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ADMISSIBILITY IN GAMES1

BY ADAM BRANDENBURGER, AMANDA FRIEDENBERG,
AND H. JEROME KEISLER

Suppose that each player in a game is rational, each player thinks the other players
are rational, and so on. Also, suppose that rationality is taken to incorporate an ad-
missibility requirement—that is, the avoidance of weakly dominated strategies. Which
strategies can be played? We provide an epistemic framework in which to address this
question. Specifically, we formulate conditions of rationality and mth-order assumption
of rationality (RmAR) and rationality and common assumption of rationality (RCAR).
We show that (i) RCAR is characterized by a solution concept we call a “self-admissible
set”; (ii) in a “complete” type structure, RmAR is characterized by the set of strategies
that survive m + 1 rounds of elimination of inadmissible strategies; (iii) under certain
conditions, RCAR is impossible in a complete structure.

KEYWORDS: Epistemic game theory, rationality, admissibility, iterated weak domi-
nance, self-admissible sets, assumption, completeness.

1. INTRODUCTION

WHAT IS THE IMPLICATION of supposing that each player in a game is rational,
each player thinks the other players are rational, and so on? The natural first
answer to this question is that the players will choose iteratively undominated
(IU) strategies—that is, strategies that survive iterated deletion of strongly
dominated strategies. Bernheim (1984) and Pearce (1984) gave essentially this
answer, via their concept of rationalizability.2 Pearce (1984) also defined the
concept of a best-response set (BRS) and gave this as a more complete answer.

In this paper we ask: What is the answer to the above question when ratio-
nality of a player is taken to incorporate an admissibility requirement—that is,
the avoidance of weakly dominated strategies?

1This paper combines two earlier papers, “Epistemic Conditions for Iterated Admissibility”
(by Brandenburger and Keisler, June 2000) and “Common Assumption of Rationality in Games”
(by Brandenburger and Friedenberg, January 2002). We are indebted to Bob Aumann, Pierpaolo
Battigalli, Martin Cripps, Joe Halpern, Johannes Hörner, Martin Osborne, Marciano Siniscalchi,
and Gus Stuart for important input. Geir Asheim, Chris Avery, Oliver Board, Giacomo Bo-
nanno, Ken Corts, Lisa DeLucia, Christian Ewerhart, Konrad Grabiszewski, Rena Henderson,
Elon Kohlberg, Stephen Morris, Ben Polak, Phil Reny, Dov Samet, Michael Schwarz, Jeroen
Swinkels, and participants in various seminars gave valuable comments. Eddie Dekel and the ref-
erees made very helpful observations and suggestions. Brandenburger gratefully acknowledges
support from Harvard Business School and the Stern School of Business. Friedenberg thanks the
CMS-EMS at Northwestern University, the Department of Economics at Yale University, and
the Olin School of Business. Keisler thanks the National Science Foundation and the Vilas Trust
Fund.

2Under the original definition, which makes an independence assumption, the rationalizable
strategies can be a strict subset of the iteratively undominated strategies. Recent definitions (e.g.,
Osborne and Rubinstein (1994)) allow for correlation; in this case, the two sets are equal.
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Our analysis will identify a weak-dominance analog to Pearce’s concept of a
BRS, which we call a self-admissible set (SAS). We will also identify conditions
under which players will choose iteratively admissible (IA) strategies—that is,
strategies that survive iterated deletion of weakly dominated strategies.

The case of weak dominance is important. Weak-dominance concepts give
sharp predictions in many games of applied interest. Separate from its power in
applications, admissibility is a prima facie reasonable criterion: It captures the
idea that a player takes all strategies for the other players into consideration;
none is entirely ruled out. It also has a long heritage in decision and game
theory. (See the discussion in Kohlberg and Mertens (1986, Section 2.7).)

But there are significant conceptual hurdles to overcome in order under-
stand admissibility in games. Below, we review some issues that have already
been identified in the literature, add new ones, and offer a resolution.

The paper is organized as follows. The next section is an informal discussion
of the issues and results to follow. The formal treatment is in Sections 3–10.
Section 11 discusses some open questions. The heuristic treatment of the next
section can be read either before or in parallel with the formal treatment.3

2. HEURISTIC TREATMENT

We begin with the standard equivalence: Strategy s is admissible if and only
if there is a strictly positive probability measure on the strategy profiles for
the other players, under which s is optimal. In an influential paper, Samuelson
(1992) pointed out that this poses a basic challenge for an analysis of admissi-
bility in games. Consider the game in Figure 2.1, which is essentially Example 8
in Samuelson (1992).

Suppose rationality incorporates admissibility. Then, if Bob is rational, he
should assign positive probability to both U and D, and so will play L. Like-
wise, if Ann is rational, presumably she should assign positive probability to
both L and R. But if Ann thinks Bob is rational, should she not assign prob-
ability 1 to L? (We deliberately use the loose term “thinks.” We will be more

FIGURE 2.1.

3Online Supplemental material can be found in Brandenburger, Friedenberg, and Keisler
(2008).
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precise below.) The condition that Ann is rational appears to conflict with the
condition that she thinks Bob is rational.

2.1. Lexicographic Probabilities

Our method for overcoming this hurdle will be to allow Ann at the same
time both to include and to exclude a strategy of Bob’s. Ann will consider
some of Bob’s strategies infinitely less likely than others, but still possible. The
strategies that get infinitesimal weight can be viewed as both included (because
they do not get zero weight) and excluded (because they get only infinitesimal
weight).

In Figure 2.2, Ann has a lexicographic probability system (LPS) on Bob’s
strategies. (LPS’s were introduced in Blume, Brandenburger, and De-
kel (1991a).) Ann’s primary measure (“hypothesis”) assigns probability 1 to
L. Her secondary measure (depicted in square brackets) assigns probability 1
to R. Ann considers it infinitely more likely that Bob plays L than that Bob
plays R, but does not entirely exclude R from consideration.

In our lexicographic decision theory, Ann will choose strategy s over strategy
s′ if s yields a sequence of expected payoffs lexicographically greater than the
sequence s′ yields. So, with the LPS shown, she will choose U (not D).

Can we say that Ann believes Bob is rational? Customarily, we would say
yes if Ann assigns probability 1 to the event that Bob is rational, but now Ann
has an LPS that is not a single measure, so we need to look at the question
at a deeper level. Recall, at the level of preferences, Ann believes an event
E if her preference over acts, conditional on not-E, is trivial. (In short, not-E
is Savage-null.) But, clearly, Ann’s preference conditional on the event that
Bob is irrational (plays R) is not trivial: under her secondary hypothesis, she
chooses D over U .

We will settle for the weaker condition that Ann considers the event E in-
finitely more likely than not-E and, in this case, we will say Ann assumes E.
(Later, we give assumption a preference basis.) In Figure 2.2, Ann considers
it infinitely more likely that Bob is rational than irrational. This is our reso-
lution of the tension between requiring Ann to be rational—in the sense of
admissibility—and requiring her to think Bob is rational.

FIGURE 2.2.
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LPS’s are a basic tool for dealing with the idea of unexpected events in the
context of a strategic-form analysis. There is an analogous tool for analyzing
the extensive form, namely conditional probability systems (CPS’s). (The con-
cept goes back to Rényi (1955).) CPS’s are a key element of the Battigalli
and Siniscalchi (2002) (henceforth B-S) extensive-form epistemic analysis. Our
(LPS-based) assumption concept is closely related to their (CPS-based) con-
cept of “strong belief.” In fact, there will be a close parallel between many of
the ingredients in our paper and in B-S. Section 2.8 returns to discuss these
connections and to highlight the big debt we owe to B-S.

2.2. Rationality and Common Assumption of Rationality

In the game in Figure 2.2, the conditions that Bob is rational, and that Ann
is rational and assumes Bob is rational, imply a unique strategy for each player.

In general, we can formulate an infinite sequence of conditions:

(a1) Ann is rational; (b1) Bob is rational;
(a2) Ann is rational and assumes (b1); (b2) Bob is rational and assumes (a1);
(a3) Ann is rational, assumes (b1), (b3) Bob is rational, assumes (a1),

assumes (b2); assumes (a2);
· · · · · ·

There is rationality and common assumption of rationality (RCAR) if this
sequence holds. RCAR is a natural “baseline” epistemic condition on a game
when rationality incorporates admissibility. We want to know what strategies
can be played under RCAR.

To answer, we need some more epistemic apparatus. Let Ta and Tb be spaces
of types for Ann and Bob, respectively. Each type ta for Ann is associated with
an LPS on the product of Bob’s strategy and type spaces (i.e., on Sb × Tb).
Likewise for Bob. A state of the world is a 4-tuple (sa� ta� sb� tb), where sa and
ta are Ann’s actual strategy and type, and likewise for Bob. This is a standard
type structure in the epistemic literature, with the difference that types are as-
sociated with LPS’s, not single probability measures.

In these structures, rationality is a property of a strategy–type pair. A pair
(sa� ta) is rational if it satisfies the following admissibility requirement: The LPS
σ associated with ta has full support (rules nothing out), and sa lexicographi-
cally maximizes Ann’s expected payoff under σ . (In particular, sa is not weakly
dominated.) Otherwise the pair is irrational. Likewise for Bob.

Start with a game and an associated type structure. We get a picture like
Figure 2.3, where the outer rectangle is Sb × Tb and the shaded area is the
strategy–type pairs satisfying “RCAR for Bob.”

Now fix a strategy–type pair (sa� ta) that satisfies RCAR for Ann. Then Ann
assumes (b1), assumes (b2), . . . . By a conjunction property of assumption, it
follows that Ann assumes the joint event (b1) and (b2) and . . . , that is, Ann
assumes “RCAR for Bob.” This gives a picture like Figure 2.4, where the se-
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FIGURE 2.3.

quence of measures (μ0� � � � �μn−1) is the LPS associated with ta. There is an
initial segment (μ0� � � � �μj) of this sequence which concentrates exactly on the
event “RCAR for Bob.” This is because Ann considers pairs (sb� tb) inside this
event infinitely more likely than pairs outside the event.

Since (sa� ta) is rational, strategy sa lexicographically maximizes Ann’s ex-
pected payoff, under (μ0� � � � �μn−1). This establishes (by taking a convex com-
bination of the marginals on Sb) that there is a strictly positive measure on Sb

under which sa is optimal. That is, sa must be admissible. Strategy sa must also
lexicographically maximize Ann’s expected payoff under the initial segment
(μ0� � � � �μj). It follows (again taking a convex combination of the marginals)
that there is a strictly positive measure on the projection of the event “RCAR
for Bob” under which sa is optimal. That is, sa must be admissible with respect
to the projection.

Take the set of all states (sa� ta� sb� tb) satisfying RCAR and let Qa × Qb be
its projection into Sa × Sb. By the discussion above, the product Qa × Qb has
the following two properties:

FIGURE 2.4.
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(i) each sa ∈ Qa is admissible (i.e., is admissible with respect to Sb),
(ii) each sa ∈ Qa is admissible with respect to Qb;
and likewise with a and b interchanged.

(Note the similarity of these properties to the definition of a best-response set
(Pearce (1984))—a concept based, of course, on strong dominance.) But these
two properties are not yet enough to characterize RCAR, as the next example
shows.

2.3. Convex Combinations

Consider the game in Figure 2.5. The set {U}× {L�R} has properties (i) and
(ii), but U cannot be played under RCAR. Indeed, fix a type structure and
suppose (U� ta) is rational. In terms of Ann’s payoffs, U = 1

2N + 1
2D. It follows

that (N� ta) and (D� ta) will also be rational. Next consider a strategy–type pair
(sb� tb) for Bob, which is rational and assumes Ann is rational (i.e., Bob as-
sumes the event (a1) defined in Section 2.2). So Bob considers rational pairs
(sa� ta) for Ann infinitely more likely than irrational pairs. But then sb = R,
since the LPS associated with tb must give each of U�N , and D positive prob-
ability before giving M positive probability. Now consider a strategy–type pair
(sa� ta) for Ann, which is rational and such that Ann assumes Bob is rational
and assumes Bob is rational and assumes Ann is rational (that is, Ann assumes
the events (b1) and (b2)). We get sa =D (not U), since the LPS associated with
ta must give R positive probability before giving L positive probability.

The key to the example is that U is a convex combination for Ann of N and
D, so that (N� ta) and (D� ta) are rational whenever (U� ta) is. This suggests
that the projection of the RCAR set should have the following property:

(iii) if sa ∈ Qa and ra is part of a convex combination of strategies
for Ann that is equivalent for her to sa, then ra ∈ Qa;
and likewise for Bob.

FIGURE 2.5.
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We define a self-admissible set (SAS) to be a set Qa × Qb ⊆ Sa × Sb of strat-
egy pairs which has properties (i), (ii), and (iii).4 The strategies played under
RCAR always constitute an SAS (Theorem 8.1(i)).

2.4. Irrationality

Does the converse hold? That is, given an SAS, is there an associated type
structure so that the strategies played under RCAR correspond to this SAS?

To address the converse direction, we need to consider a further aspect of
admissibility in games. Under admissibility, Ann considers everything possible.
But this is only a decision-theoretic statement. Ann is in a game, so we imag-
ine she asks herself: “What about Bob? What does he consider possible?” If
Ann truly considers everything possible, then it seems she should, in particu-
lar, allow for the possibility that Bob does not! Alternatively put, it seems that a
full analysis of the admissibility requirement should include the idea that other
players do not conform to the requirement.

More precisely, we know that if a strategy–type pair (sa� ta) for Ann is ra-
tional, then the LPS associated with ta has full support. But we are going to
allow Ann to consider the possibility that there are types tb for Bob associated
with LPS’s that do not have full support. (Ann allows that Bob does not con-
sider everything.) Of course, by definition, if (sb� tb) is a rational pair for Bob,
then the LPS associated with tb will have full support. But there may be other
strategy–type pairs present too. Our argument is that the presence of such pairs
is conceptually appropriate if the topic is admissibility in games.

To see the significance of this, consider the game in Figure 2.6 (kindly pro-
vided by Pierpaolo Battigalli). The set {U�M�D} × {C�R} is an SAS. (It is also
the IA set.) With the converse direction in mind, let us understand why D is
consistent with RCAR.

FIGURE 2.6.

4Brandenburger and Friedenberg (2004) investigated properties of SAS’s.
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Fix a type structure. Notice that L is (strongly) dominated, so all pairs (L� tb)
for Bob are irrational. A pair (C� tb) or (R� tb) will be rational if the LPS asso-
ciated with tb has full support, and irrational otherwise. We use this below.

Turn to Ann. Notice that if D is optimal under a measure, then the measure
either assigns probability 1

2 to C and 1
2 to R or assigns positive probability to

both L and R. Moreover, in the first case, U and M will necessarily be optimal
too.

Fix a rational pair (D� ta), where ta assumes Bob is rational. Let (μ0� � � � �
μn−1) be the full-support LPS associated with ta. By the full-support condi-
tion, there is some measure that gives {L} × Tb positive probability. Let μi be
the first such measure. Also, since ta assumes “Bob is rational,” the rational
strategy–type pairs for Bob must be infinitely more likely than the irrational
pairs. Therefore i �= 0. Using the rationality of (D� ta), we now have that for
each measure μk with k< i: (i) μk assigns probability 1

2 to {C}×Tb and proba-
bility 1

2 to {R}×Tb, and (ii) U , M , and D are each optimal under μk. It follows
that D must also be optimal under μi, and so μi must assign positive probability
to both {L} × Tb and {R} × Tb. Now use again the fact that rational strategy–
type pairs for Bob must be infinitely more likely than the irrational pairs. Since
each point in {L} × Tb is irrational, μi must assign strictly positive probability
to the irrational pairs in {R} ×Tb. This is possible if there are non-full-support
types for Bob.

It is important to understand that we have two forms of irrationality in this
paper. One is more or less standard: A strategy–type pair is irrational if sa is
not optimal under the LPS associated with ta. This is just the usual notion of
irrationality, but now optimality is defined lexicographically. In a type struc-
ture, some strategy–type pairs “do their sums right” and optimize, and others
do not. Both kinds of pairs are present, but the latter kind do not play a special
role in our analysis.

There is a second form of irrationality which is new. For us, a player is ratio-
nal if he optimizes and also rules nothing out. So irrationality might mean not
optimizing. But it can also mean optimizing while not considering everything
possible (the LPS associated with ta does not have full support). This form of
irrationality is present in the example above, and it plays a central role in our
analysis. (See also Section 11C.)

To keep things simple, we use the one term “irrationality” to cover both
situations, but we repeat that there are these two cases.

2.5. Characterization of RCAR

We can now state our characterization of RCAR in games (Theorem 8.1):

Start with a game and an associated type structure. Let Qa × Qb

be the projection into Sa × Sb of the states (sa� ta� sb� tb) satisfying
RCAR. Then Qa ×Qb is an SAS of the game.
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FIGURE 2.7.

We also have:

Start with a game and an SAS Qa × Qb. There is a type structure
(with non-full-support types) such that Qa× Qb is the projection
into Sa × Sb of the states (sa� ta� sb� tb) satisfying RCAR.

It is easy to check that the IA strategies constitute an SAS of a game. So, in
particular, every game possesses an SAS, and RCAR is possible in every game.
But a game may possess other SAS’s too. In the game in Figure 2.7, there are
three SAS’s: {(U�L)}, {U}×{L�R}, and {(D�R)}. (The third is the IA set. Note
that the other two SAS’s are not contained in the IA set. This is different from
the case of strong dominance: It is well known that any Pearce best-response
set is contained in the set of strategies that survives iterated strong dominance.)

2.6. Iterated Admissibility

So the question remains: What epistemic conditions select the IA set in a
game from among the family of SAS’s? To investigate this, consider Figure 2.8,
which gives a type structure for the game in Figure 2.7. Ann and Bob each have
a single type. Ann’s LPS assigns primary probability 1 to (L� tb), and secondary
probability 1 (in square brackets) to (R� tb). Bob’s LPS assigns primary prob-
ability 1 to (U� ta), secondary probability 1 (in square brackets) to (M� ta),
and tertiary probability 1 (in double square brackets) to (D� ta). Ann (resp.
Bob) has just one rational strategy–type pair, namely (U� ta) (resp. (L� tb)).
Ann’s unique type ta assumes Bob is rational (the rational pair (L� tb) is con-
sidered infinitely more likely than the irrational pair (R� tb)). Likewise, Bob’s

FIGURE 2.8.
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unique type tb assumes Ann is rational (the rational pair (U� ta) is considered
infinitely more likely than the irrational pairs (M� ta) and (D� ta)). By induc-
tion, the RCAR set is then the singleton {(U� ta�L� tb)}. This is an instance of
Theorem 8.1: The projection into Sa × Sb of {(U� ta�L� tb)} is an SAS, namely
{(U�L)}.

In this structure, Ann assumes Bob plays L, making U her unique rational
choice. Both M and D are irrational for her. In fact, Bob considers it infinitely
more likely that Ann plays M than D, which is why he plays L. Bob is free to
assign the probabilities this way. To assume Ann is rational, it is enough that
Bob considers U infinitely more likely than both M and D, as he does.

What if Bob considered D infinitely more likely than M? Then he would
rationally play R not L. Presumably Ann would then play D and the IA set
would result. Figure 2.9 gives a scenario under which Bob will, in fact, con-
sider D infinitely more likely than M . We have added a type ua for Ann that
assumes Bob plays R. Now there is a second rational pair for Ann, namely
(D�ua). (Note there is no type va for Ann which we could add to the structure
to make (M�va) rational for Ann, since M is inadmissible.) If Bob assumes
Ann is rational, then he must consider the shaded pairs in Figure 2.9 infinitely
more likely than the unshaded pairs. If rational, he must play R, as desired.

Call a type structure complete if the range of the map from Ta (Ann’s type
space) to the space of LPS’s on Sb × Tb (Bob’s strategy space cross Bob’s type
space) properly contains the set of full-support LPS’s on Sb ×Tb, and similarly
with Ann and Bob interchanged. More loosely, a type structure is complete if
it contains all possible full-support types and at least one non-full-support type
(as per Section 2.4 above). Complete type structures exist for every finite game
(Proposition 7.2). Figure 2.9 suggests that with this setup, we should be able to
identify the IA strategies.

For m ≥ 0, say there is rationality and mth-order assumption of rationality
(RmAR) if conditions (a(m+ 1)) and (b(m+ 1)) of Section 2.2 hold. We have

FIGURE 2.9.
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(Theorem 9.1):

Start with a game and an associated complete type structure. Let
Qa ×Qb be the projection into Sa × Sb of the states (sa� ta� sb� tb)
satisfying RmAR. Then Qa ×Qb is the set of strategies that survive
(m+ 1) rounds of IA.

2.7. A Negative Result

Note that our Theorem 9.1 actually identifies, for any m, the (m + 1)-
iteratively admissible strategies, not the IA strategies. Of course, for a given
(finite) game, there is a number M such that for all m ≥ M , the m-iteratively
admissible strategies coincide with the IA strategies. Nevertheless, our result
is not quite an epistemic condition for IA in all finite games. That would be
one common condition—across all games—that yields IA. For example, one
might hope to characterize the IA set as the projection of a set of states which
is constructed in a uniform way in all complete type structures.

One would expect the RCAR set to be a natural candidate for this set of
states. But the following negative result (Theorem 10.1) shows that RCAR will
not work and is the reason for our limited statement of Theorem 9.1:

Start with a game in which Ann has more than one “strategi-
cally distinct” strategy, and an associated continuous complete
type structure. Then no state satisfies RCAR.

For the meaning of a continuous type structure, see Definition 7.8. The com-
plete type structure we get from our existence result (Proposition 7.2) is con-
tinuous.

In a certain sense, the result says that players cannot “reason all the way.”
Here is an intuition for the result. Suppose the RCAR set is nonempty. Then
there must be a type ta for Ann that assumes each of the decreasing sequence
of events (b1), (b2), . . . (these events were defined in Section 2.2). That is,
strategy–type pairs not in (b1) must be considered infinitely less likely than
pairs in (b1); pairs not in (b2) must be considered infinitely less likely than
pairs in (b2), and so on. Let (μ0� � � � �μn−1) be the LPS associated with ta. Fig-
ure 2.10 shows the most parsimonious way to arrange the measures μi, so that
Ann indeed assumes each of (b1), (b2), . . . . But even in this case, we will run
out of measures and Ann will not be able to assume any of the events (bn),
(b(n+1)), . . . . More loosely, at some point Ann will hit her primary hypothesis
μ0, at which point there is no next (more likely) order of likelihood.

In the complete type structure we get from Proposition 7.2, each event
(b(m+ 1)) is “significantly” smaller than event (bm). This is because Bob has
many types that assume the event (a(m − 1)) but not the event (am). So the
measures μi do indeed have to be arranged as shown. This was not true in
the incomplete structure of Figure 2.8, where these events do not shrink at all.
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FIGURE 2.10.

That is why we had a state there satisfying RCAR, while no such state exists
for the complete structure of Proposition 7.2.

2.8. The Ingredients

To recap: We begin with the fundamental inclusion–exclusion challenge
identified by Samuelson (1992). Our resolution is to allow some states to be
infinitely more likely than others. (We do this by using LPS’s and the concept
of assumption.) Then we characterize the strategies consistent with RCAR as
the SAS’s of a game. In a complete type structure, the strategies consistent with
RmAR are those that survive (m + 1) rounds of iterated admissibility. How-
ever, under certain conditions, RCAR in a complete structure is impossible.

Our examination of admissibility builds on fundamental work on the tree by
Battigalli and Siniscalchi (2002). They study the solution concept of extensive-
form rationalizability (EFR), an extensive-form analog to the iteratively un-
dominated (IU) strategies. (The concept was defined by Pearce (1984) and
later simplified by Battigalli (1997).)

B-S used conditional probability systems (CPS’s) to describe what players
believe given what they observe in the tree. They next introduced the concept
of strong belief. (This is the requirement that a player assign probability 1 to an
event at each information set that is consistent with the event.) With rationality
defined for the tree, they showed:

Start with a game and an associated (CPS-based) complete type
structure. Let Qa ×Qb be the projection into Sa × Sb of the states
(sa� ta� sb� tb) satisfying rationality and mth-order strong belief of
rationality. Then Qa ×Qb is the set of strategies that survive (m+
1) rounds of elimination of EFR.
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Clearly, our Theorem 9.1 (previewed in Section 2.6) is closely related. In
terms of ingredients, LPS’s and CPS’s can be formally related. See Halpern
(2007) for a general treatment. Assumption can be viewed as a strategic-form
analog to strong belief. Asheim and Søvik (2005) explored this connection; see
also our companion piece (Brandenburger, Friedenberg, and Keisler (2006)).
The role of completeness in our analysis is similar to its role in B-S.

There are also similarities in terms of output. IA and EFR are outcome
equivalent in generic trees.5 Of course, many games of interest are non-
generic.6 In simultaneous-move games, EFR reduces to IU. IA and EFR will
then differ whenever IA and IU do.

There are other differences between the two analyses. In B-S, there is no
analog to our negative result (Theorem 10.1). The reason is that full-support
LPS’s are, in a particular sense, more informative than CPS’s on the tree. The
online Supplemental material gives an exact treatment of this difference.

Also, we cover the case of incomplete type structures via our Theorem 8.1
(previewed in Section 2.5). We think of a particular incomplete structure as
giving the “context” in which the game is played. In line with Savage’s Small-
Worlds idea in decision theory (Savage (1954, pp. 82–91)), who the players are
in the given game can be seen as a shorthand for their experiences before the
game. The players’ possible characteristics—including their possible types—
then reflect the prior history or context. (Seen in this light, complete structures
represent a special “context-free” case, in which there has been no narrowing
down of types.) SAS’s are our characterization of the epistemic condition of
RCAR in the contextual case.7

3. SAS’S AND THE IA SET

We now begin the formal treatment. Fix a two-player finite strategic-form
game 〈Sa�Sb�πa�πb〉, where Sa�Sb are the (finite) strategy sets, and πa, πb

are payoff functions for Ann and Bob, respectively.8 Given a finite set X , let
M(X) denote the set of all probability measures on X . The definitions to come
all have counterparts with a and b reversed. We extend πa to M(Sa)×M(Sb)
in the usual way: πa(σa�σb) = ∑

(sa�sb)∈Sa×Sb σ
a(sa)σb(sb)πa(sa� sb). Through-

out, we adopt the convention that in a product X × Y , if X = ∅, then Y = ∅
(and vice versa).

5See Brandenburger and Friedenberg (2003). Shimoji (2004) has a result relating IA and
EFR, where EFR is defined relative to “normal-form information sets” (Mailath, Samuelson,
and Swinkels (1993)).

6Examples include auction games, voting games, Bertrand, and zero-sum games. See Mertens
(1989) and Marx and Swinkels (1997) for the same observation on nongenericity, and lists of
examples.

7The online Supplemental material (Brandenburger, Friedenberg, and Keisler (2008)) con-
tains discussion of other related work.

8For notational simplicity, we restrict attention throughout to two-player games. But the analy-
sis can be extended without change to games with three or more players.
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DEFINITION 3.1: Fix X×Y ⊆ Sa ×Sb. A strategy sa ∈X is weakly dominated
with respect to X × Y if there exists σa ∈ M(Sa), with σa(X) = 1, such that
πa(σa� sb) ≥ πa(sa� sb) for every sb ∈ Y and πa(σa� sb) > πa(sa� sb) for some
sb ∈ Y . Otherwise, say sa is admissible with respect to X ×Y . If sa is admissible
with respect to Sa × Sb, simply say that sa is admissible.

Write Suppσ for the support of σ . We have the usual equivalence:

LEMMA 3.1: A strategy sa ∈ X is admissible with respect to X ×Y if and only
if there exists σb ∈ M(Sb), with Suppσb = Y , such that πa(sa�σb) ≥ πa(ra�σb)
for every ra ∈ X .

DEFINITION 3.2: Say ra supports sa if there exists some σa ∈ M(Sa) with
ra ∈ Suppσa and πa(σa� sb)= πa(sa� sb) for all sb ∈ Sb. Write su(sa) for the set
of ra ∈ Sa that support sa.

In words, the strategy ra is contained in su(sa) if it is part of a convex combi-
nation of Ann’s strategies that is equivalent for her to sa.

We can now define SAS’s and the IA set:

DEFINITION 3.3: Fix Qa ×Qb ⊆ Sa × Sb. The set Qa ×Qb is a self-admissible
set (SAS) if:

(i) each sa ∈Qa is admissible;
(ii) each sa ∈Qa is admissible with respect to Sa ×Qb;

(iii) for any sa ∈ Qa, if ra ∈ su(sa), then ra ∈Qa.
Likewise for each sb ∈Qb.

DEFINITION 3.4: Set Si
0 = Si for i = a�b and define inductively

Si
m+1 = {si ∈ Si

m : si is admissible with respect to Sa
m × Sb

m}�
A strategy si ∈ Si

m is called m-admissible. A strategy si ∈ ⋂∞
m=0 S

i
m is called iter-

atively admissible (IA).

Note that there is an M such that
⋂∞

m=0 S
i
m = Si

M for i = a�b. Moreover, each
set Si

m is nonempty and, hence, the IA set is nonempty.

4. LEXICOGRAPHIC PROBABILITY SYSTEMS

Given a Polish space Ω, it will be helpful to fix a metric. (So “Polish” will
mean complete separable metric.) Let M(Ω) be the space of Borel proba-
bility measures on Ω with the Prohorov metric. Recall that M(Ω) is again
a Polish space and has the topology of weak convergence (Billingsley (1968,



ADMISSIBILITY IN GAMES 321

Appendix III)). Let N (Ω) be the set of all finite sequences of Borel proba-
bility measures on Ω. That is, if σ ∈ N (Ω), then there is some integer n with
σ = (μ0� � � � �μn−1).

Define a metric on N (Ω) as follows. The distance between two sequences of
measures (μ0� � � � �μn−1) and (ν0� � � � � νn−1) of the same length is the maximum
of the Prohorov distances between μi and νi for i < n. The distance between
two sequences of measures of different lengths is 1. For each fixed n, this metric
on the set of sequences in N (Ω) of length n is easily seen to be separable and
complete, and thus Polish (this is the usual finite product metric). The whole
space N (Ω) is thus a countable union of Polish spaces at uniform distance 1
from each other. This shows that N (Ω) itself is a Polish space.

DEFINITION 4.1: Fix σ = (μ0� � � � �μn−1) ∈ N (Ω), for some integer n. Say
σ is a lexicographic probability system (LPS) if σ is mutually singular—that is,
for each i = 0� � � � � n − 1, there are Borel sets Ui in Ω with μi(Ui) = 1 and
μi(Uj) = 0 for i �= j. Write L(Ω) for the set of LPS’s and write L(Ω) for the
closure of L(Ω) in N (Ω).

An LPS is a finite measure sequence where the measures are nonoverlapping
(mutually singular). This has the usual interpretation: the player’s primary hy-
pothesis, secondary hypothesis, and so on, until an nth hypothesis.

In general, an LPS may have some null states which remain outside the sup-
port of each of its measures. We are also interested in the case that there are
no such null states:

DEFINITION 4.2: A full-support sequence is a sequence σ = (μ0� � � � �μn−1) ∈
N (Ω) such that Ω = ⋃

i<n Suppμi. We write N +(Ω) for the set of full-support
sequences and write L+(Ω) for the set of full-support LPS’s.

Here, Suppμi denotes the support of μi, that is, the smallest closed set with
μi-measure 1. The space L(Ω) is Polish, since it is a closed subspace of the
Polish space N (Ω). Also, the sets N +(Ω), L(Ω), and L+(Ω) are Borel (Corol-
lary C.1).

Our definition of an LPS is a infinite version of the definition for finite spaces
introduced by Blume, Brandenburger, and Dekel (henceforth BBD) (1991a).
Infinite spaces play a crucial role in this paper—complete type structures (re-
call the discussion in Section 2.6) are infinite. (A note on terminology: BBD
used the term LPS even when mutual singularity does not hold.)

5. ASSUMPTION

Here, we define formally the concept of assumption, which was introduced
informally in Section 2.1. Fix a full-support LPS σ = (μ0� � � � �μn−1) for Ann
and fix an event E. Intuitively, Ann assumes E if she considers E infinitely
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more likely than not-E under σ . So, to define assumption, we first need to
understand the idea of “infinitely more likely than.”

BBD (1991a, Definition 5.1) gave a definition of “infinitely more likely than”
for the case of a finite space Ω and a full-support LPS σ = (μ0� � � � �μn−1) (see
their Axiom 5′). They say that a point ω1 is infinitely more likely than a point ω2

if ω1 comes before ω2 in the lexicographic ordering. For disjoint events F and
G, they require that F is nonempty and each point in F is infinitely more likely
than each point in G. Formally, the requirement is that: F is nonempty, and
for each ω1 ∈ F and ω2 ∈ G, μj(ω1) > 0 and μk(ω2) > 0 implies j < k. (The
same idea of “infinitely more likely than” can be found in Battigalli (1996, p.
186) and Asheim and Dufwenberg (2003).)

We want a general (i.e., infinite) analog to this definition, so we work with
open sets rather than just points. Call F0 a part of F if F0 =U ∩F �= ∅ for some
open U . Instead of asking that each point in F be infinitely more likely than
each point in G, we require that each part of F be infinitely more likely than
each part of G.

DEFINITION 5.1: Fix a full-support LPS σ = (μ0� � � � �μn−1) ∈L+(Ω) and dis-
joint events F and G. Then F is infinitely more likely than G under σ if F is
nonempty and, for any part F0 of F :

(a) μi(F0) > 0 for some i;
(b) if μj(F0) > 0 and there is a part G0 of G with μk(G0) > 0 , then j < k.

Note that for finite Ω, this is equivalent to the BBD definition. In particu-
lar, condition (a) is then automatically satisfied (since every point gets positive
probability under some μi). In the general case, we need to require (a) explic-
itly. Without it, we could have that F is infinitely more likely than G, but at the
same time G is infinitely more likely than F . This would not make sense. (See
the online Supplemental material.)

The idea of assumption of an event E is simply that E is considered infinitely
more likely than not-E:

DEFINITION 5.2: Fix an event E and a full-support LPS σ = (μ0� � � � �μn−1) ∈
L+(Ω). Say E is assumed under σ if E is infinitely more likely than Ω\E un-
der σ .

We have the following characterization of assumption9:

PROPOSITION 5.1: Fix an event E and a full-support LPS σ = (μ0� � � � �μn−1) ∈
L+(Ω). An event E is assumed under σ if and only if there is a j such that:

(i) μi(E)= 1 for all i ≤ j;
(ii) μi(E)= 0 for all i > j;

9Proofs not given in the main text can be found in the Appendices.
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(iii) if U is open with U ∩E �= ∅, then μi(U ∩E) > 0 for some i.

(We will sometimes say that E is assumed at level j. Also, we will refer to con-
ditions (i)–(iii) of Proposition 5.1 as conditions (i)–(iii) of assumption.)

Note that if Ω is finite, conditions (i) and (ii) imply condition (iii). But this is
not the case when Ω is infinite. (See the online Supplemental material.)

As with the usual notion of “belief” of an event E, assumption can be given
an axiomatic treatment. Appendix A proposes two axioms: Strict Determination
says that whenever Ann strictly prefers one act to another conditional on E, she
has the same preference unconditionally. Nontriviality says that, conditional on
any part of E, she can have a strict preference. In Appendix A, we show that
Ann assumes E if and only if her preferences satisfy these axioms. We also
relate this axiomatization to the axiomatization of “infinitely more likely than”
in BBD (1991a, Definition 5.1).

6. PROPERTIES OF ASSUMPTION

We next mention some properties of assumption. (Again, we use an overbar
to denote closure.)

PROPERTY 6.1—Convexity: If E and F are assumed under σ at level j, then
any Borel set G lying between E∩F and E∪F is also assumed under σ at level j.

PROPERTY 6.2—Closure: If E and F are assumed under σ at level j, then
E = F . If E and F are assumed under σ , then either E ⊆ F or F ⊆E.

The Convexity property refers to convexity in the sense of orderings (where
the order is set inclusion), and is a two-sided monotonicity. The Closure prop-
erty implies that, for a finite space, there is only one set that is assumed at
each level. Also, in the finite case, if E and F are both assumed, then E ⊆ F or
F ⊆E. Neither statement is true for an infinite space.

Overall, the mental picture we suggest for assumption is of rungs of a ladder,
separated by gaps, where each rung is a convex family of sets with the same
closure. (Each rung corresponds to the events assumed at the particular level.)

Next, notice that assumption is not monotonic. Here is an example: Set Ω =
[0�1] ∪ {2�3}, and let σ = (μ0�μ1) be a full-support LPS where μ0 is uniform
on [0�1] and μ1({2})= μ1({3})= 1

2 . Then σ assumes (0�1] but not (0�1] ∪ {2}.
The best way to understand this nonmonotonicity is in terms of our axiomatic

treatment.10 Suppose Ann assumes (0�1]—that is, when she has a strict pref-
erence, she is willing to make a decision based solely on (0�1]. (This is Strict
Determination.) It does not seem natural to require that Ann also be will-
ing to make a decision based only on (0�1] ∪ {2}. After all, she considers the

10We thank a referee for this line of argument.
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possibility that 2 obtains. (Nontriviality implies that the state 2 must get pos-
itive weight under some measure—as it does under μ1.) Once she considers
this possibility, presumably she should also consider the possibility that 3 ob-
tains. (To give 2 positive probability, she must look to her secondary hypothesis,
which also gives 3 positive probability.) Of course, the state 3 may well matter
for her preferences.

On the other hand, if Ann assumes (0�1], then certainly she should assume
[0�1]. Admitting the possibility of 0 does not force her to look to her secondary
hypothesis—it does not force her to consider 2 or 3 possible. Formally, Ann as-
sumes [0�1) and (0�1] at the same level. Convexity then requires her to assume
[0�1] (at the same level).

Because of the nonmonotonicity, assumption fails one direction of conjunc-
tion. Returning to the example, Ann assumes (0�1]∩ ((0�1]∪ {2}) even though
she does not assume (0�1] ∪ {2}. But the other direction of conjunction, and
the analog for disjunction, are satisfied:

PROPERTY 6.3—Conjunction and Disjunction: Fix Borel sets E1�E2� � � � in Ω
and suppose that, for each m, Em is assumed under σ . Then

⋂
m Em and

⋃
m E

are assumed under σ .

7. TYPE STRUCTURES

Fix again a two-player finite strategic-form game 〈Sa�Sb�πa�πb〉.
DEFINITION 7.1: An (Sa� Sb)-based type structure is a structure

〈Sa�Sb�T a�T b�λa�λb〉�
where Ta and Tb are nonempty Polish spaces, and λa :Ta → L(Sb × Tb) and
λb :Tb → L(Sa × Ta) are Borel measurable. Members of Ta�T b are called
types. Members of Sa×Ta×Sb×Tb are called states (of the world). A type struc-
ture is called lexicographic if λa :Ta →L(Sb × Tb) and λb :Tb →L(Sa × Ta).

Definition 7.1 is based on a standard epistemic definition: A type structure
enriches the basic description of a game by appending spaces of epistemic types
for both players, where a type for a player is associated with a sequence of
measures on the strategies and types for the other player. The difference from
the standard definition is the use of a sequence of measures rather than one
measure.

Our primary focus will be on lexicographic type structures, which have a
natural interpretation in a game setting. Nonlexicographic type structures will
play a useful role in the construction of lexicographic type structures. Note that
lexicographic type structures can contain two different kinds of types—those
associated with full-support LPS’s and those associated with non-full-support
LPS’s. The reason for this was discussed in Section 2.4.
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The following definitions apply to a given game and type structure. As be-
fore, they also have counterparts with a and b reversed. Write margSb μi for the
marginal on Sb of the measure μi.

DEFINITION 7.2: A strategy sa is optimal under σ = (μ0� � � � �μn−1) if σ ∈
L(Sb × Tb) and(

πa(sa�margSb μi(s
b))

)n−1

i=0
≥L

(
πa(ra�margSb μi(s

b))
)n−1

i=0

for all ra ∈ Sa.11

In words, Ann will prefer strategy sa to strategy ra if the associated sequence
of expected payoffs under sa is lexicographically greater than the sequence un-
der ra. (If σ is a length-1 LPS (μ0), we will sometimes say that sa is optimal
under the measure μ0 if it is optimal under (μ0).)

DEFINITION 7.3: A type ta ∈ Ta has full support if λa(ta) is a full-support
LPS.

DEFINITION 7.4: A strategy–type pair (sa� ta) ∈ Sa × Ta is rational if ta has
full support and sa is optimal under λa(ta).

This is the usual definition of rationality, plus the full-support requirement,
which is to capture our basic admissibility requirement. The following two lem-
mas say this formally:

LEMMA 7.1—BBD (1991b): Suppose sa is optimal under a full-support LPS
(μ0� � � � �μn−1) ∈ L+(Sb × Tb). Then there is a length-1 full-support LPS (ν0) ∈
L+(Sb × Tb), under which sa is optimal.

Together with Lemma 3.1, this gives the following lemma:

LEMMA 7.2: If (sa� ta) is rational, then sa is admissible.

Fix an event E ⊆ Sb × Tb and write

Aa(E)= {ta ∈ Ta :λa(ta) assumes E}�
The set Aa(E) is Borel (Lemma C.3).

Let Ra
1 be the set of rational strategy–type pairs (sa� ta). For finite m, define

Ra
m inductively by

Ra
m+1 =Ra

m ∩ [Sa ×Aa(Rb
m)]�

11If x= (x0� � � � � xn−1) and y = (y0� � � � � yn−1), then x≥L y if and only if yj > xj implies xk > yk
for some k < j.
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The sets Ra
m are Borel (Lemma C.4).

DEFINITION 7.5: If (sa� ta� sb� tb) ∈ Ra
m+1 × Rb

m+1, say there is rationality and
mth-order assumption of rationality (RmAR) at this state. If (sa� ta� sb� tb) ∈⋂∞

m=1 R
a
m × ⋂∞

m=1 R
b
m, say there is rationality and common assumption of ratio-

nality (RCAR) at this state.

In words, there is RCAR at a state if Ann is rational, Ann assumes the event
“Bob is rational,” Ann assumes the event “Bob is rational and assumes Ann is
rational,” and so on, and similarly starting with Bob.

Note, we cannot replace this definition with R̂a
1 = Ra

1 and R̂a
m+1 = R̂a

1 ∩
[Sa × Aa(R̂b

m)]. To clarify, suppose (sa� ta) ∈ Ra
3 . Then (sa� ta) ∈ Ra

1 ∩ [Sa ×
Aa(Rb

1)] ∩ [Sa × Aa(Rb
1 ∩ [Sb × Ab(Ra

1)])]. In words, Ann is rational, she as-
sumes the event “Bob is rational,” and she assumes the event “Bob is ratio-
nal and assumes Ann is rational.” Now suppose (sa� ta) ∈ R̂a

3 . Then (sa� ta) ∈
Ra

1 ∩[Sa ×Aa(Rb
1 ∩[Sb ×Ab(Ra

1)])]. In words, Ann is rational, and she assumes
the event “Bob is rational and assumes Ann is rational.” But, because assump-
tion is not monotonic, she might not assume the event “Bob is rational.” We
think that under a good definition of R2AR, Ann should assume this event.

Next is a notion of equivalence between type structures.

DEFINITION 7.6: Two type structures 〈Sa�Sb�T a�T b�κa�κb〉 and 〈Sa�Sb�T a�
T b�λa�λb〉 are equivalent if:

(i) they have the same strategy and type spaces;
(ii) for each ta ∈ Ta, if either κa(ta) or λa(ta) belongs to L+(Sb × Tb), then

κa(ta)= λa(ta) (and likewise with a and b reversed).

PROPOSITION 7.1:
(i) For every type structure there is an equivalent lexicographic type structure.

(ii) If two type structures are equivalent, then for each m they have the same
Ra

m and Rb
m sets.

This proposition shows that any statement about rationality and mth-order
assumption of rationality (for any m) that is true for every lexicographic type
structure is true for every type structure. Conceptually, we are interested in
type structures which satisfy the hypothesis of being lexicographic, but the
proposition tells us that we will never need this hypothesis in our theorems.
In practice, then, we will state and prove theorems for arbitrary type struc-
tures. By Proposition 7.1, in these proofs we can always assume without loss of
generality that the type structure is lexicographic.

We conclude this section with the idea of a complete type structure (adapted
from Brandenburger (2003)).

DEFINITION 7.7: A type structure 〈Sa�Sb�T a�T b�λa�λb〉 is complete if
L+(Sb × Tb) � rangeλa and L+(Sa × Ta) � rangeλb.
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In words, a complete structure contains all full-support LPS’s for Ann and
Bob, and (at least) one non-full-support LPS.12 (Refer back to Sections 2.4
and 2.6.) We see at once from the definition that any type structure which is
equivalent to a complete type structure is complete.

PROPOSITION 7.2: For any finite sets Sa and Sb, there is a complete type struc-
ture 〈Sa�Sb�T a�T b�λa�λb〉 such that the maps λa and λb are continuous.

DEFINITION 7.8: A type structure 〈Sa�Sb�T a�T b�λa�λb〉 is continuous if it is
equivalent to a type structure where the λa and λb maps are continuous.

Thus, in a continuous type structure, players associate neighboring full-
support LPS’s with neighboring full-support types. Propositions 7.1 and 7.2
immediately give the following corollary:

COROLLARY 7.1: For any finite sets Sa and Sb, there exists a complete continu-
ous lexicographic (Sa� Sb)-based type structure.

8. CHARACTERIZATION OF RCAR

THEOREM 8.1:
(i) Fix a type structure 〈Sa�Sb�T a�T b�λa�λb〉. Then projSa

⋂∞
m=1 R

a
m ×

projSb
⋂∞

m=1 R
b
m is an SAS.

(ii) Fix an SAS Qa×Qb. There is a lexicographic type structure 〈Sa�Sb�T a�T b�
λa�λb〉 with Qa ×Qb = projSa

⋂∞
m=1 R

a
m × projSb

⋂∞
m=1 R

b
m.

PROOF: For part (i), if
⋂

mRa
m × ⋂

mRb
m = ∅, then the conditions of an SAS

are automatically satisfied. So we will suppose this set is nonempty.
Fix sa ∈ projSa

⋂
mRa

m. Then (sa� ta) ∈ ⋂
mRa

m for some ta ∈ Ta. Certainly
(sa� ta) ∈ Ra

1 . Using Lemma 7.2, sa is admissible, establishing condition (i) of
an SAS. By Property 6.3, ta ∈ Aa(

⋂
mRb

m). We therefore get a picture like Fig-
ure 8.1 (for some j < n), and, as illustrated,⋃

i≤j

Supp margSb μi = projSb
⋂
m

Rb
m�

(This is formally established as Lemma D.1 and uses condition (iii) of assump-
tion.) As in Lemma 7.1, there is a length-1 LPS (ν0) on Sb, with Suppν0 =
projSb

⋂
mRb

m, under which sa is optimal. Thus sa is admissible with respect

12In the literature, the more common concept of a model of all possible types is the universal
(or canonical) model. (See Armbruster and Böge (1979), Böge and Eisele (1979), Mertens and
Zamir (1985), Brandenburger and Dekel (1993), Heifetz (1993), and Battigalli and Siniscalchi
(1999), among others.) The completeness concept is well suited to our analysis.



328 A. BRANDENBURGER, A. FRIEDENBERG, AND H. J. KEISLER

FIGURE 8.1.

to Sa × projSb
⋂

mRb
m, establishing condition (ii) of an SAS. Next suppose

ra ∈ su(sa). Then, for any ta, (sa� ta) ∈ Ra
1 implies (ra� ta) ∈ Ra

1 (Lemma D.2),
and so we have for all m, (sa� ta) ∈ Ra

m implies (ra� ta) ∈ Ra
m. This establishes

condition (iii) of an SAS.
For part (ii) of the theorem, fix an SAS Qa × Qb. (Recall the convention

that if Qa = ∅, then Qb = ∅ and vice versa.) By conditions (i) and (ii) of an
SAS, for each sa ∈ Qa there are measures ν0� ν1 ∈ M(Sb), with Suppν0 = Sb

and Suppν1 = Qb, under which sa is optimal. We can choose ν0 so that ra is
optimal under ν0 if and only if ra ∈ su(sa). (This is Lemma D.4.)

Define type spaces Ta = Qa ∪ {ta∗ } and Tb = Qb ∪ {tb∗ }, where ta∗ and tb∗ are
arbitrary labels. For ta = sa ∈Qa, the associated λa(ta) ∈L+(Sb × Tb) will be a
two-level full-support LPS (μ0�μ1), where margSb μ0 = ν1 and margSb μ1 = ν0.13

(Further conditions are specified below.) Let λa(ta∗ ) be an element of L(Sb ×
Tb)\L+(Sb × Tb). Define the map λb similarly.

Figure 8.2 shows the construction of λa(ta): Under the above specifications,
points (sb� sb) on the diagonal are rational. That is, these points lie in Rb

1 . Other
points (rb� sb) are rational if and only if rb ∈ su(sb). By condition (iii) of an
SAS, su(sb) ⊆ Qb. So the set Rb

1 contains the diagonal and is contained in the
rectangle Qb × Qb. Moreover, for each sb ∈ Sb, (sb� tb∗ ) ∈ (Sb × Tb)\Rb

1 . Thus
we can take the measures μ0 and μ1 to satisfy

margSb μ0 = ν1� Suppμ0 = Rb
1�

margSb μ1 = ν0� Suppμ1 = (Sb × Tb)\Rb
1�

Likewise for the map λb.

13We reverse the indices for consistency with the proof of Theorem 9.1 below.
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FIGURE 8.2.

We now show that projSa
⋂

mRa
m = Qa and likewise for b. By the same ar-

gument as in the previous paragraph, projSa R
a
1 = Qa. Moreover, each ta ∈ Qa

assumes Rb
1 . (Conditions (i) and (ii) are immediate for j = 0. Condition (iii)

follows immediately from the fact that Sb × Tb is finite and each ta ∈ Qa has
full support.) So Ra

2 = Ra
1 . Likewise for b. Thus Ra

m = Ra
1 and Rb

m = Rb
1 for

all m, by induction. Certainly projSa R
a
1 × projSb R

b
1 = Qa × Qa. It follows that

projSa
⋂

mRa
m × projSb

⋂
mRb

m =Qa ×Qb, as required. Q.E.D.

9. CHARACTERIZATION OF RmAR IN A COMPLETE STRUCTURE

THEOREM 9.1: Fix a complete type structure 〈Sa�Sb�T a�T b�λa�λb〉. Then, for
each m,

projSa R
a
m × projSb R

b
m = Sa

m × Sb
m�

PROOF: We may assume that the type structure is lexicographic. The proof
is by induction on m. Begin by fixing some (sa� ta) ∈ Ra

1 . By Lemma 7.2, sa ∈ Sa
1 .

This shows that projSa R
a
1 × projSb R

b
1 ⊆ Sa

1 × Sb
1 .

Next fix some sa ∈ Sa
1 . By Lemma 3.1, there is an LPS (ν0) ∈ L+(Sb) under

which sa is optimal. We want to construct an LPS (μ0) ∈ L+(Sb × Tb) with
margSb μ0 = ν0. By completeness, there will then be a type ta with λa(ta) =
(μ0). By construction, the pair (sa� ta) ∈ Ra

1 . This will establish that projSa R
a
1 ×

projSb R
b
1 = Sa

1 × Sb
1 .

To construct (μ0), fix some sb ∈ Sb and set X = {sb} × Tb. Note that ν0(s
b) >

0. By rescaling and combining measures over different sb, it is enough to find
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(ξ0) ∈L+(X). By separability, X has a countable dense subset Y . So by assign-
ing positive weight to each point in Y , we get a measure ξ0, where ξ0(Y) = 1
and Suppξ0 is the closure of Y , as required.

Now assume the result for all 1 ≤ i ≤ m. We will show it is also true
for i = m + 1. Fix some (sa� ta) ∈ Ra

m+1, where λa(ta) = (μ0� � � � �μn−1). Then
(sa� ta) ∈ Ra

m and so, by the induction hypothesis, sa ∈ Sa
m. Also, ta ∈ Aa(Rb

m).
Since projSb R

b
m = Sb

m, by the induction hypothesis, we get a picture like Fig-
ure 9.1 (for some j < n). By the same argument as in the proof of Theorem 8.1,
we conclude that sa is admissible with respect to Sa × Sb

m (so certainly with re-
spect to Sa

m × Sb
m). Thus sa ∈ Sa

m+1.
Next fix some sa ∈ Sa

m+1. It will be useful to set Sb
0 = Sb and Rb

0 = Sb × Tb.
For each 0 ≤ i ≤ m, there is a measure νi ∈ M(Sb), with Suppνi = Sb

i , under
which sa is optimal among all strategies in Sa. (This is Lemma E.1, which uses
Lemma 3.1.) Thus sa is (lexicographically) optimal under the sequence of mea-
sures (ν0� � � � � νm). Also, using the induction hypothesis, Sb

i = projSa R
b
i for all

0 ≤ i ≤ m. We want to construct an LPS (μ0� � � � �μm) ∈L+(Sb × Tb) where:
(i) margSb μi = νm−i;

(ii) Rb
i is assumed at level m− i.

It will then follow from completeness that there is a ta with λa(ta) =
(μ0� � � � �μm), and hence (sa� ta) ∈Ra

m+1. (Refer to Figure 9.2.)
Now fix some sb ∈ Sb and set X = {sb} × Tb as above. Let h be the greatest

i ≤ m such that sb ∈ Sb
i . Note that for each i ≤ h we have sb ∈ Sb

i = Suppνi and
so νi(s

b) > 0.
By rescaling and combining the measures over different sb, it is enough (us-

ing Lemma B.1) to find (ξ0� � � � � ξh) ∈L+(X) with:
(iii) ξ0(X ∩Rb

h)= 1;
(iv) ξi(X ∩ (Rb

h−i\Rb
h−i+1))= 1 for each 1 ≤ i ≤ h;

FIGURE 9.1.
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FIGURE 9.2.

(v) X ∩Rb
h−i ⊆

⋃i

j=0 Suppξj for each 0 ≤ i ≤ h.
Each Rb

h−i is Borel (Lemma C.4). We also have projSb R
b
h−i = projSb(R

b
h−i\

Rb
h−i+1). (This is Lemma E.3. It is the place where we use the fact that

a complete lexicographic type structure has a non-full-support LPS.) Since
sb ∈ projSb R

b
h−i, for each 1 ≤ i ≤ h the set Xi =X ∩ (Rb

h−i\Rb
h−i+1) is nonempty.

The set X0 =X ∩Rb
h is also nonempty. The proof is finished by the same argu-

ment as in the base step above: By separability, each Xi has a countable dense
subset Yi. Assign positive probability to each point in Yi to get a measure ξi,
where ξi(Yi) = 1 and Suppξi is the closure of Yi. Then (ξ0� � � � � ξh) ∈ L+(X)

and satisfies (iii)–(v), completing the induction. Q.E.D.

10. A NEGATIVE RESULT

DEFINITION 10.1: Say that player a is indifferent if πa(ra� sb)= πa(sa� sb) for
all ra� sa� sb.

So if a player is not indifferent, then he has more than one “strategically
distinct” strategy.
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THEOREM 10.1: Fix a complete continuous type structure 〈Sa�Sb�T a�T b�
λa�λb〉. If player a is not indifferent, then there is no state at which there is RCAR.
In fact,

∞⋂
m=1

Ra
m =

∞⋂
m=1

Rb
m = ∅�

We come back to Theorem 10.1 in Sections 11D and 11E.

11. DISCUSSION

Here, we discuss some open questions. The online Supplemental material
contains other conceptual and technical discussion.

A. LPS’s: We define an LPS to be a finite sequence of probability measures,
not an infinite sequence. The main reason is that finite sequences suffice for
what we do. But it would certainly be worth exploring extensions of our defini-
tion (see Halpern (2007)).

Would Theorem 10.1 go through with infinite sequences of measures? The
intuition given in Section 2.7 appears to depend only on the condition that
an LPS has a primary hypothesis, secondary hypothesis, and so forth. Given
this, we will eventually hit the primary hypothesis, when trying to “count on”
smaller and smaller events. In other words, it seems that the well-foundedness
of an LPS is really what is responsible for the impossibility. The idea that a
player has an initial hypothesis about a game seems very basic. That said, we
do not know if Theorem 10.1 would be overturned if we used non-well-founded
LPS’s.

B. Assumption: A weaker concept than assumption of an event E is to re-
quire only belief at level 0. That is, given an LPS (μ0� � � � �μn−1), we ask only
that μ0(E) = 1. This is the concept used in Brandenburger (1992) and (effec-
tively) in Börgers (1994). Ben Porath (1997) studied an extensive-form analog
(which is, accordingly, weaker than strong belief).

All three papers obtain S∞W strategies. (This is the Dekel and Fudenberg
(1990) concept of one round of deletion of inadmissible strategies followed by
iterated deletion of strongly dominated strategies.) Let us recast the analysis
in the current epistemic framework.

Call a subset Qa ×Qb of Sa × Sb a weak best-response set (WBRS) if (i) each
sa ∈ Qa is admissible, (ii) each sa ∈ Qa is not strongly dominated with respect
to Sa ×Qb; and likewise with a and b interchanged. Every WBRS is contained
in the S∞W set, and the S∞W set is a WBRS. We have the following analog to
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our Theorem 8.1:

Let Qa × Qb be the projection into Sa × Sb of the states
(sa� ta� sb� tb) satisfying rationality and common belief at level 0 of
rationality. Then Qa ×Qb is a WBRS. Conversely, given a WBRS
Qa × Qb, there is a type structure such that Qa × Qb is contained
in the projection into Sa × Sb of the states (sa� ta� sb� tb) satisfying
rationality and common belief at level 0 of rationality.

(Note that here the converse only has inclusion not equality.) We are not aware
of an analog to Theorem 9.1.

C. Irrationality: We noted in Section 2.4 that there are two forms of irra-
tionality in the paper: strategy–type pairs (sa� ta) where sa is not optimal un-
der λa(ta), and strategy–type pairs (sa� ta) where λa(ta) is not full support. The
presence of a non-full-support type is needed in the proofs of each of our three
main theorems (Theorems 8.1, 9.1, and 10.1). In each case, the key fact is that
there is a type ta so that each (sa� ta) is irrational.

This raises the question: What would happen if we required all types to
have full support—that is, if we ruled out the second form of irrationality?
The strategies played under RCAR would still constitute an SAS (Theorem
8.1(i)). But, as the discussion of Figure 2.6 showed, not every SAS could now
arise under RCAR. We do not know what subfamily of the SAS’s would result
and we leave this as an open question.

D. Continuity: In a continuous structure, players associate neighboring full-
support LPS’s with neighboring full-support types (Definition 7.8). The-
orem 10.1 made use of this condition in addition to the condition that
Ann is not indifferent. Under these hypotheses, Sa × Ta contains a non-
empty open set of irrational pairs. This is used to get the first step of
an induction (Lemma F.1). At each later step of the induction, continu-
ity is again needed to guarantee that the pre-image of an open set is still
open.

What happens to Theorem 10.1 if continuity is dropped? Alternatively put,
does there exist a complete type structure in which the RCAR set is nonempty?
We do not know.

E. Infinite Games: Finally, Theorem 10.1 may be suggestive of limitations
to the analysis of infinite games.14 For a fixed infinite game, it may be that
one needs the full force of RCAR in a complete structure to obtain IA. Will
this be possible? Of course, to answer this question, we have to rebuild all
the ingredients of this paper for infinite games. This must be left to future
work.

14We are grateful to Eddie Dekel for this observation.
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APPENDIX A: PREFERENCE BASIS

We begin with an axiomatic justification of assumption, that is, the conditions
(i)–(iii) of Proposition 5.1.

Let Ω be a Polish space and let A be the set of all measurable functions
from Ω to [0�1]. A particular function x ∈A is an act, where x(ω) is the payoff
to the player of choosing the act x if the true state is ω ∈ Ω. For x� y ∈ A
and 0 ≤ α ≤ 1, write αx + (1 − α)y for the act that in state ω gives payoff
αx(ω) + (1 − α)y(ω). For c ∈ [0�1], write −→c for the constant act associated
with c; that is, −→c (ω) = c for all ω ∈ Ω. Also, given acts x�z ∈ A and a Borel
subset E in Ω, write (xE� zΩ\E) for the act:

(xE� zΩ\E)(ω) =
{
x(ω)� if ω ∈E,
z(ω)� if ω /∈E.

Let � be a preference relation on A and write � (resp. ∼) for strict prefer-
ence (resp. indifference). We maintain two axioms throughout:

A1—Order: � is a complete, transitive, reflexive binary relation on A.

A2—Independence: For all x� y� z ∈A and 0 <α ≤ 1,

x� y implies αx+ (1 − α)z � αy + (1 − α)z and

x∼ y implies αx+ (1 − α)z ∼ αy + (1 − α)z�

Given a Borel set E, define conditional preference given E in the usual way:

DEFINITION A.1: x�E y if for some z ∈A, (xE� zΩ\E) � (yE� zΩ\E).

(As is well known, under A1 and A2, (xE� zΩ\E) � (yE� zΩ\E) holds for all z if
it holds for some z.)

Given a full-support LPS σ = (μ0� � � � �μn−1) ∈L+(Ω), define �σ on A by

x�σ y ⇐⇒
(∫

Ω

x(ω)dμi(ω)

)n−1

i=0

≥L

(∫
Ω

y(ω)dμi(ω)

)n−1

i=0

�

mailto:adam.brandenburger@stern.nyu.edu
http://www.stern.nyu.edu/~abranden
mailto:friedenberg@wustl.edu
http://www.olin.wustl.edu/faculty/friedenberg
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DEFINITION A.2: Say a set E is believed under � if E is Borel and, for all
x� y ∈A, x ∼Ω\E y .

This is just the statement that the event Ω\E is Savage-null. We have the
following characterization of belief.

PROPOSITION A.1: Fix σ = (μ0� � � � �μn−1) ∈ L+(Ω) and a Borel set E in Ω.
The following statements are equivalent:

(i) μi(E)= 1 for all i.
(ii) E is believed under �σ .

PROOF: Suppose (i) holds. Then μi(Ω\E)= 0 for all i, and so for any x� y ∈
A, x∼σ

Ω\E y . Thus (ii) holds. Now suppose (ii) holds. Then
−→
1 ∼σ

Ω\E
−→
0 . That is,

(
μi(Ω\E)+

∫
E

z(ω)dμi(ω)

)n−1

i=0

=
(

0 +
∫
E

z(ω)dμi(ω)

)n−1

i=0

or μi(Ω\E)= 0 for all i, as required. Q.E.D.

DEFINITION A.3: Say a set E is assumed under � if E is Borel and satisfies
the following conditions:

(i) Nontriviality: E is nonempty and, for each open set U with E ∩U �= ∅,
there are acts x� y ∈A with x�E∩U y;

(ii) Strict Determination: For all acts x� y ∈A, x�E y implies x � y .

PROPOSITION A.2: Fix a full-support LPS σ = (μ0� � � � �μn−1) ∈L+(Ω) and a
Borel set E in Ω. Then E is assumed under σ if and only if E is assumed under
�σ .

PROOF: First suppose that E is assumed under σ at level j. Fix an open
set U with E ∩ U �= ∅. Then, by conditions (ii) and (iii) of assumption,
there exists some k ≤ j with μk(E ∩ U) > 0. Let x(ω) = 1 if ω ∈ E ∩ U

and let x(ω) = 0 otherwise. Then the act (xE∩U�
−→
0 Ω\(E∩U)) is evaluated as

(μ0(E ∩ U)� � � � �μj(E ∩ U)�0� � � � �0), where the kth entry is strictly positive.
The act (

−→
0 E∩U�

−→
0 Ω\(E∩U)) is evaluated as (0� � � � �0). Thus −→x �σ

E∩U
−→
0 , estab-

lishing Nontriviality. To establish Strict Determination, note that x �σ
E y im-

plies (∫
E

xdμ0� � � � �

∫
E

xdμj�

∫
Ω\E

z dμj+1� � � � �

∫
Ω\E

z dμn−1

)

>L

(∫
E

y dμ0� � � � �

∫
E

y dμj�

∫
Ω\E

z dμj+1� � � � �

∫
Ω\E

z dμn−1

)
�
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so that certainly(∫
E

xdμ0� � � � �

∫
E

xdμj�

∫
Ω\E

xdμj+1� � � � �

∫
Ω\E

xdμn−1

)

>L

(∫
E

y dμ0� � � � �

∫
E

y dμj(ω)�

∫
Ω\E

y dμj+1� � � � �

∫
Ω\E

y dμn−1

)
�

Thus x�σ y , establishing Strict Determination.
Next, suppose E is assumed under �σ . We want to show that E is assumed

under σ . Condition (iii) of assumption is immediate from Nontriviality, so we
will show that σ satisfies conditions (i) and (ii).

Assume σ fails conditions (i) and (ii) of assumption. There are three cases
to consider.

CASE A.1—μi(E)= 0 for all i: This contradicts Nontriviality.

CASE A.2—μi(E) = 0 and μh(E) = 1 where h > i: Let Ui and Uh be Borel
sets as in Definition 4.1 (i.e., with μi(Ui) = 1 and, for i �= k, μi(Uk) = 0, and
similarly for h). Define

x(ω)=
{

1� if ω ∈E ∩Uh,
0� otherwise,

y(ω)=
{

1� if ω ∈ Ui\E�
0� otherwise.

Acts x and (xE�
−→
0 Ω\E) are evaluated as (0� � � � �0�1�0� � � � �0), where the 1 cor-

responds to μh. (Here, we use μk(Uh) = 0 for all k �= h.) Act y is evaluated
as (0� � � � �0�1�0� � � � �0), where the 1 corresponds to μi, while act (yE�

−→
0 Ω\E)

is evaluated as (0� � � � �0). Thus x �σ
E y . But since h > i, y �σ x, contradicting

Strict Determination.

CASE A.3—0 < μi(E) < 1 for some i: Let Ui be a Borel set as in Defini-
tion 4.1 and define

x(ω)=
{
μi(Ui\E)� if ω ∈ E ∩Ui,
0� otherwise,

y(ω)=
{

1� if ω ∈ Ui\E,
0� otherwise.

Acts x and (xE�
−→
0 Ω\E) are evaluated as

(0� � � � �0�μi(Ui\E)μi(E ∩Ui)�0� � � � �0)�
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where the nonzero entry corresponds to μi. This entry is indeed nonzero, since
1 >μi(E) > 0 implies μi(Ui\E) > 0 and μi(E ∩Ui) > 0. Act y is evaluated as

(0� � � � �0�μi(Ui\E)�0� � � � �0)�

where the nonzero entry corresponds to μi. This entry is indeed nonzero, since
1 > μi(E). The act (yE�

−→
0 Ω\E) is evaluated as (0� � � � �0). Thus x �σ

E y . But
since 1 >μi(E ∩Ui), y �σ x, contradicting Strict Determination.

Q.E.D.

COROLLARY A.1: Fix a full-support LPSσ = (μ0� � � � �μn−1) ∈ L+(Ω) and a
Borel set E in Ω. If E is believed under �σ , then E satisfies Nontriviality and
Strict Determination.

We conclude by mentioning the relationship between this axiomatization
and BBD’s (1991a) axiomatization. Fix a finite state space and suppose � is
represented by a full-support LPS. Impose BBD’s Axiom 5′ (i.e., their full-
support condition). BBD then says that E is infinitely more likely than not-
E if E is nonempty and, for all acts x� y�w�z, x �E y implies (xE�wΩ\E) �
(yE� zΩ\E). (See their Definition 5.1.) It is easily checked that E is infinitely
more likely than Ω\E, in the sense of BBD, if and only if Nontriviality and
Strict Determination hold.

In BBD, Axiom 5′ is needed to ensure that their Definition 5.1 carries the
intended interpretation. (Without it, there might be no x� y with x �E y , i.e.,
each measure in the LPS could assign zero probability to E.) Nontriviality plays
an analogous role in our formulation.

Suppose � is represented by a full-support LPS σ . Fix an event E. In the
context of a finite state space, Corollary 5.1 in BBD shows that � satisfies Non-
triviality and Strict Determination if and only if σ satisfies conditions (i) and
(ii) of assumption. For a finite state space and a full-support LPS, an event sat-
isfies conditions (i) and (ii) of assumption if and only if it satisfies conditions
(i)–(iii) of assumption. Proposition A.2 extends this result to infinite spaces.

APPENDIX B: PROOFS FOR SECTIONS 5 AND 6

This appendix provides proofs that relate to the definition and properties of
assumption.

PROOF OF PROPOSITION 5.1: Suppose E is assumed under σ at level j. Con-
dition (a) of Definition 5.1 follows immediately from condition (iii) of assump-
tion. Next, suppose F is part of E and G is part of Ω\E. Suppose further
that μi(F) > 0 and μk(G) > 0. Then, by conditions (i) and (ii) of assumption,
i ≤ j < k as required.

For the converse, suppose conditions (a) and (b) of Definition 5.1 hold.
By condition (b), whenever μi(E) > 0 and μk(Ω\E) > 0, we have that i <
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k. Moreover, by condition (a), there is some i with μi(E) > 0. This estab-
lishes that there is some j satisfying conditions (i) and (ii) of assumption.
Condition (iii) of assumption is immediate from condition (a) of Defini-
tion 5.1. Q.E.D.

It will be useful to have the following characterization of assumption.

LEMMA B.1: Fix a full-support LPS σ ∈ L+(Ω) and an event E. Then E is
assumed under σ = (μ0� � � � �μn−1) at level j if and only if there is some j so that
σ satisfies conditions (i) and (ii) plus the following condition:

(iii′) E ⊆ ⋃
i≤j Suppμi.

PROOF: First suppose that E is assumed under σ at level j. We will show
that σ also satisfies (iii′). Consider the open set

U =Ω\
⋃
i≤j

Suppμi�

If U ∩E �= ∅, then μi(U ∩E) > 0 for some i. By condition (ii) of assumption,
i ≤ j. This implies that, for some i ≤ j, μi(U) > 0 and so U ∩ Suppμi �= ∅, a
contradiction. This says U ∩E = ∅ and so E ⊆ ⋃

i≤j Suppμi, as required.
Next suppose that there is some j so that σ satisfies conditions (i) and (ii),

and also (iii′). We will show that it satisfies condition (iii). Let U be an open set
with U ∩E �= ∅. By condition (iii′), for each ω ∈U ∩E, there is some i ≤ j with
ω ∈ Suppμi. Since U is an open neighborhood of ω, μi(U) > 0. By condition
(i) of assumption, μi(E ∩U)= μi(U) > 0, as required. Q.E.D.

We now turn to establish properties of the assumption operator.

PROOF OF PROPERTY 6.1—Convexity: Let σ = (μ0� � � � �μn−1), and fix
events E and F that are assumed under σ at level j. Fix also a Borel set G
with E ∩ F ⊆ G ⊆ E ∪ F . We will show that G is also assumed under σ at
level j.

First fix i ≤ j and note that μi(E) = μi(F) = 1. So certainly μi(E ∩ F) = 1.
Since E ∩ F ⊆ G, μi(G) = 1, establishing property (i) of assumption. Next fix
i > j. Note that μi(E) = μi(F) = 0 and so μi(E ∪ F) = 0. Since G ⊆ E ∪ F ,
μi(G) = 0, establishing property (ii) of assumption. Finally, since E and F are
assumed under σ at level j, Lemma B.1 says E ∪ F ⊆ ⋃

i≤j Suppμi. So using
the fact that G⊆E ∪ F and Lemma B.1, G is assumed under σ . Q.E.D.

PROOF OF PROPERTY 6.2—Closure: Let σ = (μ0� � � � �μn−1) and suppose
E is assumed under σ at level j. Then E = ⋃

i≤j Suppμi. To see this, note
that Lemma B.1 says that E ⊆ ⋃

i≤j Suppμi. Since
⋃

i≤j Suppμi is closed,
E ⊆ ⋃

i≤j Suppμi. Moreover, for all i ≤ j, μi(E) = 1 so that
⋃

i≤j Suppμi ⊆E.
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If F is also assumed under σ at level j, then it is immediate that E = F .
If F is assumed under σ at level k > j, then E ⊆ F , since

⋃
i≤j Suppμi ⊆⋃

i≤k Suppμi. Q.E.D.

PROOF OF PROPERTY 6.3—Conjunction and Disjunction: We will only
prove the Conjunction property. The proof of the Disjunction property is sim-
ilar.

Let σ = (μ0� � � � �μn−1). For each m, Em is assumed under σ at some level
jm. Let jM = min{jm :m = 1�2� � � �}. Then, for each m, μi(Em) = 1 for all i ≤
jM . Thus μi(

⋂
m Em) = 1 for all i ≤ jM . Also, μi(EM) = 0 for all i > jM . Then

certainly μi(
⋂

m Em) = 0 for all i > jM . This establishes conditions (i) and (ii)
of Proposition 5.1 (for j = jM). Finally, using the fact that EM is assumed at
level jM and Lemma B.1,⋂

m

Em ⊆EM ⊆
⋃
i≤jM

Suppμi�

Again using Lemma B.1, this establishes condition (iii) of Proposi-
tion 5.1. Q.E.D.

APPENDIX C: PROOFS FOR SECTION 7

In what follows, we will need to make use of the following characterizations
of full support.

LEMMA C.1: A sequence σ = (μ0� � � � �μn−1) ∈ N (Ω) has full support if and
only if, for each nonempty open set U , there is an i with μi(U) > 0.

PROOF: Fix a sequence σ = (μ0� � � � �μn−1) ∈ N (Ω) which does not have
full support. Then U = Ω\⋃

i<n Suppμi is nonempty. The set U is open
and μi(U) = 0 for all i. For the converse, fix a full-support sequence σ =
(μ0� � � � �μn−1) ∈ N (Ω) and a nonempty open set U . Since σ has full support,
U ∩ Suppμi �= ∅ for some i. Then (Ω\U) ∩ Suppμi is closed and strictly con-
tained in Suppμi, so that μi((Ω\U) ∩ Suppμi) < 1. From this, μi(U) > 0, as
required. Q.E.D.

In the next three lemmas, Borel without qualification means Borel in N (Ω).
We make repeated use of the following facts:

(i) There is a countable open basis E1�E2� � � � for Ω.
(ii) For each Borel set B in Ω and r ∈ [0�1], the set of μ such that μ(B) > r

is Borel in M(Ω).
(iii) For each Borel set Y in M(Ω) and each k, the set of σ = (μ0� � � � �μn−1)

in N (Ω) such that n > k and μk ∈ Y is Borel.



340 A. BRANDENBURGER, A. FRIEDENBERG, AND H. J. KEISLER

Fact (i) follows from the assumption that Ω is separable. Fact (ii) says that
the function μ �→ μ(B) is Borel, which follows from Kechris (1995, Theo-
rem 17.24). Fact (iii) follows from the continuity of the projection function
σ �→ μk from N (Ω) to M(Ω).

Let Nn(Ω) be the set of all σ in N (Ω) of length n, and define N +
n (Ω),

Ln(Ω), and L+
n (Ω) analogously.

LEMMA C.2: Fix n ∈ N. For any Polish space Ω, the sets Nn(Ω), N +
n (Ω),

Ln(Ω), and L+
n (Ω) are Borel.

PROOF: In this proof, σ = (μ0� � � � �μn−1) varies over Nn(Ω). Recall that if
σ ∈ Nn(Ω) and τ ∈ N (Ω)\Nn(Ω), then σ has distance 1 from τ. Thus Nn(Ω)
is open and hence Borel.

By Lemma C.1 and fact (i), a sequence σ ∈ Nn(Ω) has full support if and
only if, for each basic open set Ei, there exists j < n such that μj(Ei) > 0. By
facts (ii) and (iii), for each i and j the set of σ such that μj(Ei) > 0 is Borel.
Therefore, N +

n (Ω) is Borel.
Write μ ⊥ ν if there is a Borel set U ⊆ Ω such that μ(U) = 1 and ν(U) = 0.

It is easy to see that mutual singularity holds for an element σ ∈ Nn(Ω) if and
only if μi ⊥ μj for all i < j. To prove that Ln(Ω) is Borel, it suffices to prove that
for each i < j, the set of σ such that μi ⊥ μj is Borel. Note that μi ⊥ μj if and
only if for each m, there is an open set V such that μi(V ) = 1 and μj(V ) < 1

m
.

By fact (i), this in turn holds if and only if for each m there exists k such that
μi(Ek) > 1 − 1

m
and μj(Ek) <

1
m

. By facts (ii) and (iii), the set of σ such that
μi(Ek) > 1 − 1

m
is Borel, and the set of σ such that μj(Ek) <

1
m

is Borel. The
set of σ such that μi ⊥ μj is a Borel combination of these sets, and hence is
Borel, as required. Thus Ln(Ω) is Borel.

Since L+
n (Ω) is the intersection of the Borel sets N +

n (Ω) and Ln(Ω), it is also
Borel. Q.E.D.

COROLLARY C.1: For any Polish space Ω, the sets N +(Ω), L(Ω), and L+(Ω)
are Borel.

PROOF: Each N +
n (Ω) is Borel and N +(Ω) = ⋃

nN +
n (Ω). Likewise for L(Ω)

and L+(Ω). Q.E.D.

LEMMA C.3: For each Polish space Ω and Borel set E in Ω, the set of σ ∈
L+(Ω) such that E is assumed under σ is Borel.

PROOF: Fix n and j < n. By fact (ii), the sets of μ such that μ(E) = 1 and
such that μ(E) = 0 are Borel in M(Ω). Therefore, by fact (iii) and Corol-
lary C.1, the set of σ = (μ0� � � � �μn−1) ∈L+

n (Ω) such that conditions (i) and (ii)
in Proposition 5.1 hold is Borel. Let {d0� d1� � � �} be a countable dense subset of
E. For each k and μ ∈M(Ω), we have dk ∈ Suppμ if and only if μ(B) > 0 for
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every open ball B with center dk and rational radius. Then by fact (ii), the set
of μ such that dk ∈ Suppμ is Borel in M(Ω). We have E ⊆ ⋃

i≤j Suppμi if and
only if dk ∈ ⋃

i≤j Suppμi for all k ∈ N. Therefore, the set of σ ∈ L+
n (Ω) with

E ⊆ ⋃
i≤j Suppμi is Borel. By Lemma B.1, the set of σ ∈L+(Ω) such that E is

assumed under σ is Borel. Q.E.D.

LEMMA C.4: For each m:
(i) Ra

m =Ra
1 ∩ [Sa × ⋂

i<mAa(Rb
i )].

(ii) Ra
m is Borel in Sa × Ta.

PROOF: Part (i) is immediate.
Part (ii) is by induction. For m = 1, first note that since λa is Borel mea-

surable, Lemma C.2 says that for each n the set (λa)−1(L+
n (S

b × Tb)) is Borel
in Ta. From Definition 7.4, for each sa ∈ Sa there is a finite Boolean combi-
nation C of linear equations in n · |Sb| variables such that whenever λa(ta) =
(μ0� � � � �μn−1) ∈L+

n (S
b × Tb), the pair (sa� ta) is rational if and only if C holds

for {margSb μi(s
b) : i < n� sb ∈ Sb}. Since Sa and Sb are finite, this shows that Ra

1
is Borel in Sa × Ta.

Assume the result holds for all i ≤ m. Then, by Lemma C.3, for each i ≤ m,
Aa(Rb

i ) is Borel in Ta. So Ra
m+1 is Borel. Q.E.D.

PROOF OF PROPOSITION 7.1: (i) Start with a type structure 〈Sa�Sb�T a�T b�
κa�κb〉. The case that Sb ×Tb is a singleton is trivial, so we may assume that it is
not. Pick any σ ∈L(Sb ×Tb) which does not have full support. Define λa(ta)=
κa(ta) if κa(ta) ∈ L+(Sb × Tb) and λa(ta) = σ otherwise. Since L+(Sb × Tb) is
Borel, λa is a Borel map. Define λb similarly.

(ii) It is clear from the definitions that the two structures have the same ra-
tionality sets Ra

1 and Rb
1 . By induction, they also have the same sets Ra

m and Rb
m:

Types associated with the Ra
m and Rb

m sets are all associated with full-support
LPS’s, so that only assumption by full-support LPS’s is involved. Q.E.D.

PROOF OF PROPOSITION 7.2: Let Ta and Tb be the Baire space—that is,
the metric space NN with the product metric, where N has the discrete metric.
There is a continuous surjection λa (resp. λb) from Ta (resp. Tb) onto any
Polish space, in particular onto L(Sb × Tb) (resp. L(Sb × Tb)). (See Kechris
(1995, p. 13 and Theorem 7.9).) These maps give us a complete type struc-
ture. Q.E.D.

APPENDIX D: PROOFS FOR SECTION 8

LEMMA D.1: Suppose ta assumes E ⊆ Sb × Tb at level j, where λa(ta) =
(μ0� � � � �μn−1). Then

⋃
i≤j Supp margSb μi = projSb E.
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PROOF: Fix sb ∈ projSb E, that is, (sb� tb) ∈ E for some tb. Then {sb}×Tb is an
open neighborhood of (sb� tb). So, by conditions (ii) and (iii) of Proposition 5.1,
there is some i ≤ j with μi(E∩ ({sb}×Tb)) > 0. Therefore, 0 <μi({sb}×Tb)=
margSb μi(s

b) and hence sb ∈ Supp margSb μi. Next fix sb /∈ projSb E. Then {sb}×
Tb is disjoint from E. But for each i ≤ j, we have μi(E)= 1, so μi({sb}×Tb)=
margSb μi(s

b)= 0 and hence sb /∈ Supp margSb μi. Q.E.D.

The next series of lemmas concerns the geometry of polytopes. We will first
review some notions from geometry, then state the lemmas, then explain the
connection between the geometric notions and games, then present some in-
tuitive examples, and finally give the formal proofs of the lemmas.

Throughout this section, we will fix a finite set X = {x1� � � � � xn} ⊆ Rd . The
polytope generated by X , denoted by P , is the closed convex hull of X—that is,
the set of all sums

∑n

i=1 λixi, where λi ≥ 0 for each i and
∑n

i=1 λi = 1. The affine
hull of P , denoted by aff(P), is the set of all affine combinations of finitely
many points in P—that is, the set of all sums

∑k

i=1 λiyi, where y1� � � � � yk ∈ P

and
∑k

i=1 λi = 1. The relative interior of P , denoted by relint(P), is the set of
all x ∈ aff(P) such that there is an open ball B(x) centered around x, with
aff(P)∩B(x) ⊆ P .

A hyperplane in Rd is a set of the form H(u�α) = {x ∈ Rd : 〈x�u〉 = α} for
some nonzero u ∈ Rd . A hyperplane H(u�α) supports a polytope P if α =
sup{〈x�u〉 : x ∈ P}. A face of P is either P itself or a set of the form H ∩ P ,
where H is a hyperplane that supports P . If F �= P is a face of P , we say F is a
proper face. A face H ∩P is strictly positive if H =H(u�α) for some (u�α) such
that each coordinate of u is strictly positive.

Given a point x in a polytope P , say the points x1� � � � � xk ∈ P each support
x ∈ P if there are λ1� � � � � λk, with 0 < λi ≤ 1 for each i,

∑k

i=1 λi = 1, and x =∑k

i=1 λixi. Write su(x) for the set of points that support x ∈ P . (Note the slight
abuse of notation relative to that introduced before Definition 3.3.)

Here are the lemmas we will need:

LEMMA D.2: If F is a face of a polytope P and x ∈ F , then su(x) ⊆ F .

LEMMA D.3: For each point x in a polytope P , su(x) is a face of P .

LEMMA D.4: If x belongs to a strictly positive face of a polytope P , then su(x)
is a strictly positive face of P .

We now give the interpretation of the geometric notions in game theory. Let
d be the cardinality of the finite strategy set Sb. Each strategy sa ∈ Sa corre-
sponds to the point

−→π a
(sa)= (πa(sa� sb) : sb ∈ Sb) ∈ Rd�
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For any probability measure μ ∈M(Sa), −→π a
(μ) is the point

−→π a
(μ) =

∑
sa∈Sa

μ(sa)−→π a
(sa)�

Notice that −→π a
(μ) is in the polytope P generated by the finite set {−→π a

(sa) : sa ∈
Sa}.

Let us identify each probability measure ν ∈ M(Sb) with the point (ν(sb) :
sb ∈ Sb) ∈ Rd . Then for each pair (μ�ν) ∈ M(Sa) ×M(Sb), 〈−→π a

(μ)� ν〉 is the
expected payoff to Ann. Thus, a pair (μ�ν) gives expected payoff α to Ann if
and only if −→π a

(μ) belongs to the hyperplane H(ν�α). It follows that a set F is
a strictly positive face of P if and only if there is a probability measure ν with
support Sb such that

F = {−→π a
(μ) :μ ∈M(Sa) is optimal under ν}�

Consider an admissible strategy sa. By Lemma 3.1, −→π a
(sa) is optimal under

some measure ν with support Sb. That is, −→π a
(sa) belongs to some strictly posi-

tive face of P . Lemma D.4 shows that su(−→π a
(sa)) is a strictly positive face of P .

So we can pick ν so that, for every ra ∈ Sa, −→π a
(ra) is optimal under ν if and only

if −→π a
(ra) ∈ su(−→π a

(sa)). This is the fact we use in the proof of Theorem 8.1(ii).
We next give some intuition for Lemmas D.2–D.4. Let P be a tetrahedron,

as in Figure D.1. The point x∗ is supported by the hyperplane H, and the corre-
sponding face H ∩P is the shaded region shown. The set of points that support
x∗, that is, the set su(x∗), is the line segment from x2 to x4. Note that these
points are also contained in the face H ∩ P . The general counterpart of this is
Lemma D.2.

Now a converse. In Figure D.1, the point x3 lies in H ∩ P , but does not
support x∗. However, we can tilt the hyperplane H to get a new supporting
hyperplane H ′ as in Figure D.2. Here, H ′ ∩P is the line segment from x2 to x4,
that is, exactly the set su(x∗). The general counterpart is Lemma D.3.

Consider another example in Figure D.3. Here P is the line segment from
(1�0) to (1�1). Note that su((1�0)) = {(1�0)}. The hyperplane H supports
(1�0), and H ∩ P = P . We can tilt the hyperplane to get H ′, where H ′ ∩ P =
{(1�0)} (in accordance with Lemma D.3). But note that we cannot do this if we
require the hyperplane to be nonnegative. (Indeed, H is the unique nonneg-
ative hyperplane supporting (1�0).) Intuitively, though, we will have room to
tilt the hyperplane and maintain nonnegativity—in fact, strict positivity—if the
original hyperplane is strictly positive. This is Lemma D.4.

We now turn to the proofs of Lemmas D.2–D.4.

PROOF OF LEMMA D.2: Fix a face F that contains x. If F = P , then cer-
tainly su(x) ⊆ F . If F �= P , there is a hyperplane H = H(u�α) that sup-
ports P with F = H ∩ P . Fix y ∈ su(x). Then there are x1� � � � � xk ∈ P and
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FIGURE D.1.

λ1� � � � � λk with 0 < λi ≤ 1 for each i,
∑k

i=1 λi = 1, y = x1, and x = ∑k

i=1 λixi.
Let z = ∑k

i=2(λi/(1 − λ1))xi and note that z ∈ P , since P is convex. Also note
that x= λ1y + (1 − λ1)z; that is, x lies on the line segment from y to z.

Since x ∈H and y� z ∈ P ,

〈x�u〉 = α� 〈y�u〉 ≤ α� 〈z�u〉 ≤ α�

Moreover, since x lies on the line segment from y to z,

〈y�u〉 ≤ 〈x�u〉 ≤ 〈z�u〉�

FIGURE D.2.
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FIGURE D.3.

It follows that 〈y�u〉 = α, so y ∈ F . Q.E.D.

For the next proofs we need the following basic facts about a general poly-
tope P (see Ziegler (1998, Chap. 2)):

P1: Every face of P is a polytope.

P2: Every face of a face of P is a face of P .

P3: If x ∈ P , either x ∈ relint(P) or x belongs to a proper face of P .

P4: P has finitely many faces.

We record an immediate consequence of P1–P4.

LEMMA D.5: If x ∈ P , then there exists a face F of P with x ∈ relint(F).

PROOF: If x ∈ relint(P), the result holds trivially. So suppose x /∈ relint(P).
By P3, x is contained in some proper face F of P . By P1, the face F is a poly-
tope. Using P2 and P4, we can choose F so that there does not exist a proper
face of F that contains x. P3 then implies x ∈ relint(F). Q.E.D.

The next lemma establishes a fact about points in the relative interior of a
face F of P .

LEMMA D.6: Let F be a face of P . If x ∈ relint(F), then F ⊆ su(x).

PROOF: Fix x ∈ relint(F) and some x′ ∈ F . If x′ = x, then certainly x′ ∈
su(x). If not, consider the line going through both x and x′, to be denoted by
L(x�x′). Since x ∈ relint(F), there is some open ball B(x) centered around



346 A. BRANDENBURGER, A. FRIEDENBERG, AND H. J. KEISLER

x, with aff(F) ∩ B(x) ⊆ F . Then aff(F) ∩ B(x) must meet L(x�x′). Cer-
tainly, we can find a point x′′ both on L(x�x′) and in aff(F) ∩ B(x), with
d(x′�x) < d(x′�x′′) for the Euclidean metric d. Then there must exist 0 < λ< 1
with x= λx′ + (1 − λ)x′′. Since x′�x′′ ∈ P , this establishes x′ ∈ su(x). Q.E.D.

We now turn to the proofs of Lemmas D.3 and D.4.

PROOF OF LEMMA D.3: Fix x ∈ P . By Lemma D.5, there exists a face F of
P with x ∈ relint(F). We then have su(x)⊆ F by Lemma D.2 and F ⊆ su(x) by
Lemma D.6. Q.E.D.

PROOF OF LEMMA D.4: Let H(u�α)∩P be a strictly positive face of P con-
taining x. By Lemma D.3, su(x)= H(u′�α′)∩ P is a face of P . Set

u′′ = u′ +βu� α′′ = α′ +βα

for some β> 0. If y ∈ H(u′�α′)∩ P , we get

〈y�u′′〉 = 〈y�u′〉 +β〈y�u〉 = α′ +βα = α′′�

using su(x) ⊆H(u�α)∩ P . If y ∈ P\H(u′�α′), we get

〈y�u′′〉 = 〈y�u′〉 +β〈y�u〉<α′ +β〈y�u〉 ≤ α′ +βα = α′′�

Thus H(u′′�α′′) is a supporting hyperplane with su(x)= H(u′′�α′′)∩ P . More-
over, we can choose β> 0 so that u′′ � 0 as required. Q.E.D.

APPENDIX E: PROOFS FOR SECTION 9

LEMMA E.1: If sa ∈ Sa
m, then there exists μ ∈M(Sb) with Suppμ = Sb

m−1, such
that πa(sa�μ)≥ πa(ra�μ) for each ra ∈ Sa.

PROOF: By Lemma 3.1, there exists μ ∈ M(Sb) with Suppμ = Sb
m−1, such

that πa(sa�μ) ≥ πa(ra�μ) for all ra ∈ Sa
m−1. Suppose there is an ra ∈ Sa\Sa

m−1
with

πa(sa�μ) < πa(ra�μ)�(E.1)

We have ra ∈ Sa
l \Sa

l+1 for some l < m − 1. Choose ra (and l) so that there
does not exist qa ∈ Sa

l+1 with πa(sa�μ) < πa(qa�μ).
Fix some ν ∈ M(Sb) with Suppν = Sb

l and define a sequence of measures
μn ∈ M(Sb), for each n ∈ N, by μn = (1 − 1

n
)μ + 1

n
ν. Note that Suppμn = Sb

l

for each n. Using ra /∈ Sa
l+1 and Lemma 3.1 applied to the (l + 1)-admissible

strategies, it follows that for each n there is a qa ∈ Sa
l with

πa(qa�μn) > πa(ra�μn)�(E.2)
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We can assume that qa ∈ Sa
l+1. (Choose qa ∈ Sa

l to maximize the left-hand side
of equation (E.2) among all strategies in Sa

l .) Also, since Sa
l+1 is finite, there is

a qa ∈ Sa
l+1 such that equation (E.2) holds for infinitely many n. Letting n → ∞

yields

πa(qa�μ) ≥ πa(ra�μ)�(E.3)

From (E.1) and (E.3) we get πa(qa�μ) > πa(sa�μ), contradicting our choice
of ra. Q.E.D.

The next lemma will guarantee that we will have enough room to build the
measures we need to establish Lemma E.3. For ta�ua ∈ Ta, write ta ≈ ua if, for
each i, the component measures (λa(ta))i and (λa(ua))i have the same mar-
ginals on Sb, and are mutually absolutely continuous (have the same null sets).

LEMMA E.2: In a complete type structure:
(i) If λa(ta) ∈L+(Sb × Tb) and ua ≈ ta, then λa(ua) ∈L+(Sb × Tb).

(ii) If λa(ta) ∈ L+(Sb × Tb), then there are continuum many ua such that
ua ≈ ta.

(iii) For each set E ⊆ Sb × Tb, the set Aa(E) is closed under the relation ≈.
In fact, for each j, if ta ≈ ua and E is assumed under λa(ta) at level j, then E is
assumed under λa(ua) at level j.

(iv) If ta ≈ ua, then for each m and sa ∈ Sa, (sa� ta) ∈ Ra
m if and only if

(sa�ua) ∈ Ra
m.

PROOF: Part (i) follows from the fact that λa(ta) ∈L+(Sb ×Tb) and the mu-
tual absolute continuity of the component measures of λa(ta) and λa(ua). For
part (ii), note that full support implies that μi = (λa(ta))i has infinite support
for some i. Therefore, there are continuum many different measures νi with the
same null sets and marginal on Sb as μi. The sequence of measures obtained by
replacing μi by νi belongs to L+(Sb ×Tb), and by completeness this sequence is
equal to λa(ua) for some ua. It follows that, for each such ua, ua ≈ ta. For part
(iii), fix λa(ta) that assumes E at level j. It follows immediately from part (i)
and the mutual absolute continuity of the component measures that if ua ≈ ta,
then λa(ua) also assumes E at level j. For part (iv), the case of m = 1 follows
immediately from part (i). The case of m> 1 is proved by induction and makes
use of part (iii). Q.E.D.

Set Ra
0 = Sa × Ta and Rb

0 = Sb × Tb.

LEMMA E.3: In a complete type structure, projSa R
a
m = projSa(R

a
m\Ra

m+1) for
each m ≥ 0.

PROOF: The proof is by induction on m.
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m = 0: Choose ta so that λa(ta) /∈ L+(Sb × Tb) and note that Sa × {ta} is
disjoint from Ra

1 . So, projSa(R
a
0\Ra

1) = Sa.
m = 1: Fix (sa� ta) ∈ Ra

1 . It suffices to show that there is a type ua ∈ Ta with
(sa�ua) ∈ Ra

1\Ra
2 . To see this, first notice that there is a full-support LPS (μ)

of length 1 such that sa is optimal under (μ). (This is by Lemma 7.1.) By com-
pleteness, there is a type ub such that λb(ub) /∈L+(Sa ×Ta). Construct a proba-
bility measure ν ∈M(Sb × Tb) with margSb μ= margSb ν and ν(Sb × {ub})= 1.
Let ρ be the measure (μ+ ν)/2. Then ρ is a full-support LPS, so by complete-
ness there is a type ua ∈ Ta with λa(ua) = (ρ). Note that sa is optimal under
(ρ), so (sa�ua) ∈Ra

1 . But ρ(Rb
1)≤ 1

2 because λb(ub) /∈L+(Sa ×Ta). So Rb
1 is not

assumed under (ρ) and therefore (sa�ua) /∈ Ra
2 .

m≥ 2: Assume the result holds for m−1. Let (sa� ta) ∈Ra
m and λa(ta)= σ =

(μ0� � � � �μn−1). Then ta ∈ Aa(Rb
i ) for each i < m. We will find a type ua such

that (sa�ua) ∈Ra
m\Ra

m+1.
By the induction hypothesis and the fact that Sb is finite, there is a finite set

U ⊆ Rb
m−1\Rb

m with projSb U = projSb R
b
m−1. Since m ≥ 2, U ⊆ Rb

1 , so λb(tb) ∈
L+(Sa × Ta) for each (sb� tb) ∈ U . By Lemma E.2(ii), for each (sb� tb) ∈ U
there are continuum many ub such that ub ≈ tb, and hence there is a ub ≈
tb such that μi({sb�ub}) = 0 for all i. Form U ′ by replacing each (sb� tb) ∈ U
by a pair (sb�ub) with ub ≈ tb and μi({sb�ub}) = 0 for all i. Then U ′ is finite
with μi(U

′) = 0 for all i. By Lemma E.2(iv), U ′ ⊆ Rb
m−1\Rb

m and projSb U
′ =

projSb R
b
m−1. It follows that the set U can be chosen so that μi(U) = 0 for all i.

We will get a point (sa�ua) ∈ Ra
m\Ra

m+1 by adding a measure to the beginning
of the sequence σ . Since U is finite, projSb U = projSb R

b
m−1, and μ0(R

b
m−1) = 1,

there is a probability measure ν such that ν(U) = 1 and margSb ν = margSb μ0.
Let τ be the sequence (ν�μ0� � � � �μn−1). Since σ ∈L+(Sb × Tb) and μi(U)= 0
for each i, we see that τ ∈L+(Sb ×Tb). By completeness there is a ua ∈ Ta with
λa(ua) = τ. Since ν has the same marginal on Sb as μ0 and since (sa� ta) ∈ Ra

1 ,
we have (sa�ua) ∈ Ra

1 . Since U ⊆ Rb
m−1 and ta ∈ Aa(Rb

k) for each k < m, it
follows that ua ∈ Aa(Rb

k) for each k < m. Then by Lemma C.4(i), we have
(sa�ua) ∈ Ra

m. However, since U is disjoint from Rb
m we have ν(Rb

m) = 0, so
ua /∈ Aa(Rb

m) and hence (sa�ua) /∈ Ra
m+1. This completes the induction. Q.E.D.

APPENDIX F: PROOFS FOR SECTION 10

For the following two lemmas we assume that 〈Sa�Sb�T a�T b�λa�λb〉 is a
complete type structure in which the maps λa and λb are continuous.

LEMMA F.1: If player a is not indifferent, then Ra
0\Ra

1 is uncountable.

PROOF: We have that πa(ra� sb) < πa(sa� sb) for some ra� sa� sb. Then Sa has
more than one element and by completeness, Tb has more than one element.
Therefore, using completeness again, there is a type ta ∈ Ta such that λa(ta)=
(μ0�μ1) is a full-support LPS of length 2 and μ0({sb} × Tb) = 1. Let U be the
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set of all ua ∈ Ta such that ra is not optimal under (λa(ua))0, i.e., for some
qa ∈ Sa, ∑

sb∈Sb
πa(ra� sb)margSb(λ

a(ua))0(s
b)

<
∑
sb∈Sb

πa(qa� sb)margSb(λ
a(ua))0(s

b)�

We now show that ta ∈ U . Note first that since μ0({sb}×Tb)= 1, the function
margSb(λ

a(ta))0 has value 1 at sb and 0 everywhere else in Sb. Therefore, for
each qa ∈ Sa,∑

sb∈Sb
πa(qa� sb)margSb(λ

a(ta))0(s
b)= πa(qa� sb)�

Since πa(ra� sb) < πa(sa� sb), the inequality defining U holds with (qa�ua) =
(sa� ta) and hence ta ∈ U .

We next show that U is open. Since λa is continuous, the function ua �→
(λa(ua))0 is continuous. Convergence in the Prohorov metric is equivalent to
weak convergence, so the function

ua �→ margSb(λ
a(ua))0(s

b) =
∫

1({sb} × Tb)d(λa(ua))0

is continuous. Thus U is defined by a strict inequality between two continuous
real functions of ua and hence U is open.

Since {ra} is open in Sa, the set {ra} × U is open in Sa × Ta. By definition,
the set {ra} × U is disjoint from Ra

1 . Now suppose ua ≈ ta. Then (λa(ua))0 has
the same marginals as (λa(ta))0, so ua ∈ U and hence (ra�ua) ∈ {ra} ×U . Since
{ra} × U is open and disjoint from Ra

1 , we have (ra�ua) /∈ R
a

1 . By Lemma E.2,
there are uncountably many ua such that ua ≈ ta, so Ra

0\Ra
1 is uncount-

able. Q.E.D.

LEMMA F.2: Suppose that m ≥ 1 and Rb
m−1\Rb

m is uncountable. Then Ra
m\Ra

m+1
is uncountable.

PROOF: The proof is similar to the proof of Lemma E.3. Fix (sa� ta) ∈Ra
m. By

the proof of Theorem 9.1, we can choose ta so that λa(ta)= σ = (μ0� � � � �μm−1)
and Rb

m−1 is assumed at level 0. We will get uncountably many points (sa�ua) ∈
Ra

m\Ra
m+1 by adding one more measure to the beginning of the sequence σ and

using Lemma E.2.
We claim that there is a finite set U ⊆ Rb

m−1\Rb
m such that projSb U =

projSb R
b
m−1 and μi(U) = 0 for all i <m.
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m = 1: Recall that, for each (sa� ta) ∈ Ra
1 , there is a ua such that λa(ua)

is a full-support LPS and (sa�ua) ∈ Ra
1\Ra

2 . (This was shown in the proof of
Lemma E.3.) The claim for m = 1 now follows from Lemma E.2 and the fact
that Sa is finite.
m ≥ 2: The claim was already established in the induction step of Lem-

ma E.3.
Now, since Rb

m−1\Rb
m is uncountable, there is a point (sb� tb) ∈ Rb

m−1\Rb
m such

that μi(s
b� tb)= 0 for all i <m. Therefore, we may also take U to contain such

a point (sb� tb). Let ν be a probability measure such that ν(U) = 1, margSb ν =
margSb μ0, and ν(sb� tb) = margSb μ0(s

b). Since Rb
m−1 is assumed under σ at

level 0, we have (sb� tb) ∈ Suppμ0, and thus μ0({sb} ×Tb)= margSb μ0(s
b) > 0.

Therefore, ν(sb� tb) > 0.
Let τ be the sequence (ν�μ0� � � � �μm−1). Since (sa� ta) ∈ Ra

1 , λa(ta) =
(μ0� � � � �μm−1) is a full-support LPS. Also, μi(U) = 0 for each i. Therefore,
τ is mutually singular and so a full-support LPS. By completeness, there is
a va ∈ Ta with λa(va) = τ. Then (λa(va))0 = ν. As in Lemma E.3, we have
(sa� va) ∈ Ra

m. Given this, the proof of Lemma E.2(ii) shows that there are
uncountably many ua ≈ va such that (λa(ua))0 = ν.

Suppose ua ≈ va and (λa(ua))0 = ν. Then λa(ua) has length m + 1. By
Lemma E.2, we have (sa�ua) ∈ Ra

m. However, since (sb� tb) /∈ Rb
m, the measure

ν has an open neighborhood W , where, for each ν′ ∈ W , ν′(Rb
m) < 1. (An ex-

ample of such a neighborhood is the set {ν′ :ν′(V ) > ν(sb� tb)/2}, where V is an
open neighborhood of (sb� tb) which is disjoint from Rb

m.) Then the set

X = {ξ ∈Nm+1(S
b × Tb) :ξ0 ∈ W }

is an open neighborhood of λa(ua), and no LPS ξ ∈ X can assume Rb
m at level

0. It follows that an LPS ξ ∈ X cannot assume all of the m+ 1 sets Rb
k�k ≤ m,

because by the inductive hypothesis all these sets have different closures, and
hence by Property 6.2 at most one can be assumed at each level. By continuity
of λa, the set Y = (λa)−1(X) is an open neighborhood of ua. Then {sa} × Y is
an open neighborhood of (sa�ua) which is disjoint from Ra

m+1, so (sa�ua) is not
in the closure of Ra

m+1. By Lemma E.2, there are uncountably many ua ≈ va

and, therefore, Ra
m\Ra

m+1 is uncountable. Q.E.D.

PROOF OF THEOREM 10.1: By Proposition 7.1(ii), it suffices to assume that
λa and λb are continuous. As such, Lemma F.1 gives that the set Ra

0\Ra
1 is un-

countable. Then, by induction and Lemma F.2, for each m, the sets Ra
2m\Ra

2m+1

and Rb
2m+1\Rb

2m+2 are uncountable. Suppose that (sb� tb) ∈ ⋂
mRb

m. Then, for
each m, we have that Ra

m is assumed under λb(tb) at some level j(m). More-
over, the sequence j(m) is nonincreasing. Then by Property 6.2 and the fact
that each Ra

2m\Ra
2m+1 is uncountable, we have that each j(2m + 1) < j(2m).

But this contradicts the fact that λb(tb) has finite length. Q.E.D.
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