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Abstract. An atomless probability space (Ω,A, P ) is said to have the satura-
tion property for a probability measure µ on a product of Polish spaces X×Y
if for every random element f of X whose law is margX(µ), there is a random
element g of Y such that the law of (f, g) is µ. (Ω,A, P ) is said to be saturated
if it has the saturation property for every such µ. We show each of a number
of desirable properties holds for every saturated probability space and fails for
every non-saturated probability space. These include distributional properties
of correspondences, such as convexity, closedness, compactness and preserva-
tion of upper semi-continuity, and the existence of pure strategy equilibria in
games with many players. We also show that any probability space which has
the saturation property for just one “good enough” measure, or which satisfies
just one “good enough” instance of the desirable properties, must already be
saturated.

Our underlying themes are: (1) There are many desirable properties that
hold for all saturated probability spaces but fail everywhere else; (2) Any
probability space that out-performs the Lebesgue unit interval in almost any
way at all is already saturated.

1. Introduction

Atomless probability spaces are widely used in mathematics and its applications.
However, it has been found in [8], [14], [15] and [24] that the typical atomless proba-
bility space, the Lebesgue unit interval, does not have a number of desirable proper-
ties. Properties that fail on the Lebesgue unit interval include saturation properties
for random elements and stochastic processes, existence of solutions of stochastic
integral equations, regularity properties for distributions of correspondences such
as convexity, closedness, compactness and preservation of upper semi-continuity,
and the existence of pure strategy equilibria in games with many players.

In the papers [8], [15] and [24] it was shown that there do exist atomless prob-
ability spaces with these desirable regularity properties. These earlier papers used
methods from nonstandard analysis. In this paper, using ordinary standard meth-
ods, we find exactly which probability spaces have these properties—each of these
properties holds for every saturated probability space, and fails for every non-
saturated atomless probability space. This improves the earlier results.

Formally, an atomless probability space (Ω,A, P ) is said to have the saturation
property for a probability measure µ on a product of Polish spaces X × Y if for
every random element f of X whose law is margX(µ), there is a random element g
of Y such that the law of (f, g) is µ. (Ω,A, P ) is said to be saturated if it has the
saturation property for every such µ.
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Saturated probability spaces were introduced in [8]. It was shown there that
a probability space (Ω,A, P ) is saturated if and only if it satisfies the following
condition: The measure P restricted to a set of positive measure is never countably
generated modulo the null sets.1 By Maharam’s theorem, a probability space satis-
fies this condition if and only if its measure algebra is a finite or countable convex
combination of measure algebras of uncountable powers of [0, 1].

We will first prove local saturation results showing that if (Ω,A, P ) has the sat-
uration property for just one “good enough” measure on a product of Polish spaces
then Ω must already be saturated. We then will apply the saturation property
directly to give characterizations of saturated probability spaces by distributional
properties of correspondences, and by the existence of pure strategy equilibria in
games with many players. We will then apply the local saturation results to show
that one “good enough” instance of one of these properties already implies that the
space is saturated.

Our underlying themes are: (1) There are many desirable properties that hold for
all saturated probability spaces but fail everywhere else; (2) Any probability space
that out-performs the Lebesgue unit interval in almost any way at all is already
saturated.

The paper is organized as follows. Fundamental results about saturated proba-
bility spaces are presented in Section 2, including a brief review of global conditions
for saturation and new local conditions for saturation. Section 3 deals with various
distributional properties of correspondences by saturation, while Section 4 concerns
the existence of pure strategy equilibria in games with many players. In Section 5,
we point out that if these results on the distributional properties of correspondences
and the existence of pure strategy equilibria in large games are established for one
particular saturated probability space, then it follows easily that they hold for any
other saturated probability space.

While the notions and methods here are entirely standard, this paper owes a
great deal to earlier work using nonstandard methods, in particular using the Loeb
probability spaces introduced in [17]. The papers [15] and [24] showed that atomless
Loeb spaces have the desired properties for correspondences and large games. One
realized that the atomless Loeb spaces are very rich in the sense that they have
many more measurable sets than the Lebesgue unit interval. The richness is fully
captured by the standard notion of a saturated probability space—it was shown
in [8] that every atomless Loeb space is saturated. This gave a hint that these
properties might hold for all saturated probability spaces. The earlier work with
Loeb spaces was the motivation for Section 5 in this paper. The known facts that
the desired properties hold for atomless Loeb spaces and that atomless Loeb spaces
are saturated, combined with Section 5 here, give an alternative proof that the
desired properties hold for all saturated probability spaces.

The positive direction of our results here can be compared with results in the
literature on stochastic integral equations. In the papers [9], [10], and [16], it
was shown that adapted Loeb probability spaces have the desirable property that
every stochastic integral equation with random continuous coefficients has a strong
solution. In the paper [8] it was shown by standard methods that every saturated
adapted probability space has this desirable property. In the papers [3] and [4],

1This condition is called “ℵ1-atomless” in [8], “nowhere countably generated” in [18], “rich”
in [21] and our earlier draft [13], and “super-atomless” in [22].



WHY SATURATED PROBABILITY SPACES ARE NECESSARY 3

a variety of other existence and optimization results for stochastic integrals and
controls were obtained for all saturated adapted probability spaces (using [11]).

In this paper we work with ordinary probability spaces, while the earlier work
on stochastic integral equations involved adapted probability spaces. The notion
of a saturated adapted probability space was introduced in [8], where it was shown
that every adapted Loeb probability space is saturated, and that every saturated
adapted probability space is saturated as a probability space. An important dif-
ference between this paper and the earlier work on stochastic integral equations
is that here we also get converse results showing that the desired properties fail
on every non-saturated probability space, and we get even stronger local converse
results.

2. Saturated Probability Spaces

In what follows, X, Y, Z, . . . denote Polish spaces (complete metrizable topo-
logical spaces), and M(X) is the space of all Borel probability measures on X
with the Prohorov metric ρ. We recall that M(X) is again a Polish space, M(X)
has the topology of weak convergence, and if X is compact then so is M(X).
For each µ ∈ M(X × Y ), let margX(µ) be the marginal of µ in M(X); thus
margX : M(X × Y ) →M(X) is a continuous surjection. Throughout this paper,
probability space means complete countably additive probability space. The
triples (Ω,A, P ), (Γ, C, Q) will denote atomless probability spaces. (T,L, λ) is
the usual Lebesgue probability space on the unit interval T = [0, 1]. L0(Ω, X)
is the space of all random elements of X (measurable functions f : Ω → X) with
the metric of convergence in probability. The law (or distribution) function
law : L0(Ω, X) →M(X) is defined by law (f)(U) = P (f−1(U)) for each Borel set
U .

If A is a σ-algebra and S ∈ A, we let AS = {B ∈ A : B ⊆ S}. The set of all
P -null sets is denoted by N , or N (P ). We use f, g to denote random elements of
X, Y respectively, on some probability space (Ω,A, P ). Given a random element f ,
σ(f) is the smallest σ-algebra that contains {f−1(U) : U Borel} ∪ N .

We will often use the following well-known facts about the law mappings on an
arbitrary probability space (Ω,A, P ).

Lemma 2.1. (i) law : L0(Ω, X) →M(X) is continuous.
(ii) If (Ω,A, P ) is atomless, then law : L0(Ω, X) →M(X) is surjective.
(iii) Suppose law (fn) weakly converges to ν and law (gn) weakly converges to π

as n → ∞. Then some subsequence of law (fn, gn) weakly converges to a measure
µ ∈M(X × Y ) such that margX(µ) = ν and margY (µ) = π.

Proof. We prove (iii). The sequence law (fn) is relatively compact, since it is con-
tained in the compact set {law (fn) : N ∈ N} ∪ {ν}. By the converse Prohorov’s
theorem (see [1]), law (fn) is tight, that is, for each ε > 0 there is a compact set
Jε in X such that P (fn(ω) ∈ Jε) ≥ 1 − ε for each n. Similarly, there is a com-
pact set Kε in Y such that P (gn(ω) ∈ Kε) ≥ 1 − ε for each n. Then Jε × Kε

is compact in X × Y , and P ((fn, gn)(ω) ∈ Jε × Kε) ≥ 1 − 2ε for each n. Thus
the sequence law (fn, gn) is tight. By the direct Prohorov theorem, the sequence
{law (fn, gn) : n ∈ N} is contained in a compact set C ⊆ M(X × Y ). Therefore
some subsequence of law (fn, gn) weakly converges to a measure µ ∈ M(X × Y ).
Since the functions margX and margY are continuous, it follows that margX(µ) = ν
and margY (µ) = π.
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Definition 2.2. (i) (Ω,A, P ) is said to satisfy the saturation property for a
measure µ ∈ M(X × Y ) if for every f ∈ L0(Ω, X) with law (f) = margX(µ), there
exists g ∈ L0(Ω, Y ) such that law (f, g) = µ.

(ii) A probability space (Ω,A, P ) is saturated (or has full saturation) if (Ω,A, P )
is atomless, and for every X, Y , (Ω,A, P ) satisfies the saturation property for every
µ ∈M(X × Y ).

Note that for a pair of random elements (f ′, g′) on some probability space, the
space (Ω,A, P ) satisfies the saturation property for law (f ′, g′) if and only if for every
f ∈ L0(Ω, X) with law (f) = law (f ′), there exists g ∈ L0(Ω, Y ) with law (f, g) =
law (f ′, g′).

As shown in [8], typical examples of saturated probability spaces are atomless
Loeb probability spaces, and product spaces of the form {0, 1}κ and [0, 1]κ, where
κ is an uncountable cardinal, {0, 1} has the uniform measure, and [0, 1] has the
Lebesgue measure. The Lebesgue unit interval (T,L, λ) and the probability spaces
[0, 1]N and {0, 1}N are examples of atomless probability spaces that are not satu-
rated.

The following two propositions deal with the trivial case that every atomless
probability space has the saturation property for law (f, g).

Proposition 2.3. If f has countable range, then every atomless probability space
has the saturation property for law (f, g).

Proof. Let law (f ′) = law (f). By modifying f ′ on a null set, we may assume that
f ′ has the same range as f . If f is a constant function, so is f ′, and Lemma 2.1
gives us a g′ such that law (f ′, g′) = law (f, g). In the general case, f ′ is the union of
countably many constant functions, and we obtain a g′ with law (f ′, g′) = law (f, g)
by taking a countable union of functions that work on each constant part of f ′.

In view of Proposition 2.3, in the rest of this section we will concentrate on the
case that law (f) is an atomless measure.

Proposition 2.4. Suppose law (f) is atomless. The following are equivalent:
(i) The Lebesgue unit interval (T,L, λ) has the saturation property for law (f, g).
(ii) Every atomless probability space has the saturation property for law (f, g).
(iii) g is σ(f)-measurable.

Proof. It is clear that (iii) implies (ii) and that (ii) implies (i). We assume (i)
and prove (iii). Since law (f) is atomless and [0, 1] is separable, there is an f ′ ∈
L0([0, 1], X) such that law (f ′) = law (f) and σ(f ′) is the set of all Borel subsets of
[0, 1]. By saturation there exists g′ ∈ L0([0, 1], Y ) such that law (f ′, g′) = law (f, g).
Then g′ must be σ(f ′)-measurable, so g is σ(f)-measurable.

2.1. Global Conditions for Saturation. In this subsection we give some global
necessary and sufficient conditions for a probability space to be saturated. We first
list some results from [8] and [19].

Fact 2.5. For each atomless probability space (Ω,A, P ), the following are equiva-
lent:

(i) (Ω,A, P ) is saturated.
(ii) There is no set S ∈ A such that P (S) > 0 and AS is countably generated

modulo the null sets.
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(iii) The measure algebra of (Ω,A, P ) is a finite or countable convex combination
of measure algebras of the form [0, 1]κ where κ is an uncountable cardinal.

(iv) If f ∈ L0(Ω, X), gn ∈ L0(Ω, Y ) for each n ∈ N, and law (f, gn) converges
weakly to a measure µ, there exists g ∈ L0(Ω, Y ) such that law (f, g) = µ.

Proof. The equivalence of (i) and (ii) is proved in [8], Corollary 4.5. The equivalence
of (ii) and (iii) follows from Maharam’s Theorem ([19]). A direct proof that (i) is
equivalent to (iii) is also given in [5], Theorem 3B.7. The equivalence of (i) and (iv)
is a special case of Theorem 5.2 in [8], and is proved directly in [12], Proposition
2.3.

We will often use condition (iv). This condition says that if a law problem
has approximate solutions, then it has an exact solution. Some additional global
conditions for full saturation are given in [11] (Theorem 4.8), and in [22]. The papers
[3], [4], [8], [11], and the monographs [5] and [10], studied the more complicated
saturated adapted probability spaces, as well as saturated probability spaces.

Here is a global characterization of full saturation that appears to be new.

Proposition 2.6. An atomless probability space (Ω,A, P ) is saturated if and only
if:

(v) For each X, Y , compact set C ⊆M(X × Y ), and f ∈ L0(Ω, X), the set

{law (g) : g ∈ L0(Ω, Y ) and law (f, g) ∈ C}
is compact.

Proof. It is shown in [12], Proposition 4.9, that condition (iv) of Fact 2.5 implies
(v).

We prove that (v) implies condition (iv) of Fact 2.5. If Y has only one point,
then so does L0(Ω, Y ), and (iv) is trivially true. Assume that Y has at least two
points, and (v) holds. Suppose that law (f, gn) converges weakly to µ in M(X×Y ).
Let ν = margY (µ) ∈ M(Y ). Since (Ω,A, P ) is atomless and Y has more than
one point, we can perturb gn to a sequence hn in L0(Ω, Y ) such that law (f, hn)
converges weakly to µ and in addition that law (hn) 6= ν for each n. Let

C = {law (f, hn) : n ∈ N} ∪ {µ}.
Then C is compact in M(X × Y ). By (v) the set

D = {law (g) : g ∈ L0(Ω, Y ) and law (f, g) ∈ C}
is compact in M(Y ). For each n, law (f, hn) ∈ C and hence law (hn) ∈ D.
Moreover, law (hn) = margY (law (f, hn)), and since margY is continuous, law (hn)
converges weakly to ν. Therefore ν ∈ D, and thus there exists g ∈ L0(Ω, Y )
such that law (f, g) ∈ C and law (g) = ν. Since law (hn) 6= law (g), we have
law (f, g) 6= law (f, hn) for each n. Hence law (f, g) = µ. This proves (iv).

2.2. Local Conditions for Saturation. We will now begin to address our un-
derlying theme (2), that any probability space that out-performs the Lebesgue unit
interval in almost any way is saturated.

The following theorem shows that one particular non-trivial instance of the sat-
uration property already implies full saturation. This gives a condition for full
saturation that is local in the sense that it involves one particular measure on the
product X × Y .
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Theorem 2.7. Let f, g be random elements of X,Y on some probability space
and assume that law (f) is atomless. Suppose (Ω,A, P ) has the saturation property
for law (f, g) but the Lebesgue unit interval (T,L, λ) does not. Then (Ω,A, P ) is
saturated.

Proof. We assume that (Ω,A, P ) is not saturated and arrive at a contradiction.
We may take f, g to be random elements on (Ω,A, P ). Since (T,L, λ) does not

have the saturation property for law (f, g), g is not σ(f)-measurable. By Fact 2.5
(ii), there is an n ∈ N and a set S ∈ A of measure P (S) = 1/n such that AS

is countably generated (modulo the null sets). Using the fact that (Ω,A, P ) is
atomless, there is a countably generated σ-algebra A0 such that AS ⊆ A0 ⊆ A
and A0 is atomless with respect to P . Since law (f) is atomless, we may partition
Ω into n σ(f)-measurable subsets U1, . . . , Un of measure 1/n. Because g is not
σ(f)-measurable, there is at least one of the sets U = Uk such that the restriction
of g to U is not σ(f)-measurable.

By Maharam’s theorem [19], any two countably generated atomless measure
algebras are isomorphic. Since P (S) = P (U), it follows that there is a measure
algebra isomorphism ψ from the measure algebra of (Ω, σ(f), P ) to the measure
algebra of (Ω,A0, P ) such that ψ(U/N ) = S/N . By [6], Theorem 4.12 on page
937, ψ is induced by a measurable mapping h : Ω → Ω. Then f ′(ω) = f(h(ω))
is measurable. We have σ(f ′) = A0 and law (f ′, 1S) = law (f, 1U ), where 1S and
1U are the respective indicator functions of S and U . By the saturation property
for law (f, g), there exists g′ on (Ω,A, P ) such that law (f ′, g′) = law (f, g). Since
U is σ(f)-measurable, and law (f ′, 1S) = law (f, 1U ), there is a Borel measurable
function ϕ such that 1U = ϕ(f) and 1S = ϕ(f ′). Hence, we have law (f ′, g′, 1S) =
law (f, g, 1U ). The restriction of g to U is not σ(f)-measurable, but the restriction
of g′ to S is σ(f ′)-measurable because AS ⊆ σ(f ′). This contradicts the fact that
law (f, g) = law (f ′, g′). Therefore (Ω,A, P ) is saturated after all.

As a corollary, we see that only trivial cases of the saturation property hold
for a probability space that is not saturated. This corollary is a generalization of
Proposition 2.4

Corollary 2.8. Suppose (Ω,A, P ) is atomless but not saturated, and let f, g be
random elements of X, Y on some probability space such that law (f) is atomless.
Then (Ω,A, P ) has the saturation property for law (f, g) if and only if g is σ(f)-
measurable.

Proof. By Proposition 2.4 and Theorem 2.7.

When the space (Ω,A, P ) is clear from the context, law−1(ν) will denote the set
of all f ∈ L0(Ω, X) such that law (f) = ν. Given a set C ⊆ M(X × Y ) and a
random element f ∈ L0(Ω, X), let

C(f) = C ∩ {law (f, g) : g ∈ L0(Ω, Y )}.
By Fact 2.5 (iv), on a saturated probability space the set C(f) is closed for every
closed set C and random element f of X.

Theorem 2.9. Assume that C ⊆ M(X × Y ) and ν = margX µ for some µ ∈ C.
Suppose that C(f) is closed for every f ∈ law−1(ν) on (Ω,A, P ), but there is an
f ′ ∈ law−1(ν) on the Lebesgue unit interval (T,L, λ) such that C(f ′) is not closed
and σ(f ′) = L. Then (Ω,A, P ) is saturated.
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Proof. Since σ(f ′) = L, ν is an atomless measure. Let µ ∈ cl(C(f ′)) \C(f ′). Then
there is a sequence g′n ∈ L0(T, Y ) such that law (f ′, g′n) = µn ∈ C and µn converges
weakly to µ. Since σ(f ′) = L, each g′n is σ(f ′) measurable, and hence there is
a Borel function ψn : X → Y such that g′n = ψn(f ′) a.s. Let f ∈ law−1(ν) on
(Ω,A, P ), and let gn = ψn(f). Then law (f, gn) = law (f ′, g′n) = µn, so µn ∈ C(f).
Since C(f) is closed, µ ∈ C(f). Hence there exists g ∈ L0(Ω, Y ) with law (f, g) = µ.
It follows that (Ω,A, P ) has the saturation property for µ but (T,L, λ) does not.
By Theorem 2.7, (Ω,A, P ) is saturated.

The following lemma is a sort of approximate saturation that holds for every
atomless probability space.

Lemma 2.10. Suppose µ ∈ M(X × Y ), ν = margX µ, and ν is atomless. Then
for each f ∈ law−1(ν) there is a sequence of σ(f)-measurable random elements gn

of Y such that law (f, gn) converges weakly to µ.

Proof. Take (f ′, g′) ∈ law−1(µ). There is a sequence of σ(f ′)-measurable simple
functions f ′n in L0(Ω, X) such that f ′n converges to f ′ a.s. Since law (f ′) is atom-
less, for each n there is a σ(f ′)-measurable random element g′n of Y such that
law (f ′n, g′n) = law (f ′n, g′). Since f ′n → f ′ a.s., law (f ′n, g′) converges weakly to
law (f ′, g′) = µ. Because each g′n is σ(f ′)-measurable, there are σ(f)-measurable
gn such that law (f, gn) = law (f ′, g′n), and law (f, gn) converges weakly to µ.

The next theorem is a consequence of Theorem 2.9 and Lemma 2.10.

Theorem 2.11. Suppose ν is an atomless measure in M(X), Y has cardinality
greater than 1, and C = M(X × Y ). Then (Ω,A, P ) is saturated if and only if for
each f ∈ law−1(ν), the set C(f) is closed in M(X × Y ).

Proof. We prove the non-trivial direction. Suppose C(f) is closed for every f ∈
law−1(ν). Take two distinct points y0, y1 in Y . There is a random element (f, g)
of X × Y such that f ∈ law−1(ν), g ∈ L0(Ω, {y0, y1}), P (g−1({y1}) = 1/2, and g is
independent of σ(f). Then g is not σ(f)-measurable. Let µ = law (f, g). Since ν
is atomless there is an f ′ ∈ L0(T, X) such that law (f ′) = ν and σ(f ′) = L. Then
µ /∈ C(f ′). By Lemma 2.10, µ belongs to the closure of C(f ′). Hence C(f ′) is not
closed. By Theorem 2.9, (Ω,A, P ) is saturated.

3. Distribution of Correspondences on Saturated Probability Spaces

Measurable correspondences and their selections are important in many areas
of mathematics, including optimization, control theory, pattern analysis, stochastic
analysis, and mathematical economics. The paper [24] developed a theory of distri-
bution of correspondences on probability spaces, and proved that Loeb probability
spaces have several desirable regularity properties that fail for the more familiar
probability spaces such as the Lebesgue unit interval. We’ll call these properties
P1–P6. The proofs of P1–P6 for Loeb spaces in [24] made substantial use of
methods from nonstandard analysis. In this section we will prove, without us-
ing nonstandard methods, that each saturated probability space has each property
P1–P6, and for each non-saturated probability space, each property P1–P6 fails.

In Subsection 3.2 we apply the full saturation condition directly to prove that
every saturated probability space has properties P1–P6. In Subsection 3.3 we prove
global converse results, showing that each of the properties P1–P6 fails for every
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non-saturated probability space. These two subsections address our underlying
theme (1), that many desirable properties hold for all saturated probability spaces
but fail everywhere else. In Subsection 3.4 we use Theorem 2.7 to prove stronger
local converse results, which show that a single “good enough” instance of one of
the properties P1–P4 or P6 already implies full saturation. This addresses our
underlying theme (2), that any probability space that out-performs the Lebesgue
unit interval in almost any way at all is already saturated.

3.1. Background. We refer to [24], Section 2, for some basic standard notions and
results on correspondences. Here is a brief summary.

By definition, every Polish space is separable and admits a complete metric.
Since a Polish space is compact if and only if it admits a complete totally bounded
metric, and every Polish space is embeddable in the compact Polish space [0, 1]N,
every Polish space admits a (not necessarily complete) totally bounded metric (see
pages 217–219 of [1]).

Throughout this section we let X be a Polish space and let d be a totally bounded
metric on X.

A correspondence from Y to Z is a mapping from Y to the family of non-
empty subsets of Z. Let G be a correspondence from a probability space (Ω,A, P )
to X. A measurable mapping g : Ω → X is called a measurable selection of
G if g(ω) ∈ G(ω) for P -almost all ω ∈ Ω. The correspondence G is said to be
measurable if its graph

{(ω, x) ∈ Ω×X : x ∈ G(ω)}
belongs to the product σ-algebraA⊗B(X), where B(X) denotes the Borel σ-algebra
on X.

The correspondence G is said to be closed (compact) valued if G(ω) is a
closed (compact) subset of X for all ω ∈ Ω. For each set B ⊆ X, define

G−1(B) = {ω : G(ω) ∩B 6= ∅}.
If G is closed valued, then G is a measurable correspondence if and only if G−1(O)
is measurable for every open set O in X.

For a point x ∈ X and a nonempty subset B of X, let the distance d(x,B) from
the point x to the set B be inf{d(x, y) : y ∈ B}. For nonempty subsets A and B of
X, the corresponding Hausdorff distance ρd(A, B) between the sets A and B is
defined by

ρd(A,B) = max{sup
x∈A

d(x, B), sup
y∈B

d(y, A)}.

Let FX be the hyperspace of nonempty closed subsets of X, equipped with the
metric ρd.

We will need the following elementary facts from [24], which allow us to treat
measurable correspondences as mappings into a new Polish space and to apply full
saturation to such mappings.

Fact 3.1. (i) The hyperspace FX with the Hausdorff distance ρd is still a Polish
space.

(ii) Let G be a closed valued measurable correspondence from a probability space
(Ω,A, P ) to X. Then the induced mapping ω 7→ G(ω) is a measurable function
from (Ω,A, P ) to M(FX).
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Proof. See [24], Lemma 2.2 and Proposition 2.3.

Definition 3.2. Let G be a correspondence from (Ω,A, P ) to X.
(i) The distribution of G is the set

DG = {law (g) : g is a measurable selection of G}.
(ii) Suppose G is a closed valued measurable correspondence. The law of G is

the induced measure law (G) ∈M(FX) defined by law (G)(U) = P (G−1(U)).

In the above definition, the topology on FX and the law of a correspondence
depend on the metric d on X, not just on the topology of X.

Definition 3.3. A correspondence G from a topological space Y to another topo-
logical space Z is said to be upper semi-continuous at y0 ∈ Y if for any open set
U that contains G(y0), there exists a neighborhood V of y0 such that y ∈ V implies
that G(y) ⊆ U . G is upper semi-continuous if it is upper semi-continuous at every
point y ∈ Y .

For a compact valued correspondence, upper semi-continuity has the following
characterization by sequences (see [7], page 24).

Fact 3.4. Let G be a compact valued correspondence from a Polish space Y to
a Polish space Z. G is upper semi-continuous at a point y ∈ Y if and only if
whenever yn converges to y in Y and zn ∈ G(yn) for each n, zn has a subsequence
that converges to a point z ∈ G(y).

We need the following approximate version of Proposition 3.5 of [24]. This
approximate version holds for all atomless probability spaces and has an elementary
proof.

Proposition 3.5. Let F be a closed valued measurable correspondence from an
atomless probability space (Ω,A, P ) to a Polish space X, and let µ be a Borel prob-
ability measure on X. The following are equivalent.

(i) µ belongs to the closure of DF .
(ii) For every open set O in X, µ(O) ≤ P (F−1(O)).

Proof. (i) ⇒ (ii): Assume (i). There is a sequence fn of measurable selections of F
such that µn = law (fn) weakly converges to µ. For each n ∈ N and open set O in X,
f−1

n (O) ⊆ F−1(O), so µn(O) ≤ P (F−1(O)). Hence µ(O) ≤ lim infn→∞ µn(O) ≤
P (F−1(O)).

(ii) ⇒ (i): The proof is the same as the proof of the implication (iv) ⇒ (i) in
Proposition 3.5 of [24], but it uses an arbitrary atomless probability space instead
of a Loeb space.

3.2. Regularity Properties for Distribution of Correspondences. In this
subsection we generalize the main theorems of [24] to all saturated probability
spaces. We let X,Y be Polish spaces.

Given a closed valued measurable correspondence F from (Ω,A, P ) to X, we
say that DF is maximal if we have DF ⊇ DG for every closed valued measurable
correspondence G that has the same law as F .
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Theorem 3.6. Let (Ω,A, P ) be a saturated probability space. Then we have the
following.

P1: For each closed valued measurable correspondence F from (Ω,A, P ) to X,
DF is maximal.

P2: For any correspondence F from (Ω,A, P ) to X, DF is convex.

P3: For any closed valued correspondence F from (Ω,A, P ) to X, DF is closed.

P4: For any compact valued correspondence F from (Ω,A, P ) to X, DF is com-
pact.

P5: Let F be a compact valued correspondence from (Ω,A, P ) to X. Suppose
that Y is a metric space and G is a closed valued correspondence from Ω× Y to X
such that:

(a) For all (ω, y) ∈ Ω× Y , G(ω, y) ⊆ F (ω).
(b) For each fixed y ∈ Y , G(·, y) (denoted by Gy) is a measurable correspondence

from (Ω,A, P ) to X.
(c) For each fixed ω ∈ Ω, G(ω, ·) is upper semi-continuous from Y to X.
Then the correspondence H(y) = DGy is upper semi-continuous from Y to

M(X).

P6: Let G be a measurable mapping from (Ω,A, P ) to the space M(X) of prob-
ability measures on X. Then there is a measurable mapping f from (Ω,A, P ) to X
such that:

(a) for every Borel set B in X, law (f)(B) =
∫
Ω
G(ω)(B) dP ;

(b) for each ω ∈ Ω, f(ω) ∈ suppG(ω), where suppG(ω) is the support of the
probability measure G(ω) on X.

Proof. P1: Suppose law (G) = law (F ) and g is a measurable selection of G. Let

H = {(x,A) ∈ X ×FX : x ∈ A}.
Since g is a measurable selection of G, we have law (g, G)(H) = 1. By full saturation
there is an f ∈ L0(Ω, X) such that law (f, F ) = law (g,G). Then law (f, F )(H) = 1,
which means that f is a measurable selection of F . Therefore, µ = law (f) =
law (g) ∈ DF . This shows that DG ⊆ DF .

P2: Let µ, ν ∈ DF . Then there are measurable selections f, g of F such that
law (f) = µ and law (g) = ν. Let G(ω) = {f(ω), g(ω)}. Then G ⊆ F and G is a
closed valued measurable correspondence from (Ω,A, P ) to X. Let α ∈ (0, 1). We
show that there is a measurable selection h of G such that

law (h) = αµ + (1− α)ν.

Choose sequences of simple functions fn, gn : Ω → X such that fn(ω) is within
2−n of f(ω), and gn(ω) is within 2−n of g(ω), with probability at least 1 − 2−n.
For each n there is a finite measurable partition Pn of Ω such that:

(a) For each S ∈ Pn, fn and gn are constant on S;
(b) The union of the sets S ∈ Pn on which fn is everywhere within 2−n of f and

gn is everywhere within 2−n of g has probability at least 1− 2 · 2−n.
Since (Ω,A, P ) is atomless, for each S ∈ Pn there is a measurable set S0 ⊆ S

such that P (S0) = αP (S). Let hn : Ω → X be the simple function such that on
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each partition set S ∈ Pn, hn(ω) = fn(ω) for any ω ∈ S0, and hn(ω) = gn(ω) for
any ω ∈ S \ S0. Then

law (hn) = αlaw (fn) + (1− α)law (gn).

Moreover, hn(ω) is within 2−n of G(ω) with probability at least 1 − 2 · 2−n, and
law (hn) converges weakly to αµ + (1 − α)ν. Since the law function is continuous,
law (fn, gn) also converges weakly to law (f, g). By Lemma 2.1, some subsequence of
law (fn, gn, hn, G) converges weakly to a measure π in M(X ×X ×X ×FX) whose
marginals on the three copies of X are respectively µ, ν, and αµ+(1−α)ν. Without
loss of generality, we assume that the sequence law (fn, gn, hn, G) converges weakly
to π. Let τ be the marginal measure of π on the third copy of X with FX . Then,
law (hn, G) converges weakly to τ . For each k ≥ 1 let Hk = {(x,A) ∈ X × FX :
d(x, A) ≤ 1/k}. Then

τ(Hk) ≥ lim sup
n→∞

law (hn, G)(Hk) = 1,

which implies that τ(Hk) = 1. Therefore, τ(H) = 1. Since (Ω,A, P ) is saturated,
there is an h ∈ L0(Ω, X) such that law (f, g, h, G) = π. Then law (h) = αµ+(1−α)ν.
It follows from τ(H) = law (h,G) = 1 that h is a measurable selection of G as
required.

P3: Suppose µn ∈ DF for each n ∈ N, and µn converges weakly to some µ ∈
M(X). Choose a measurable selection fn of F such that law (fn) = µn. Let G
be the new correspondence from Ω to X such that for each ω, G(ω) is the closure
of {fn(ω) : n ∈ N}. By Theorem III.30 in [2], G is a closed valued measurable
correspondence. Since law (fn) converges weakly to µ, Lemma 2.1 implies that the
sequence law (fn, G) has a subsequence that converges weakly to some measure ν
such that margX(ν) = µ. Without loss of generality, we assume that the sequence
law (fn, G) converges weakly to ν. Hence, ν(H) ≥ lim supn→∞ law (fn, G)(H) = 1,
which implies that µ(H) = 1. Because (Ω,A, P ) is saturated, there exists f ∈
L0(Ω, X) such that law (f, G) = ν. It follows that law (f) = µ, and d(f(ω), G(ω)) =
0 P -almost surely. Since F is closed valued, we have G(ω) ⊆ F (ω) for each ω.
Therefore f is a measurable selection of F . Thus µ = law (f) ∈ DF , and hence DF

is closed.

P4: This follows from P3 and the first two paragraphs of the proof of Theorem
4 in [24].

P5: We show that every atomless probability space that satisfies P4 satisfies
P5. By P4, DF is compact. By the assumptions that G is closed valued and
F dominates Gy for each y ∈ Y , we know that H(y) = DGy is a closed subset
of DF . Therefore H is a compact valued correspondence from Y to M(X). To
show that H is upper semi-continuous, let yn converge to y ∈ Y , and for each n
let µn ∈ H(yn) = DGyn

and let fn be a measurable selection of Gyn such that
law (fn) = µn with limn→∞ µn = µ. Define a new correspondence J from (Ω,A, P )
to X × Y by

J(ω) = cl{(fn(ω), yn) : n ∈ N}.
By Theorem III.30 in [2], J is a closed valued measurable correspondence. Let Y0

be the compact set {y} ∪ {yn : n ∈ N}. Since J(ω) ⊆ F (ω) × Y0 for each ω, J is
compact valued. By P4, DJ is compact.
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It is clear that law (fn, yn) converges weakly to µ ⊗ δy, where δy is the Dirac
measure at y. Since law (fn, yn) belongs to DJ and DJ is compact, we know that
µ⊗δy ∈ DJ . Hence, there is a measurable selection (f, y) of J such that law (f, y) =
µ⊗ δy. By (c), µ ∈ DGy

= H(y). By Fact 3.4, H is upper semi-continuous.

P6: Since G is measurable, it follows that the function ω 7→ G(ω)(B) is measur-
able for each Borel set B in X. Let F be the correspondence from Ω to X such
that F (ω) = suppG(ω). It is easily checked that F is a closed valued, measurable
correspondence. Note that G(ω)(F (ω)) = 1 for all ω. Let µ be the probability mea-
sure on X such that µ(B) =

∫
Ω
G(ω)(B) dP for each Borel set B in X. We must

find an f ∈ L0(Ω, X) such that law (f) = µ, which gives (a), and f is a measurable
selection of F , which gives (b).

For every open subset O of X, we have

F−1(O) = {ω : F (ω) ∩O 6= ∅} = {ω : G(ω)(O) > 0}.
Thus F−1(O) is measurable, and

µ(O) =
∫

Ω

G(ω)(O) dP =
∫

G(ω)(O)>0

G(ω)(O) dP

≤ P (G(ω)(O) > 0) = P (F−1(O)).

So for every open set O in X we have

µ(O) ≤ P (F−1(O)).

Then by Proposition 3.5, µ belongs to the closure of DF . By P3, DF is closed, so
µ ∈ DF and there is a measurable selection f of F such that law (f) = µ.

3.3. Global Converse Results. In [24] it was shown that each of the properties
P1–P6 in Theorem 3.6 fails for the Lebesgue unit interval (T,L, λ). That paper
gave a correspondence G from (T,L, λ) to [−1, 1] that is a counterexample to each of
P1–P4, and also gave counterexamples to P5 and P6 on the space (T,L, λ). In the
following, we adapt these counterexamples to show that each part of Theorem 3.6
fails for every non-saturated atomless probability space.

Theorem 3.7. Each of the properties P1–P6 in Theorem 3.6 fails for every atom-
less probability space that is not saturated.

Proof. Let T = [0, 1], let (T,L, λ) be the Lebesgue unit interval, and let G be the
correspondence from T to the closed interval [−1, 1] such that G(t) = {t,−t} for
all t ∈ T . Then, DG is neither closed nor convex, and the uniform distribution µ
on [−1, 1] is not in DG (see Example 1 of [24]). There is another correspondence
G′ on (T,L, λ) such that law (G) = law (G′) but µ ∈ DG′ , so D(G) is not maximal.
Moreover, there is a sequence of finite valued correspondences Gn such that µ ∈ DGn

and Gn(t) → G(t) for each t, so property P5 fails for (T,L, λ) (see Example 3 of
[24]).

Suppose that (Ω,A, P ) is an atomless probability space that is not saturated.
By Fact 2.5 there is a set S ∈ A such that P (S) > 0 and AS is countably generated
(modulo sets of measure 0). Let PS be the probability measure on (S,AS) rescaled
from P . As in the proof of Theorem 2.7, there is a measurable mapping h from
S to T such that h induces an isomorphism between the corresponding measure
algebras of (S,AS , PS) and the Lebesgue unit interval (T,L, λ). Thus, one can
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convert a counterexample on the unit Lebesgue interval to a counterexample on
the non-saturated probability space (Ω,A, P ) through h.

Let B denote the Borel subsets of [−1, 1]. Let F be the correspondence from
Ω to [−1, 1] defined by setting F (ω) = G(h(ω)) for ω ∈ S and F (ω) = {0} for
ω /∈ S. For any measurable selection f of F , f(ω) = 0 for ω /∈ S, and there is
a Borel measurable mapping ϕ from T to [−1, 1] such that f(ω) = ϕ(h(ω)) for
ω ∈ S. It is clear that ϕ is a measurable selection of G. Let δ0 be the probability
measure on [−1, 1] such that δ0({0}) = 1. It is then straightforward to check that
DF = (1−P (S)){δ0}+P (S)DG. Hence, DF is neither maximal, closed, nor convex.
Therefore, properties P1–P4 fail for the non-saturated probability space (Ω,A, P ).
Moreover, putting Fn(ω) = Gn(h(ω)) on S and Fn(ω) = 0 for ω /∈ S, we see that
property P5 also fails for (Ω,A, P ).

Let H be the A-measurable mapping from Ω to M([−1, 1]) defined by setting
H(ω) = (δh(ω) + δ−h(ω))/2 for ω ∈ S and H(ω) = δ0 for ω /∈ S. Suppose that
there is an A-measurable mapping f from Ω to [−1, 1] such that f is a measurable
selection of F (which is suppH), and for every Borel set B in [−1, 1], law (f)(B) =∫
Ω
H(ω)(B)dP . Thus, law (f) = (1−P (S))δ0 +P (S)µ, which implies that µ ∈ DG.

This is a contradiction. Hence property P6 fails for the non-saturated probability
space (Ω,A, P ).

3.4. Local Converse Results. We will use Theorem 2.7 on local saturation to
prove local converses for each of the parts P1–P4 and P6 of Theorem 3.6. These
improve the global converse results in Theorem 3.7, and are proved by a different
method. We do not have a nice local converse for P5, because P5 involves an infinite
family of correspondences. In this section it will always be understood that F,G
are closed valued measurable correspondences to a Polish space X. For properties
P1–P4, we will focus on the set of correspondences F that have a particular law
ν ∈M(FX).

To get local converse results for a particular law ν, we need ν to be sufficiently
powerful—we need ν to be atomless, and to be traceable as in Definition 3.8 below.
Traceable correspondences are powerful in the sense that the original correspon-
dence can be recovered from any selection. Our local converse result will show that
(Ω,A, P ) must already be saturated if there is just one atomless traceable measure
ν and one of the properties P1–P4 that holds for all F ∈ law−1(ν) on (Ω,A, P )
but fails for some G ∈ law−1(ν) on the Lebesgue unit interval (T,L, λ).

Definition 3.8. A Borel set S ⊆ FX is traceable if there is a Borel function
ψ : X → FX such that ψ(x) = U whenever x ∈ U ∈ S. A correspondence F is
traceable if there is a traceable set S such that F (ω) ∈ S a.s. We also say that F
is traced by ψ.

It is easy to see that if F is traced by ψ and law (F ) = law (G), then G is traced
by ψ. So if F is traced by ψ and ν = law (F ), we may say without ambiguity that
ν is traceable, and that ν is traced by ψ.

Example 3.9. (i) The correspondence G from the Lebesgue unit interval (T,L, λ)
to [−1, 1] used in the proof of Theorem 3.7 is traced by the Borel function ψ(s) =
{s,−s}. Recall that each of the properties P1–P4 fail for G. We also note that the
correspondence G is such that σ(G) = L, and that law (G) is atomless.

(ii) For any G, we can build a new correspondence Ĝ to FX ×X that “carries
along” G, by defining Ĝ(·) = {G(·)} × G(·). Ĝ is closed-valued and measurable,
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and is traced by the Borel function ψ(U, x) = {U}×U . Note that if any one of the
properties P1–P4 fails for G, then that property also fails for Ĝ.

Part (ii) of the example shows that every correspondence can be upgraded in
a canonical way to a traceable correspondence. Here are our local converses for
P1–P4. Example 3.9 shows that these results are not vacuous.

Theorem 3.10. Let ν ∈ M(FX) be atomless and traceable. Then each of the
following holds.

P1(ν): Suppose that (Ω,A, P ) has the property that DF is maximal whenever
law (F ) = ν, but the Lebesgue unit interval (T,L, λ) does not have this property.
Then (Ω,A, P ) is saturated.

P2(ν): Suppose that (Ω,A, P ) has the property that DF is convex whenever
law (F ) = ν, but this property fails for (T,L, λ) with a counterexample G such that
σ(G) = L. Then (Ω,A, P ) is saturated.

P3(ν): Suppose that (Ω,A, P ) has the property that DF is closed whenever
law (F ) = ν, but (T,L, λ) does not have this property. Then (Ω,A, P ) is saturated.

P4(ν): Assume that ν{Z ∈ FX : Z compact} = 1. Suppose (Ω,A, P ) has the
property that DF is compact whenever law (F ) = ν, but (T,L, λ) does not have this
property. Then (Ω,A, P ) is saturated.

Before beginning the proof, we make some observations about traceable corre-
spondences.

Suppose ψ : X → Y is Borel. For any random element f of X, let fψ(ω) =
(ψ(f(ω)), f(ω)). Note that if law (f) = law (g) then law (fψ) = law (gψ), so if
µ = law (f) we may unambiguously define µψ = law (fψ).

If ν is traced by ψ, then whenever law (F ) = ν and f is a measurable selection of
F with law (f) = µ, we have fψ(ω) = (F (ω), f(ω)) a.s. and hence law (F, f) = µψ

and margFX
µψ = ν.

Lemma 3.11. Suppose that ν is traced by ψ, and that µ ∈ DH for some H such
that law (H) = ν. Then (Ω,A, P ) has the saturation property for µψ if and only if
for every correspondence F ∈ law−1(ν) on (Ω,A, P ), we have µ ∈ DF .

Proof. Suppose that for every correspondence F ∈ law−1(ν) on (Ω,A, P ), we have
µ ∈ DF . Then every F ∈ law−1(ν) has a measurable selection f with law (f) = µ,
and so law (F, f) = µψ. This shows that (Ω,A, P ) has the saturation property for
µψ.

Now suppose (Ω,A, P ) has the saturation property for µψ and let F ∈ law−1(ν).
By hypothesis, there is a H ∈ law−1(ν) that has a measurable selection h such that
law (h) = µ. Then law (H, h) = µψ. By the saturation property for µψ, there exists
f such that law (F, f) = µψ. Then law (f) = µ. Since h is a measurable selection of
H, it follows from the proof of P1 in Theorem 3.6 that f is a measurable selection
of F , and hence µ ∈ DF .

We now prove Theorem 3.10.

Proof. In this proof we will deal with the two probability spaces (Ω,A, P ) and the
Lebesgue unit interval (T,L, λ). When we use the law−1 notation, it will always be
understood to be with respect to (Ω,A, P ).
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By Theorem 3.6, there is an H on a saturated probability space such that
law (H) = ν and DH is maximal. We let D = DH . Then for any F with law (F ) = ν,
DF is maximal if and only if DF = D. Moreover, by Theorem 3.6, D is convex and
closed.

By hypothesis, ν is traced by the Borel function ψ : X → FX . Note that since
ν is atomless, µψ is atomless for every µ ∈ D.

P1(ν): By hypothesis there is a correspondence G on (T,L, λ) such that law (G) =
ν and DG is not maximal, so there is a measure µ ∈ D \ DG. Therefore by
Lemma 3.11, (T,L, λ) does not have the saturation property for µψ. But for each
F ∈ law−1(ν), DF is maximal, so µ ∈ DF . By Lemma 3.11, (Ω,A, P ) does has the
saturation property for µψ. By Theorem 2.7, (Ω,A, P ) is saturated.

P2(ν): By hypothesis, there is a correspondence G on (T,L, λ), measures µ1, µ2 ∈
DG, and α ∈ (0, 1) such that law (G) = ν, σ(G) = L, and

µ = αµ1 + (1− α)µ2 /∈ DG.

Since DG ⊆ D and D is convex, µ ∈ D. By Lemma 3.11, (T,L, λ) does not have
the saturation property for µψ. We have µ1 = law (g1) and µ2 = law (g2) for some
measurable selections g1, g2 of G. Since σ(G) = L, g1 and g2 are σ(G)-measurable,
so there are Borel functions ψ1, ψ2 such that g1 = ψ1(G), g2 = ψ2(G).

It follows that for each F ∈ law−1(ν), µ1 = law (ψ1(F )) and µ2 = law (ψ2(F ))
belong to DF . By hypothesis, DF is convex, so µ belongs to DF . By Lemma 3.11,
(Ω,A, P ) has the saturation property for µψ. By Theorem 2.7, (Ω,A, P ) is satu-
rated.

P3(ν): By hypothesis, there is a correspondence G on (T,L, λ) such that law (G) =
ν and DG is not closed. Fix µ in cl(DG) \ DG. Since DG ⊆ D and D is closed,
µ ∈ D. By Lemma 3.11, (T,L, λ) does not have the saturation property for µψ.

Take any F ∈ law−1(ν) on (Ω,A, P ). By Proposition 3.5, for every open set O
in X we have µ(O) ≤ λ(G−1(O)) = P (F−1(O)), and hence µ ∈ cl(DF ). Since DF

is closed, µ ∈ DF . By Lemma 3.11, (Ω,A, P ) has the saturation property for µψ.
By Theorem 2.7, (Ω,A, P ) is saturated.

P4(ν): By hypothesis, there is a compact valued correspondence G on (T,L, λ)
such that law (G) = ν and DG is not compact. By Theorem 3.6, DG is contained
in a compact set. Therefore DG is not closed. The result now follows from P3(ν).

To get a local converse to P6, we need a notion of a traceable measurable mapping
from Ω to M(X) that is analogous to the notion for correspondences.

Definition 3.12. A Borel set S ⊆M(X) is traceable if there is a Borel function
ψ : X →M(X) such that ψ(x) = τ whenever τ ∈ S and x ∈ supp τ . A measurable
mapping G from Ω to M(X) is traceable if there is a traceable set S such that
G(ω) ∈ S a.s. We also say that G is traced by ψ.

Note that if G is traced by ψ and law (G′) = law (G), then G′ is traced by ψ. If
G is traced by ψ and ν = law (G), we say that ν is traceable, and that ν is traced
by ψ.

As in the case of correspondences, if ν is traced by ψ, law (G) = ν, F (ω) =
suppG(ω), and f is a measurable selection of F with µ = law (f), then fψ(ω) =
(G(ω), f(ω)) a.s., law (G, f) = µψ, and margM(X) µψ = ν.
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Example 3.13. (i) The measurable mapping G(t) = (δt + δ−t)/2 on the Lebesgue
unit interval (T,L, λ) is traceable. This mapping was used in the proof of Theo-
rem 3.7 above, and it was shown in [24] that property P6 fails for G. We also note
that law (G) is atomless.

(ii) Let G be a measurable mapping from (Ω,A, P ) to M(X). Let Ĝ be the
measurable mapping from (Ω,A, P ) to M(M(X) × X) such that for each ω ∈ Ω,
Ĝ(ω) = δG(ω) ⊗ G(ω) where δy is the Dirac measure at y and ⊗ is the independent
product operation. Note that

supp Ĝ(ω) = {G(ω)} × suppG(ω).

Therefore Ĝ is traced by the Borel function ψ(τ, x) = δτ ⊗ τ . We note that if
property P6 fails for G, then it fails for Ĝ.

Here is our local converse result for P6. Again, Example 3.13 shows that the
result is not vacuous.

Theorem 3.14. Let ν ∈ M(M(X)) be atomless and traceable. Suppose that
(Ω,A, P ) has the property that P6 holds for G whenever law (G) = ν, but the
Lebesgue unit interval (T,L, λ) does not have this property. Then (Ω,A, P ) is sat-
urated.

Proof. Let ν be traced by the Borel function ψ : X → M(X). There is a unique
measure µ ∈ M(X) depending only on ν such that whenever law (G) = ν on some
probability space (Γ, C, Q) and B is Borel in M(X)×X,

µ(B) =
∫

Γ

G(γ)(B) dQ.

Since ν is traced by ψ, margM(X) µψ = ν.
Let G ∈ law−1(ν) on (Ω,A, P ). By hypothesis, there is a random element f

of X that satisfies conditions (a) and (b) of P6. By (a), law (f) = µ. By (b), f
is a measurable selection of F where F (ω) = suppG(ω). Since ν is traced by ψ,
law (G, f) = µψ. This shows that (Ω,A, P ) has the saturation property for µψ.

By hypothesis, on the Lebesgue unit interval (T,L, λ) there is a random element
G′ of M(X) such that law (G′) = ν but P6 fails for G′. We will prove that there
is no h with law (G′, h) = µψ. This will show that (T,L, λ) does not have the
saturation property for µψ, and by Theorem 2.7 it will follow that (Ω,A, P ) is
saturated. Assume to the contrary that there is an h with law (G′, h) = µψ. Then
law (h) = µ, so (G′, h) satisfies condition (a). Let f be the random element on
(Ω,A, P ) from the preceding paragraph, with law (G, f) = µψ. Since law (G′, h) =
µψ = law (G, f) and f is a measurable selection of suppG(·), h is a measurable
selection of suppG′(·). Thus (G′, h) satisfies condition (b) as well, contradicting
our hypothesis that property P6 fails for G′. This proves that there is no h with
law (G′, h) = µψ, as required.

4. Large Games on Saturated Probability Spaces

In this section we further develop our underlying themes in the context of games.
We show that saturated spaces have the desirable property that every game with
a large number of players has a Nash equilibrium, and that no other probability
spaces have this property. We also show that saturated spaces have the property
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that the set of laws of Nash equilibria for each game is closed in the weak topology,
and we use Theorem 2.9 to get a strong local converse for that fact.

We shall first give a formal definition of a game based on a probability space of
players (Ω,A, P ). Let A be a compact metric space, and let UA be the space of real-
valued continuous functions on A ×M(A) endowed with the sup-norm topology.
By a game G with player space Ω and action space A we will mean a random
element of UA on (Ω,A, P ). Thus, a game simply associates each player ω ∈ Ω
with a payoff function G(ω)(a, τ) that depends on the player’s own action a and
the distribution τ of actions by all the players. To improve readability, we also use
Gω to denote G(ω).

We will concentrate on the case that (Ω,A, P ) is atomless. We say that such a
game is “large” because it has at least continuum many players.

Definition 4.1. A Nash equilibrium of a game G is a random element g of A
such that for P -almost all ω ∈ Ω,

Gω(g(ω), law (g)) ≥ Gω(a, law (g))

for all a ∈ A.

Thus, if g is a Nash equilibrium, then the distribution of actions by all the players
is law (g) and every player chooses her optimal action g(ω) under this societal
distribution. Note that we only consider pure-strategy Nash equilibria here.

Mas-Colell [20] introduced a corresponding notion of a measure game and Nash
equilibrium distribution. A measure game with action space A is a probability
measure ν ∈M(UA).

Definition 4.2. A Nash equilibrium distribution of a measure game ν is a
probability measure µ ∈M(UA ×A) such that margUA

µ = ν, and

µ{(u, x) : (∀a ∈ A)u(x,margA µ) ≥ u(a,margA µ)} = 1.

It is easy to see that for any game G with action space A and any random element
g of A, g is a Nash equilibrium of G if and only if law (G, g) is a Nash equilibrium
distribution of law (G). Given a Nash equilibrium distribution µ of a measure game
ν, we say that a probability space (Ω,A, P ) realizes µ if every game G ∈ law−1(ν)
on that space has a Nash equilibrium g such that law (G, g) = µ.

As a special case of Theorem 2.7, we immediately get a local characterization of
saturated spaces in terms of Nash equilibria.

Corollary 4.3. Let ν be a measure game that is atomless as a measure, and µ be
a Nash equilibrium distribution for ν. Suppose the Lebesgue unit interval (T,L, λ)
does not realize µ. Then an atomless probability space (Ω,A, P ) is saturated if and
only if it realizes µ.

Proof. We see from the definitions that a probability space realizes a Nash equilib-
rium distribution µ if and only if it has the saturation property for µ.

Corollary 4.4. Let A be a compact metric space and let ν be an atomless measure
on UA that has a unique Nash equilibrium distribution. Suppose that (Ω,A, P ) has
the property that every G ∈ law−1(ν) has a Nash equilibrium, but the Lebesgue unit
interval (T,L, λ) does not. Then (Ω,A, P ) is saturated.
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Proof. Let µ be the unique Nash equilibrium distribution of ν. Then µ is atomless.
Since µ is unique, whenever law (G) = ν and g is a Nash equilibrium of G we have
law (G, g) = µ. It follows that (Ω,A, P ) realizes µ but (T,L, λ) does not. By
Corollary 4.3, (Ω,A, P ) is saturated.

We now turn to the question of the existence of Nash equilibria. We will use
Mas-Colell’s existence theorem for Nash equilibrium distributions.

Fact 4.5. (Mas-Colell [20]). Every measure game with compact metric action space
A has a Nash equilibrium distribution.

Our next theorem gives a global characterization of saturated probability spaces
by the existence of Nash equilibria.

Theorem 4.6. Let (Ω,A, P ) be an atomless probability space, and A an uncount-
able compact metric space. Then (Ω,A, P ) is saturated if and only if every game G
with player space (Ω,A, P ) and action space A has a Nash equilibrium.

Proof. Suppose that (Ω,A, P ) is saturated. By Fact 4.5, the measure game ν =
law (G) has a Nash equilibrium distribution µ. By full saturation, there is a random
element g of A such that law (G, g) = µ. Therefore g is a Nash equilibrium of G.

Instead of using Fact 4.5, one can also get a Nash equilibrium of G by using the
proof of Theorem 1 of [15]. One only needs to use the distributional properties of
correspondences on saturated probability spaces (instead of Loeb spaces) such as
the convexity, compactness, and preservation of upper semi-continuity.2

For the converse, we first consider the case that the action space A is the interval
[−1, 1]. By Corollary 4.4 it suffices to find a game G on the Lebesgue unit interval
(T,L, λ) such that G has no Nash equilibrium and law (G) is atomless and has a
unique Nash equilibrium distribution. Let G be the game defined in Section 2 of
[14], and Example 3 in [23], where G is a one-to-one continuous mapping from T to
UA. Let U be the image of G, which is a compact set in UA. It is shown in [14] that
G has no Nash equilibrium. It is clear from the definition in [14] that ν = law (G)
is atomless. The uniqueness of the Nash equilibrium distribution for the measure
game law (G) is implicit in the proof in [14] and [23], and can be seen as follows.

Let µ be any Nash equilibrium distribution for the measure ν. Let G′ be a game
on (Ω,A, P ) with a Nash equilibrium f and law (G′, f) = µ. By modifying the
definition of G′ on a null set, we may assume that G′ takes values in the set U .
As shown in [14] and [23], law (f) is the uniform distribution on [−1, 1], and when
G′(ω) = G(t), the best response is t or −t. Fix any ω ∈ Ω such that f(ω) is a best
response; note that such elements ω ∈ Ω form a set of P -full measure. Then, there
is a unique t ∈ T such that G′(ω) = G(t), which implies that f(ω) must be t or −t.
Hence, we have G′(ω) = G(|f(ω)|). Therefore, µ = law (G′, f) = law (G(|f(·)|), f) is
the unique Nash equilibrium distribution for ν.

Finally, we prove the converse for the general case that A is any fixed uncountable
compact metric space. Suppose that (Ω,A, P ) is not saturated. By the converse
for the case that [−1, 1] is the action space, there is a game G1 with player space
(Ω,A, P ) and action space [−1, 1] but without a Nash equilibrium.

2In fact, the full statements of Theorem 1 for large games and Theorem 3 for finite-player
games with incomplete information in [15] can be restated on saturated probability spaces instead
of Loeb spaces; exactly the same proofs work in this more general situation. The same thing
also works for Theorem 2 of [15] by using integration of correspondences on saturated probability
spaces.



WHY SATURATED PROBABILITY SPACES ARE NECESSARY 19

It is noted in [23], page 339, that there exists a continuous surjective mapping
F from A to [−1, 1] and a continuous injective mapping F0 from U[−1,1] to UA

such that F0(u)(x, y) = u(F (x), yF−1) whenever u ∈ UA, x ∈ A, y ∈ M(A). We
can now define a new game G2 with player space (Ω,A, P ) and action space A by
using the composition mapping G2 = F0 ◦ G1. Suppose f2 is a Nash equilibrium
for the new game G2. Then it can be easily checked that the composition mapping
f1 = F ◦ f2 is a Nash equilibrium for the game G1. This is a contradiction. Hence
the set of Nash equilibria of G2 is empty, and the converse for the general case is
shown.

For each game G, let

EG = {law (G, g) : g is a Nash equilibrium of G}.
Note that every measure µ ∈ EG is a Nash equilibrium distribution of law (G).
We now prove that saturated probability spaces have a closure property for Nash
equilibria, and then use Theorem 2.9 to get a local converse.

Theorem 4.7. Suppose (Ω,A, P ) is saturated. Then for every game G on Ω with
compact metric action space A, the set EG is closed in M(UA ×A).

Proof. Suppose µn ∈ EG and µn converges weakly to µ. Take a Nash equilibrium
gn of G such that law (G, gn) = µn. By full saturation, there is a g ∈ L0(Ω, A) with
law (G, g) = µ. Let νn = law (gn) and ν = law (g). Then νn converges weakly to ν.
Since A is separable it has a countable dense subset A0.

Fix any a ∈ A0. We have

Gω(gn(ω), νn) ≥ Gω(a, νn) a.s.

By [1], Theorem 4.4 on page 27, law (G, gn, νn) converges weakly to law (G, g, ν) in
M(UA × A×M(A)). It follows that hn(ω) = Gω(gn(ω), νn)− Gω(a, νn) converges
weakly to h(ω) = Gω(g(ω), ν)− Gω(a, ν). Since law (hn)([0,∞)) = 1 for each n, we
have law (h)([0,∞)) ≥ lim supn→∞ law (hn)([0,∞)) = 1. Hence,

Gω(g(ω), ν) ≥ Gω(a, ν) a.s.

By grouping countably many null sets together, we see that for P -almost all
ω ∈ Ω,

(∀a ∈ A)Gω(g(ω), ν) ≥ Gω(a, ν),
which means that g is a Nash equilibrium of G, so µ = law (G, g) ∈ EG .

Corollary 4.8. For each measure game ν with compact metric action space A, the
set of all Nash equilibrium distributions for ν is closed in M(UA ×A).

Here is our local converse for Theorem 4.7.

Corollary 4.9. Let ν be a measure game with compact metric action set A. Sup-
pose that on (Ω,A, P ), EG is closed for every game G ∈ law−1(ν), but on the
Lebesgue unit interval (T,L, λ) there is a game G′ ∈ law−1(ν) such that σ(G′) = L
and EG′ is not closed. Then (Ω,A, P ) is saturated.

Proof. Let C be the set of Nash equilibrium distributions for ν. For each game G
with law (G) = ν, EG = C(G). C is non-empty by Fact 4.5, so ν = margUA

µ for
some µ ∈ C. Then by Theorem 2.9, (Ω,A, P ) is saturated.

The following simple example shows that Corollary 4.9 is not vacuous.
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Example 4.10. Let G′ be the game on the Lebesgue unit interval (T,L, λ) with
action space A = [−1, 1] and the payoff function G′t(a, τ) = −|t−|a||. Then σ(G′) =
L. There is a game G with law (G) = law (G′) that has a Nash equilibrium g such
that law (g) is the uniform probability measure on A. Then law (G, g) belongs to the
closure of EG′ but not to EG′ .

5. From One Saturated Probability Space to Another

In this section, we show that if the properties P1–P6 in Theorem 3.6 are estab-
lished for one saturated probability space, then they hold for every other saturated
probability space. The key is the choice of appropriate mappings for applying full
saturation. This result combined with the known theorems in [24] that properties
P1–P6 hold for atomless Loeb probability spaces, and the fact that atomless Loeb
probability spaces are saturated, gives an alternative proof of Theorem 3.6. We will
also prove analogous results for Theorems 4.6 and 4.7 concerning Nash equilibria
in large games.

Of course, each of the properties under discussion was already proved outright
for all saturated probability spaces in Theorem 3.6 and in Section 4. Our point
here is that if we add the hypothesis that the properties hold for some particular
saturated probability space, then there is a very simple proof that the properties
hold for all saturated probability spaces.

This demonstrates a general technique for extending certain types of results from
atomless Loeb probability spaces (or even the simplest hyperfinite Loeb counting
spaces) to all saturated probability spaces. Thus, hyperfinite Loeb counting spaces
can play a prototype role in the class of all saturated probability spaces.

Lemma 5.1. Let (Ω,A, P ) and (Γ, C, Q) be two saturated probability spaces. For
any closed measurable correspondences F on (Ω,A, P ) and F ′ on (Γ, C, Q), if
law (F ) = law (F ′) then DF = DF ′ .

Proof. Let µ ∈ DF . We have µ = law (f) for some measurable selection f of
F . Since (Γ, C, Q) is saturated, there is a random element f ′ of X such that
law (F ′, f ′) = law (F, f). Because f is a selection of F and law (F ′, f ′) = law (F, f),
it follows from the proof of P1 in Theorem 3.6 that f ′ is a selection of F ′. There-
fore law (f ′) ∈ DF ′ . This shows that Df ′ ⊇ FF . The other inclusion follows by
symmetry.

The following proposition shows that if all the regularity properties P1–P6 for
distribution of correspondences hold for one particular saturated probability space,
then they hold for any other saturated probability space.

Proposition 5.2. Let (Ω,A, P ) and (Γ, C, Q) be two saturated probability spaces.
Assume that each of the properties P1–P6 hold for (Ω,A, P ). Then each of the
properties P1–P6 hold for (Γ, C, Q).

Proof. P1: Let F ′ be a closed valued measurable correspondence from (Γ, C, Q) to
X. Since (Ω,A, P ) is atomless, there is a measurable mapping F from (Ω,A, P ) to
FX such that law (F ) = law (F ′). It follows that F is a closed valued, measurable
correspondence from (Ω,A, P ) to X. Lemma 5.1 shows that DF = DF ′ . By
property P1 for (Ω,A, P ), DF is maximal, so DF ′ is also maximal.

P2: The convexity of the set of laws of measurable selections of an arbitrary cor-
respondence follows from the case of a correspondence consisting of two measurable
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functions. Without loss of generality, assume that F ′ is a closed valued measurable
correspondence on (Γ, C, Q).

As in the proof for P1, there exists a closed valued, measurable correspondence
from (Ω,A, P ) to X such that law (F ) = law (F ′). By Lemma 5.1, DF ′ = DF .
Since DF is convex, so is DF ′ .

P3: We can assume without loss of generality that F ′ is a closed valued measur-
able correspondence on (Γ, C, Q). The second paragraph in the proof of P2 above
shows that DF ′ = DF for some closed valued, measurable correspondence from
(Ω,A, P ) to X. Since DF is closed, so is DF ′ .

P4: Let CX be the space of compact subsets of X endowed with the Hausdorff
metric, which is a complete separable metric. We can assume without loss of
generality that F ′ is a compact valued measurable correspondence on (Γ, C, Q).
The second paragraph in the proof of P2 shows that DF ′ = DF for some closed
valued, measurable correspondence F from (Ω,A, P ) to X with law (F ) = law (F ′).
Since F ′ is compact valued, law (F ′)(CX) = 1, and hence law (F )(CX) = 1. This
means that one can take F to be compact valued. Since DF is compact, so is DF ′ .

P5: Since property P4 holds for (Ω,A, P ), the preceding paragraph shows that
P4 holds for (Γ, C, Q). The proof of Theorem 3.6 shows that any atomless proba-
bility space that has property P4 has property P5. Thus P5 holds for (Γ, C, Q).

P6: Let G′ be a measurable mapping from (Γ, C, Q) to the space M(X) of
probability measures on X, and F ′ a correspondence from (Γ, C, Q) to X such that
F ′(γ) = suppG′(γ) for each γ ∈ Γ.

As in the proof of P2, let G and F be measurable mappings from (Ω,A, P )
to M(X) and FX respectively such that law (G, F ) = law (G′, F ′). It follows
that F is a closed valued, measurable correspondence from (Ω,A, P ) to X. Since
G′(γ)(F ′(γ)) = 1 for all γ ∈ Γ, we know that G(ω)(F (ω)) = 1 for almost all ω.

There is a measurable mapping f from (Ω,A, P ) to X such that (i) for every Borel
set B in X, law (f)(B) =

∫
Ω
G(ω)(B)dP ; (ii) for each ω ∈ Ω, f(ω) ∈ suppG(ω) ⊆

F (ω). By full saturation, there is a measurable mapping f ′ from (Γ, C, Q) to X
such that law (G, F, f) = law (G′, F ′, f ′). This f ′ will have the desired property.

Note that for each of the properties P1–P4 and P6, the above proof of that
property for (Γ, C, Q) used only the assumption that the same property holds for
(Ω,A, P ); it did not use any of the results from Section 3. To prove that P5 holds
for (Γ, C, Q), we used the assumption that P4 holds for (Ω,A, P ) and a fact from
Subsection 3.1.

The following proposition shows (without using Mas-Colell’s result stated in
Fact 4.5) that if the existence result for large games as stated in Theorem 4.6 holds
for one particular saturated probability space as the player space, then it holds
for any other saturated probability space as the player space. A similar statement
holds for the closure result in Theorem 4.7.

Proposition 5.3. Let (Ω,A, P ) and (Γ, C, Q) be two saturated probability spaces,
and let A be a compact metric space.

(i) If every game with player space (Ω,A, P ) and compact metric action space A
has a Nash equilibrium, then every game with player space (Γ, C, Q) and the same
action space A has a Nash equilibrium.
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(ii) If for every game with player space (Ω,A, P ) and compact metric action
space A, EG is closed, then for every game G′ with player space (Γ, C, Q) and the
same action space A, EG′ is closed.

Proof. (i) Suppose that every game G with player space (Ω,A, P ) and action space
A has a Nash equilibrium. Let G′ be a game with player space (Γ, C, Q) and the same
action space A. By Lemma 2.1 (ii) there is a random element G of UA on (Ω,A, P )
such that law (G) = law (G′). The game G has a Nash equilibrium g ∈ L0(Ω, A), so
law (G, g) is a Nash equilibrium distribution for law (G). By full saturation there is
a random element g′ of A on (Γ, C, Q) such that law (G′, g′) = law (G, g). Hence g′

is a Nash equilibrium for G′.
(ii) An argument like the proof of part (i) shows that for any games G on (Ω,A, P )

and G′ on (Γ, C, Q) with law (G) = law (G′), we have EG = EG′ . Since EG is closed,
it follows that EG′ is closed as well.

Acknowledgments. This work was initiated when Yeneng Sun visited the Uni-
versity of Wisconsin-Madison in May 2000. The first draft, [13], was written in
April 2002. In the earlier version, the distributional properties of correspondences
and the existence of pure strategy equilibria in large games on saturated probability
spaces were obtained from the corresponding results on Loeb measure spaces via full
saturation. The present version, which was completed in July 2008, gives simpler
proofs for the results on correspondences and games using the full saturation di-
rectly, rather than using parallel results for Loeb spaces. The local converse results
for correspondences and games are also new to this version. Some of our results
have also been reported at various places, including a 2002 ICM satellite confer-
ence Symposium on Stochastics and Applications, Singapore, August 15-17, 2002
(http://ww1.math.nus.edu.sg/ssa/abstracts/YenengSunAbstract.PDF), and the Work-
shop on Mathematical Logic and its Applications, Singapore, June 17-18, 2004; sem-
inar talks at the City University of Hong Kong in December 2003, the Academia
Sinica, Taiwan in December 2005, the University of Illinois at Urbana-Champaign
in October 2006. Some results as presented in the earlier draft [13] have also been
used by colleagues in several later papers [18], [21], [22] and [25].

References

[1] P. Billingsley. Convergence of Probability Measures, Wiley 1968.
[2] C. Castaing and M. Valaldier. Convex Analysis and Measurable Multifunctions. Lecture

notes in Mathematics, 580, Springer-Verlag, Berlin/New York 1977.
[3] S. Fajardo and H. J. Keisler, Neometric spaces, Advances in Math. 118 (1996), 134-175.
[4] S. Fajardo and H. J. Keisler, Existence theorems in probability theory, Advances in

Math. 120 (1996), 191-257.
[5] S. Fajardo and H. J. Keisler, Model Theory of Stochastic Processes, Lecture Notes in

Logic No. 14, Association for Symbolic Logic, Urbana, Illinois, 2002.
[6] D. H. Fremlin, Measure Algebras, in Handbook of Boolean Algebras, Volume 3, Elsevier,

Amsterdam, 1989.
[7] W. Hildenbrand. Core and Equilibria of a Large Economy, Princeton, 1974.
[8] D. N. Hoover and H. J. Keisler. Adapted probability distributions, Trans. Amer. Math.

Soc. 286 (1984), 159-201.
[9] D. N. Hoover and E. Perkins. Nonstandard construction of the stochastic integral and

applications to stochastic differential equations. I, II, Trans. Amer. Math. Soc. 275 (1983),
1-58.

[10] H. J. Keisler, An infinitesimal approach to stochastic analysis, Memoirs Amer. Math.
Soc. 48 (1984), No. 297.



WHY SATURATED PROBABILITY SPACES ARE NECESSARY 23

[11] H. J. Keisler, Rich and saturated adapted spaces, Advances in Math. 128 (1997), 242-
288.

[12] H. J. Keisler, Quantifier elimination for neocompact sets, J. Symbolic Logic 63 (1998),
1442-1472.

[13] H. J. Keisler and Y. Sun, The necessity of rich probability spaces, draft paper, 2002.
[14] M. A. Khan, K. P. Rath, Y. N. Sun, On the existence of pure strategy equilibria in games

with a continuum of players, J. Econ. Theory 76 (1997), 13-46.
[15] M. A. Khan and Y. N. Sun, Non-cooperative games on hyperfinite Loeb spaces, J. Math.

Econ. 31 (1999), 455-492.
[16] T. Lindstrom. Hyperfinite stochastic integration I, II, III. Math. Scand. 46 (1980).
[17] P. A. Loeb, Conversion from nonstandard to standard measure spaces and applications

in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113-122.
[18] P. A. Loeb and Y. Sun, Purification and Saturation, Proc. Amer. Math. Soc., published

online in February 2009.
[19] D. Maharam. On homogeneous measure algebras, Proc. Nat. Acad. Sci. U.S.A. 28

(1942), 108-111.
[20] A. Mas-Colell. On a theorem of Schmiedler. J. Math. Econ. 13 (1984), 201-206.
[21] M. Noguchi, Existence of Nash equilibria in large games, J. Math. Econ. 45 (2009),

168-184.
[22] K. Podczeck, On the convexity and compactness of the integral of a Banach space valued

correspondence, J. Math. Econ. 44 (2008), 836-852.
[23] K. P. Rath, Y. N. Sun, S. Yamashige, The nonexistence of symmetric equilibria in

anonymous games with compact action spaces, J. Math. Econ. 24 (1995), 331-346.
[24] Y. N. Sun, Distributional properties of correspondences on Loeb spaces, J. Functional

Analysis 139 (1996), 68-93.
[25] Y. N. Sun and N. C. Yannelis, Saturation and the integration of Banach valued corre-

spondences, J. Math. Econ. 44 (2008), 861865.

Department of Mathematics, University of Wisconsin,, 480 Lincoln Drive, Madison
WI 53706, U.S.A.

E-mail address: keisler@math.wisc.edu

Department of Mathematics, National University of Singapore,, 2 Science Drive 2,
Singapore 117543, Republic of Singapore

E-mail address: matsuny@nus.edu.sg


