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Abstract. We show that for each n and m, there is an existential first
order sentence which is NOT logically equivalent to a sentence of quan-
tifier rank at most m in infinitary logic augmented with all generalized
quantifiers of arity at most n. We use this to show the strictness of the
quantifier rank hierarchies for various logics ranging from existential (or
universal) fragments of first order logic to infinitary logics augmented
with arbitrary classes of generalized quantifiers of bounded arity.

The sentence above is also shown to be equivalent to a first order
sentence with at most n+ 2 variables (free and bound). This gives the
strictness of the quantifier rank hierarchies for various logics with only
n + 2 variables. The proofs use the bijective Ehrenfeucht-Fraisse game
and a modification of the building blocks of Hella.

1. Introduction

In the context of finite model theory and descriptive complexity, first order
logic FO is known to have severe limitations. On one hand it cannot count,
because very simple linear time queries such as parity are not first order
definable. On the other hand, it lacks recursion, because it cannot express
some simple nondeterministic logarithmic space queries such as reachability.

To overcome the first limitation, we can augment first order logic with
the ability to count. If S is a set of natural numbers, the quantifier QS can
be added to first order logic, with the following semantics:

A |= (QS x)φ(x) iff |{a ∈ A : A |= φ[a]}| ∈ S.

The property of odd parity is simply expressed by (QS x)(x = x), where S
is the set of odd natural numbers.

To express a recursive query like reachability, we can augment first order
logic with the transitive closure operator TC with the following semantics1:

A |= (TC x1, x2, y, z)(φ(x1, x2), α(y), β(z)) iff for each pair
(a, b) in A, if (A, a) |= α[a] and (A, b) |= β[b], then (a, b)
belongs to the transitive closure of the relation on A defined
by φ(x1, x2).

Reachability over the signature {E, s, t} is expressed by the sentence

(TC x1, x2, y, z)(E(x1, x2), y = s, z = t).

Date: May 22, 2010.
1Usually Transitive Closure is defined by [(TC x1, x2)φ(x1, x2)](y

′, z′), which is the
special case of the definition here, with α(y, y′) being y = y′ and β(z, z′) being z = z′.
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These different ways of extending first order logic are two instances of the
generalized quantifiers introduced by Lindström in [Lin66]. A generalized
quantifierQ is simply a class of (finite) models with a fixed finite signature νQ
that is closed under isomorphism, and acts like an oracle in the interpretation
of a formula. Q is n-ary, or has arity n, if n is the maximum number
of arguments in the relations in νQ. In general, we can add a class Q
of generalized quantifiers to first order logic to produce the logic FO(Q)
(defined in Section 2 below).

It should be noted here that if Q is the class of all generalized quanti-
fiers, then any class of Boolean queries on finite models can be defined by a
formula in FO(Q). (Non-Boolean queries can also be expressed by turning
them into Boolean queries over wider signatures, similar to the definition of
TC above.) One would like to capture interesting classes of queries by aug-
menting FO with finitely many generalized quantifiers. However, this is not
always possible. Hella proved in [Hel96] that if the classQ has bounded arity,
then FO(Q) cannot capture the language PTIME, or even the weaker lan-
guage DATALOG. This suggests that the class of all generalized quantifiers
is too large, but one should consider infinite class of generalized quantifiers,
and that the class Qn of all generalized quantifiers of arity at most n is
interesting.

In this paper, Q will always denote a class of generalized quantifiers of
bounded arity, so that Q ⊆ Qn for some n.

To capture different kinds of recursion, Moschovakis proposed in [Mos74]
the addition of inductive operators to first order logic. This has been de-
scribed as the most successful logic in computer science. Indeed, in the pres-
ence of order, Vardi [Var82] and Immerman [Imm86] showed that FO(LFP )
and FO(PFP ) (first order logic augmented with the least- and partial- fixed
point operator) capture PTIME and PSPACE, respectively.

The study of logics with inductive operators was greatly simplified when
Kolaitis and Vardi noted in [KV92] that these logics are mere fragments of
the logic Lω

∞ω, whose formulas have infinite conjunctions and disjunctions
but finitely many free and bound variables. Lω

∞ω was introduced by Barwise
[Bar77] in the context of infinite models (see [EF99], [Imm99]).

The infinitary logic L∞ω contains FO and allows infinite conjunction and
disjunction, which enables inductive constructions as many times as needed.
L∞ω, however, is too powerful for finite model theory, as it can express
all possible queries over finite models. Thus, going backwards, we should
restrict L∞ω (or its extension L∞ω(Q)) by limiting either the quantifier
rank m of the formulas, or the total number k of variables (free and bound)
occurring in the formulas. Note that, in descriptive complexity theory, the
quantifier rank may be considered as a kind of time resource, while the
number of variables may be considered as a kind of time resource. This
leads to the logics L∞ω(Q,m) and Lk

∞ω(Q), and their respective unions
L∞ω(Q, ω) and Lω

∞ω(Q). The following natural questions arise:
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Do the quantifier rank hierarchies of L∞ω(Q,m) and FO(Q,m)
collapse at some finite level?

In this paper we will give a negative answer to these questions when the
set of quantifiers Q has bounded arity and contains at least the existen-
tial quantifier ∃. In particular, we show that for each m, L∞ω(Q,m) is
strictly contained in L∞ω(Q,m+ 1), and FO(Q,m) is strictly contained in
FO(Q,m+ 1). We also show the strictness of the quantifier rank hierarchies
with one or both of the following restrictions:

(1) The set of all variables occurring in formulas has cardinality at most
k, where k ≥ n + 2 is fixed. This leads to the k-variable logics
Lk
∞ω(Q,m).

(2) Negation is allowed only on quantifier-free formulas. This leads to
the quantifier-positive logics L+

∞ω(Q,m).

These results complement different hierarchy strictness results in the liter-
ature. In [Hel89] Hella showed the strictness of the hierarchy based on the
maximum arity n of the quantifiers in Q. Hella used an Ehrenfeucht-Fräıssé
like game (called the bijective game) that characterizes the power of the
logic L∞ω(Qn,m). Later on, he together with Luosto and Väänänen gave
a cardinality argument in [HLV96] showing the strictness of the hierarchy
based on the similarity type of the quantifier, which contains both the quan-
tifier arity and width (= the maximum number of formulas bound by the
quantifier). However, their result was not explicit, that is, it did not lead
to specific queries in the levels of the hierarchies. In the unary case, Lu-
osto gave in [Luo00] an explicit strict hierarchy result based on the width of
unary quantifiers.

Our results here are “almost explicit”. Fix a maximum arity n. We say
that a sentence φ is expressible in a class of sentences L if φ is logically
equivalent to some sentence ψ ∈ L. For each m we give an existential first
order sentence σm that is not expressible in L∞ω(Qn,m). We then use the
sentences σm to show that the hierarchies are strict. To prove that σm is not
expressible in L∞ω(Qn,m), we give a recursive construction of particular
models Am and Bm that disagree on σm but agree on each sentence of
L∞ω(Qn,m). The construction of these models uses building blocks that
are similar to those of Hella in [Hel96].

After giving the basic definitions, including Hella’s bijective game in Sec-
tion 2, we introduce our recursive building strategy of the models Am and
Bm in Section 3. In Section 4, we introduce the operation Arrayn(θ) defined
on sentences θ. This leads to Section 5, where the main hierarchy results are
obtained. We define a recursive sequence ρm of first order sentences such
that ρm is not expressible in L∞ω(Qn,m), and use these sentences to show
that the quantifier rank hierarchies of FO(Q) and L∞ω(Q) are strict at all
finite levels. In Section 6 we strengthen the results by getting a version σm
of ρm which has just n+ 2 variables. The sentence σm is an existential first
order sentence, and is equivalent to a purely existential first order sentence
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σ′m = (∃y1) · · · (∃yℓ)φ(y1, . . . , yℓ) where φ is quantifier-free and the number
of variables is ℓ = (n + 1)m + 1. We then show that the quantifier rank
hierarchies of FOk(Q) and Lk

∞ω(Q) are strict at all finite levels. In Section
7 we get analogous results for the logics FO+(Q) and L+

∞ω(Q). Finally, In
Section 8 we show that the logics Lk

∞ω(Q) and L+
∞ω(Q) have sentences that

are not equivalent to any sentences of finite quantifier rank.

2. Basic Definitions

We always consider classes of finite models with a fixed underlying sig-
nature ν, which is a set of relation symbols. Given two formulas φ and ψ,
φ |= ψ will mean that every finite model of φ is a model of ψ. Two formulas
φ,ψ will be called equivalent if |= φ ↔ ψ. Two sets of formulas will be
called equivalent if every formula in one set is equivalent to some formula in
the other set, and vice versa.

A generalized quantifier Q is simply a class of finite models over a finite
signature νQ = {R1, . . . , Rk} that is closed under isomorphisms. The arity
of Q is the maximum number of arguments of the relation symbols in νQ, and
thewidth ofQ is the length k of the signature νQ. The symbolQ can be used
to build a formula of the form φ(x) = (Qy1, . . . ,yk)(ψ1(x,y1), . . . , ψk(x,yk)),
where all the variables in the variable strings x,y1, . . . ,yk are distinct, and
each ψi(x,yi) has its free variables included in x,yi. φ(x) has its free vari-
ables included in x, and is given the following semantics in a finite structure
A with a tuple a interpreting the free variable tuple x:

(A,a) |= φ(x) iff the νQ-model over the universe of A with each Ri

interpreted by the relation {b : (A,a) |= ψi(a,b)} is in the class Q.

We let Qn denote the class of all quantifiers of arity at most n. Thus, the
universal and existential quantifiers ∀,∃, as well as the counting quantifiers
∃≥k all belong to Q1. Note that different quantifiers Q ∈ Q can have
different signatures νQ.

For any class of quantifiers Q ⊆ Qn and underlying signature ν, we let
L∞ω(Q) be the class of all formulas with finitely many (possibly zero) free
variables built from atomic formulas over ν using negations, infinite con-
junctions and disjunctions, as well as generalized quantifiers in Q. We take
the classical infinitary logic to be the logic L∞ω = L∞ω({∃}) with just the
existential quantifier. (The logics L∞ω({∃}),L∞ω({∀}), and L∞ω({∃,∀})
are equivalent, but have different quantifier-positive fragments). We will
only consider classes Q of bounded arity, that is, Q ⊆ Qn for some n.

It is well known that the logic L∞ω is too powerful for finite model theory,
as it can express any class of finite models closed under isomorphism. One
way to weaken this logic, and the logic L∞ω(Q) in general, is to restrict
the quantifier rank of its formulas. The quantifier rank of a formula φ in
L∞ω(Qn) is defined by induction on the complexity of φ as in [Hel89]:

• A quantifier-free formula has quantifier rank 0;
• The quantifier rank of ¬φ is equal to the quantifier rank of φ;
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• The quantifier rank of
∧

i∈I φi, and also of
∨

i∈I φi, is the supremum
of the quantifier ranks of φi, i ∈ I;

• the quantifier rank of (Qy1, . . . ,yk)(ψ1(x,y1), . . . , ψk(x,yk)) is 1
plus the maximum of the quantifier ranks of ψ1, . . . , ψk.

For a class Q ⊆ Qn, we let L∞ω(Q,m) be the set of all formulas of L∞ω(Q)
of quantifier rank at most m. Also, let L∞ω(Q, ω) =

∪
m L∞ω(Q,m). Note

that for any Q, L∞ω(Q, 0) is the set of quantifier-free formulas of L∞ω.
We define FO(Q) to be the first order part of L∞ω(Q), i.e. the set of

all formulas of L∞ω(Q) of finite length. Also, FO(Q,m) is the set of all
formulas of FO(Q) of quantifier rank at most m. Since all formulas in
FO(Q) have finite quantifier rank, we have FO(Q) =

∪
m FO(Q,m). We

take the classical first order logic to be FO = FO({∃}). Note that for any
Q, FO(Q, 0) is the set of quantifier-free first order formulas. And if the
underlying signature is finite, L∞ω(Q, 0) = FO(Q, 0).

The following proposition shows that, unless Q is infinite, every formula
in the restricted logic L∞ω(Q,m) is equivalent to a formula in FO(Q,m).

Proposition 2.1. If both the underlying signature and the class Q are finite,
then for each m:

(i) For each finite set of variables x, the set of formulas in L∞ω(Q,m)
with at most x free is equivalent to a finite set of formulas of FO(Q,m).

(ii) L∞ω(Q,m) is equivalent to FO(Q,m).

Proof: Part (i) is proved by induction on m. Part (ii) then follows. 2.1

The logics L∞ω(Qn,m) are characterized by the n-bijective Ehrenfeucht-
Fräıssé game introduced in [Hel89]. This game is played on two models by
two players, Spoiler and Duplicator. Roughly speaking, Spoiler tries to prove
that the two models look different, while Duplicator tries to prove that they
look alike. By a game position we will mean a triple ((A,a), (B,b),m)
where |a| = |b|, and m is a natural number that represents the number of
moves yet to be played. The game is defined by recursion on m as follows.

When m > 0, the game proceeds from the position ((A,a), (B,b),m) ac-
cording to the rules:

(1) Duplicator chooses a bijection f : A −→ B. (If |A| ̸= |B|, then
Spoiler wins.)

(2) Spoiler chooses an n-tuple c in A.
(3) The game continues from the new position

((A,ac), (B,bf(c)),m− 1),

where f(c) = f(c1, . . . , cn) = (f(c1), . . . , f(cn)).

When m = 0 the game ends. ((A,a), (B,b), 0) is a winning position
for Duplicator iff (A,a) and (B,b) satisfy the same atomic formulas. (In
other words, a, b are either empty or generate submodels of A, B that are
isomorphic with an isomorphism mapping a to b.)
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We write (A,a) ≡m
n (B,b) if Duplicator has a winning strategy in the

n-bijective game starting from the position ((A,a), (B,b),m), and we write
A ≡m

n B if Duplicator has a winning strategy starting from the position
(A,B,m). By the game A ≡m

n B we will mean the n-bijective game starting
from the position (A,B,m).

The importance of this game stems from the following result, which is
proved in [Hel89, Hel96].

Proposition 2.2. (A,a) ≡m
n (B,b) iff (A,a) and (B,b) agree on all for-

mulas in L∞ω(Qn,m). 2.2

3. The Building Strategy

The following definitions will use a modification of the building block
introduced in [Hel96]. We first introduce some notation.

Definition 3.1. A signature ν is called n-adequate if ν contains at least
a binary relation symbol E and an (n+ 1)-ary relation symbol R.

We assume throughout this section that n > 0 and the underlying signa-
ture ν is n-adequate. Let A and B be finite models with signature ν. Also
let X = C ∪D, with C = {c1, . . . , cn+1} and D = {d1, . . . , dn+1}, where all
the ci’s and di’s are distinct, i.e. |X| = 2n+ 2. Let G be the set

G = X ∪ (A× C) ∪ (B ×D).

For each i ∈ {1, . . . , n+ 1}, let

Ai = A× {ci}, Bi = B × {di}, Gi = {ci, di} ∪Ai ∪Bi.

Note that Gi is the set of elements of G that involve i, and the sets Gi

form a partition of G. Let Ai be the copy of A with universe Ai such that
a 7→ (a, ci) is an isomorphism, and Bi be the copy of B with universe Bi

such that b 7→ (b, di) is an isomorphism.

Definition 3.2. Let G(A,B) be the model with universe G and signature ν
such that:

(i) For each i ∈ {1, . . . , n+ 1}, Ai and Bi are submodels of G(A,B).
(ii) For each i ∈ {1, . . . , n+1}, a ∈ Ai, and b ∈ Bi, E(ci, a) and E(di, b)

hold in G(A,B).
(iii) No atomic formulas hold in G(A,B) except for equalities and those

given in (1) and (2).
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Intuitively, G(A,B) is the union of n+1 copies of A and n+1 copies of B,
which is also equipped with an “edge” relation E(x, y), that connects each
ci ∈ C to each element of the corresponding copy of A, and similarly for D
and B. In the terminology of [JM01] and [KL04], ci is the root of a cone
over Ai, and di is the root of a cone over Bi, in the model G(A,B).

With some extra work, it may be possible to dispense with the extra
relation symbol E by coding with the (n+ 1)-ary relation R. However, this
would make the proofs harder to follow, so we chose instead to include E in
our notion of an adequate vocabulary.

Definition 3.3. We now define two new models G+(A,B) and G−(A,B),
which have the same universe and signature as G(A,B). G+(A,B) is built
from G(A,B) by replacing R by R∪R+ where R+ is the relation on X given
by:

R+(a1, . . . , an+1) iff |U ∩ {ci, di}| = 1 for each i, and |U ∩D| is even,

where U = {a1, . . . , an+1}. G−(A,B) is defined similarly but replacing R by
R ∪R− where:

R−(a1, . . . , an+1) iff |U ∩ {ci, di}| = 1 for each i, and |U ∩D| is odd.

We define χ(x) to be the special formula (∃y)E(x, y)∧¬(∃y)E(y, x), which
says that x is a source for the graph E. The next lemma is easily verified.

Lemma 3.4. For every pair of models A,B, the set X is defined by χ(x) in
both of the models G+(A,B) and G−(A,B). 3.4

The set X can also be defined by the simpler formula ¬(∃y)E(y, x), but
later on it will be useful to know that X is defined by the particular formula
χ(x).

For each k ∈ {1, . . . , n+ 1}, define the bijection fk on X by:

fk(x) =

 dk if x = ck
ck if x = dk
x otherwise

,

i.e. fk just swaps ck with dk.
The following lemma is easily proved.
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Lemma 3.5. The bijection fk is an isomorphism from (X,R+) to (X,R−).
3.5

We now prove our key lemma.

Lemma 3.6. Suppose A ≡m
n B. Then

G+(A,B) ≡m+1
n G−(A,B).

Proof: We write G+ = G+(A,B) and G− = G−(A,B). Duplicator uses
the identity bijection ι : G −→ G for her first move. Spoiler selects n
elements e1, . . . , en ∈ G. Since these elements belong to at most n of the
sets Gi, there must exist k ∈ {1, . . . , n + 1} such that Gk is disjoint from
{e1, . . . , en}. Hold k fixed for the rest of the proof.

Suppose first that m = 0. In this case one can check directly that
(G+, e1, . . . , en) and (G−, e1, . . . , en) satisfy the same atomic formulas, so
Duplicator wins the game.

Now suppose m > 0. By hypothesis, Ak ≡m
n Bk. In the last m moves Du-

plicator plays the auxiliary game Ak ≡m
n Bk and uses her winning bijections

for that game to give her moves for the main game. Each of these moves will
be a bijection of G that agrees with fk on X, matches the auxiliary game on
Ak ∪Bk, and is the identity function on the rest of G. Below is the detailed
description of Duplicator’s strategy.

Suppose that at some stage 0 < j ≤ m, the two games have the positions

((G+, s), (G−, t), j), ((Ak,u), (Bk,v), j).

In the auxiliary game, let Duplicator’s next winning move be hj , which is a
bijection from Ak to Bk. We note that since Duplicator is using a winning
strategy in the auxiliary game, and equalities are atomic formulas, we must
have hj(u) = v.

Then in the main game, we define Duplicator’s next move to be the bi-
jection gj on G such that:

gj(x) =


fk(x) if x ∈ X
hj(x) if x ∈ Ak

h−1
j (x) if x ∈ Bk

x otherwise.

Let Spoiler’s next move in the main game be r = (r1, . . . , rn), an n-tuple
in G. Let a be an arbitrary element of Ak. In the auxiliary game, take
Spoiler’s next move to be w = (w1, . . . , wn), an n-tuple in Ak, where

wi =

 ri if ri ∈ Ak

gj(ri) if ri ∈ Bk

a otherwise.

To show that Duplicator wins the main game, we must show that at the
final position

((G+, s), (G−, t), 0),
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(G+, s) and (G−, t) satisfy the same atomic formulas. We know that Dupli-
cator wins the auxiliary game at the final position

((Ak,u), (Bk,v), 0).

That is, (Ak,u) and (Bk,v) satisfy the same atomic formulas. Moreover,
Duplicator’s last move h1 is a bijection from Ak to Bk, and h1(u) = v. It
follows from the definition of g1 that g1(s) = t.

Consider an atomic formula α(s′) with parameters from s such that s′ is
the list of all parameters occurring in α(s′). Let t′ = g1(s

′). We show that
α(s′) holds in G+ iff α(t′) holds in G−. We suppose first that α(s′) holds in
G+ and prove that α(t′) holds in G−. We must consider several cases.

Case 1: s′ does not meet Gk (= {ck, dk} ∪ Ak ∪ Bk). In this case,
t′ = s′ and G− also satisfies α(s′).

Case 2: s′ ⊆ Ak. Then Ak satisfies α(s′) and t′ = h1(s
′), so Bk

satisfies α(t′) and hence G− satisfies α(t′).
Case 3: s′ ⊆ Bk. Similar to Case 2.
Case 4: s′ ⊆ X and α(s′) is R(s′). Then R+(s′) holds and t′ = fk(s

′),
so by Lemma 3.5, R−(t′) holds and G− satisfies R(t′).

Case 5: s′ = (ck, a) where a ∈ Ak. Then t′ = (dk, b) where b = h1(a),
so E(s′) holds in G+ and E(t′) holds in G−.

Case 6: s′ = (dk, b) where b ∈ Bk. Similar to Case 5.

The other direction is proved by a similar argument. Therefore Duplicator
wins the main game G+ ≡m+1

n G−. 3.6

4. The Arrayn Operation

In this section we will introduce the operation Arrayn on L∞ω, which
can climb up one step in the generalized quantifier rank ladder. For a first
order sentence θ that distinguishes between two models A and B, Arrayn(θ)
will distinguish between the models G+(A,B) and G−(A,B).

We assume throughout this section that n > 0 and the underlying signa-
ture ν is n-adequate.

Definition 4.1. Let θ be a formula in L∞ω. Define (θ � z) to be the formula
obtained from θ by first replacing each bound occurrence of z by a variable
z′ that does not occur in θ, and then relativizing all of its quantifiers to the
set {y : E(z, y)}, i.e. everywhere replacing (∃y)φ(x, y) by (∃y)(E(z, y) ∧
φ(x, y)).

Note that in the above definition, the variable z may have already been
free in θ.

Recall that χ(x) is the formula (∃y)E(x, y) ∧ ¬(∃y)E(y, x), which says
that x is a source for E.
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Definition 4.2. Let θ be a sentence in L∞ω. Define Arrayn(θ) to be the
sentence

(∃x1) · · · (∃xn+1)

[
R(x1, . . . , xn+1) ∧

n+1∧
i=1

[χ(xi) ∧ (θ � xi)]
]
.

Informally, (θ � z) says that z points to a (nonempty) submodel that
satisfies θ, and Arrayn(θ) says:

“There are n+ 1 elements related by R,
which are sources for E and point to θ-submodels.”

Arrayn(θ) is a sentence in L∞ω with the same underlying signature ν. If
θ is first order, then Arrayn(θ) is also first order. We also have a bound on
the quantifier rank of Arrayn(θ).

Lemma 4.3. If m > 0 and θ ∈ L∞ω({∃},m), then

Arrayn(θ) ∈ L∞ω({∃},m+ n+ 1).

Proof: This follows easily from the definition of Arrayn(θ). 4.3

Lemma 4.4. Let θ and φ be sentences in L∞ω. If θ is equivalent to φ, then
Arrayn(θ) is equivalent to Arrayn(φ).

Proof: Suppose θ is equivalent to φ. Since χ(x) implies that the set
{y : E(x, y)} is nonempty, the sentence

(∀x)[χ(x) → [(θ � x) ↔ (φ � x)]]
holds in all models. The lemma follows from this. 4.4

The above lemma would fail if we replaced χ(x) by the simpler formula
¬(∃y)E(y, x). If we defined Arrayn with the formula ¬(∃y)E(y, x) in place
of χ(x), and took θ to be (∃y)y = y and φ to be ¬(∃y)¬y = y, then θ would
be equivalent to φ but Arrayn(θ) would not be equivalent to Arrayn(φ).

The power of the Arrayn operation stems from the following:

Lemma 4.5. Let A and B be two finite models, and let θ be a first order
sentence.

(i) If A |= θ then G+(A,B) |= Arrayn(θ).
(ii) If B ̸|= θ then G−(A,B) ̸|= Arrayn(θ).

Proof: (i) In G+(A,B) the (n + 1)-tuple (c1, . . . , cn+1) belongs to R+

because |{c1, . . . , cn+1} ∩D| = 0 which is even, and each ci points to a copy
of A.

(ii) In G−(A,B), every (n + 1)-tuple in R− has at least one term that
points to a copy of B, which is not a model of θ. 4.5

Lemma 4.6. Let m > 0 and let θ be a sentence in L∞ω. If θ is not express-
ible in L∞ω(Qn,m), then Arrayn(θ) is not expressible in L∞ω(Qn,m+ 1).
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Proof: By Proposition 2.2, there must be two models A,B such that
A |= θ, B ̸|= θ, and A ≡m

n B. By Lemma 4.5,

G+(A,B) |= Arrayn(θ) and G−(A,B) ̸|= Arrayn(θ).

Also, using Lemma 3.6, we get

G+(A,B) ≡m+1
n G−(A,B).

By Proposition 2.2 again, Arrayn(θ) is not expressible in L∞ω(Qn,m+ 1).
4.6

We remark that there is a natural way to extend the Arrayn operation
to all sentences of L∞ω(Qn). However, this would require a discussion of
relativized generalized quantifiers, and will not be needed here.

5. The Quantifier Rank Hierarchies

It will be convenient to have a short way to say that a sentence is not
expressible in a logic L. Given a logic L, we let [L] denote the set of all
sentences (of some L∞ω(Q)) that are expressible in L. Then φ /∈ [L] says
that φ is not expressible in L, i.e., no sentence of L is equivalent to φ.

From Lemmas 4.3 and 4.6, we get:

Theorem 5.1. Suppose n > 0 and the underlying signature ν is n-adequate.
For each m there is a first order sentence of quantifier rank m(n + 1) + 1
that is not expressible in L∞ω(Qn,m), that is, there is a sentence

ρm ∈ FO({∃},m(n+ 1) + 1) \ [L∞ω(Qn,m)].

Proof: Let ρ0 be any first order sentence of quantifier rank 1 that
is not equivalent to a quantifier-free formula, that is, ρ0 ∈ FO({∃}, 1) \
[L∞ω(Qn, 0)]. For definiteness, we’ll take ρ0 = (∃x1)E(x1, x1). For each m,
let

ρm+1 = Arrayn(ρm).

Proceeding by induction on m, we use Lemma 4.3 to show that ρm ∈
FO({∃},m(n+ 1) + 1), and use Lemma 4.6 to show that ρm /∈ [L∞ω(Qn,m)].
5.1

For each j, let (∃x1, . . . , xj) be the j-ary existential quantifier

{(A,S) : (A,S) |= (∃x1) · · · (∃xj)S(x1, . . . , xj)},
and let (∀x1, . . . , xj) be the corresponding j-ary universal quantifier.

Note that if the n-ary existential quantifier belongs to Q, then the pre-
ceding proof shows that ρm is expressible in FO(Q, 2m+ 1).

We can now prove the first of our main results.

Theorem 5.2. Suppose n > 0 and the underlying signature ν is n-adequate.
Let Q be a class of generalized quantifiers of arity at most n (i.e. Q ⊆ Qn).
Assume that for some j > 0, Q contains at least one of the quantifiers
(∃x1, . . . , xj) or (∀x1, . . . , xj). Then:
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(i) The finite quantifier rank hierarchy of the logic L∞ω(Q) is strict,
i.e. for each m,

[L∞ω(Q,m)] ( [L∞ω(Q,m+ 1)].

(ii) The quantifier rank hierarchy of the logic FO(Q) is strict, i.e. for
each m,

[FO(Q,m)] ( [FO(Q,m+ 1)].

Proof: Suppose that (i) fails, so for some m,

[L∞ω(Q,m)] = [L∞ω(Q,m+ 1)].

It follows by induction that the quantifier rank hierarchy in L∞ω(Q) col-
lapses. Thus,

[L∞ω(Q,m(n+ 1) + 1)] = [L∞ω(Q,m)].

By Lemma 5.1 there is a sentence

ρm ∈ FO({∃},m(n+ 1) + 1) \ [L∞ω(Qn,m)].

Q is a subset of Qn, so ρm /∈ [L∞ω(Q,m)]. If the variables x2, . . . , xj do not
occur in a formula φ, then the formula (∃x1)φ is equivalent to each of the
formulas (∃x1, . . . , xj)φ and ¬(∀x1, . . . , xj)¬φ. Since Q contains either the
quantifier (∃x1, . . . , xj) or the quantifier (∀x1, . . . , xj), it follows that ρm is
expressible in FO(Q,m(n+ 1) + 1). But

[FO(Q,m(n+ 1) + 1)] ⊆ [L∞ω(Q,m(n+ 1) + 1)] = [L∞ω(Q,m)],

so ρm ∈ [L∞ω(Q,m)] and we have a contradiction.

The proof of (ii) is similar. 5.2

In Theorem 5.2, Q could in particular be just {∃} or the whole Qn. This
theorem concerns finite quantifier ranks. Sentences of quantifier rank ω will
be considered in Section 8. Note that the quantifier rank hierarchies collapse
beyond ω, because every class of finite models can be defined by a sentence
of L∞ω of quantifier rank ω. When the underlying signature is finite, every
class can even be defined by a countable disjunction of first order sentences.
On the other hand, every formula in FO(Q) has finite quantifier rank.

6. Bounding the Number of Variables

We now obtain hierarchy results similar to those of Theorem 5.2 but
within the fragments of L∞ω(Qn) and FO(Qn) whose formulas have at
most a fixed finite number of variables (free and bound).

Definition 6.1. For a formula φ in L∞ω(Qn), let Var(φ) be the set of
distinct variables (free and bound) occurring in φ. The number of variables
of φ is simply |Var(φ)|.

Given a natural number k and a logic L ⊆ L∞ω(Qn), the k-variable
fragment of L is the set Lk of all formulas φ ∈ L with |Var(φ)| ≤ k. We
also define Lω =

∪
k L

k.
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In particular, for each set of quantifiers Q ⊆ Qn we will consider the
k-variable fragments

Lk
∞ω(Q), Lk

∞ω(Q,m), FOk(Q), FOk(Q,m).

It is obvious that FO(Q) = FOω(Q), and for eachm, FO(Q,m) = FOω(Q,m).
From Proposition 2.1, we know that if both Q and the underlying signature
ν are finite, then for each m, there exists a k (that depends on m, ν, and
Q), such that

[L∞ω(Q,m)] = [Lω
∞ω(Q,m)] = [FO(Q,m)] = [FOk(Q,m)].

The k-variable fragment of first order logic is FOk. We note that there is
no fixed k such that for all m, the sentences ρm of Lemma 4.6 is expressible
in FOk. The reason is that when passing from ρm to ρm+1 = Arrayn(ρm),
the number of variables in (ρm � xi) is one more than the number of variables
in ρm.

The next result is an analogue of Theorem 5.1 which gives sentences
σm ∈ FOn+2 that do the same thing as the sentences ρm.

Theorem 6.2. Suppose n > 0 and the underlying signature ν is n-adequate.
Let k = n+ 2. For each m there is a first order sentence of quantifier rank
mk + 1 that has at most k variables and is not expressible in L∞ω(Qn,m),
that is, there is a sentence

σm ∈ FOk({∃},mk + 1) \ [L∞ω(Qn,m)].

Proof: Let ρm be the sentences defined in the proof of Theorem 5.1,

ρ0 = (∃x1)E(x1, x1), ρm+1 = Arrayn(ρm).

We first define σ0 = ρ0 = (∃x1)E(x1, x1), which belongs to FOk({∃}, 1)
but not to [L∞ω(Qn, 0)]. Next, we define auxiliary formulas ηm(z) in
FOk({∃},mk + 1), which will play the role of the relativized formula (ρm � xi)
in the sentence ρm+1 = Arrayn(ρm).

We define

η0(z) : (∃x1)[E(z, x1) ∧ ¬E(x1, z) ∧ E(x1, x1)],

and define ηm+1(z) inductively by

(∃x1) · · · (∃xn+1)[
R(x1, . . . , xn+1) ∧

n+1∧
i=1

(E(z, xi) ∧ ¬E(xi, z) ∧ (∃z)(z = xi ∧ ηm(z)))

]
.

Note how the variable z was reused. The idea is that once we know that
E(z, xi) holds for all i, we can just forget about z, and concentrate on each
xi. We now define σm+1 as follows:

σm+1 : (∃x1) · · · (∃xn+1)

[
R(x1, . . . , xn+1) ∧

n+1∧
i=1

(∃z)(z = xi ∧ ηm(z))

]
.
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This formula can be compared with the defining formula for ρm+1, which is

(∃x1) · · · (∃xn+1)

[
R(x1, . . . , xn+1) ∧

n+1∧
i=1

[χ(xi) ∧ (ρm � xi)]
]

where χ(z) is the formula (∃y)E(z, y) ∧ ¬(∃y)E(y, z).
By induction on m, we can easily see that both ηm(z) and σm belong to

FOk({∃},mk + 1).
We note that for each m, z is the only free variable in the formula ηm(z).

If x is any other variable, we define ηm(x) to be the formula obtained from
ηm(z) by replacing each occurrence of x by a new variable x′, and then
replacing each free occurrence of z by x. Thus the formula

x = z → [ηm(x) ↔ ηm(z)]

is logically valid.

Claim 6.3. Let A be a finite model with signature ν. Suppose that the
interpretation of E in A is transitive, that is,

A |= (∀x)(∀y)(∀z)[[E(x, y) ∧ E(y, z)] → E(x, z)].

Then for each m,

(i) A |= (∀z)(∀y)[E(z, y) → [ηm(y) ↔ (ηm(y) � z)]],
(ii) A |= (∀z)[ηm(z) ↔ (ηm(z) � z)].
Proof of Claim 6.3: (i) We argue by induction on m. The result is

clear for m = 0. Let A be a finite model with signature ν. Work in A and
assume the result for m. By renaming bound occurrences of y in ηm(z), we
see that ηm+1(y) is equivalent to

(∃x1) · · · (∃xn+1)[
R(x1, . . . , xn+1) ∧

n+1∧
i=1

{E(y, xi) ∧ ¬E(xi, y) ∧ (∃z)[z = xi ∧ ηm(z)]}

]
.

(ηm+1(y) � z) is equivalent to each of the following formulas:

(∃x1) · · · (∃xn+1)

[
n+1∧
i=1

E(z, xi) ∧R(x1, . . . , xn+1)∧

]
,

n+1∧
i=1

{E(y, xi) ∧ ¬E(xi, y) ∧ (∃z′)[E(z, z′) ∧ z′ = xi ∧ (ηm(z′) � z)]}
]
,

(∃x1) · · · (∃xn+1)

[
n+1∧
i=1

E(z, xi) ∧R(x1, . . . , xn+1)∧

n+1∧
i=1

{E(y, xi) ∧ ¬E(xi, y) ∧E(z, xi) ∧ (ηm(xi) � z)}
]
,
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(∃x1) · · · (∃xn+1)[
R(x1, . . . , xn+1) ∧

n+1∧
i=1

{E(y, xi) ∧ ¬E(xi, y) ∧E(z, xi) ∧ (ηm(xi) � z)}
]
.

Now assume E(z, y). Then since E is transitive, we have

(∀x)[E(y, x) ↔ [E(y, x) ∧ E(z, x)]].

Therefore (ηm+1(y) � z) holds if and only if

(∃x1) · · · (∃xn+1)[
R(x1, . . . , xn+1) ∧

n+1∧
i=1

{E(y, xi) ∧ ¬E(xi, y) ∧ (ηm(xi) � z)}
]
.

By inductive hypothesis, this holds if and only if

(∃x1) · · · (∃xn+1)[
R(x1, . . . , xn+1) ∧

n+1∧
i=1

{E(y, xi) ∧ ¬E(xi, y) ∧ ηm(xi)}

]
,

which is clearly equivalent to ηm+1(y). This completes the induction.

(ii) The formula (ηm+1(z) � z) is built by replacing the bound occurrences
of z by a new variable z′ and then relativizing all quantifiers to {u : E(z, u)}.
Thus (ηm+1(z) � z) is

(∃x1) · · · (∃xn+1)

[
n+1∧
i=1

E(z, xi) ∧R(x1, . . . , xn+1)∧

n+1∧
i=1

{E(z, xi) ∧ ¬E(xi, z) ∧ (∃z′)[E(z, z′) ∧ z′ = xi ∧ (ηm(z′) � z)]}
]
.

By part (i), the subformula

E(z, xi) ∧ ¬E(xi, z) ∧ (∃z′)[E(z, z′) ∧ z′ = xi ∧ (ηm(z′) � z)]
is equivalent to each of the following:

E(z, xi) ∧ ¬E(xi, z) ∧ (∃z′)[E(z, z′) ∧ z′ = xi ∧ ηm(z′)],

E(z, xi) ∧ ¬E(xi, z) ∧ (∃z′)[E(z, xi) ∧ z′ = xi ∧ ηm(z′)],

E(z, xi) ∧ ¬E(xi, z) ∧ (∃z′)[z′ = xi ∧ ηm(z′)],

E(z, xi) ∧ ¬E(xi, z) ∧ (∃z)[z = xi ∧ ηm(z)].

Therefore (ηm+1(z) � z) is equivalent to

(∃x1) · · · (∃xn+1)

[
n+1∧
i=1

E(z, xi) ∧R(x1, . . . , xn+1)∧
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n+1∧
i=1

{E(z, xi) ∧ ¬E(xi, z) ∧ (∃z)[z = xi ∧ ηm(z)]}

]
.

This is clearly equivalent to

(∃x1) · · · (∃xn+1)[
R(x1, . . . , xn+1) ∧

n+1∧
i=1

{E(z, xi) ∧ ¬E(xi, z) ∧ (∃z)[z = xi ∧ ηm(z)]}

]
,

which by definition is ηm+1(z). 6.3

The proof of the theorem will be complete once we show that σm /∈
[L∞ω(Qn,m)]. We will do this by producing a sequence of pairs of models
Am,Bm such that Am ≡m

n Bm, but Am |= σm and Bm ̸|= σm.
We start by choosing two models A0 and B0 in which the interpretation

of E is transitive, such that A0 |= σ0 and B0 ̸|= σ0, but A0 ≡0
n B0. This

is easy, since the relation ≡0
n holds between any two relational models, but

for definiteness, we take A0 and B0 to have a universe {c} of size 1. Also,
in A0 the only atomic formula that holds is E(c, c), while in B0 no atomic
formula holds. Next, we recursively define

Am+1 = G+(Am,Bm) and Bm+1 = G−(Am,Bm).

The following claim is proved by an easy induction on m:

Claim 6.4. For each m, both Am and Bm have a transitive interpretation
of E, and moreover satisfy the following formula for each i ≤ n+ 1:

[R(x1, . . . , xn+1) ∧ E(z, xi)] → ¬E(xi, z).

6.4

It follows from Lemma 3.6 that Am ≡m
n Bm, so by Proposition 2.2, Am

and Bm agree on L∞ω(Qn,m). From Lemma 4.5 and the recursive definition
of ρm, we know that Am |= ρm and Bm ̸|= ρm. So it will be enough to show
that for each m, σm ↔ ρm holds in both Am and Bm. We first get a
connection between ηm(z) and χ(z).

Claim 6.5. For each m, both Am+1 and Bm+1 satisfy (∀z)[ηm(z) → χ(z)].

Proof of Claim 6.5: One can show by induction that in both Am+1

and Bm+1, an element a satisfies χ(z) if and only if there is a directed path
of length m+ 1 starting at a. Also, if a satisfies ηm(z) then there is such a
directed path. 6.5

We now get a connection between ηm(z) and the relativized formula
(ρm � z).

Claim 6.6. For each m, both Am+1 and Bm+1 satisfy the sentence

(∀z)[ηm(z) ↔ [χ(z) ∧ (ρm � z)]].
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Proof of Claim 6.6: We argue by induction on m. The result is clear
for m = 0. Suppose m > 0 and assume the result for m − 1. To prove the
result for m, we work in either Am+1 or Bm+1.

Suppose that χ(z) ∧ (ρm � z). Since (ρm � z), z points to a model C of
ρm. Then there are elements x1, . . . , xn+1 of C such that

C |= R(x1, . . . , xn+1) ∧
n+1∧
i=1

[χ(xi) ∧ (ρm−1 � xi)].

Since χ(z), C is a copy of either Am or Bm. By inductive hypothesis,

C |= R(x1, . . . , xn+1) ∧
n+1∧
i=1

ηm−1(xi).

Therefore

R(x1, . . . , xn+1) ∧
n+1∧
i=1

[E(z, xi) ∧ (ηm−1(xi) � z)].

By Claim 6.3,

R(x1, . . . , xn+1) ∧
n+1∧
i=1

[E(z, xi) ∧ ηm−1(xi)].

By Claim 6.4,

R(x1, . . . , xn+1) ∧
n+1∧
i=1

[E(z, xi) ∧ ¬E(xi, z) ∧ ηm−1(xi)],

and ηm(z) follows.
Now suppose ηm(z). By Claim 6.5, χ(z) holds, so again z points to

a model C which is a copy of Am or Bm. By reversing the steps in the
preceding paragraph, we can show that (ρm � z). 6.6

To complete the proof of Theorem 6.2, we show that for eachm, σm ↔ ρm
holds in both Am and Bm. The case m = 0 is trivial, since σ0 = ρ0. For
m+1, this follows easily from Claim 6.6 and the defining formulas for ρm+1

and σm+1. 6.2

We now get the following theorem, which parallels Theorem 5.2 with a
similar proof:

Theorem 6.7. Suppose n > 0 and the underlying signature ν is n-adequate.
Let n > 0 and let Q ⊆ Qn be a class of generalized quantifiers of arity at
most n. Also, assume that for some j > 0, Q contains at least one of the
quantifiers (∃x1, . . . , xj) or (∀x1, . . . , xj). Then:

(i) For each k ≥ n + 2, the finite quantifier rank hierarchy of the logic
Lk
∞ω(Q) is strict, i.e. for each m,

[Lk
∞ω(Q,m)] ( [Lk

∞ω(Q,m+ 1)].
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(ii) The finite quantifier rank hierarchy of the logic Lω
∞ω(Q) is strict,

i.e. for each m,

[Lω
∞ω(Q,m)] ( [Lω

∞ω(Q,m+ 1)].

(iii) For each k ≥ n+2, the quantifier rank hierarchy of the logic FOk(Q)
is strict, i.e. for each m,

[FOk(Q,m)] ( [FOk(Q,m+ 1)].

6.7

7. The Quantifier-positive Rank Hierarchies

In this section we consider the quantifier rank hierarchies inside the quantifier-
positive fragments of L∞ω(Q, n) defined below. The term “quantifier-positive”
stems from the fact that negation must only have a quantifier-free scope, so
every occurrence of a quantifier is positive.

Definition 7.1. Given a logic L ⊆ L∞ω(Q, n), the quantifier-positive
fragment L+ of L is the set of all formulas φ ∈ L in which no occurrence
of a quantifier is in the scope of a negation.

In particular, we will consider the quantifier-positive fragments

L+
∞ω(Q), L+

∞ω(Q,m), FO+(Q), FO+(Q,m)

and the k-variable quantifier-positive fragments

Lk+
∞ω(Q), Lk+

∞ω(Q,m), FOk+(Q), FOk+(Q,m).

It is important in this section that the underlying logic L∞ω(Q) has both
the conjunction and the disjunction connectives. Thus each of the above
fragments is closed under conjunction and disjunction.

Each sentence ρ ∈ FO+ = FO+({∃}) is equivalent to a purely existen-
tial sentence, that is, a sentence of the form

(∃x1) · · · (∃xℓ)φ(x1, . . . , xℓ)
where φ is quantifier-free. The logics Lk+

∞ω and Lω+
∞ω =

∪
k Lk+

∞ω have been

studied in the literature under the names ∃Lk
∞ω and ∃Lω

∞ω, respectively, and
are characterized by the so-called existential pebble game. The importance
of these logics stems from the fact that the latter contains the language
DATALOG (see [KV95]).

We are going to show that each of the above fragments has a strict finite
quantifier rank hierarchy. We can do this using the same sentences σm as
we used in Section 6.

Proposition 7.2. Suppose n > 0 and the underlying signature ν is n-
adequate. Let k = n + 2. The sentences σm from Theorem 6.2 belong to
FOk+({∃},mk + 1). Moreover, σm is equivalent to a purely existential first
order sentence

σ′m = (∃y1) . . . (∃yℓ)φ(y1, . . . , yℓ)
where φ is quantifier-free and ℓ = m(n+ 1) + 1.
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Proof: It is clear from the definition that for each m the formula ηm(z)
belongs to FO+, and hence that σm belongs to FO+. The equivalent sen-
tence σ′m+1 is obtained by first replacing (∃z)[x = xi ∧ ηm(z)] by ηm(xi),
then replacing x1, . . . , xn+1 by new variables in the formula σm+1, and mov-
ing all the quantifiers to the front. 7.2

Note that the numberm(n+1)+1 in Proposition 7.2 is close to optimal—
the sentence σm is not expressible in L∞ω(Qn,m), but any purely existential
sentence

(∃y1) . . . (∃ymn)φ(y1, . . . , ymn)

is expressible in L∞ω(Qn,m).
If Q contains the n-ary existential quantifier, then by merging the exis-

tential quantifiers we see that σm is expressible in FO+(Q,m+ [m/n] + 1).
We now get the following theorem, which again parallels Theorem 5.2

with a similar proof:

Theorem 7.3. Suppose n > 0 and the underlying signature ν is n-adequate.
Let Q ⊆ Qn be a class of generalized quantifiers of arity at most n. Also,
assume that for some j > 0, Q contains at least one of the quantifiers
(∃x1, . . . , xj) or (∀x1, . . . , xj). Then:

(i) The finite quantifier rank hierarchies of the logics L+
∞ω(Q), Lk+

∞ω(Q),
and Lω+

∞ω(Q) are strict
(ii) The quantifier rank hierarchies of the logics FO+(Q) and FOk+(Q)

are strict. 7.3

8. Beyond Finite Quantifier Ranks

In this section we show that each of the hierarchies in Theorems 5.2 (i),
6.7 (i), (ii), and 7.3 (i) has sentences at level ω. To do this, it is enough to
show that there are sentences τ ∈ Lk

∞ω and τ+ ∈ Lk+
∞ω, both of quantifier

rank ω, that are not expressible in the logic L∞ω(Qn, ω) of sentences of
L∞ω(Qn) with finite quantifier rank. We will build τ and τ+ out of the
sentences σm that were constructed in Section 6.

We first take up the finite variable case.

Theorem 8.1. Suppose n > 0 and the underlying signature ν is n-adequate.
Let k = n+2. Then there is a sentence τ ∈ Lk

∞ω\[L∞ω(Qn, ω)] of quantifier
rank ω.

Proof: For each m, let σm be the sentence constructed in Section 6.
There is a first order sentence πm ∈ FO2 with two variables that says that
the graph E has a directed path of length m, that is, there is a sequence
of elements y0, . . . , ym such that E(yk, yk+1)∧¬E(yk+1, yk) for each k < m.
Let τ be the sentence

τ :
∨
m

[σm ∧ ¬πm+1].
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It is clear that τ ∈ Lk
∞ω with quantifier rank ω. Let Am and Bm be the

models constructed in Section 6. It was shown in the proof of Theorem
6.2 that Am and Bm satisfy the same sentences of L∞ω(Qn,m), and that
Am |= σm and Bm ̸|= σm. It is clear from the construction that both Am and
Bm satisfy πj for all j ≤ m and also satisfy ¬πm+1. Moreover, σm implies
πj for all j ≤ m. It follows that for all m, Am |= τ and Bm ̸|= τ . Therefore
τ is not expressible in L∞ω(Qn, ω). 8.1

We will give two examples of sentences which do the job in the quantifier-
positive fragment Lk+

∞ω. In first example the underlying signature has count-
ably many proposition symbols in addition to the relation symbols E and
R. In the second example the underlying signature has just two symbols in
addition to E and R, a binary predicate F and a unary predicate U .

Theorem 8.2. Suppose n > 0 and the underlying signature ν is n-adequate
and contains countably many proposition symbols P0, P1, . . .. Let k = n+2.
Then there is a sentence τ+ ∈ Lk+

∞ω \ [L∞ω(Qn, ω)] of quantifier rank ω.

Proof: Let ν0 = ν \ {P0, P1, . . .} be the signature obtained by removing
each proposition symbol Pi from ν. The sentences σm constructed in Section
6 use only the smaller signature ν0. Let τ

+ be the sentence

τ+ :
∨
m

[σm ∧ Pm].

Then τ+ ∈ Lk+
∞ω with quantifier rank ω. For each model A with signature

ν0 and each m, let A(Pm) be the model with signature ν which is built
from A by making Pm true and making Pj false for all j ̸= m. Let Am

and Bm be the models constructed in Section 6 in the smaller signature
ν. Then Am(Pm) and Bm(Pm) satisfy the same sentences of L∞ω(Qn,m)
in the larger signature ν, and Am(Pm) |= σm ∧ Pm and Bm(Pm) ̸|= σm.
Moreover, for all j ̸= m, Bm(Pm) ̸|= Pj . Therefore for all m, Am(Pm) |= τ+

and Bm(Pm) ̸|= τ+. This shows that τ+ is not expressible in L∞ω(Qn, ω).
8.2

Theorem 8.3. Suppose n > 0 and the underlying signature ν is n-adequate
and contains at least another binary predicate symbol F and unary predicate
symbol U . Let k = n+2. Then there is a sentence τ ′+ ∈ Lk+

∞ω\[L∞ω(Qn, ω)]
of quantifier rank ω.

Proof: Let ν1 = ν \ {F,U} be the signature obtained by removing the
symbols F,U from ν. As in the preceding proof, the sentences σm con-
structed in Section 6 use only the smaller signature ν1. We first define a
first order positive existential sentence π′n with two variables that says that
the relation F has a directed path with n edges that begins at an element
of U and ends at an element x such that E(x, x). Formally, we inductively
define formulas φ′

n(x) and φ
′
n(y) by:

φ′
0(x) : E(x, x), φ′

0(y) : E(y, y),
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φ′
n+1(x) : (∃y)[F (x, y) ∧ φ′

n(y)], φ′
n+1(y) : (∃x)[F (y, x) ∧ φ′

n(x)].

We then define
π′n : (∃x)[U(x) ∧ φ′

n(x)].

Let τ ′+ be the sentence

τ ′
+
:

∞∨
m=1

[σm ∧ π′m].

Then τ ′+ ∈ Lk+
∞ω with quantifier rank ω. Let Am and Bm be the models

constructed in Section 6 in the smaller signature ν1. Recall that for each m,
Am |= σm and Bm ̸|= σm. Moreover, G(Am,Bm) has universe

G = X ∪ (Am × C) ∪ (Bm ×D)

where

C = {c1, . . . , cn+1}, D = {d1, . . . , dn+1}, X = C ∪D.
For each c ∈ C, the c-th copy of Am in G(Am,Bm) has universe Am × {c},
and for each d ∈ D the d-th copy of Bm in G(Am,Bm) has universe Bm×{d}.
We expand Am and Bm to models A′

m and B′
m in the signature ν as follows.

A′
0 and B′

0 are the expansions ofA0 and B0 in which F is empty and U = {c}.
A′

m+1 and B′
m+1 are the expansions of Am+1 and Bm+1 where U is the set

X in the construction G(Am,Bm), and F is the set of all pairs (x, y) such
that one of the following holds:

• x = (x′, c) and y = (y′, c) belong to the same copy of Am, and
A′

m |= F (x′, y′),
• x = (x′, d) and y = (y′, d) belong to the same copy of Bm, and
B′
m |= F (x′, y′),

• x ∈ C, y = (y′, c) belongs to a copy of Am, and A′
m |= U(y′), or

• x ∈ D, y = (y′, d) belongs to a copy of Bm, and B′
m |= U(y′).

It is easily shown by induction on m that F is included in E, that is, the
sentence

∀x∀y(F (x, y) → E(x, y))

holds in both A′
m and B′

m. The proof of Lemma 3.6 can be slightly modified
to show that A′

m and B′
m satisfy the same sentences of L∞ω(Qn,m) in the

whole signature ν.
One can show by an easy induction that for eachm, the sentence π′m holds

in A′
m (and holds in B′

m if m > 0), but for all j ̸= m the sentence π′j fails in

both A′
m and B′

m. Therefore A′
m |= σm ∧ π′m, and for all j, B′

m ̸|= σj ∧ π′j .
Therefore for all m, A′

m |= τ ′+ and B′
m ̸|= τ ′+, so τ ′+ is not expressible in

L∞ω(Qn, ω). 8.3
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