ∀X a ∈X
a
m \Xa

m+1, Γ
a(X a ,Qa

m);(d) ∀X a ∈X
a
∞, Γ

a(X a ,Qa
∞).

We now introduce notation for the sets of beliefs that correspond to the sets of types

Γ
a(X a ,Qa

m). For each m > 0 and each X a ∈X
a
m , let Λa

m(X a ,Q) be the set of all µ such that

⊲ µ ∈L
+(Sb ×T b);

⊲ O(µ) = X a ;

⊲ For all k < m, Qb
k

is assumed under µ.

We also let Λa
1 (∅,Q) =L(Sb ×T b) \L

+(Sb ×T b), and let

∀X a
∈X

a
∞, Λ

a
∞(X a ,Q) =

⋂

m>0

Λ
a
m(X a ,Q).

It follows from Proposition C.7 that for each m > 0 and X a ∈ X
a
m , the set Λa

m(X a ,Q) is

Borel. Therefore, the following family of sets is a countable partition of L(Sb ×T b) into

Borel sets.(a') Λ
a
1 (∅,Q);(b') ∀m > 0, ∀X a ∈X

a
m+1, Λ

a
m(X a ,Q) \Λa

m+1(X a ,Q);(') ∀m > 0, ∀X a ∈X
a
m \Xa

m+1, Λ
a
m(X a ,Q);(d') ∀X a ∈X

a
∞, Λ

a
∞(X a ,Q).

We show that each of the sets listed in (a’)–(d’) is uncountable. The case (c’) is listed

separately because in that case Λ
a
m+1(X a ,Q) is empty. By Proposition B.6, it is enough to

show that each of these sets is nonempty. It will be convenient to put Qa
0 = Sa ×T a ,Qb

0 =
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Sb ×T b .

(a’) Since T b is infinite, there are probability measures on Sb ×T b which do not have

full support, so the set Λa
1 (∅,Q) is nonempty.

(b’) Let m > 0 and X a ∈ X
a
m+1. By (i) and (ii), Qb

1 , . . . ,Qb
m is a strictly decreasing se-

quence of nonempty Borel subsets of Sb×T b . By (v), we have for each k < m, projSb Qb
k
=

projSb (Qb
k

\Qb
k+1

).

By Lemma C.11 there exists µ ∈ L
+(Sb × T b) such that O(µ) = X a , and Qb

k
is as-

sumed under µ for all k < m, but Qb
m is not assumed under µ. This shows that the set

Λ
a
m(X a ,Q) \Λa

m+1(X a ,Q) is nonempty.

(c’) Let m > 0 and X a ∈X
a
m \Xa

m+1. By the same argument as above, the setΛa
m(X a ,Q)

is nonempty.

(d’) Let X a ∈X
a
∞. By (i) and (ii), Qb

1 ,Qb
2 , . . . is a strictly decreasing sequence of nonempty

Borel subsets of Sb×T b ; and by (v), we have for each k ∈N, projSb Qb
k
= projSb (Qb

k
\Qb

k+1
).

By (iii), there exists M > 0 such that Qb
∞ is dense in Qb

M
. Then by Lemma C.12, there ex-

ists µ ∈ L
+(Sb × T b) such that O(µ) = X a , and Qb

k
is assumed under µ for all k ∈ N.

Therefore, the set Λa
∞(X a ,Q) is nonempty.

We can now apply Lemma C.6 to obtain a bijective Borel map λa from T a onto

L(Sb ×T b) such that λa maps(a�) Γ
a(∅,Qa

1 ) onto Λ
a
1 (∅,Q);(b�) ∀m > 0, ∀X a ∈X
a
m+1, Γ

a(X a ,Qa
m)\Γa(X a ,Qa

m+1) onto Λ
a
m(X a ,Q)\Λa

m+1(X a ,Q);(�) ∀m > 0, ∀X a ∈X
a
m \Xa

m+1, Γ
a(X a ,Qa

m) onto Λ
a
m(X a ,Q);(d�) ∀X a ∈X

a
∞, Γ

a(X a ,Qa
∞) onto Λ

a
∞(X a ,Q).

A mapping λb : T b →L(Sa ×T a ) can be constructed similarly. The resulting type struc-

ture T is a complete one-to-one type structure for G . Using the definition of Ra
m , it fol-

lows by induction that Qa
m = Ra

m for all m > 0. Therefore, Q is an RCAR tower.

Theorems 3.13 and 3.14 both follow immediately from Lemmas D.1 and D.2.

Proof of Lemma 3.15. By Lemma C.3, we may choose a finite family of disjoint uncount-

able open sets

Γ1(X a ) ⊆ T a , X a
∈X

a
1

such that the complement of their union is also uncountable.

Let M be large enough so thatXa
M =X

a
∞. Consider an X a ∈X

a
1 \Xa

M . There is a unique

m < M such that X a ∈ X
a
m \Xa

m+1. By Lemma C.10, there is a finite decreasing chain of
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uncountable open sets

Γ1(X a ) ⊇ Γ2(X a) ⊇ . . .Γm(X a)

such that the difference Γk(X a ) \Γk+1(X a) is uncountable whenever 0 < k < m. Now,

consider an X a ∈ X
a
M

. By Lemma C.10 again, there is an infinite decreasing chain of

uncountable open sets Γ1(X a ) ⊇ Γ2(X a ) ⊇ . . . such that

⊲ Γk (X a) \Γk+1(X a ) is uncountable whenever k > 0;

⊲ Γ∞(X a ) ≡
⋂

k>0 Γk(X a ) is an uncountable open set;

⊲ Γ∞(X a ) is dense in ΓM (X a).

For each m > 0, define Qa
m =

⋃

X a∈Xa
m

X a ×Γm(X a ). Then Qa
m is open for each m > 0,

and Qa
∞ is open. It follows from our construction that Γm(X a) = Γ

a (X a ,Qa
m) for each

m > 0 and X a ∈X
a
m , and that (i)–(vi) of Theorem 3.13 hold.

Theorem 3.2 now follows at once from Theorem 3.13 and Lemma 3.15.

E PROOF OF THEOREM 3.24

Proof of Lemma 3.20. Let v a ∈ V a
G

and let λa (v a) = σ = (σ0, . . . ,σk ). Then λa
G

(v a) is the

marginal ρ = (ρ0, . . . ,ρk ) of σ on Sb ×V b , so λa
G

is a Borel map from V a into N (Sb ×V b).

σ is mutually singular, so there are pairwise disjoint Borel sets Ui ⊆Θ×Sb ×V b such that

σi (Ui ) = 1 for each i ≤ k. The G-sections Wi = {(sb , v b) : (G , sb, v b) ∈ Ui } are Borel and

pairwise disjoint. Since v a ∈ V a
G ⊆ C a

1 (G), σ({G}×Sb ×V b) =~1. Therefore ρi (Wi ) = 1 for

each i ≤ k, and hence ρ ∈L (Sb ×V b).

Lemma E.1. Let Θ, X ,Y be Polish spaces, where Y ⊆ X , and let G ∈Θ. Then

(i) For each open U in the topology of {G}× X , there exists an open W in the topology

of Θ×Y such that W =U ∩ ({G}×Y ); and

(ii) For each open W in the topology of Θ×Y , there exists an open U in the topology of

{G}×X such that W =U ∩ ({G}×Y ).

Proof of Lemma E.1. Both (i) and (ii) follow immediately from the definition of subspace

topology.

Proof of Theorem 3.24. Proof of (i). Since v a ∈V a
G
=C a

1 (G), λa (v a)m({G}×Sb ×V b) = 1.

Therefore (λa
G

(v a))(E ) = λa(v a)(Θ×E ) = (λa (v a))({G}×E ). So if v a assumes E in V or
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{G}×E in VG , then

(λa
G (v a))(E ) = ( 1, . . . ,1

︸ ︷︷ ︸

1 or more

, 0, . . . ,0
︸ ︷︷ ︸

0 or more

) = (λa (v a))({G}×E ).

Therefore conditions (a) and (b) hold for assuming E in V if and only if they hold for

assuming {G}×E in VG . Furthermore, Lemma E.1 implies that for every Borel F ⊆ Sb ×

V b
G , F = E ∩U 6=∅ for some open U ⊆ Sb ×V b

G if and only if {G}×F = W ∩ ({G}×E ) 6=∅

for some open W ⊆ Θ×Sb ×V b . So condition (c) for assuming E in V is equivalent to

condition (c) for assuming {G}×E in VG .

Proof of (ii). It is quite trivial that sa maximizes LEU with respect to λa(v a) if and

only if sa maximizes LEU with respect to λa
G

(v a). λa
G

(v a) has full support in Sb ×V b
G

if

and only if v a assumes Sb ×V b
G in VG . By (i), this holds if and only if λa(v a) assumes

K b(G) = {G}×Sb ×V b
G

in V. This proves (ii).

Proof of (iii). The base case is handled by (ii). Assume the induction hypothesis for

M > 1:

∀m ≤ M , Ra
m(G) = {G}×Ra

m(G ,VG )

By (i) and (ii), for all v a ∈ projV a Ra
1 (G) = projV a

G
Ra

1 (G ,VG ), v a assumes {G}×Rb
M (G ,VG )

in V if and only if v a assumes Rb
M

(G ,VG ) in VG . Therefore,

Ra
M+1(G) = Ra

M (G)∩ (Θ×Sa
× Aa (Rb

M (G)))

=
[

{G}×Ra
M (G ,VG )

]

∩

[

Θ×Sa
× Aa ({G}×Rb

M (G ,VG))
]

= {G}×
[

Ra
M (G ,VG )∩ (Sa

× Aa (Rb
M (G ,VG )))

]

= {G}×Ra
M+1(G ,VG ).

F PROOF OF THEOREM 3.25

To prove Theorem 3.25, we will first show that it is a consequence of Theorem F.1 below.

The proof of Theorem F.1 is much longer, and is given in the next section.

Fix the finite strategy sets (Sa ,Sb). Recall from Section 3.4 that we identify a game

G with strategy sets (Sa ,Sb) with the N-tuple of real numbers that represents the pair

(πa ,πb) of payoff functions, where N = 2 · |Sa × Sb|. Therefore, we let the space of all

games on (Sa ,Sb) be Θ = R
N . We maintain this definition of Θ throughout this paper.

Theorem F.1 says there is a “Borel family” of type structures TG indexed by G ∈ Θ such

that each TG has RCAR for G .
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Given Polish spaces X ,Y , Z and a Borel function f : X ×Y → Z , we let f y : X → Z be

the Borel function defined by f y (x) = f (x, y).

Theorem F.1. Let T a ,T b be uncountable Polish spaces. There exist Borel maps

κa : T a
×Θ→L(Sb

×T b), κb : T b
×Θ→L(Sa

×T a)

such that for every G ∈ Θ, TG =
〈

Sa ,Sb ,T a ,T b ,κa
G

,κb
G

〉

is a complete one-to-one lexico-

graphic type structure such that

projSa Ra
∞(G ,TG )×projSb Rb

∞(G ,TG) = Sa
∞(G)×Sb

∞(G).

This result would follow immediately from Theorems 3.2 and 3.4 if we only required

that the map κa
G

is Borel in t a for each fixed G , and similarly for b. The extra difficulty

lies in finding maps κa and κb that are Borel in both variables. Intuitively, {TG : G ∈Θ}

is a Borel family of type structures indexed by G ∈ Θ. Ann’s beliefs depend on both the

game G and a type t a , and Bob’s beliefs depend on both a game G and a type t b .

To prepare for the proof of Theorem 3.25, we first prove an easier intermediate re-

sult, in which the requirement that V is complete is omitted. Theorem 3.25 can then be

proved by carefully embedding this V into a complete type structure so that, for each

game G ∈ Θ, the set of states in which there is common knowledge of G remains unal-

tered.

Theorem F.2. There is a one-to-one lexicographic type structure with nature,

V=
〈

Θ,Sa ,Sb ,V a ,V b ,λa ,λb
〉

, such that for every game G ∈Θ,

(i) V admits common knowledge of G;

(ii) For every game G ∈Θ,VG is a complete one-to-one lexicographic type structure such

that

projSa Ra
∞(G ,VG )×projSb Rb

∞(G ,VG) = Sa
∞(G)×Sb

∞(G); and

(iii) Any pair of types (v a , v b) that believes G has common belief of G.

Proof of Theorem F.2 from Theorem F.1. Let Sa ,Sb ,T a ,T b ,κa ,κb be as in Theorem F.1. Let

V a = T a ×Θ and V b = T b ×Θ. We will define Borel maps λa ,λb so that

V =
〈

Θ,Sa ,Sb ,V a ,V b ,λa ,λb
〉

has the required properties. The plan will be to make

T a × {G} be the set of types that have common belief of G .

Define the function

αb : L(Sb
×T b)×Θ→L(Θ×Sb

×V b)
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as follows. For each (σ,G) ∈L(Sb×T b)×Θ, let αb(σ,G) be the unique µ ∈L(Θ×Sb×V b)

such that

⊲ µ({G}×Sb × (T b × {G})) =~1; and

⊲ For each Borel set E ⊆ Sb ×T b , µ({G}×E × {G}) =σ(E ).

Note that E × {G}⊆ Sb ×V b , so {G}×E × {G} ⊆Θ×Sb ×V b .

Claim. αb is a continuous map.

Proof of Claim: Suppose σn →σ in L(Sb ×T b), and Gn →G in Θ, where → indicates

weak convergence. We must prove that αb(σn ,Gn) → αb(σ,G). It suffices to prove this

in the case that each σn and σ have length one, because it would then follow that each

coordinate of αb(σn ,Gn) converges to the corresponding coordinate of αb(σ,G).

Let β : Θ→ M (Θ) be the map H 7→ δH , where δH ({H}) = 1. We have β(Gn) → β(G),

because for every continuous f : Θ→ R,
∫

f dδGn = f (Gn) converges to
∫

f dδG = f (G).

We note that

αb(σn ,Gn) =β(Gn)⊗σn ⊗β(Gn), αb(σ,G)=β(G)⊗σ⊗β(G).

Therefore, we have αb(σn ,Gn) →αb(σ,G), which proves the claim.

Now, define λa(t a ,G) = αb(κa(t a ,G),G). Since κa is Borel and αb is continuous, λa

is a Borel map, and hence V is a type structure with nature. Let G ∈ Θ. We see from

the definition of λa that a type v a ∈ V a believes G if and only if v a = (t a ,G) for some

t a ∈ T a . Thus C a
1 (G) = T a × {G}. Moreover, C a

2 (G) = C a
1 (G), and hence by induction,

C a
m(G) = C a

1 (G). Therefore, V has the property that C a
1 (G) = C a

∞(G) = V a
G

, that is, every

v a that believes G has common belief of G . It follows thatV admits common knowledge

of G . Finally, the mappings t a 7→ (t a ,G), t b 7→ (t b ,G) are topological homeomorphisms

from T a to V a
G

and T b to V b
G

that give an isomorphism from the type structure TG of

Theorem F.1 to VG . Therefore, VG has the same properties as TG . In particular, VG is

a complete one-to-one type structure such that projSa Ra
∞(G ,VG )×projSb Rb

∞(G ,VG ) =

Sa
∞(G)×Sb

∞(G).

Proof of Theorem 3.25 from Theorem F.1. Let Sa ,Sb,T a ,T b ,κa ,κb be as in Theorem F.1.

Let V a be the topological union

V a
= [0,1)⊎ ([1,∞)×Θ)⊎ (T a

×Θ),

where the three parts of the union are disjoint and clopen in V a . Note that V a = [0,1)⊎

(([1,∞)⊎T a)×Θ). Define V b analogously. We will define Borel mappings λa ,λb so that

V=
〈

Θ,Sa ,Sb ,V a ,V b ,λa ,λb
〉

has the required properties.

41



For each G ∈ Θ, our plan will be to let T a × {G} be the set of types having common

belief of G ; let [m,m +1)× {G} be the set of types having m-th order, but not (m +1)-th

order, belief of G ; and let [0,1) be the set of types not having belief of G . We will use the

Borel Isomorphism Theorem (Proposition C.5), as we did in the proof of Theorem 3.13.

For each m > 0, let T a
m = [m,∞)⊎T a . Then T a

1 ⊇ T a
2 ⊇ ·· · , and T a =

⋂

m>0 T a
m . Ac-

cording to our plan, T a
m×{G} will be the set of types having m-th order belief of G . These

types will be mapped to the beliefs in set J b
m(G), which we define inductively as follows.

J b
1 (G)=

{

σ ∈L(Θ×Sb
×V b) : σ({G}×Sb

×V b) =~1
}

J b
m+1(G)=

{

σ ∈ J b
m(G) : σ({G}×Sb

× (T b
m × {G})) =~1

}

Intuitively, J b
m(G) is the set of LPS’s that have m-th order belief of G . We also write

J b
0 =L(Θ×Sb

×V b) \
⋃

G∈Θ

J b
1 (G).

Now, let αb : L(Sb ×T b)×Θ→L(Θ×Sb ×V b) be as in the proof of Theorem F.2. We

will construct a one-to-one Borel function λa : V a →L(Θ×Sb ×V b) such that

(I) λa([0,1)) = J b
0 ;

(II) For each m > 1 and G ∈Θ, λa(T a
m × {G}) = J b

m(G); and

(III) For each G ∈Θ and t a ∈T a , λa (t a ,G) =αb(κa(t a ,G),G).

Note that (I) and (II) imply that the map λa is onto. Since λa will be one-to-one, (I)

and (II) will also imply that for each G ∈Θ, λa(T a × {G}) =
⋂

m>0 J b
m(G).

It is clear that the set J b
0 has the cardinality of the continuum. We show that J b

0 is also

Borel. To see this, let

γb : L(Sb
×V b)×Θ→L(Θ×Sb

×V b)

be the function such that γb(σ,G) is the unique µ ∈L(Θ×Sb ×V b) such that µ({G}×Sb×

V b) =~1 and for each Borel set E ⊆ Sb ×V b , µ({G}×E ) =σ(E ). Note that

∀G ∈Θ, γb(L(Sb
×V b)× {G}) = J b

1 (G)

Therefore, the range of γb is
⋃

G∈Θ J b
1 (G) and the complement of the range of γb is J b

0 .

Arguing as in the proof of the Claim in Theorem F.2, we see that γb is a continuous

map. It is also clear that γb is one-to-one. By Corollary 15.2 in Kechris (1995), images

of Borels sets under such maps are Borel sets themselves. Therefore, for every Borel

F ⊆ L(Sb ×V b)×Θ, γb(F ) is Borel. In particular, the range of γb is Borel, and therefore

its complement J b
0 is Borel.
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By the Borel Isomorphism Theorem, there is a one-to-one and onto Borel map λa
0 :

[0,1) → J b
0 . This will take care of (I) since we will eventually let λa coincide with λa

0 on

[0,1).

For each G ∈ Θ and each m > 0, the difference J b
m(G) \ J b

m+1(G) clearly has the car-

dinality of the continuum. Moreover, since J b
m(G) is the image under γb of a Borel set,

J b
m(G) is Borel. Hence the difference sets J b

m(G) \ J b
m+1(G) are Borel as well. By the Borel

Isomorphism Theorem, there is a one-to-one Borel function from [m,m +1)× {G} onto

this difference. However, since there are uncountably many G ’s, we cannot in general

glue these functions together into a single Borel function.

To get around this problem, we introduce mappings that translate the games and

keep everything else unchanged. Let G0 be the particular game whose payoff functions

are everywhere zero. Given two games G , H ∈ Θ, let G + H be the game obtained by

adding the payoff functions of G and H pointwise at each strategy profile. Note that

G0 + H = H for each H ∈ Θ. For each H ∈ Θ, the map G 7→ G + H is a homeomorphism

from Θ to itself that sends G0 to H .

For H ∈Θ, let ψa
H : V a →V a be the map defined by

ψa
H (r ) =







(t a ,G +H) if r = (t a ,G) ∈ T a
1 ×Θ;

r if r ∈ [0,1).

Then ψa
H is a homeomorphism from V a to V a and we have

∀m > 0, ψa
H (T a

m × {G0}) = T a
m × {H} .

Moreover, (v a , H) 7→ψa
H

(v a) is a continuous map from V a ×Θ onto V a .

Letφb
H

be a function from L(Θ×Sb×V b) to itself such that for eachσ∈L(Θ×Sb×V b)

and Borel set E ⊆Θ×Sb ×V b ,

(φb
H (σ))

({

(G +H , sb ,ψb
H (v b)) : (sb , v b ,G) ∈ E

})

=σ(E ).

Then φb
H

is a homeomorphism from L(Θ×Sb ×V b) onto itself such that for each m > 1,

φb
H

(J b
m(G0)) = J b

m(H).

By the Borel Isomorphism Theorem, for each m > 0, there is a one-to-one Borel func-

tion ρm from [m,m +1)× {G0} onto J b
m(G0) \ J b

m+1(G0). Let

λa
m : [m,m +1)×Θ→L(Θ×Sb

×V b)

be the mapping given by λa
m(r, H) =φb

H
(ρm(σ,G0)). It follows that λa

m is one-to-one and
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Borel, and for each H ∈Θ,

λa
m([m,m +1)× {H}) = J b

m(H) \ J b
m+1(H).

Let λa
∞ : T a ×Θ→L(Θ×Sb ×V b) be the mapping given by

λa
∞(t a ,G)=αb(κa(t a ,G),G).

It is clear that λa
∞ is one-to-one. Since αa is continuous and κa is Borel, λa

∞ is Borel.

Also, for each H ∈Θ, λa
∞(T a × {H}) =

⋂

m J b
m(H).

It follows that the union λa =λa
0 ∪

(⋃

m λa
m

)

∪λa
∞ is a one-to-one Borel mapping from

V a onto L(Θ×Sb×V b) that satisfies (I)–(III). ThereforeV is a complete one-to-one type

structure with nature.

It follows from (II) that for each H ∈Θ, C a
1 (H) = T a

1 × {H}. We then see by induction

that for each m > 0 and H ∈ Θ, C a
m(H) = T a

m × {H}. Therefore, the set of v a ∈ V a with

common belief of H is

V a
H =C a

∞(H) =
⋂

m
T a

m × {H} = T a
× {H} .

So V admits common knowledge of every game H ∈Θ. As in the proof of Theorem F.2,

for each G ∈Θ, the type structure VG is isomorphic to TG . Therefore VG is a complete

one-to-one type structure such that

projSa Ra
∞(G ,VG )×projSb Rb

∞(G ,VG) = Sa
∞(G)×Sb

∞(G).

By applying Theorem 3.24, we get

projSa Ra
∞(G)×projSb Rb

∞(G) = Sa
∞(G)×Sb

∞(G).

G PROOF OF THEOREM F.1

Note that each of the objects P a
m , O(ν), Xa

m defined in Section 3.2 depends on a game

G ∈Θ. In this section, we will let P a
m(G), O(G ,ν), Xa

m(G) denote these objects to indicate

the dependence on G .

By the Existence Theorem 3.2 and Theorem 3.4, for each game G ∈Θ there is a com-

plete type structure

T=

〈

Sa ,Sb ,T a ,T b ,λa
G ,λb

G

〉

such that Ra
∞(G ,T) and Rb

∞(G ,T) are nonempty. Our task will be to choose such maps

λa
G , λb

G for each G ∈Θ so that (G ,ua) 7→ λa
G (ua) is a Borel map from Θ×T a into L(Sb ×
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T b), and similarly with a and b reversed. If the set of games Θ were countable, then we

could directly appeal to the Borel Isomorphism Theorem and glue the mapsλG together.

However, we will need to choose the maps λG more carefully since Θ is uncountable.

The following lemma improves Theorem 3.2 by specifying in advance the length of

λa(t a ) for each type t a ∈T a . For the remainder of this section, let M = |Sa |+ |Sb |.

Lemma G.1. Let T a , T b be uncountable Polish spaces and let
{

T a
n : n > 0

}

and
{

T b
n : n > 0

}

be countable partitions of T a , T b . For each game G ∈Θ, there exists a complete one-to-one

lexicographic type structure T=
〈

Sa ,Sb ,T a ,T b ,λa ,λb
〉

such that for each k ≥ M +1,

Ra
∞(G ,T)∩ (Sa

×T a
k ) 6=∅, Rb

∞(G ,T)∩ (Sb
×T b

k ) 6=∅;

and for each k > 0, t a ∈ T a
k

, t b ∈ T b
k

, λa(t a) and λb(t b) have length k.

Proof of Lemma G.1. The proof is a routine modification of the proofs of Lemma 3.15

and Theorem 3.13 so that for each k > 0, types in T a
k

are mapped to LPS’s of length k. By

the method of Lemma 3.15, one can build a family of sets

{Qa
m : m > 0}, {Qb

m : m > 0}

such that (i)–(vi) of Theorem 3.13 hold within T a
k

for each k ≥ min(m, M). That is, we

have the following for each nonempty X a ⊆ Sa and each k > 0, and similarly for b.

(i)
{

Γ
a(X a ,Qa

m)∩T a
k

: m > 0
}

is a decreasing chain of Borel subsets of T a
k

;

(ii) For each m > 0, Γa(X a ,Qa
m)∩T a

k
6=∅ ⇐⇒

(

X a ∈X
a
m ∧k ≥ min(m, M)

)

;

(iii) Γ
a(X a ,Qa

∞)∩T a
k

is dense in Γ
a (X a ,Qa

M+1
)∩T a

k
,

(iv) Γ
a(∅,Qa

1 )∩T a
k

is uncountable;

(v) If X a ∈X
a
m and k ≥ min(m, M) then

(Γa(X a ,Qa
m) \Γa (X a ,Qa

m+1))∩T a
k

is uncountable, and if m < M then Γ
a(X a ,Qa

m+1) is not even dense in Γ
a(X a ,Qa

m);

(vi) If X a ∈X
a
∞ and n ≥ M then Γ

a(X a ,Qa
∞)∩X a

n is uncountable;

Condition (v) is upgraded to insure that for k ≤ M , no LPS in L(Sb ×T b) of length k can

assume all of Qa
0 , . . . ,Qa

k
. Then each piece of T a

k
will have the same cardinality of the

corresponding piece of Lk (Sb ×T b). The Borel Isomorphism Theorem can now be used

as in the proof of Theorem 3.13 to construct the required mappings λa and λb .

Next, we show that the games G ∈Θ can be classified into finitely many shapes. We

say that two games G , H ∈Θhave the same shape ifXa
m(G) =X

a
m(H) andX

b
m(G) =X

b
m(H)
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for all m. By Theorem 3.8, if G and H have the same shape, then Sa
m(G) = Sa

m(H) and

Sb
m(G) = Sb

m(H) for each m.

The next lemma shows that the sequences Sa
m(G) and X

a
m(G) stabilize at M = |Sa |+

|Sb|, and hence there are only finitely many possible shapes of games in Θ.

Lemma G.2. For each G ∈Θ and m ≥ M we have

(i) Sa
m(G) = Sa

M (G)= Sa
∞(G) and Sb

m(G) = Sb
M (G) = Sb

∞(G);

(ii) X
a
m(G) =X

a
M+1

(G) =X
a
∞(G) and X

b
m(G)=X

b
M+1

(G) =X
b
∞(G).

Hence there are only finitely many shapes of games in Θ.

Proof of Lemma G.2. Proof of (i). If Sa
m(G)= Sa

m+1(G) and Sb
m(G) = Sb

m+1(G), then we see

from the definition of Sa
m(G) that Sa

m(G) = Sa
n(G) and Sb

m(G) = Sb
n(G) for all n ≥ m. More-

over, Sa
0 (G) = Sa and Sb

0 (G) = Sb , and the sets Sa
m(G),Sb

m(G) decrease with m. Therefore,

the pair of sets (Sa
m(G),Sb

m(G)) can change at most M times, and (i) follows.

Proof of (ii). Let m > M and X a ∈X
a
m(G). Then X a =O(G ,µ) for some µ ∈P a

m(G). We

have µ= νν′ for some ν ∈N (Sb) with Supp(ν) = Sb
m−1(G) and some ν′ ∈ P a

m−1(G). By 1.,

Sb
m(G) = Sb

m−1(G), so µ′ = νµ ∈ P a
m(G). It is clear that O(G ,µ′) =O(G ,µ), so X a ∈X

a
m+1(G).

This proves (ii).

Lemma G.2 shows that the shape of G depends only on X
a
m(G),Xb

m(G) for m ≤ M +1.

We may therefore define the shape of G as follows. Given a sequence

S= (Xa
1 , . . . ,Xa

M+1,Xb
1 , . . . ,Xb

M+1),

we say that G has shape S, and write S(G) = S, if Xa
m = X

a
m(G) and X

b
m = X

b
m(G) for

m = 1, . . . , M +1. And we say that S is a game shape if there exists a game G ∈Θ such that

S=S(G).

The intuitive idea of our proof of Theorem F.1 will be to build the type structures

TG in such a way that they can be glued together by an inductive construction on the

length of LPS’s. For each fixed length k > 0, we will see that the set Θ of games can be

partitioned into finitely many classes such that within each class, the length k parts of

the type structures TG can be chosen to be the same up to a Borel transformation, and

thus can be combined into a single type structure.

To do this, we will need some results from the literature about definable sets in the

ordered field of real numbers. We let F= 〈R,0,1,+, ·,<〉 be the ordered field of real num-

bers. A set of n-tuples A ⊆ R
n is said to be definable (in F) if A is the set of all n-tuples

that satisfy a first order formula ϕ(x1, . . . , xn ,~c) in F that has the variables x0, . . . , xn and a
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finite tuple~c of parameters in R. Given two definable sets A ⊆R
m ,B ⊆R

n in F, a function

f : B → A is said to be definable (in F) if its graph
{

(~x,~y) : f (~x) =~y
}

is definable.

The celebrated classical result of Tarski (1951) shows that a set is definable in F if and

only if it is semi-algebraic (i.e., definable by finite collections of equations and inequali-

ties between polynomials). Tarski’s theorem has the following easy consequence.

Proposition G.3.

(i) F is o-minimal, that is, every set A ⊆ R that is definable in F is the union of finitely

many open intervals and singletons.

(ii) Every set A ⊆R
k that is definable in F is Borel.

We refer to the monograph van den Dries (1998) for an exposition of o-minimal

structures, but we will only need the particular o-minimal structure F. We will need a

result of Hardt (1980), which says that every definable function can be partitioned into

finitely many definable pieces that each look like the projection of a product of two sets

onto one of the factors. This result was generalized to o-minimal structures (see van den

Dries, 1998, chap. 9, Theorem 1.2).

Definition G.4. Suppose A ⊆ R
m ,B ⊆ R

n , g : B → A is definable, and g maps B onto A.

We say that g is definably trivial if there exists a definable set C ⊆R
k for some k and a de-

finable function h : B →C such that the function (g ,h) : B → A×C is a homeomorphism.

Proposition G.5 (Hardt (1980)). Let A ⊆R
m ,B ⊆R

n , and g : B → A be definable, and sup-

pose g maps B onto A. Then there exists a finite partition
{

A1, . . . , Ap

}

of A into definable

sets such that for each i ≤ p, the restriction of g to g−1(Ai ) is definably trivial.

In the above proposition, note that for each i , the set Bi = g−1(Ai ) and the restriction

gi of g to Bi are also definable. The result says that there is a definable set Ci and a

definable function hi : Bi →Ci such that (gi ,hi ) : Bi → Ai ×Ci is a homeomorphism, i.e.,

one-to-one, onto, and bi-continuous.

We now look at definable properties of games and tuples of probability measures.

Recall that M (Sb) is the set of all probability measures on Sb . We may identify a prob-

ability measure ν ∈ M (Sb) with the real vector 〈ν(sb) : sb ∈ Sb〉 ∈ R
|Sb | and note that this

tuple satisfies the first order formulas 0 ≤ ν(sb) ≤ 1 and
∑

sb∈Sb ν(sb) = 1. Similarly, for

each fixed k, the k-tuple of probability measures ν ∈ Nk(Sb) is identified with a k · |Sb |-

tuple of reals in the obvious way.
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By a k-fold support in Sb we mean a k-tuple Y = (Y0, . . . ,Yk−1) of nonempty sets

Yi ⊆ Sb such that
⋃

j<k Y j = Sb . The k-fold support of a k-tuple

ν= (ν0, . . . ,νk−1) ∈Nk (Sb)

is the k-tuple Suppk (ν) =
(

Supp(ν0), . . . ,Supp(νk−1)
)

.

The next lemma shows that for each fixed k, certain relations involving games and

k-tuples of probability measures on Sb are definable.

Lemma G.6. For each k, the following sets are definable.

(i) For each n, the set
{

(G ,ν) ∈Θ×Nk (Sb) : ν ∈ P a
n (G)

}

;

(ii) For each k-fold support Y in Sb , the set
{

ν ∈Nk(Sb) : Suppk (ν) = Y
}

;

(iii) For each X a ⊆ Sa , the set
{

(G ,ν) ∈Θ×Nk (Sb) : O(G ,ν) = X a
}

; and

(iv) For each game shape S=
(

X
a
1 , . . . ,Xa

M+1
,Xb

1 , . . . ,Xb
M+1

)

, the set {G ∈Θ : S(G) =S}.

Proof of Lemma G.6. Proof of (i–iii). These can be seen by writing the definitions for-

mally in first order logic.

Proof of (iv). By Lemma B.4, for each n and each set X a ⊆ Sa , we have X a ∈X
a
n(G) if

and only if there exists an ν ∈NM+1(Sb)∩P a
n (G) such that O(G ,ν) = X a . The point is that

we need only consider ν’s of length M +1. The result now follows from (i) and (iii).

Definition G.7. A k-good partition of Θ is a finite partition
{

A1, . . . , Ap

}

of Θ such that

for each i ≤ p,

(i) Ai is definable;

(ii) ∃Si∀G ∈ Ai , S(G)=Si , i.e., all the games in Ai have the same shape;

(iii) For each set X ⊆ Sa and each k-fold support Y in Sb , the projection function from

the set

Bi ,X ,Y = {(G ,ν) ∈ Ai ×Nk (Sb) : O(G ,ν) = X ∧Y = Suppk (ν)}

to Ai is definably trivial.

Remark G.8. For each k-good partition of Θ, the family of sets

{Bi ,X ,Y : i ≤ p ∧X ⊆ Sa
∧Y = Suppk (ν)}

indexed by (i , X ,Y ) in (iii) is a finite partition of Θ×Nk (Sb) into definable sets. The set

Bi ,X ,Y may be empty for some values of (i , X ,Y ).

Lemma G.9. Suppose
{

A1, . . . , Ap

}

is a k-good partition of Θ. Let i ≤ p; Gi ∈ Ai , X ⊆ Sa ; Y

be a k-fold support in Sb ; g be the projection function from Bi ,X ,Y to Ai ; and let Ci ,X ,Y =
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{

ν ∈Nk (Sb) : (Gi ,ν) ∈Bi ,X ,Y

}

.24 Then there is a definable function h : Bi ,X ,Y →Ci ,X ,Y such

that the function (g ,h) : Bi ,X ,Y → Ai ×Ci ,X ,Y is a homeomorphism.

Proof of Lemma G.9. By (iii) in Definition G.7, the projection function g from Bi ,X ,Y to

Ai is definably trivial, so there is a set D and a definable function f : Bi ,X ,Y → D such

that the function (g , f ) : Bi ,X ,Y → Ai ×D is a homeomorphism. Then the restriction of

f to {Gi } ×Ci ,X ,Y is a homeomorphism from {Gi } ×Ci ,X ,Y to D. Therefore, there is a

definable homeomorphism ℓ from D to Ci ,X ,Y , and hence the composition h = ℓ◦ f has

the required properties.

Proposition G.5 gives us the following lemma about game-LPS pairs.

Lemma G.10. For each k > 0, there exists a k-good partition of Θ.

Proof of Lemma G.10. By Lemma G.6, for each game shape S and k > 0, the sets

AS = {G ∈Θ : S(G) =S}, BS = AS×Nk (Sb)

are definable. It suffices to prove that for each game shape S, the set AS admits a finite

partition into definable sets
{

A1, . . . , Ap

}

such that (iii) holds for each i ≤ p. If so then

the union of these partitions will be a k-good partition of Θ.

Now fix a game shape S, and let g be the projection function from BS onto AS. Since

the sets Sa and Sb are finite, there are only finitely many (X ,Y ) such that X ⊆ Sa and Y

is a k-fold support in Sb . For such (X ,Y ), let

BX ,Y =
{

(G ,ν) ∈ BS : O(G ,ν) = X and Suppk(ν) = Y
}

.

By Lemma G.6, each set BX ,Y is definable, and hence the restriction of g to BX ,Y is defin-

able. By Proposition G.5, there is a finite partition
{

A1,X ,Y , . . . , Aq,X ,Y

}

of AS into defin-

able sets such that for each j ≤ q , the restriction of g to (g−1(A j ,X ,Y ))∩BX ,Y is definably

trivial. Let us say that two games G , H ∈ A are equivalent if

{

( j , X ,Y ) : G ∈ A j ,X ,Y

}

=
{

( j , X ,Y ) : H ∈ A j ,X ,Y

}

.

Each equivalence class in AS is definable and there are finitely many equivalence classes.

Therefore, this equivalence relation implicitly defines a finite partition of AS into defin-

able sets
{

A1, . . . , Ap

}

and this partition satisfies (iii) as required.

We are now ready to prove Theorem F.1.

24i.e., Ci ,X ,Y is the fiber in Bi ,X ,Y above Gi with respect to g .
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Proof of Theorem F.1. We will construct a pair of Borel functions

κa : Θ×T a
→L (Sb

×T b), κb : Θ×T b
→L (Sa

×T a )

with the required properties in several steps. Steps 3 and 5 will require additional proof.

1. First, choose partitions
{

T a
k

: k > 0
}

and
{

T b
k

: k > 0
}

of T a and T b into continuum-

large Borel sets so that T a =
⊎

k>0 T a
k

and T b =
⊎

k>0 T b
k

.

2. For each k, we can choose a k-good partition
{

A1,k , . . . , Ap(k),k

}

ofΘby Lemma G.10.

Recall that for all i , games in Ai ,k have the same shape.

3. Next, for each (i ,k), we construct a Borel map κa : Ai ,k ×T a
k
→ Lk (Sb ×T b) such

that for all G ∈ Ai ,k , κa(G ,T a
k

) = Lk (Sb ×T b). We will subdivide the domain even

further in this step.

4. By joining such maps for all i ≤ p(k), we will get a Borel map κa : Θ×T a
k
→Lk (Sb×

T b) since p(k) is finite. Finally, we will join such maps for all k ∈N, to get a Borel

map κa : Θ×T a →L(Sb ×T b).

5. Lastly, we will verify that κa and κb satisfy the desired properties.

Step 3. We begin by fixing k, a k-good partition
{

A1,k , . . . , Ap(k),k

}

of Θ, and i ≤ p(k).

By Lemma G.1, for each game G ∈ Θ, we can choose a complete one-to-one type

structure UG =
〈

Sa ,Sb ,T a ,T b ,λa
G

,λb
G

〉

such that for each j ≥ M +1,

Ra
∞(G ,UG )∩ (Sa

×T a
j ) 6=∅, Rb

∞(G ,UG )∩ (Sb
×T b

j ) 6=∅;

and for each j > 0, t a ∈T a
j

, t b ∈T b
j

, λa
G

(t a) and λb
G

(t b) have length j .

If we could glue together the mapλa
G

for each G ∈ Ai ,k to define a Borel map (G , t a) 7→

λG (t a) then we would be done. However, there are uncountably many G ’s in Ai ,k , so we

cannot appeal to the Borel Isomorphism Theorem.

In order to get around this problem, we fix some Gi ,k ∈ Ai ,k and the associated type

structure UGi ,k
. For the sake of avoiding subscripts of subscripts, we will let Ui ,k =UGi ,k

,

λa
i ,k

= λa
Gi ,k

, and λb
i ,k

= λb
Gi ,k

. We will soon show that the structural properties shared by

the games in Ai ,k allow us to define a Borel map κa on Ai ,k ×T a
k

from the mapping λa
i ,k

so that κa has the desired properties.

For each X ⊆ Sa and each k-fold support Y in Sb, let

Bi ,X ,Y ,k =

{

(G ,ν) ∈ Ai ,k ×Nk(Sb) : O(G ,ν) = X ∧Suppk (ν) = Y
}

; and

Ci ,X ,Y ,k =

{

ν ∈Nk (Sb) : (Gi ,k ,ν) ∈Bi ,X ,Y ,k

}

as in Lemma G.9; and

Di ,X ,Y ,k =

{

t a
∈T a

k : margSb (λa
i ,k (t a)) ∈Ci ,X ,Y ,k

}

.
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Note that the sets Bi ,X ,Y ,k and Ci ,X ,Y ,k are definable. By Proposition G.3, Bi ,X ,Y ,k is Borel,

and hence Di ,X ,Y ,k ⊆ T a
k

is Borel as well. We note that for each i ≤ p(k), the family of sets
{

Di ,X ,Y ,k : X ⊆ Sa and Y is a k-fold support in Sb
}

is a partition of T a
k

into finitely many Borel sets, some of which may be empty.

We will define the restriction of κa to Ai ,k ×Di ,X ,Y ,k . We fix X ⊆ Sa , and a k-fold sup-

port Y in Sb . Let g be the projection function from Bi ,X ,Y ,k to Ai ,k . By Lemma G.9, there

is a definable function h : Bi ,X ,Y ,k → Ci ,X ,Y ,k such that the function (g ,h) : Bi ,X ,Y ,k →

Ai ,k ×Ci ,X ,Y ,k is a homeomorphism.

Since Y is a k-fold support in Sb , we can write Y = (Y0, . . . ,Yk−1). Now, let LY =
{

µ ∈M (Sb ×T b) : Suppk margSb µ= Y
}

and MY =
{

ν ∈M (Sb) : Suppk ν= Y
}

. Let φY :

LY × MY → LY be the function that maps (µ,ν) to φY (µ,ν) such that the j -th compo-

nent of [φY ] j is defined as follows for each j < k.

[φY (µ,ν)] j (E )=
∑

sb∈Y j

µ j (E | {sb}×T b) ·ν j (sb) for each Borel set E ⊆ Sb
×T b .

That is, φY (µ,ν) is the measure such that its marginal on Sb is equal to ν; and for each

sb ∈ Y j , its beliefs conditional on
{

sb
}

×T b is the same as those of µ. It is clear that φY is

Borel and that µ and φY (µ,ν) have idential null sets. Furthermore, φY (µ, ·) is a one-to-

one map.25 Lastly, note that for all G ,G ′ ∈ Ai ,k ,

φY

({

µ ∈ LY : O(G ,margSb µ)
}

× {ν ∈ MY : O(G ,ν)}
)

=
{

µ ∈ LY : O(G ′,margSb µ)
}

.

We define κa : Ai ,k ×Di ,X ,Y ,k → Lk (Sb ×T b) as the following composition of Borel

maps, where (g ,h)−1 denotes the inverse function of (g ,h) and π
Nk (Sb) is the projection

function onto Nk(Sb).

κa(G , t a) =φY

(

λa
i ,k (t a ),π

Nk (Sb)

[

(g ,h)−1(G ,margSb λ
a
i ,k (t a))

])

Therefore κa is Borel. We also let κa
G

(t a) = κa(G , t a). κa(G , t a) has marginal beliefs such

that X is the optimal set under it in game G ; and it also has the same null sets as λa
i ,k

(t a)

at every level.26 An important implication of this is that κa
G

(t a) ∈ L
+(Sb × T b) ⇐⇒

λa
i ,k

(t a ) ∈L
+(Sb ×T b) and they assume the same events at each level.

Claim. For each G ∈ Ai ,k , κa
G

is a one-to-one map.

Proof of claim. Let t a ,r a ∈Di ,X ,Y ,k , t a 6= r a and consider the case when margSb λa
i ,k

(t a ) 6=

margSb λa
i ,k

(r a). Then margSb κa
G

(t a) 6= margSb κa
G

(r a) since it is clear that the mapπ
Nk(Sb)

[

(g ,h)−1(G , ·)
]

25φY (·,ν) is not one-to-one.
26In comparison, λa

i ,k
(t a) has marginal beliefs such that X is the optimal set under it in game Gi ,k .
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is one-to-one from the properties of (g ,h). Therefore, κa
G (t a) 6= κa

G (r a). Now, consider

the case when margSb λa
i ,k

(t a ) = margSb λa
i ,k

(r a ). If κa
G

(t a) = κa
G

(r a) then λa
i ,k

(t a ) and

λa
i ,k

(r a ) induce the same conditional beliefs on sets of the form
{

sb
}

×T b for each sb ∈ Sb .

However, if so then margSb λa
i ,k

(t a) = margSb λa
i ,k

(r a) =⇒ λa
i ,k

(t a) = λa
i ,k

(r a) ⇐⇒ t a =

r a . Therefore, κa
G

(t a) 6= κa
G

(r a).

Claim. κa
G maps Di ,X ,Y ,k onto the set

{

σ ∈Lk (Sb ×T b) : (G ,margSb (σ)) ∈Bi ,X ,Y ,k

}

.

Proof of claim. This follows immediately from the previous two claims.

Step 4. Since the sets Ai ,k×Di ,X ,Y ,k ranging over (i , X ,Y ) partitionΘ×T a
k

into finitely

many Borel sets, the union of the parts ofκa on each of these sets is a Borel function from

Θ×T a
k

into Lk (Sb ×T b). Since each of the functions λa
i ,k

maps T a
k

onto Lk (Sb ×T b), κa
G

maps to T a
k

onto Lk (Sb ×T b) for each G ∈ Ai ,k . Moreover, since the sets X and Y can

be recovered from each game G and LPS σ∈Lk (Sb ×T b), and κa
G

is one-to-one on each

Di ,X ,Y ,k , it follows that κa
G

is one-to-one on T a
k

.

We now define the full function κa on Θ×T a by taking the union of the pieces we

have defined on each Θ×T a
k

. Since the sets T a
k

are disjoint Borel sets, this union is a

Borel function from Θ×T a onto L(Sb×T b), and for each g ∈Θ, κa
G is a one-to-one Borel

mapping from T a onto L(Sb ×T b). Thus for each G ∈Θ, TG =
〈

Sa ,Sb,T a ,T b ,κa
G

,κb
G

〉

is

a complete one-to-one type structure.

Step 5. We now complete the proof by showing that for every game G ∈Θ,

projSa Ra
∞(G ,TG )×projSb Rb

∞(G ,TG) = Sa
∞(G)×Sb

∞(G).

We do this by proving two claims.

Claim. Let k > 0, i ≤ p(k), and G ∈ Ai ,k . Then

Ra
1 (Gi ,k ,Ui ,k )∩ (Sa

×T a
k ) = Ra

1 (G ,TG )∩ (Sa
×T a

k ).

Proof of claim. Let sa ∈ Sa and t a ∈ T a
k

. For some X ,Y we have t a ∈ Di ,X ,Y ,k . Then

the following are equivalent to (sa , t a) ∈ Ra
1 (Gi ,k ,Ui ,k ).

sa
∈O(Gi ,k ,λa

i ,k (t a)) and λa
i ,k (t a ) ∈L

+
k (Sb

×T b);

sa
∈O(G ,κa

G (t a)) and κa
G (t a) ∈L

+
k (Sb

×T b);

(sa , t a ) ∈Ra
1 (G ,TG ).

Claim. Let k > 0, i ≤ p(k), and G ∈ Ai ,k . Then

Ra
m(Gi ,k ,Ui ,k )∩ (Sa

×T a
k ) = Ra

m(G ,TG)∩ (Sa
×T a

k ).

Proof of claim. We prove the result for a and b together by induction on m. The
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case m = 1 is proved in the preceding claim. We suppose the claim holds for m with b

instead of a. Let sa ∈ Sa and t a ∈ Di ,X ,Y ,k . Then the following are equivalent to (sa , t a ) ∈

Ra
m+1(Gi ,k ,Ui ,k ).

(sa , t a ) ∈Ra
m(Gi ,k ,Ui ,k ) and λb

i ,k (t a) assumes Rb
m(Gi ,k ,Ui ,k );

(sa , t a ) ∈Ra
m(G ,TG ) and κa

G (t a) assumes Rb
m(G ,TG );

(sa , t a ) ∈Ra
m+1(G ,TG ).

This proves our claim.

Now, take k ≥ M + 1 and let G ∈ Θ. Then G ∈ Ai ,k for some i ≤ p(k). We chose the

type structureUi ,k so that Ra
∞(Gi ,k ,Ui ,k )∩(Sa×T a

k
) 6=∅. By the preceding claim, we have

Ra
∞(G ,TG )∩(Sa×T a

k
) 6=∅, and similarly for b. The result now follows by Theorem 3.4.
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