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Abstract

Sell’s approach [32] to the construction of attractors for the Navier–
Stokes equations in 3-dimensions is extended to the 3-D stochastic
equations with a general multiplicative noise.

1 Introduction

The existence of global attractors for deterministic time-homogeneous incom-
pressible Navier–Stokes equations







du = [ν∆u − 〈u,∇〉u + f(u)−∇p]dt

div u = 0
(1)

on a bounded domain D ⊆ R2 is well known (see Temam [33] for an exposi-
tion): there is a compact global attractor in H, the subspace of divergence
free vector fields in L2(D), which is the phase space for the equations (1).
(The solutions to (1) have u(t) ∈ H for all t.)

Equally well known is the fundamental problem with the very idea of
attractors for these equations in 3-dimensions; the question of uniqueness of
weak solutions to the equations is still open, with the consequence that the
conventional formulation of the notion of an attractor may not even make
sense. It would require the existence of a semiflow of solutions St say, so that
Stv is the (unique) solution for the given initial condition v. If attention is
restricted to strong solutions, where uniqueness is known, the fundamental
open problem is that of existence for all time – which again means that the
usual notion of attractor cannot be used. In order to overcome the diffi-
culties mentioned above when considering attractors for the 3-dimensional
deterministic Navier–Stokes equations, a number of approaches have been
suggested, beginning with Foias & Temam [23], and more recently Sell [32],
Cutland & Capiński [8] and Ball [2].
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Sell’s radical approach [32] to the 3-D problem of attractors was to replace
the phase space H by a space W of entire solutions to the Navier–Stokes
equations. That is, each point in W is the complete trajectory in H of
a solution. There is a simple semigroup action St on W – namely time
translation. Thus, if u = u(·) ∈ W then Stu = v ∈ W is given by

v(s) = u(t + s).

Clearly this is well defined, and has the crucial semi-flow property

St1 ◦ St2 = St1+t2

along with S0u = u.
Using this idea, Sell was able to establish the existence of a global attrac-

tor for the 3-D (deterministic) Navier–Stokes equations.
The goal of this paper is to extend Sell’s approach to the general time-

homogeneous stochastic Navier–Stokes equations (2) with multiplicative noise
in dimensions 2 and 3, taking the form







du = [ν∆u − 〈u,∇〉u + f(u)−∇p]dt + g(u)dwt

div u = 0
(2)

where u = u(t, ω) is now a random velocity field at time t ≥ 0 of a fluid in a
bounded domain D ⊆ R3 (or D ⊆ R2). For simplicity the driving noise wt is
taken to be a 1-dimensional Wiener process.

Even in 2-dimensions there are considerable difficulties when seeking
stochastic attractors. These can be overcome in a number of ways – for
example by considering measure attractors (see [31, 6]), or by working with
the notion of stochastic attractor developed by Crauel & Flandoli [10]. For
this it is necessary first to show the existence of a flow of solutions with a
stochastic equivalent of the semi-group property – known as a perfect cocycle.
This was achieved in [9] for a very special form of the noise g(u) when the
system has periodic boundary conditions.

For the 3-dimensional stochastic case, Sell’s idea was used by Flandoli &
Schmalfuss in the paper [12] for the Navier–Stokes equations with a special
form of multiplicative noise, using a mild solution concept. The equation con-
sidered allowed essentially a pathwise solution, and then a random attractor
was obtained by combining Sell’s approach with the idea of pulling back in
time to −∞, as developed by Crauel & Flandoli [12]. In a later paper [13]
Flandoli & Schmalfuss consider in the same framework 3-D-Navier–Stokes
equations with an irregular forcing term, but no feedback.

In the current paper we consider 3-D stochastic Navier–Stokes equations
with a general multiplicative noise g(u) as above. The idea is to use Sell’s
approach at the level of processes rather than paths. In this way the idea of
an attractor is formulated in the conventional sense, examining the long term



2 PRELIMINARIES AND ASSUMPTIONS 3

behavior of solutions as t → ∞. To do this, it is necessary to have a single
underlying probability space, rich enough to carry a supply of solutions to
the 3-D stochastic Navier–Stokes equations that is sufficient for the concepts
to make sense. For this we need a filtered Loeb space.

2 Preliminaries and assumptions

We will always state our definitions for the three dimensional case, but it
should be understood that these definitions can be modified in the natural
way to get the analogous notions for two dimensions. We use N for the set
of positive integers.

2.1 Stochastic Navier–Stokes equations

We consider the stochastic Navier–Stokes equations (2) in a bounded domain
D ⊆ R3 with boundary of class C2, and adopt the conventional Hilbert space
approach as follows.

Let H be the closure of the set

{u ∈ C∞
0 (D,R3) : div u = 0}

in the L2 norm |u| = (u, u)1/2, where u = 〈u1, u2, u3〉 and

(u, v) =
3

∑

j=1

∫

D
uj(x)vj(x)dx.

The letters u, v, w will be used for elements of H. The subspace V is the
closure of the set {u ∈ C∞

0 (D,R3) : div u = 0} in the stronger norm |u|+‖u‖
where ‖u‖ = ((u, u))1/2 and

((u, v)) =
3

∑

j=1

(

∂u
∂xj

,
∂v
∂xj

)

.

H and V are Hilbert spaces with scalar products (·, ·) and ((·, ·)) respectively,
and | · | ≤ c‖ · ‖ for some constant c.

By A we denote the self adjoint extension of the projection of −∆ in H.
Classical theory shows that there is an orthonormal basis {ek : k ∈ N} of
eigenfunctions of A with corresponding eigenvalues λk > 0 such that λk ↗∞.
For u ∈ H we write u(k) = (u, ek), and write Prm for the projection of H on
the subspace Hm spanned by {e1, . . . , em}. Since each ek ∈ V, then Hm ⊆ V.
If u =

∑

u(k)ek ∈ V then ‖u‖2 =
∑

λku2
(k), so that the constant c above is

λ
1
2
1 .
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A trilinear form b is defined by

b(u, v, w) =
3

∑

i,j=1

∫

D
uj(x)

∂vi

∂xj
(x)wi(x)dx = (〈u,∇〉v, w)

whenever the integrals make sense. Note the following well-known properties
of the trilinear form b, where c is a real constant.

b(u, v, w) = −b(u, w, v),

b(u, v, v) = 0,

|b(u, v, w)| ≤ c‖u‖ ‖v‖ ‖w‖.
The last is a continuity property of b with respect to the norm ‖ · ‖. There
are a number of other important continuity properties for other norms which
we will not need.

2.2 Functional formulation of the Navier–Stokes equa-
tions

In the above framework, the stochastic Navier–Stokes equations may be for-
mulated as the following stochastic differential equation in V′ (the dual of
V):

du = [−νAu−B(u) + f(u)]dt + g(u)dwt, (3)

where B(u) = b(u, u, ·). Note that the pressure has disappeared, because
∇p = 0 in V′ (using div v = 0 in V and an integration by parts). Although
equation (3) is regarded as an equation in V′, it turns out that solutions can
be found that live in H (and in fact in V for almost all times).

We take wt to be a 1-dimensional adapted Wiener process on a filtered
probability space

ΩΩ = (Ω,F , (Ft)t≥0, P ).

The term adapted is always taken to mean adapted to the filtration (Ft)t≥0.
Further assumptions on ΩΩ that are needed to formulate the idea of an at-
tractor for a class of stochastic processes are given in the next section.

The equation (3) is really an integral equation, with the first integral
being the Bochner integral and the second an extension of the Itô integral to
Hilbert spaces in the weak sense. Thus, when we write

u(t1) = u(t0) +
∫ t1

t0
[−νAu(t)−B(u(t)) + f(u(t))]dt +

∫ t1

t0
g(u(t))dwt

we mean that for all v ∈ V we have

(u(t1), v) =



2 PRELIMINARIES AND ASSUMPTIONS 5

(u(t0), v)+
∫ t1

t0
[−ν(Au(t), v)−(B(u(t)), v)+(f(u(t)), v)]dt+

∫ t1

t0
(g(u(t)), v)dwt

as a stochastic equation in R.
We make the following assumptions on the coefficients f and g, where

c0, d1, d2 are positive real constants.
(H1) f : H → H and |f(u)| ≤ c0 + d1|u|.
(H2) g : H → H and |g(u)| ≤ c0 + d2|u|.
(H3) f and g are continuous.
(H4) 2d1 + 3d 2

2 < 2νλ1.
The general theory of stochastic Navier–Stokes equations expounded in

[7] shows that the equation (3) can be solved with only the assumptions
(H1)–(H3). The additional growth restriction (H4) on f, g is needed here to
obtain the attractor.

2.3 Truncation functions

For technical reasons (in connection with testing for S-integrability) we will
need an explicit family of “truncation functions”. We give the details here
but suggest that the reader refer back to this section only when needed later.

The following real C2 function ψ : [0,∞) → [0, 1] is designed to be concave
on [0, 1] and constant (with value 1) on [1,∞).

Definition 2.1 (a)

ψ(x) =
{

(x− 1)3 + 1 if 0 ≤ x ≤ 1
1 if x ≥ 1

(b) For each n ∈ N,
ψn(x) = ψ(x/n2).

(c) For each n ∈ N a function ϕn(u) is defined for u in any Hilbert space
(finite or infinite dimensional) by

ϕn(u) = u2ψn(u2),

where we write u2 to mean |u|2 to ease the notation.
Direct calculation gives:
(d)

ψ′n(x) =
{

3n−2(1− x/n2)2 if 0 ≤ x ≤ n2

0 if n2 ≤ x

(e)

ψ′′n(x) =
{

−6n−4(1− x/n2) if 0 ≤ x ≤ n2

0 if n2 ≤ x

(f)
ϕ′n(u) = 2u

(

ψn(u2) + u2ψ′n(u2)
)

.
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(g)

ϕ′′n(u) = 2I
[

ψn(u2) + u2ψ′n(u2)
]

+ 4uuT
[

2ψ′n(u2) + u2ψ′′n(u2)
]

(again writing u2 for |u|2).

The significance of the functions ϕn involves the concept of S-integrability
from Loeb measure theory, to be defined later. We will show that given an
internal random vector U(ω), |U |2 is S-integrable if and only if ◦E(ϕn(U)) →
0 as n →∞. The application of this fact will involve the following particular
properties of ψn and ϕn.

Lemma 2.2 (Properties of ψn and ϕn) The functions ψn and ϕn have
the following properties:

(a) xψ′n(x) ≤ ψn(x) all n and x ≥ 0.
(b) 2|u|ψn(u2) ≤ |ϕ′n(u)| ≤ 4|u|ψn(u2).
(c) 2ϕn(u) ≤ |u| |ϕ′n(u)| ≤ 4ϕn(u).

Proof Elementary calculation. 2

Lemma 2.3 For any random vector u(ω) in a Hilbert space:
(a) E(|u|ψn(u2)) ≤ n−1/2(3 + E(u2)).
(b) E(|ϕ′n(u)|) ≤ 4n−1/2(3 + E(u2)).
(c) E(ψn(u2)) ≤ n−1(3 + E(u2)).

Proof (a) We have

E(|u|ψn(u2)) =
∫

|u|2≤n
|u|ψn(u2) +

∫

|u|2>n
|u|ψn(u2)

≤ n1/2ψn(n) +
∫

|u|>
√

n
|u| (since ψn ≤ 1)

≤ n1/2ψn(n) +
∫

|u|>
√

n
|u||u|/

√
n

≤ n1/2ψn(n) + n−1/2E(u2)
≤ n−1/2(3 + E(u2))

using the fact that nψn(n) = n−2 − 3n−1 + 3 ≤ 3.
(b) This follows from (a) since |ϕ′n(u)| ≤ 4|u|ψn(u2).
(c) We have

E(ψn(u2)) =
∫

|u|2≤n
ψn(u2) +

∫

|u|2>n
ψn(u2)

≤ ψn(n) + P(u2 > n) (since ψn ≤ 1)
≤ ψn(n) + n−1E(u2)
≤ n−1(3 + E(u2)).

2
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3 Semiflows and attractors

3.1 Semiflows

We now assume that the space ΩΩ is equipped with a family of measure
preserving maps θt : Ω → Ω for t ≥ 0 with the following properties:

(θ1) θ0 = identity and θt ◦ θs = θt+s;

(θ2) θtFs = Ft+s for all s, t ≥ 0;

(θ3) w(t + s, θtω)− w(t, θtω) = w(s, ω) for all s ≥ 0.

Note that the property (θ3) tells us that for a fixed t the increments of the
process w(t + s, θtω) are the same as those of the process w(s, ω). Thus θt

can be thought of as a shift of the noise to the right by t.
The family (θt) allows the following definition of a semiflow Sr of stochas-

tic processes.

Definition 3.1 (Semiflow of Processes) (a) Suppose that u = u(t, ω)
is a stochastic process defined for t > 0. Then for any r ≥ 0 the process
v = Sru is defined by

v(t, ω) = u(r + t, θrω).

(b) By a semiflow (St)t≥0 on a filtered space ΩΩ we mean that there is a
measure preserving family (θt)t≥0 obeying (θ1)−(θ3) from which St is defined
as above.

Proposition 3.2

(a) Sr is a semigroup on the class of all stochastic processes u : [0,∞)×Ω →
H.

(b) If u is adapted (to the filtration (Ft)t≥0 ) then so is v = Sru.

(c) If u is adapted and v = Sru then for t ≥ 0:

(i) For appropriate continuous g,
∫ t

0
g(v(s, ω))dws(ω) =

∫ r+t

r
g(u(s, θrω))dws(θrω)

(meaning that I(ω) = J(θrω) as random variables, where I(ω) is the
left-hand integral and J(ω) =

∫ r+t
r g(u(s, ω))dws(ω)).

(ii) For appropriate continuous f ,
∫ t

0
f(v(s, ω))ds =

∫ r+t

r
f(u(s, θrω))ds.

(By appropriate we mean that the integrals are defined.)
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(d) If u is adapted and v = Sru and t1 ≥ t0 ≥ 0 with

u(t1 + r) = u(t0 + r) +
∫ t1+r

t0+r
f(u(s))ds +

∫ t1+r

t0+r
g(u(s))dws,

then

v(t1) = u(t0) +
∫ t1

t0
f(v(s))ds +

∫ t1

t0
g(v(s))dws.

Proof Elementary. 2

3.2 Attractors for the 3-D stochastic Navier-Stokes equa-
tions

Suppose now that a filtered probability space ΩΩ and a Wiener process w is
given, together with a family of measure preserving maps as above.

A natural space for paths of solutions to the stochastic Navier–Stokes
equations is the space M defined as follows.

Definition 3.3 (a) For a measurable (deterministic) function ξ : [0,∞) →
H define a norm

|ξ| =
(∫ ∞

0
ξ(t)2 exp(−t)dt

) 1
2

=
(∫ ∞

0
ξ(t)2µ(dt)

) 1
2

where µ(dt) = exp(−t)dt, and write

M = {ξ : |ξ| < ∞}

for this space of paths, which is a separable Hilbert space.
(b) For a process u(t, ω) with paths in M define

|u| =
(

E(|u(·, ω)|2)
) 1

2 =
(

E
∫ ∞

0
|u(t, ω)|2 exp(−t)dt

) 1
2

,

which is simply the norm of L2(Ω,M). Let ρ be the corresponding metric
ρ(u, v) = |u− v|.

We will be interested in the laws of solutions viewed as probability dis-
tributions on the space of paths M , so we need the following definitions.

Definition 3.4 Let u(t, ω) be a process with paths in M .
(a) law(u) is the probability law on M induced by u; i.e.

law(u)(E) = P(u(·, ω) ∈ E)

for Borel E ⊆ M .
(b) laww(u) = law(u,w), the probability law induced on M × C0 by the

pair of processes (u(t, ω), w(t, ω)), where C0 = C0[0,∞).
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For the space of probability laws M1(S) on a separable metric space S
a fundamental metric is the Prohorov metric, which we denote by d0; this
makes M1(S) separable. Here we are thinking of S = M and S = M × C0.

There is a natural projection mapping π : M1(M × C0) → M1(M)
defined by

π(λ)(E) = λ(E × C0).

In the current situation the laws on the space M that we are interested
are laws of L2 random variables, so it is appropriate to define a stronger
metric to reflect this.

Definition 3.5 (a) M1,2(M) = {µ ∈M1(M) : Eµ(|u|2) < ∞}.
(b) the metric d on M1,2(M) is defined by

d(µ1, µ2) = d0(µ1, µ2) +
∣

∣Eµ1(|u|2)− Eµ2(|u|2)
∣

∣ .

(c) M1,2(M × C0) = {λ ∈M1(M × C0) : π(λ) ∈M1,2(M)}.
(d) the metric d on M1,2(M × C0) is defined by

d(λ1, λ2) = d0(λ1, λ2) +
∣

∣Eµ1(|u|2)− Eµ2(|u|2)
∣

∣ ,

where µi = π(λi) (i = 1, 2).

The following lemma is easily checked.

Lemma 3.6 (a) The function law maps L2(Ω,M) into M1,2(M) and is con-
tinuous with respect to the metrics ρ and d.

(b) The function laww maps L2(Ω,M) into M1,2(M ×C0) and is contin-
uous with respect to the metrics ρ and d.

(c) The mapping π : M1(M × C0) →M1(M) defined by

π(λ)(E) = λ(E × C0)

is continuous with respect to the metric d.

Suppose now that X ⊆ L2(Ω,M) is a class of solutions to the stochastic
Navier–Stokes equations on ΩΩ for the given Wiener process w. Then each
u ∈ X is a stochastic process such that |u| as defined above is finite. By a
bounded subset of X we will mean a subset of X which is bounded in the
norm | · |.

Let us assume further that StX ⊆ X for all t ≥ 0, that is, St is a
semigroup on X. A semigroup ̂St : M1,2(M × C0) → M1,2(M × C0) is
induced in a natural way: in detail

̂St(λ) = λ ◦ h−1
t ,

where ht : M × C0 → M × C0 is given by

ht(ξ, w)(s) = (ξ(t + s), w(t + s)− w(t)).
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For future reference note that

̂St ◦ laww = laww ◦ St. (4)

This allows the following definition of an attractor for a semiflow St on X.

Definition 3.7 (a) A set of laws A ⊆ laww(X) is a law-attractor for the
semiflow St on X if:

(i) (Invariance) ̂StA = A for all t ≥ 0.

(ii) (Attraction) For any open set O ⊃ A and d-bounded set Z ⊆
laww(X),

̂StZ ⊆ O

eventually (i.e. for some t0 = t0(O,Z), this holds for all t ≥ t0).

(iii) (Compactness) A is compact in the metric d.

(b) An attractor for the semiflow St on X is a set of processes A ⊆ X such
that:

(i) laww(A) is a law-attractor (in particular laww(A) is compact in the
metric d, and so A is bounded).

(ii) (Invariance) StA = A for all t ≥ 0.

(iii) (Attraction) For any bounded set Z ⊆ X and compact set K ⊆
L2(Ω,M),

limt→∞ρ(StZ,K) ≥ ρ(A,K).

(iv) A is closed in the space L2(Ω,M).

Remarks on Definition 3.7.
1. Since existence results for the stochastic Navier–Stokes equations re-

quire a rather large probability space, it is to be expected that any space
carrying a whole class of solutions X as above will be too big to allow an
attractor A ⊆ X that is compact in the usual sense. In a later section we will
give evidence to support this remark. We will see, however, that on a suitable
space there is an attractor A in the above sense. In the sequel [18] to this
paper we improve this result, and show that the attractor to be constructed
in this paper is neocompact in the sense of [20]. Neocompact sets share many
properties with compact sets. Among other things, they are closed and have
compact laws.

2. The attraction property 3.7(b)(iii) is equivalent to the following:

StZ ⊆ O eventually (5)
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for any bounded Z and any open O ⊃ A of the form O = L2(Ω,M) \K≤ε,
with K compact. Property 3.7(b)(i) means that in addition (5) holds for any
open set O of the form O = law−1

w (O′) where O′ is an open set of laws with
laww(A) ⊆ O′ ⊆M1,2(M × C0).

3. The usual attraction property for attractors, namely that property (5)
holds for any bounded Z and any open O ⊃ A, is probably too much to
expect. However, in the sequel [18] we will show that the attractor to be
constructed in this paper has property (5) for a smaller class of open sets –
those that are neoopen in the sense of [20]. Sets O of the form L2(Ω,M)\K≤ε

or law−1
w (O′) as above are neoopen.

We can now state the main theorem of this paper.

Theorem 3.8 There is a filtered probability space ΩΩ, a class X of adapted
weak solutions to the stochastic Navier-Stokes equation in ΩΩ, and a semiflow
St on X, such that

(a) there exists u ∈ X for all L2 F0-measurable initial conditions;
(b) there is an attractor for the semiflow St on X.

Before embarking on the proof of this result we note some further prop-
erties of an attractor (if it exists) that can be deduced immediately.

Theorem 3.9 Given a semiflow St on a set X ⊆ L2(Ω,M), there is at
most one attractor A for St on X. A has the following properties:

(a) law(A) is compact in the metric d.
(b) For any open set of laws O ⊃ law(A), and bounded Z ⊆ X, StZ ⊆

law−1(O) eventually.
(c) A =

⋂

n∈N Sn(Z) =
⋂

t≥0 St(Z) for any bounded set Z with A ⊆ Z ⊆
X.

In particular
(d) A =

⋂

n∈N Sn(law−1(law(A)) ∩X).

Remark The significance of (d) is that although A may not be compact,
it may be defined from a compact set of laws.
Proof For uniqueness, suppose that A and A′ are attractors with u ∈
A′ \A. Since A is closed, ρ(A, u) = ε > 0 . Since A′ ⊆ X is bounded we have
limt→∞ρ(StA′, u) ≥ ε, and hence ρ(StA′, v) > ε/2 for some t, contradicting
v ∈ A′ = StA′.

(a) and (b) follow immediately from the continuity of π.
For (c), it is clear that A is contained in the right-hand side, since

A = StA ⊆ StZ for all t ≥ 0. For the other inclusion, suppose that
u ∈

⋂

n∈N Sn(Z) \ A. Since A is closed, ε = ρ(A, u) > 0. Since Z is
bounded the attraction property gives ρ(SnZ, v) > ε/2 for some n, con-
tradicting v ∈ SnZ.

For (d), apply (c) to Z = law−1(law(A))∩X. Clearly A ⊆ Z ⊆ X and Z
has the same bound as A. 2
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4 Solutions to the stochastic Navier–Stokes
equations

We define below a special class X of weak solutions to the stochastic Navier–
Stokes equations (3). Each element u of X is thus an adapted stochastic
process (with u(t, ω) ∈ H for all t, ω). The properties required for member-
ship of X are among those that can be deduced heuristically from (3) using
elementary stochastic calculus. (Of course we will later show rigorously that
X is non empty!)

Definition 4.1 (a) Given positive real constants k1, k2, k3, α, β, denote by
X the class of adapted stochastic processes u : (0,∞) × Ω → H with the
following properties.

(X1) For a.a. ω the path u(·, ω) belongs to the following spaces:

L∞loc(0,∞;H) ∩ L2
loc[0,∞;H) ∩ L2

loc(0,∞;V) ∩ C(0,∞;Hweak).

(X2) For all t1 ≥ t0 > 0

u(t1) = u(t0) +
∫ t1

t0
[−νAu(t)−B(u(t)) + f(u(t))]dt +

∫ t1

t0
g(u(t))dwt.

(X3) For a.a. t0 > 0 and all t1 ≥ t0,

E(|u(t1)|2) ≤ E(|u(t0)|2) exp(−k1(t1 − t0)) + k2. (6)

(X4) For a.a. t0 > 0 and all t1 ≥ t0,

E
(

supt0≤s≤t1|u(s)|2 +
∫ t1

t0
‖u(s)‖2ds

)

≤ αE(|u(t0)|2)+β(t1−t0). (7)

(X5) For a.a. t0 > 0 and all t1 ≥ t0 and n ∈ N,

E(ϕn(u(t1))) ≤ E(ϕn(u(t0)) exp(−k3(t1− t0)))+n−
1
2 (αE(|u(t0)|2)+β).

(8)

(X6) E
∫ 1

0 |u(t)|2dt < ∞.

(b) Denote by Xk the set of u ∈ X with

(X6k) E
∫ 1

0 |u(t)|2dt ≤ k.
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Remarks
1. The class X depends on the constants k1, k2, k3, α, β. We will show

later that there is an explicit choice of constants for which X is non-empty.
2. The sets Xk obviously increase with k.
3. The above conditions tell us nothing about u(t, ω) at t = 0 and there

may be a singularity there. In this sense the class X is a class of generalized
weak solutions to the stochastic Navier–Stokes equations (cf. [32], p.12).

4. The meaning of “loc” in the path properties (X1) is as follows: Lp
loc(0,∞)

means Lp[1/n, n] for all n, whereas Lp
loc[0,∞) means Lp[0, n] for all n.

5. The conditions (X5) follow naturally from the Foias equation for the
stochastic Navier-Stokes equations (see [5]), which may be deduced heuris-
tically from the equation (3). The choice of the functions ϕn makes (X5) a
uniform integrability condition for |u(t)|2 on any [t0,∞).

The following lemma is our motivation for singling out the sets Xk; it
relates these sets to bounded sets.

Lemma 4.2 (a) X ⊆ M .
(b) If u ∈ X and |u|2e ≤ k then u ∈ Xk.
(c) If u ∈ Xk then |u|2e ≤ k(1 + e) + k2.
(d) If Z ⊆ X, then Z is bounded if and only if Z ⊆ Xk for some k ∈ N.

Proof (a) Let u ∈ X. It follows from (X6) that E(|u(t))|2) < ∞ for a.a.
t ∈ (0, 1). Thus, from (X3) we see that E(|u(t))|2) is bounded on [ 1

n ,∞) for
all n ∈ N. It follows from u ∈ L2

loc[0,∞) that E(|u|2) < ∞, so u ∈ M .
(b) For u ∈ M we have

E
∫ 1

0
|u(t)|2dt ≤ eE

∫ 1

0
|u(t)|2 exp(−t)dt ≤ e|u|2.

So if |u|2e ≤ k then E
∫ 1
0 |u(t)|2dt ≤ k.

(c) Let u ∈ Xk. Then the set {t ∈ [0, 1] : E(|u(t)|2) ≤ k} has positive
Lebesgue measure. By (X3) there is a t0 ∈ (0, 1] such that (6) holds for all
t1 ≥ t0 and E(|u(t)|2) ≤ k. Then for all t1 ≥ t0, E(|u(t1)|2) ≤ k + k2. Thus

|u|2 =
∫ 1

0
E|u(t)|2exp(−t)dt +

∫ ∞

1
E|u(t)|2exp(−t)dt

≤ k +
∫ ∞

1
(k2 + k)exp(−t)dt = k + (k2 + k)/e,

and (c) follows.
(d) follows easily from (b) and (c). 2

We can now reformulate the main theorem for the particular class of
solutions X that has just been introduced.
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Theorem 4.3 There is a filtered probability space ΩΩ with a semiflow St on
X, and constants k1, k2, k3, α, β, such that there exist u ∈ X for all L2

F0-measurable initial conditions, and there is an attractor for the semiflow
St on X.

In fact, we will show that there exists weak solutions in the following
smaller class Y whose members are defined at 0.

Definition 4.4 Denote by Y the class of stochastic processes u : [0,∞) ×
Ω → H with u ∈ X (that is, the restriction of u to (0,∞) lies in X) with
the following additional properties:

(Y1) For a.a. ω, the path u(·, ω) is in

L∞loc[0,∞;H) ∩ L2
loc[0,∞;H) ∩ L2

loc[0,∞;V) ∩ C[0,∞;Hweak).

(Y2) For all t1 ≥ t0 ≥ 0,

u(t1) = u(t0) +
∫ t1

t0
[−νAu(t)−B(u(t)) + f(u(t))]dt + g(u(t))dwt.

(Y3) E(|u(t)|2) is bounded on [0,∞).

Note that (Y1) implies (X1), (Y2) implies (X2), and (Y3) implies (X6).

5 The space ΩΩ and the semiflow

The particular space ΩΩ that we use is a filtered Loeb space similar to that
used in [7] for the construction of solutions to the stochastic Navier–Stokes
equations. Loeb spaces constitute a special class of probability spaces that
are very rich – in a sense that can be made precise (see for example [28]). The
richness is needed to be able to solve the general stochastic Navier–Stokes
equations in dimension 3, and it will also come into play when showing that
the single space ΩΩ has solutions to (3) with the same (prescribed) Wiener
process wt for any random initial condition.

From this point on we assume the basics of nonstandard analysis and in
particular the Loeb construction. Some details are provided in the appendix;
for a full exposition see any of [1, 7, 14, 16, 17, 29, 30].

We set Ω = ∗(C0(R)), the internal space of ∗continuous functions ω :
∗R → ∗R with ω(0) = 0, and let Q be the internal ∗Wiener measure on Ω.
Thus the canonical process

W (τ, ω) = ω(τ)
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is a two-sided ∗Wiener process under Q. This gives the internal filtered
probability space

Ω̄Ω = (Ω,G, (Gτ )τ∈∗R, Q),

where Gτ = ∗σ({W(τ ′) : τ ′ ≤ τ}) and G =
∨

τ∈∗R Gτ .
A family of internal measure preserving maps Θτ : Ω → Ω is defined for

τ ∈ ∗R by
(Θτ (ω))(σ) = ω(σ − τ)− ω(−τ).

That is, Θτ is a shift of the path ω to the right by τ and then adjusted to be
0 at 0.

Now let P = QL be the Loeb measure obtained from Q with the cor-
responding Loeb σ-algebra F = L(G), giving the Loeb probability space
(Ω, L(G), QL) = (Ω,F , P), and denote the P -null sets by N .

Definition 5.1

(a) The filtered probability space ΩΩ is

ΩΩ = (Ω,F , (Ft)t≥0, P ),

where the right continuous filtration (Ft)t≥0 is defined by

Ft =
⋂

t<◦τ

σ(Gτ ) ∨N .

(b) The Wiener process w(t, ω) on ΩΩ is defined by

w(t, ω) = ◦W (t, ω). (9)

(c) The family of measure preserving transformations (θt)t≥0 is given by

θt = Θt.

That is, the restriction of the family (Θτ ) to non-negative standard
times.

It is well known that (9) defines an almost surely continuous Wiener
process on ΩΩ. It is clear that the family θt satisfies conditions (θ1), (θ2), (θ3).

With the space ΩΩ and the family (θt)t≥0 now fixed, the semiflow of pro-
cesses St defined by Definition 3.1 is also fixed for the rest of the paper.
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6 Construction of solutions

From now on all discussion is in the context of the fixed space ΩΩ of the
previous section, so that in particular the classes of processes X and Y are
classes of processes on ΩΩ. It is clear from Proposition 3.2 that both classes
of solutions X and Y are closed under St for all t. In fact StX ⊆ Y for t > 0.

This section is devoted to a proof that, for an explicit choice of the con-
stants, the class Y (and hence X) is non-empty, and in particular contains
solutions with any prescribed F0-measurable L2 initial condition. (In this
connection, note that the richness of the space ΩΩ means that for any prob-
ability law on H there is an F0-measurable u0(ω) on ΩΩ with the same law.)
In the course of the proof the constants in the definition of the class X
(Definition 4.1) are given explicitly.

Theorem 6.1 There are constants k1, k2, k3, α, β such that for any F0-measurable
u0(ω) ∈ L2(Ω,H) there is a process u(t, ω) ∈ Y with u(0, ω) = u0(ω).

Proof
As in [7] a solution u ∈ Y is constructed as the standard part of an

internal Galerkin approximate solution on the internal space Ω̄Ω.
Suppose that u0 ∈ L2(Ω,H) is F0−measurable. Fix an infinite natural

number N and take an SL2 lifting U0(ω) ∈ HN of u0 that is Gδ-measurable
for some positive δ ≈ 0. Consider the following internal SDE on ∗[δ,∞) in
HN, where B, F, G denote the projections of ∗B, ∗f, ∗g respectively onto HN.
(Here and elsewhere we use interchangeably the notation Uτ (ω) = U(τ, ω),
etc.)

{

dUτ = [−ν ∗AUτ −B(Uτ ) + F (Uτ )]dτ + G(Uτ )dWτ

Uδ(ω) = U0(ω).
Elementary SDE theory and the usual energy considerations give an in-

ternal solution U (not necessarily unique) to this Galerkin approximation.
Fix any one such solution U . The task now is to derive some properties of U
that will show that its standard part u = ◦U belongs to Y as required.

Using Itô’s lemma and the fact that (B(U), U) = 0 we have

d|Uτ |2 = (−2ν‖Uτ‖2 +2(F (Uτ ), Uτ )+ |G(Uτ )|2)dτ +2(Uτ , G(Uτ ))dWτ . (10)

Put Zτ = E(|Uτ |2). The growth conditions on f and g, together with an
application of Young’s inequality give positive constants k1, l such that

d
dτ

Zτ + k1Zτ ≤ l. (11)

(See the appendix to this section for details.) Hence (using Gronwall’s
lemma), for all τ0 ≤ τ1

Zτ1 ≤ Zτ0 exp(−k1(τ1 − τ0)) +
l
k1

(1− exp(−k1(τ1 − τ0))). (12)
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So

E(|Uτ1|2) ≤ E(|Uτ0|2) exp(−k1(τ1 − τ0)) + k2, (13)

where k2 = l/k1.
We will see below that this is almost sufficient to obtain the inequality

(X3) in the definition of the class X. Turning now to the condition (X4), we
go back to (10).

The growth conditions on f and g, together with an application of Young’s
inequality, give

2(F (U), U) + |G(U)|2 ≤ c(1 + |U |2),

where c = c2
0 + c0(1 + d1).

¿From (10), this gives, for δ ≤ τ0 ≤ τ1,

sup
τ0≤σ≤τ1

|Uσ|2 + 2ν
∫ τ1

τ0
‖Uσ‖2)dσ

≤ |Uτ0|2 + c
∫ τ1

τ0
(1 + |Uσ|2)dσ + sup

τ0≤σ≤τ1
|Mσ|, (14)

where Mτ is the martingale

Mτ = 2
∫ τ1

τ0
(Uσ, G(Uσ))dWσ,

and so
[M ]τ = 4

∫ τ1

τ0
(Uσ, G(Uσ))2dσ.

Now using the bound on g we obtain

[M ]τ ≤ 4c′ sup
τ0≤σ≤τ

|Uτ |2
∫ τ

τ0
(1 + |Uσ|2)dσ, (15)

where c′ = c0d2 + max(c0, d 2
2 ).

Using Young’s inequality again gives

[M ]1/2
τ ≤ c′

γ
sup

τ0≤σ≤τ
|Uτ |2 + γ

∫ τ

τ0
(1 + |Uσ|2)dσ (16)

for γ to be specified below. The following Burkholder-Davis-Gundy inequal-
ity is now applicable (κ is a universal constant independent of the dimension
N):

E
(

sup
τ0≤σ≤τ1

|Mσ|
)

≤ κE
(

[M ]1/2
τ1

)

. (17)
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Use (14) and (16), with γ = 2(κc′)−1, together with the Burkholder-
Davis-Gundy inequality (17) to obtain

E
(

sup
τ0≤σ≤τ1

|Uσ|2 +
∫ τ1

τ0
‖Uσ‖2dσ

)

≤ c′′E
(

|Uτ0|2 +
∫ τ1

τ0
(1 + |Uσ|2)dσ

)

,

(18)
where c′′ = max(1, c + 2/c′)/ min(1

2 , 2ν). This, together with (12) gives

E
(

sup
τ0≤σ≤τ1

|Uσ|2 +
∫ τ1

τ0
‖Uσ‖2dσ

)

≤ αE(|Uτ0|2) + β(τ1 − τ0) (19)

for δ ≤ τ0 ≤ τ1, provided that α ≥ c′′(1 + k−1
1 ), β ≥ c′′(1 + lk−1

1 ).
The construction of the standard process u(t) from Uτ now proceeds as in

the main existence result Theorem 6.4.1 of [7] using the inequality (19). This
shows that for a.a. ω the function |Uτ (ω)| is finite for all finite τ ≥ δ and
Uτ is weakly S-continuous. Thus we can define a standard process u(t, ω) for
a.a. ω by

u(t, ω) = ◦U(τ, ω)

(the weak standard part) for any finite τ ≈ t with τ ≥ δ.
The inequality (19) also shows that for a.a. ω, for almost all finite τ we

have ‖Uτ (ω)‖ finite and so u = ◦U in the strong topology, hence F (U) ≈ f(u)
and similarly with g. From the theory developed in [7] it follows that u(t, ω) is
a solution; that is, condition (Y2) is satisfied. It is also clear that condition
(Y1) holds. From (13) we also have (Y3) since |◦U | ≤ ◦|U | always and
E(|Uδ|2) ≈ E(|u0|2) < ∞.

It follows that conditions (X1), (X2), and (X6) hold. It is now necessary
to check conditions (X3)–(X5).

We have the internal energy decay inequality (13), but in order to trans-
late this into condition (X3) we need to know that |Uτ (ω)|2 is S-integrable
for all finite τ ≥ δ. To show this we need to prove an internal analogue of
the formula (X5).

Applying Itô’s lemma to the process ϕn(Uτ (ω)) for any n ∈ ∗N (of course
we mean ∗ϕn as usual in such contexts) gives:

dϕn(Uτ ) =
[

−ν((Uτ , ϕ′n(Uτ ) )) + (F (Uτ ), ϕ′n(Uτ )) +
1
2
G(Uτ )T ϕ′′n(Uτ )G(Uτ )

]

dτ

+(G(Uτ ), ϕ′n(Uτ ))dWτ

since (B(U), ϕ′n(U)) = 0.
Now from the explicit form of ϕ′n and ϕ′′n (see Definition 2.1(f),(g) ) and

the growth conditions on f, g we have:

((U,ϕ′n(U))) ≥ λ1|U ||ϕ′n(U)|,

(F (U), ϕ′n(U)) ≤ (c0 + d1|U |)|ϕ′n(U)|,
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and

GT (U)ϕ′′n(U)G(U) ≤ 3d 2
2 |U ||ϕ′n(U)|+ 12c0(c0 + 2d2|U |)ψn(U2).

Putting Yτ = E(ϕn(Uτ )) and Ỹτ = E(|Uτ ||ϕ′n(Uτ )|), it follows that for all
δ ≤ τ0 ≤ τ ,

dYτ

dτ
+ νλ1Ỹτ ≤

(d1 +
3
2
d 2

2 )Ỹτ + c0E(|ϕ′n(Uτ )|) + 6c0E((c0 + 2d2|Uτ |)ψn(U2
τ )). (20)

Hence, using the estimates in Lemma 2.3 together with 2.2(c)

dYτ

dτ
+ k3Yτ ≤ n−

1
2 (β0 + α0Zτ )

≤ n−
1
2 (β1 + α0Zτ0 exp(−k1(τ − τ0)))

≤ n−
1
2 (β1 + α0Zτ0),

where k3 = 2νλ1− 2d1− 3d 2
2 and Zτ = E(|Uτ |2) as before, and we have used

the inequality (13). The constants are given explicitly as follows:

α0 = 2c0(2 + 3c0 + 6d2),
β0 = 3α0,
β1 = β0 + α0k2.

Finally, using Gronwall’s inequality, we get an internal analogue of (X5):

Eϕn(Uτ1) ≤ Eϕn(Uτ0) exp[−k3(τ1 − τ0) + n−
1
2 (αE(|Uτ0|2) + β)] (21)

for all τ1 ≥ τ0 ≥ δ, provided that β ≥ β1/k3 and α ≥ α0/k3.
We can now see that |Uτ (ω)|2 is S-integrable for all finite τ ≥ δ. We

know that |Uδ(ω)|2 is S-integrable (it was chosen thus). The property of the
“truncation” function ϕn given by Corollary 13.8 (in the Appendix) means
that ◦Eϕn(Uδ) → 0 as n → ∞. Now use (21) to see that ◦Eϕn(Uτ ) → 0 as
n →∞ for all τ ≥ δ, and so |Uτ (ω)|2 is S-integrable for all τ ≥ δ.

We can now proceed to verify conditions (X3)–(X5). First note that
applying the internal Fubini theorem to (19) shows that for all finite τ0 in a
Loeb full set T0, say, we have

E(‖Uτ0‖2) < ∞.

Thus for any such τ0 we have ‖Uτ0‖ < ∞ for a.a. ω and hence ◦|Uτ0| = |◦U τ0|.
Consequently, now that we have S-integrability of |Uτ (ω)|2 for all τ ≥ δ, Loeb
theory gives the following: for all τ0 ∈ T0,

E(|Uτ0|2) ≈ E(◦|Uτ0|2)
= E(|◦U τ0|2)
= E(|u(t0)|2),
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where t0 = ◦τ 0. Loeb theory also gives that for all τ and t1 = ◦τ ,

◦E(|Uτ |2) ≥ E(◦|Uτ |2)
≥ E(|◦U(τ)|2)
= E(|u(t1)|2).

Putting this together and using the internal energy decay inequality (13), it
follows that for all t0 = ◦τ 0 ∈ ◦T 0 and t1 = ◦τ ≥ t0,

E(|u(t1)|2) ≤ ◦E(|Uτ |2)
≤ ◦(E(|Uτ0|2) exp(−k1(τ − τ0)) + k2)
= E(|u(t0)|2) exp(−k1(t1 − t0)) + k2

which is (X3), since ◦T 0 is a full set.
A similar argument shows that (X4) follows from (19). For (X5) note that

since ϕn(U) ≤ |U |2 then ϕn(Uτ ) is also S-integrable. Thus, for t0 = ◦τ 0 ∈ ◦T 0

we have, using the continuity of ψn and the fact that ◦|Uτ0(ω)| = |◦U τ0(ω)|
for a.a. ω,

Eϕn(Uτ0) ≈ E◦ϕn(Uτ0)
= Eϕn(◦U τ0)
= Eϕn(u(t0)).

For all other t = ◦τ we have

Eϕn(u(t)) ≤ ◦Eϕn(Uτ ),

using |◦U(τ, ω)| ≤ ◦|Uτ | and the continuity of ψn. These facts, together with
(21), give (X5), and we are done. 2

Appendix. Calculation of constants
Starting from (10), use ‖U‖2 ≥ λ1|U |2 and the growth conditions on f, g

to give

d
dτ

Zτ + 2νλ1E(|U |2) ≤ E(2|U |(c0 + d1|U |) + (c0 + d2|U |)2)

= E(c2
0 + 2c0(1 + d2)|U |+ (2d1 + d 2

2 )|U |2)
≤ c2

0 + K/ε + E((εK + 2d1 + d 2
2 )|U |2)

for any given ε > 0, where K = c0(1 + d2). Here we have used Young’s
inequality 2|U | ≤ ε−1 + ε|U |2.

Now let δ = 2νλ1 − 2d1 − d 2
2 > 0 and set ε = δ/2K. Then, putting

k1 = δ/2 and l = c2
0 + K/ε = c2

0 + 2K2/δ, we have

d
dτ

Zτ + k2E(|U |2) ≤ l,
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which is (11). For the constants α, β we simply set

α = max{c′′(1 + k−1
1 ), α0/k3}

and
β = max{c′′(1 + lk−1

1 ), β1/k3}

to ensure that (19) and (21) hold.

Stipulation 6.2 From now on we fix a set X of solutions as given by Defi-
nition 4.1, corresponding to a given choice of the constants k1,k2, k3, α, β such
that X 6= Ø.

7 Internal approximate solutions

In order to construct an attractor we need to obtain an internal representation
of all solutions u ∈ X. There may be many more than those that are obtained
by means of Theorem 6.1, and to represent these we need the notion of an
internal approximate solution. The following definition explains this. Here
we work with the internal filtered probability space Ω̄Ω = (Ω,G, (Gτ )τ≥0, Q).
For any element V ∈ HN , we let V(n) = (V, ∗en).

Definition 7.1 (a) For each k ∈ N and n ∈ ∗N denote by Xk,n the internal
class of ∗-adapted (with respect to (Gτ )τ≥0) processes

U : ∗[0,∞)× Ω → HN

with the following properties (numbered to match with the correspond-
ing properties in the Definition 4.1 of Xk).

(X1) Uτ (ω) has paths ∗a.s. in ∗M and U ∈ ∗L2(Ω, ∗M), i.e.

E
(∫ ∗∞

0
|Uτ (ω)|2 exp(−τ)dτ

)

< ∗∞.

(X 2n) With Q-probability ≥ 1 − 1
n on Ω, for all τ1 ∈ ∗[ 1

n , n] and all
m ≤ n,
∣

∣

∣

∣

∣

U(τ1)(m) − U(1/n)(m) −
∫ τ1

1
n

[−(νAUτ )(m) −B(Uτ )(m) + F (Uτ )(m)]dτ−

∫ τ1

1
n

G(Uτ )(m)dWτ

∣

∣

∣

∣

∣

≤ 2−n. (22)
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(X3n) For all τ0 ∈ ∗[0,∞) except for a set of ∗Lebesgue measure 1
n , for

all τ1 ≥ τ0,

E(|Uτ1|2) ≤ E(|Uτ0 |2) exp(−k1(τ1 − τ0)) + k2 + 1
n . (23)

(X 4n) For all τ0 ∈ ∗[0,∞) except for a set of ∗Lebesgue measure 1
n , for

all τ1 ≥ τ0,

E
(

supτ0≤σ≤τ1|Uσ|+
∫ τ1

τ0
‖Uσ‖2dσ

)

≤ αE(|Uτ0|2)+β(τ1− τ0)+ 1
n .

(24)

(X5n) For all τ0 ∈ ∗[0,∞) except for a set of ∗Lebesgue measure 1
n , for

all τ1 ≥ τ0 and all m ≤ n,

E(ϕm(Uτ1)) ≤ E(ϕm(Uτ0)) exp(−k3(τ1−τ0))+m− 1
2 (αE(|Uτ0|)2+β)+ 1

n .
(25)

(X6k,n) E
∫ 1

0
|Uτ |2dτ ≤ k +

1
n

.

(b) For each k ∈ N, define
Xk =

⋂

n∈N
Xk,n.

(c) Define X =
⋃

k∈NXk.

Remark 7.2 1. The sets Xk and Xk,n obviously increase with k.
2. The choice of the bound 2−n on the right of (X2n) ensures that

(X2n+1) ⇒ (X2n) for all n. Hence the sets Xk,n decrease with n.
3. Each of the sets Xk,n is internal.

Note that although Xk,n is defined for all n ∈ ∗N, the sets Xk only involve
Xk,n for finite n. However, it important to note that for each fixed k the
whole family (Xk,n)n∈∗N is defined and is internal, and we will make use of
certain Xk,J for infinite J ∈ ∗N.

To help explain the next definition note that if U ∈ X then for a.a. ω,
|U(τ, ω)| < ∞, and so U(τ, ω) is weakly nearstandard, for all finite τ 6≈ 0 (see
Lemma 13.3(a) in the Appendix); the weak standard part has coordinates
◦(U(τ, ω)(m)) for m ∈ N.

Definition 7.3 Given U ∈ X , a weak standard part of U is a process

u : (0,∞)× Ω → H

such that for a.a. ω, whenever t ∈ (0,∞) and ◦τ = t,

u(t, ω)(m) = ◦(U(τ, ω)(m))

for each m ∈ N. If U has a weak standard part, it is a.s. unique and is
denoted by ◦U .

For a set Z ⊆ X , ◦Z = {◦U : U ∈ Z and ◦U exists}.
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Proposition 7.4 Let U ∈ X .
(a) U has a weak standard part if and only if for each m ∈ N, for P -

almost all ω, U(·, ω)(m) is S-continuous on (0,∞), that is, whenever σ ≈ τ
and ◦τ ∈ (0,∞), U(σ, ω)(m) ≈ U(τ, ω)(m) and U(τ, ω)(m) is finite.

(b) If the weak standard part u = ◦U exists, then for P -almost all ω,
u(·, ω) is weakly continuous on (0,∞), that is, for each m ∈ N, u(·, ω)(m) is
continuous on (0,∞).

Proof This follows from Theorem 2.5 in [26], which is the analogous
result for processes V : [0, 1]×Ω → R. For (b) note that weak continuity for
a norm bounded function v(t) with values in H is equivalent to continuity of
the coordinate functions v(t)(m).

2

Definition 7.5 We denote by SL2[a, b] the set of internal processes

U(τ, ω) : ∗[0,∞) → HN

such that the restriction of |U(τ, ω)|2 to ∗[a, b]×Ω is S-integrable with respect
to the product measure on ∗[a, b]× Ω.

The importance of X lies in the following result.

Theorem 7.6 (a) For each k ∈ N, if U ∈ Xk ∩ SL2[0, 1] then the weak
standard part u = ◦U exists and is in Xk.

(b)
◦(Xk ∩ SL2[0, 1]) = Xk,

and hence
◦(X ∩ SL2[0, 1]) = X.

We will prove this in two halves. First we have:
Proof of Theorem 7.6(a) Let U ∈ Xk. By overspill, U ∈ Xk,J for
some infinite J . From (X6k,J) there is a Loeb-full subset of τ0 ≤ 1 such that
E(|Uτ0|2) < ∞, so by (23), E(|Uτ0|2) < ∞ for all τ0 6≈ 0. By (X 4J), there
is a Loeb-full set of finite τ0 such that (24) holds for all finite τ1. Taking
arbitrarily small such τ0 gives

E
(

sup 1
n≤σ≤τ1|Uσ|2 +

∫ τ1

1
n

‖Uσ‖2dσ

)

< ∞ (26)

for all n ∈ N and all finite τ1 ≥ 1
n . So |Uτ (ω)| is finite for all finite τ 6≈ 0, for

a.a. ω.
Let m ∈ N. Fixing n for the moment and putting

V (τ)(m) =
∫ τ

1
n

[−(νAUσ)(m) −B(Uσ)(m) + F (Uσ)(m)]dσ −
∫ τ

1
n

G(Uσ)(m)dWσ,
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the theory of [7] shows that for a.a. ω the process V (τ)(m) is S-continuous on
(0,∞). Then (X2J) gives that for a.a. ω the process U(τ)(m) is S-continuous
on [ 1

n ,∞). Since this holds for all n we have established the existence and
almost sure continuity of the weak standard part u = ◦U .

We must now verify the properties of u that are needed to place it in Xk.
First we have from (X2J) that for m ∈ N,

u(t, ω)(m) = u( 1
n , ω)(m) + ◦V (t, ω)(m).

The book [7] shows that

◦V (t)(m) =

(

∫ t

1
n

[−νAu(t)−B(u(t)) + f(u(t))]dt +
∫ t

1
n

g(u(t))dwt

)

(m)

almost surely, and this is sufficient to establish (X2).
The inequalities (X3)–(X5) follow from (X3J)− (X5J) provided that, as

in the proof of Theorem 6.1, it can be shown that |Uτ (ω)|2 is S-integrable
for all finite τ 6≈ 0. The condition that U ∈ SL2[0, 1] ensures that |Uτ (ω)|2
is S-integrable for a.a. τ ∈ ∗[0, 1]. The formula (21) which was established
in the proof of Theorem 6.1 is the same as condition (X5J). As in the
proof of Theorem 6.1, this condition together with Corollary 13.8 imply that
|Uτ (ω)|2 is S-integrable for all τ 6≈ 0. Then (X3)–(X5) follow routinely from
(X3J) − (X5J), using (X 4J) to give that for almost all τ0 6≈ 0 we have
E(‖U(τ0)‖2) < ∞. Hence, putting t0 = ◦τ 0,

E|u(t0)|2 = E◦|U(τ0)|2 = ◦E|U(τ0)|2,

and for all t = ◦τ we have

E|u(t)|2 ≤ E◦|Uτ |2 ≤ ◦E|U(τ)|2.

We have

E
∫ 1

0
|u(t)|2dt ≤ E

∫ 1

0

◦|Uτ |2dLτ = E
∫ 1

1
J

◦|Uτ |2dLτ ≤ ◦E
∫ 1

0
|Uτ |2dτ ≤ k,

using basic Loeb theory and (X6k,J), so that (X6k) holds.
For the path properties (X1), we have u(·, ω) ∈ L∞loc(0,∞;H)∩L2

loc[0,∞;H)
from (X3J) combined with E

∫ 1
0 |u(t)|2dt ≤ k. The weak continuity of u(·, ω)

has already been established. Finally, the condition u(·, ω) ∈ L2
loc(0,∞;V)

is immediate from (26). 2

Implicit in the proof of Theorem 7.6 (a) is the following.

Theorem 7.7
X ∩ SL2[0, 1] = X ∩ NS,

where NS = ns2(Ω,M) as defined in the Appendix. Hence for U ∈ X ∩
SL2[0, 1] the weak standard part ◦U as defined in Definition 7.3 is the same
as the standard part ◦U of U ∈ NS in L2(Ω,M) as defined in the Appendix.
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Proof Take U = Uτ (ω) ∈ X ∩ SL2[0, 1] and let u = ◦U be its weak
standard part. Regarded as random functions we have U ∈ ∗L2(Ω, ∗M) and
u ∈ L2(Ω,M). To see that U ∈ NS we first show that ◦U(ω) = u(ω) in M
for a.a. ω.

For a.a. ω, the proof of Theorem 7.6 and basic Loeb theory gives for
V = U(ω) and v = u(ω):

(a) for a.a. finite τ , V (τ) ≈ v(◦τ) and (by Anderson’s Lusin Theorem)
∗v(τ) ≈ v(◦τ) (both strongly in H), so ◦|V (τ)− ∗v(τ)| = 0.

(b) |V (τ)| ∈ SL2[0, 1] and is bounded for τ ≥ 1, so |V (τ)| ∈ SL2[0, n] for
each n ∈ N.

(c) |∗v(τ)| ∈ SL2[0, n] for each n ∈ N.
Hence, for each n ∈ N,
∫ n

0
|V (τ)− ∗v(τ)|2 exp(−τ)dτ ≈

∫ n

0

◦|V (τ)− ∗v(τ)|2 exp(−τ)dLτ = 0.

To get V ≈ v in M it is now sufficient to show that

◦
(∫ ∗∞

n
|V (τ)− ∗v(τ)|2 exp(−τ)dτ

)

→ 0 as n →∞.

We have
∫∞

n |∗v(τ)|2 exp(−τ)dτ =
∫∞

n |v(t)|2 exp(−t)dt → 0 as n →∞. It
is enough then to show that for a.a. ω, In = ◦(

∫ ∗∞
n |V (τ)|2 exp(−τ)dτ) → 0.

Now from (X3) and (X6) we deduce that there is k ∈ N such that

EIn ≤ k exp(−n),

and so P (In ≥ exp(−n
2 )) ≤ k exp(−n

2 ) by Chebychev. Borel-Cantelli gives
that P (In ≥ exp(−n

2 ) i.o.} = 0 so that In → 0 a.s. as required.
To obtain U ∈ NS it remains to show that |U(ω)|2 is S-integrable; that is

E|U(ω)|2 ≈ E(◦|U(ω)|2) = E|u(ω)|2.

Now

E(|U(ω)|2) = E
∫ ∗∞

0
|Uτ (ω)|2 exp(−τ)dτ

= E
∫ n

0
|Uτ (ω)|2 exp(−τ)dτ + E

∫ ∗∞

n
|Uτ (ω)|2 exp(−τ)dτ

for each n ∈ N, and the second term becomes infinitesimal as n → ∞. The
same is true for E(|u(ω)|2), so it suffices to show that for each n ∈ N,

E
∫ n

0
|Uτ (ω)|2 exp(−τ)dτ ≈ E

∫ n

0
|u(t, ω)|2 exp(−t)dt.
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Since |Uτ (ω)|2 is assumed to be S-integrable on [0, 1]× Ω, we have

E
∫ 1

0
|Uτ (ω)|2 exp(−τ)dτ ≈ E

∫ 1

0
|u(t, ω)|2 exp(−t)dt.

Now E|Uτ (ω)|2 is bounded for τ ≥ 1 and, from the proof of the previous
theorem, |Uτ (ω)|2 is S-integrable for a.a. τ 6≈ 0. Putting this together we
have

E
∫ n

1
|Uτ (ω)|2 exp(−τ)dτ =

∫ n

1
E|Uτ (ω)|2 exp(−τ)dτ

≈
∫ n

1

◦E|Uτ (ω)|2 exp(−τ)dLτ

=
∫ n

1
E ◦|Uτ (ω)|2 exp(−τ)dLτ

= E
∫ n

1

◦|Uτ (ω)|2 exp(−τ)dLτ

= E
∫ n

0
|(u(t, ω)|2 exp(−t)dt

from the fact that ◦U(ω) = u(ω) in M for a.a. ω.
For the other direction, we show that NS ⊆ SL2[0, 1]. This is routine: if

U ∈ NS with ◦U = u then from E(|U |2) ≈ E(|u|2) and Uτ (ω) ≈ u(◦t, ω) in H
a.s. in [0, 1]×Ω, we have that |Uτ (ω)|2 exp(−τ) is S-integrable over [0, 1]×Ω.
2

Now we turn to part (b) of Theorem 7.6. In view of part (a) and Theorem
7.7, it suffices to prove the following.

Theorem 7.8 If u ∈ Xk then there is U ∈ Xk∩NS with weak standard part
u = ◦U .

Proof Take u ∈ Xk. By Theorem 7.7, it suffices to find a U ∈ Xk ∩
SL2[0, 1] with u = ◦U . Proposition 13.10 in the Appendix gives a positive
δ ≈ 0, and for each i ∈ N an internal Gτ -adapted process Ū(τ, ω)(i) such that
for a.a. ω and for all i ∈ N, Ū(τ, ω)(i) = 0 for all τ < δ, and

Ū(τ, ω)(i) ≈ u(◦τ , ω)(i)

for all finite τ ≥ δ. By ℵ1-saturation the sequence of co-ordinate processes
extends to an internal family (Ū(i))i≤N of Gτ -adapted processes, giving a Gτ -
adapted process Ū(τ, ω) ∈ HN . This process must now be suitably truncated
in order meet the conditions for membership of Xk ∩ NS.

For each m ≤ N define a process Ū (m)(τ, ω) ∈ HN by

Ū (m)
(i) =

{

(Ū(τ, ω)(i) ∧m) ∨ −m if i ≤ m
0 otherwise
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This process is again Gτ -adapted. For each m ∈ N and all n ≤ m we have

E
(∫ n

0
|Ū (m)

τ |2dτ
)

≈ E
(∫ n

0
|◦Ū (m)

τ |2dLτ
)

< E
(∫ n

0
|u(t)|2dt

)

+
1
m

and

E
(

∫ n

1
n

‖U (m)
τ ‖2dτ

)

≈ E
(

∫ n

1
n

‖◦Ū (m)
τ ‖2dLτ

)

< E
(

∫ n

1
n

‖u(t)‖2dt

)

+
1
m

.

By overspill there is an infinite J ≤ N such that for all n ∈ N,

E
(∫ n

0
|Ū (J)

τ |2dτ
)

< E
(∫ n

0
|u(t)|2dt

)

+
1
J

and

E
(

∫ n

1
n

‖Ū (J)
τ ‖2dτ

)

< E
(

∫ n

1
n

‖u(t)‖2dt

)

+
1
J

.

Let V = Ū (J). Then for i ∈ N, for a.a. ω we have

V (τ, ω)(i) ≈ u(◦τ , ω)(i)

for all finite τ ≥ δ, and so |u(◦τ , ω)|2 ≤ ◦|V (τ, ω)|2 for all finite τ ≥ δ. Hence
for n ∈ N,

◦E
∫ n

0
|V (τ, ω)|2dτ ≤ E

(∫ n

0
|u(t, ω)|2dt

)

= E
(∫ n

0
|u(◦τ , ω)|2dLτ

)

≤ E
(∫ n

0

◦|V (τ, ω)|2dLτ
)

≤ ◦E
∫ n

0
|V (τ, ω)|2dτ.

So V (τ, ω) is an adapted lifting of u(t, ω) which is in SL2[0, n] for each n.
Therefore V ∈ SL2[0, 1]. Moreover, for each n ∈ N and a.a. (τ, ω) ∈ ∗[0, n]×
Ω we have V (τ, ω) ≈ u(τ, ω) in H (strongly). Note also that for each n ∈ N
and a.a. τ ∈ ∗[0, n] we have

E(|V (τ)|2) ≈ E(|u(◦τ)|2). (27)
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Similar reasoning shows that for all n ∈ N, ‖V (τ, ω)‖ ∈ SL2[ 1
n , n] and

‖V (τ, ω)‖ ≈ ‖u(τ, ω)‖ for a.a. (τ, ω) ∈ ∗[0, n] × Ω. Thus, for a.a. (τ, ω) ∈
∗[0, n]× Ω we also have V (τ, ω) ≈ u(τ, ω) in V (strongly).

It is now necessary to truncate further (i.e. take V ′ = Ū (J ′) for some
infinite J ′ ≤ J) in order to ensure that the approximate inequalities (X3n)−
(X5n) are all satisfied. Note that a fortiori all the properties of V noted
above are valid for any such V ′ also.

Let T0 be the Loeb-full set of finite τ0 such that
(i) (27) holds for τ = τ0.
(ii) t0 = ◦τ 0 is a value for which (6), (7) and (8) hold for all t1 ≥ t0.
Choose an increasing chain of internal sets Am ⊆ ∗[0,m] ∩ T0 with

∗Leb(Am) ≥ m − 1
m . Then for all m ∈ N, τ0 ∈ Am, and τ0 ≤ τ1 ≤ m

we have E(|V (τ0)|2) ≈ E(|u(t0)|2) and ◦E(|Ū (m)(τ1)|2) ≤ E(|u(t1)|2) (where
t0 = ◦τ 0 and t1 = ◦τ 1). Hence, using (6), for m ∈ N, τ0 ∈ Am, and all
τ0 ≤ τ1 ≤ m,

E(|Ū (m)(τ1)|2) ≤ E(|V (τ0)|2) exp(−k1(τ1 − τ0)) + k2 + 1
m . (28)

Similar reasoning gives

E
(

supτ0≤σ≤τ1 |Ū
(m)(σ)|2 +

∫ τ1

τ0
‖Ū (m)(σ)‖2dσ

)

≤ αE(|V (τ0)|2)+β(τ1−τ0)+ 1
m ,

(29)
and for all n ≤ m,

E(ϕn(Ū (m)
τ1 )) ≤ E(ϕn(Vτ0)) exp(−k3(τ1−τ0))+n−

1
2 (αE(|Vτ0|2)+β)+ 1

m . (30)

By ℵ1-saturation we extend Am,m ∈ N to an internal increasing chain of
sets Am,m ∈ ∗N such that Am ⊆ ∗[0,m] and Am has ∗Lebesgue measure
≥ m − 1/m. Overspill gives an infinite J ′ ≤ J such that (28)–(30) all hold
with m = J ′ for τ0 ∈ AJ ′ and τ0 ≤ τ1 ≤ J ′.

Writing V ′ = Ū (J ′), for all m ∈ N and τ0 ∈ Am we have E(|V (τ0)|2) ≈
E(|u(t0)|2) ≈ E(|V ′(τ0)|2), and so for m ∈ N, τ0 ∈ Am, and τ0 ≤ τ1 ≤ m,

E(|V ′(τ1)|2) ≤ E(|V ′(τ0)|2) exp(−k1(τ1 − τ0)) + k2 + 1
m . (31)

Similar reasoning gives

E
(

supτ0≤σ≤τ1 |V
′(σ)|2 +

∫ τ1

τ0
‖V ′(σ)‖2dσ

)

≤ αE(|V ′(τ0)|2) + β(τ1 − τ0) + 1
m ,

(32)
and for all n ≤ m,

E(ϕn(V ′(τ1)) ≤ E(ϕn(V ′
τ0)) exp(−k3(τ1−τ0))+n−

1
2 (αE(|V ′

τ0|
2)+β)+ 1

m . (33)

By overspill, there is some infinite J ′′ ≤ J ′ such that (31)–(33) all hold with
m = J ′′ and for all τ0 ∈ AJ ′′ and τ0 ≤ τ1 ≤ J ′′. Put

U =
{

V ′(τ, ω) for τ ≤ J ′′

0 for τ > J ′′
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Since V ′ ∈ SL2[0, 1], we have U ∈ SL2[0, 1]. It follows from (27) with τ = τ0

and (28) that U satisfies the condition (X1). Using (31)–(33), it is routine
to check that (X3n)− (X5n) hold for this U for each n ∈ N, the exceptional
set in each case being ∗[0, J ′′] \ AJ ′′ .

As noted earlier, V ′ (like V ) is a lifting of u(t, ω) which is in SL2[0, 1], so

◦E
∫ 1

0
|Uτ |2dτ = E

∫ 1

0
|ut|2dt,

giving (X6k,n) for each n.
To see that U ∈ Xk as required we now have only to check that (X2n)

holds.
For this, fix n and note that U is an adapted lifting of u in SL2[0, 1] with

the property (24) for τ ≥ δ. Thus the theory of [7] shows that for a.a. ω, for
all τ1 ∈ [ 1

n , n] and m ≤ n,

U(τ1)(m) − U(1/n)(m) ≈ u(◦τ 1)(m) − u(1/n)(m)

=
∫ ◦τ1

1
n

[−νAu(t)(m) −B(u(t))(m) + f(u(t))(m)]dt−
∫ ◦τ1

1
n

g(u(t))(m)dwt

≈
∫ τ1

1
n

[−(νAUτ )(m) −B(U(τ))(m) + F (U(τ))(m)]dτ −
∫ τ1

1
n

G(U(τ))(m)dWτ .

2

Corollary 7.9 X ∩ NS is nonempty.

Proof By Theorem 6.1, there is a k ∈ N such that Xk is nonempty. Then
by Theorem 7.8, Xk ∩ SL2[0, 1] is nonempty, and by Theorem 7.7, Xk ∩ NS
is nonempty. 2

8 The internal semiflow

Let H be the internal set consisting of all internal stochastic processes
U : ∗[0,∞) × Ω → HN . There is a natural internal semiflow Tτ : H → H
defined for all 0 ≤ τ ∈ ∗R, as follows.

Definition 8.1 (Semiflow of internal processes) Suppose that U ∈ H.
Then for any τ ≥ 0 the process V = TτU ∈ H is defined by

V (σ, ω) = U(σ + τ, Θτω).

This semiflow has internal properties corresponding to those for St as
given in Proposition 3.2
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Proposition 8.2

(a) Tτ is an internal semigroup on the class H.

(b) If U is adapted to the filtration (Gτ )τ≥0, then so is V = TτU .

(c) If U is adapted and V = TτU , then for τ1 ≥ 0:

(i) For appropriate internal ∗continuous F ,
∫ τ1

0
F (V (σ, ω))dσ =

∫ τ+τ1

τ
F (U(σ, Θτω))dσ.

(By appropriate we mean that the integrals are defined.)

(ii) For appropriate internal ∗continuous G,
∫ τ1

0
G(V (σ, ω))dW (σ, ω) =

∫ τ+τ1

τ
G(V (σ, Θτω))dW (σ, Θτω)

(meaning that I(ω) = J(Θτω) as random variables, where I(ω) is the
left-hand integral and J(ω) =

∫ τ+τ1
τ G(u(σ, ω))dW (σ, ω)).

(d) If U is adapted and V = TτU and τ1 ≥ τ0, then
∣

∣

∣

∣

U(τ1 + τ)− U(τ0 + τ)−
∫ τ1+τ

τ0+τ
F (U(σ))dσ −

∫ τ1+τ

τ0+τ
G(U(σ))dW (σ)

∣

∣

∣

∣

and
∣

∣

∣

∣

V (τ1)− V (τ0)−
∫ τ1

τ0
F (V (σ))dσ −

∫ τ1

τ0
G(V (σ))dW (σ)

∣

∣

∣

∣

have the same internal probability distribution.

Proposition 8.3 For finite τ > 0:

(a) TτX ⊆ X .

(b)

Tτ (X ∩ SL2[0, 1]) ⊆ X ∩ SL2[0, 1],

and for U ∈ SL2[0, 1] we have

◦(TτU) = S◦τ ◦U. (34)
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Proof (a) Clauses (X3n)–(X 5n) are clearly invariant under the operation
of Tτ . For (X2), it is easy to check using Proposition 8.2 that TτU has
property (X2n) provided that U has the property (X2n′) for some n′ ≥ n+τ .

If E
∫ 1
0 |Uσ|2dσ < ∞ then it is clear from (X3n) that E

∫ 1
0 |(TτU)σ|2dσ <

∞ also.
(b) Suppose that U ∈ X∩SL2[0, 1]. From the proof of Theorem 7.6 (a) we

see that |Uσ(ω)|2 is S-integrable for all σ 6≈ 0. Further, from (X3) we know
that E(|Uσ|2) is bounded on ∗[σ,∞) for any s 6≈ 0. Thus |Uσ(ω)| ∈ SL2[1, n]
for any n ≥ 1, and hence on ∗[τ, τ + 1] for any τ > 0. This means that
TτU ∈ SL2[0, 1] as required. 2

We next show that for a suitable ρ ∈ N the set Xρ is S-absorbing.

Lemma 8.4 There is a ρ ∈ N such that Xρ is S-absorbing. That is, for each
k ∈ N there is an r(k) ∈ N such that

TτXk ⊆ Xρ

for all finite τ ≥ r(k).

Proof This follows from the fact that U ∈ Xk has the property (X 3n) for
all n and E

∫ 1
0 |Uτ |2dτ ≤ k+ 1

n for all n. From these properties we can deduce
that for any τ 6≈ 0

E
∫ τ+1

τ
|Uσ|2dσ ≤ k exp(−k1τ) + k2 +

1
n

for any n. To see this, let Zσ = E|Uσ|2 and note that from (X6) and (X3),
Zσ is bounded and hence S-integrable on [τ, τ + 1]. Moreover, for a.a. σ in
this interval, σ − τ has the property of τ0 in (X3n) for all n. Thus

∫ 1

0
E|(TτU)(σ)|2dσ =

∫ τ+1

τ
Zσdσ ≈

∫ τ+1

τ

◦ZσdLσ

≤
∫ τ+1

τ

◦(Zσ−τ exp(−k1τ) + k2)dLσ

= exp(−k1
◦τ)

∫ 1

0

◦ZσdLσ + k2

≤ exp(−k1
◦τ)

◦
(∫ 1

0
Zσdσ

)

+ k2

< k exp(−k1τ) + k2 +
1
n

as required. To verify the lemma we may take any natural number ρ > k2

and then r(k) = r such that

k exp(−k1r) + k2 = ρ.
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2

Now write B = Xρ and Bn = Xρ,n. Thus B is the intersection of a
decreasing chain of internal sets, B =

⋂

n∈N Bn.

Corollary 8.5 For each τ ,

TτB =
⋂

n∈N
TτBn.

Proof This follows from B =
⋂

n∈N Bn by ℵ1-saturation. 2

Corollary 8.6 B ∩ NS is nonempty.

Proof By Corollary 7.9, X ∩ NS 6= Ø, so there is a k ∈ N such that
Xk ∩ NS 6= Ø. Take finite τ such that TτXk ⊆ B and then

B ∩ NS ⊇ Tτ (Xk ∩ NS) 6= Ø

using Proposition 8.3(b) and Theorem 7.7. 2

Definition 8.7 Define r0 = r(ρ); then r0 is finite and TτB ⊆ B for finite
τ ≥ r0.

The following will be useful in several situations below.

Proposition 8.8 For any n,m ∈ ∗N, if r0 ≤ σ ≤ n−m then

TσBn ⊆ Bm.

Proof Let U ∈ Bn. It is routine to check from the definitions that for any
σ the properties (X1) and (X3n)− (X5n) are preserved under Tσ. If σ ≥ r0

then the calculation in the proof of Lemma 8.4 shows that TσU has property
(X 6ρ,n) also. Finally, as noted in the proof of Proposition 8.3, TσU has the
property (X2m) provided that σ + m ≤ n. Then, since m ≤ n, TσU belongs
to Xρ,m = Bm. 2

9 Construction of global attractors

The main theorem of this section shows the existence of a global attractor A
for the semiflow St on X. The idea for constructing A is similar to that used
in the earlier papers [6, 8, 9] of the first author and Capiński: A = ◦C for a
set C ⊆ X that is an S-attractor for the internal semiflow Tτ .

From the S-absorbing set B we define the following set C, which we will
call the S-attractor for the internal semiflow Tτ on X .
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Definition 9.1 Define sets C, Cn and ̂Cn (for n ∈ N) as follows.

(a) C =
⋂

0≤τ
τ finite

TτB.

(b) Cn =
⋂

0≤τ≤n

TτB, so that C =
⋂

n∈N Cn.

(c) ̂Cn =
⋂

0≤τ≤n

TτBn.

We first show that C is nonempty.

Proposition 9.2 (a) The sets ̂Cn are internal and decreasing.

(b) ̂Cn ⊇ Cn ⊇ Tr0+nB, hence ̂Cn 6= Ø.

(c) C =
⋂

n∈N ̂Cn, and so C 6= Ø.

Proof (a) is obvious.
(b) Since Bn ⊇ B, we have Cn ⊇ ̂Cn. The second inclusion follows from

the choice of r0: for V ∈ B we have Tr0+nV = TτTr0+n−τV ∈ TτB for all
τ ≤ n. Since B is nonempty, it follows that ̂Cn is nonempty.

(c)
⋂

n∈N
̂Cn =

⋂

n∈N

⋂

0≤τ≤n

TτBn =
⋂

0≤τ
τ finite

⋂

n∈N
TτBn =

⋂

0≤τ
τ finite

TτB = C

(the third equality following from Corollary 8.5). The fact that C 6= Ø now
follows from (a) and ℵ1-saturation. 2

In preparation for the next theorem, which gives some of the key proper-
ties of C, we have:

Proposition 9.3

TτC =
⋂

n∈N
TτCn =

⋂

n∈N
Tτ

̂Cn.

Proof The equality of the outer sets is an elementary application of ℵ1-
saturation, since C =

⋂

n∈N ̂Cn and each ̂Cn is internal. The middle set is
squeezed between the outer ones since C ⊆ Cn ⊆ ̂Cn for all n. 2

Some crucial properties of the set C are now gathered together.

Theorem 9.4

(a) C ⊆ B(= Xρ).
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(b) C is a countable intersection of internal sets.

(c) (Invariance of C) For finite τ ,

TτC = C.

(d) (C is nearstandard)
C ⊆ NS.

Proof (a) C ⊆ T0B = B.
(b) Obvious from Proposition 9.2.
(c) For any finite τ and σ we have

C ⊆ Tσ+r0B and Tτ+r0B ⊆ B,

so
TτC ⊆ TτTσ+r0B = TσTτ+r0B ⊆ TσB.

Since this holds for all finite σ ≥ 0, it follows that TτC ⊆ C.
For the opposite inclusion, from Proposition 9.3 it is sufficient to show

that C ⊆ TτCn for each n. Take any U ∈ C; then U = Tτ+r0+nV = TτTr0+nV
for some V ∈ B. Now for each σ ≤ n we have Tr0+nV = TσTr0+n−σV ∈ TσB,
so Tr0+nV ∈ Cn and U ∈ TτCn.

(d) Let U ∈ C. By Proposition 9.2 (b), U ∈
⋂

n∈N ̂Cn. Recall that the sets
Bn and hence ̂Cn are already defined for all n ∈ ∗N. By overflow, there is an
infinite J with U ∈ ̂CJ . By the definition of ̂CJ , U = TJV for some V ∈ BJ .
Using (X6), there is a τ0 ∈ ∗[0, 1] such that E(|V (τ0)|2) is finite, and (25)
holds for V with n = J . That is,

E(ϕm(Vτ1)) ≤ E(ϕm(Vτ0)) exp(−k3(τ1−τ0))+m− 1
2 (αE(|Vτ0 |2)+β)+

1
J

(35)

for all τ1 ∈ ∗[τ0,∞) and each m ≤ J . Since ψ(x) ≤ 1 for all x, ϕm(Vτ0) ≤
|Vτ0|2, so E(ϕm(Vτ0)) is also finite for all m.

Consider any infinite K ≤ J . For each σ ∈ ∗[0, 1] using (35) with τ1 =
J + σ we have

E(ϕK(U(σ))) = E(ϕK(VJ+σ)) ≤

E(ϕK(Vτ0)) exp(−k3(J + σ − τ0)) + K− 1
2 (αE(|Vτ0|2) + β) +

1
J

,

so E(ϕK(U(σ))) ≈ 0. Therefore, by Corollary 13.8 in the Appendix, |Uσ(ω)|2
is S-integrable for all σ ∈ ∗[0, 1]. Then by Proposition 13.6 in the Appendix,
|U |2 is S-integrable in the product ∗[0, 1] × Ω, that is, U ∈ SL2[0, 1]. Since
U ∈ X , we have U ∈ NS by Theorem 7.7. 2

It is of interest to note the following seemingly weaker characterization
of C
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Proposition 9.5 For any sequence (nk) from N such that nk → ∞, we
have

C =
⋂

k∈N
TnkB.

Proof One inclusion is obvious. For the other, if τ ≥ 0 take nk with
nk ≥ r0 + τ . Then

TnkB = TτTnk−τB ⊆ TτB,

so that
⋂

k TnkB ⊆ TτB for all τ . 2

We also need the following property of C.

Proposition 9.6 (C attracts) For every n, k ∈ N,

TτXk ⊆ Cn

for all finite τ ≥ n + r0 + r(k). In particular, taking k = ρ so that r(k) = r0

TτB ⊆ Cn

for all finite τ ≥ n + 2r0.

Proof We have τ = n + σ + r(k) for some finite σ ≥ r0. Then

TτXk = TnTσTr(k)Xk ⊆ TnTσB ⊆ TnB ⊆ Cn.

2

Remark 9.7 The above attraction property together with the invariance
and the fact that C ⊆ NS (Theorem 9.4) is the reason for calling C the
S-attractor for the internal set of processes X .

The attractor for the semiflow St can now be defined.

Definition 9.8 Define the sets An, A by

An = ◦(Cn ∩ NS), A = ◦C.

Immediate properties of A are as follows (where we write B = Xρ).

Theorem 9.9 (a) StA = A for all t ≥ 0.

(b) A ⊆ B, where B = Xρ.

(c) A ⊆ Y .

(d) A =
⋂

n∈NAn.

(e) A =
⋂

t≥0 StB =
⋂

k StkB for any sequence tk →∞.
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(f) A is closed in the space L2(Ω,M).

Proof (a) follows from Theorem 9.4 and Proposition 8.3(b).
(b) follows from the fact that C ⊆ B.
(c) By part (b), A = S1A ⊆ S1X ⊆ Y .
For (d), it is clear that A ⊆

⋂

An. Consider an element u in the righthand
set. For each n we have u = ◦Un for some Un ∈ Cn ∩ NS. Then Un ∈ ̂Cn for
all n ∈ N. Let | · |k denotes the norm | · | restricted to the time interval [0, k],
that is,

|U |k =
(

E
∫ k

0
|Uτ |2µ(dτ)

)
1
2

.

Then for all n and m ≤ n we have

|Um − Un|n ≤
1
n

.

By ℵ1-saturation there is an infinite J with UJ ∈ ̂CJ ⊆ C and

|Um − UJ |J ≈ 0

for all m ∈ N. Thus u = ◦UJ ∈ A.
(e) Since C ⊆ TτB we have A ⊆ StB for all t ≥ 0, so it is enough to prove

that the third set is contained in A. For any n we have

StB ⊆ ◦(TtB ∩ NS) ⊆ ◦(Cn ∩ NS) = An

for all t ≥ n + 2r0, by Proposition 9.6. The result follows.
(f) follows from Proposition 13.5 in the Appendix. 2

In order to show that A has the required attracting properties, we first
show:

Theorem 9.10 (a) For every n, k ∈ N,

StXk ⊆ An

for all t ≥ n + r0 + r(k).

(b) Let Z be a bounded subset of X (with the norm of L2(Ω, M)). Then
for every n ∈ N there is finite t0(n, Z) such that

StZ ⊆ An

for all t ≥ t0(n, Z).
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Proof (a) is immediate from Proposition 9.6 after observing that

StXk ⊆ ◦(TtXk).

(b) By Lemma 4.2, Z ⊆ Xk for some k ∈ N. The result now follows from
(a). In fact, Lemma 4.2 (a) shows that one can take t0(n, Z) = n + r0 + r(k)
where k ≥ (sup{|u| : u ∈ Z})2e. 2

Lemma 9.11 A has the attracting property of Definition 3.7(b)(iii)

Proof Let K be compact with ρ(A,K) = ε > 0 (otherwise there is nothing
to prove). Then K≤ε ∩A = Ø. By Theorem 9.10 it is sufficient to show that
K≤ε ∩ An = Ø for some n ∈ N.

For each n there is a finite set {vn,i : 1 ≤ i ≤ kn} ⊆ K such that K is
covered by the open balls {vn,i}< 1

n , 1 ≤ i ≤ kn. ( {v}<r denotes the open
ball of radius r with centre v.) Taking vn,i = ◦V n,i with Vn,i ∈ NS we have

K≤ε = ◦

(

⋂

n∈N

kn
⋃

i=1

{U : |U − Vn,i| ≤ ε + 1/n}
)

= ◦

(

⋂

n∈N
Kn

)

where the sets Kn are all internal. Similar reasoning gives K≤ε = ◦
(

⋂

n∈NK≤1/n
n

)

.
ℵ1-saturation shows that there is n ∈ N with

⋂

m≤n

K
≤ 1

m
m ∩ Ĉn = Ø (36)

(for otherwise there is U ∈
⋂

n∈N(K
≤ 1

n
n ∩ Ĉn), and such a U belongs to C and

is thus nearstandard with ◦U ∈ K≤ε ∩ A).
It follows that K≤ε ∩ An = Ø, for if not there is u = ◦U = ◦V with

U ∈
⋂

m≤n Km and V ∈ Ĉn. But then V ∈
⋂

m≤n K
≤ 1

m
m contradicting (36).

2

Now we can prove the main theorem of the paper:

Theorem 9.12 The set A is an attractor for the set of solutions X.

Proof We have seen in Theorem 9.9 and Lemma 9.11 that A is closed and
invariant and has the required attracting property, so it remains to prove
that laww(A) is a law-attractor. Write A = laww(A).

For invariance, using (4) gives

̂StA = laww(StA) = laww(A) = A

.
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Using Proposition 13.9(b) in the Appendix), we have

A = laww(A) = laww(◦C) = ◦∗laww(C) = ◦
⋂

n∈N
∗laww(̂Cn).

Since ∗laww(C) ⊆ ns(M1,2(M × C0)), the compactness of A follows from
Proposition 13.2 in the Appendix with En = ∗laww(̂Cn).

For the attraction property, suppose that Z ⊆ laww(X) is d-bounded,
and O ⊃ A is open. We will prove first that there is some n ∈ N with

An = laww(An) ⊆ O (37)

and then that ̂StZ ⊆ An eventually.
For (37), let F = M1,2(M×C0)\O, so the hypothesis is that A∩F = Ø.

This means that
⋂

n∈N

∗laww(̂Cn) ∩
⋂

n

∗(F≤1/n) = Ø,

since any member of this set has the form Λ = laww(U) with U ∈ C and so
Λ is nearstandard in M1,2(M × C0) with ◦Λ ∈ A ∩ F . Saturation gives an
m ∈ N with

⋂

n≤m

∗laww(̂Cn) ∩
⋂

n≤m

∗(F≤1/n) = Ø,

and so An ∩ F = Ø, which is (37).
Since Z is d-bounded, Z ⊆ laww(Xk) for some k. By Theorem 9.10,

StXk ⊆ An eventually. Hence, eventually

̂StZ ⊆ ̂St(laww(Xk)) = laww(StXk) ⊆ laww(An) = An,

as required. 2

The attraction property in Lemma 9.11 and its proof generalizes easily
to the following, from which the law-attraction property of A can also be
deduced.

Theorem 9.13 If O ⊇ A is an open set whose complement has the form
Oc = ◦(

⋂

n∈N En) with each En internal, then An ⊆ O eventually, and so O
attracts bounded subsets of X.

Remark This result will be generalized and explored further in the sequel
to this paper, [18].
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10 Two-sided solutions

In this section we formulate the notion of a two-sided solution to the Navier-
Stokes equation (3) – that is, a solution defined for all time, negative and
positive. It will be shown that the set X̄ of two-sided solutions is non-empty
and that the attractor A identified in the previous section is simply the set of
restrictions to non-negative times of the solutions in X̄. The corresponding
fact for the deterministic equations is noted by Sell in [32].

We must first modify the space ΩΩ so that it can accommodate two-sided
processes u(t, ω) with t ∈ R. Recall that the underlying internal filtered
probability space is

Ω̄Ω = (Ω,G, (Gτ )τ∈∗R, Q),

where Gτ = ∗σ({W(τ ′) : τ ′ ≤ τ}) and G =
∨

τ∈∗R Gτ . So we simply extend
the filtration Ft to negative times using the same recipe as before: for any
t ∈ R define

Ft =
⋂

t<◦τ

σ(Gτ ) ∨N .

Thus, the space we now work with is

ΩΩ = (Ω,F , (Ft)t∈R, P ).

The Wiener process w(t, ω) is extended to negative times in the same way:

w(t, ω) = ◦W (t, ω) (38)

for all real times.

Definition 10.1 Denote by X̄ the set of bounded two-sided solutions to
the stochastic Navier-Stokes equations as follows. The members of X̄ are
adapted stochastic processes u : R× Ω → H with the following properties.

(X̄1) For a.a. ω the path u(·, ω) belongs to the following spaces:

L∞loc(−∞,∞;H) ∩ L2
loc(−∞,∞;V) ∩C(−∞,∞;Hweak).

(X̄2) For all t1 ≥ t0 ∈ R,

u(t1) = u(t0) +
∫ t1

t0
[−νAu(t)−B(u(t)) + f(u(t))]dt +

∫ t1

t0
g(u(t))dwt.

(X̄3) For a.a. t0 ∈ R and all t1 ≥ t0,

E(|u(t1)|2) ≤ E(|u(t0)|2) exp(−k1(t1 − t0)) + k2. (39)
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(X̄4) For a.a. t0 ∈ R and all t1 ≥ t0,

E
(

supt0≤s≤t1|u(s)|2 + 2ν
∫ t1

t0
‖u(s)‖2ds

)

≤ αE(|u(t0)|2) + β(t1 − t0).

(40)

(X̄5) For a.a. t0 ∈ R and all t1 ≥ t0 and n ∈ N,

E(ϕn(u(t1))) ≤ E(ϕn(u(t0)) exp(−k3(t1 − t0)) + n−
1
2 (αE(|u(t0)2|) + β).

(41)

(X̄6) E(|u(t)|2) ≤ k2 for all t ∈ R.

Remark It is immediate from the definitions that

X̄ � [0,∞) ⊆ Y ∩Xk2 ⊆ X.

Corresponding to the space M of paths for one-sided solutions, the natural
space that contains paths of two-sided solutions to the stochastic Navier–
Stokes equations is the space M̄ defined as follows.

Definition 10.2 (a) For a measurable (deterministic) function ξ : R → H
define a norm

|ξ| =
(∫ ∞

−∞
ξ(t)2 exp(−|t|)dt

) 1
2

=
(∫ ∞

−∞
ξ(t)2µ(dt)

) 1
2

,

where µ(dt) = exp(−|t|)dt, and write

M̄ = {ξ : |ξ| < ∞}

for this space of paths, which is a separable Hilbert space.
(b) For a process u(t, ω) with paths in M̄ define

|u| =
(

E(|u(·, ω)|2)
) 1

2 =
(

E
∫ ∞

−∞
|u(t, ω)|2 exp(−|t|)dt

) 1
2

,

which is simply the norm of L2(Ω, M̄).

Remark It is clear from (X̄6) that X̄ ⊆ L2(Ω, M̄). In fact, |u|2 ≤ 2k2 for
all u ∈ X̄.

It would be possible to proceed by adapting the basic existence result
Theorem 6 to show that X̄ 6= Ø. However, this follows from the more
detailed analysis of X̄ to come, and in particular from the main theorem of
this section:

Theorem 10.3

A = X̄ � [0,∞).
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The proof of this requires some additional analysis involving approximate
two-sided solutions, which we now define (the counterpart of Definition 7.1
for one-sided solutions).

Definition 10.4 (a) For each n ∈ N denote by X̄n the internal class of
∗-adapted (with respect to (Gτ )τ∈∗R) processes U : ∗R× Ω → HN with
the following properties:

(X̄1) Uτ (ω) has paths ∗a.s. in ∗M̄ and U ∈ ∗L2(Ω, ∗M̄), i.e.

E
(∫ ∗∞

−∗∞
|Uτ (ω)|2 exp(−|τ |)dτ

)

< ∗∞.

(X̄2n) With Q-probability ≥ 1 − 1
n on Ω, for all τ1 ∈ ∗[ − n, n] and all

m ≤ n,
∣

∣

∣

∣

U(τ1)(m) − U(−n)(m) −
∫ τ1

−n
[−(νAUτ )(m) −B(Uτ )(m) + F (Uτ )(m)]dτ−

∫ τ1

−n
G(Uτ )(m)dWτ

∣

∣

∣

∣

≤ 2−n. (42)

(X̄ 3n) For all τ0 ∈ ∗[ − n,∞) except for a set of ∗Lebesgue measure 1
n ,

and for all τ1 ≥ τ0,

E(|Uτ1|2) ≤ E(|Uτ0|2) exp(−k1(τ1 − τ0)) + k2 + 1
n . (43)

(X̄4n) For all τ0 ∈ ∗[−n,∞) except for a set of ∗Lebesgue measure 1
n , for

all τ1 ≥ τ0,

E
(

supτ0≤σ≤τ1 |Uσ|+
∫ τ1

τ0
‖Uσ‖2dσ

)

≤ αE(|Uτ0|2)+β(τ1− τ0)+ 1
n .

(44)

(X̄5n) For all τ0 ∈ ∗[−n,∞) except for a set of ∗Lebesgue measure 1
n , for

all τ1 ≥ τ0 and all m ≤ n,

E(ϕm(Uτ1)) ≤ E(ϕm(Uτ0)) exp(−k3(τ1−τ0))+m− 1
2 (αE(|Uτ0|2)+β)+ 1

n .
(45)

(X̄6n) E(|Uτ |2) ≤ k2 +
1
n

for τ ∈ ∗[− n,∞).

(b) Define
X̄ =

⋂

n∈N
X̄n.
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Remark It is immediate from the definitions that

X̄n � ∗[0,∞) ⊆ Xk2,n ⊆ Xn, X̄ � ∗[0,∞) ⊆ Xk2 ⊆ X .

The notion of the standard part of an internal process from earlier sections
extends naturally to two-sided internal processes. Corresponding to Theorem
7.6 (a) we have:

Theorem 10.5 If U ∈ X̄ then

(a) For P -almost all ω the path U(·, ω) has |U(τ, ω)| finite and U(τ, ω)(m)

S-continuous for m ∈ N and all finite τ (positive and negative).

(b) The process u = ◦U defined by

u(t, ω) = ◦U(τ, ω)

for τ ≈ t (where ◦U denotes the weak standard part in H) belongs to
X̄.

Proof We first show that, unlike Theorem 7.6, it is not necessary to
restrict to internal processes U that are S-integrable in some sense.

Take U ∈ X̄ ; then U ∈ X̄J for some infinite J . From (X̄6) we have
that E(|Uτ |2) < k2 + 1

J for all finite τ . Then (X̄5J) ensures that |Uτ (ω)|2
is S-integrable for all finite τ , using the criterion of Corollary 13.8(b) of the
Appendix.

Now simply follow the proof of Theorem 7.6 (a) with the origin t = 0
moved to t = −n to construct u = ◦U with u fulfilling the requirements of a
two-sided solution on each time interval [−n,∞). Consequently u ∈ X̄. 2

We also have the converse of Theorem 10.5:

Theorem 10.6

X̄ = ◦X̄ .

Proof Let u ∈ X̄. Simply adapt the proof of Theorem 7.8 to obtain
Un ∈ X̄n for each n with ◦Un � ∗[ − n,∞) = u � [−n,∞). Then for all
sufficiently small infinite J ∈ ∗N we have U = UJ ∈ X̄ and ◦U = u. 2

To continue we must introduce a group of shift operators on ∗L2(Ω, M̄)
as follows:

Definition 10.7 For V ∈ ∗L2(Ω, M̄) define the left shift operator Lτ for
τ ∈ ∗R by

(LτV )(σ, ω) = V (τ + σ, Θτω).
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Clearly Lτ ◦ L−τ = identity for all τ , and Lσ ◦ Lτ = Lσ+τ , so the left
shift operators Lτ form an internal group of mappings on ∗L2(Ω, M̄) under
composition.

It is also clear from the definitions that Lτ X̄ = X̄ for every finite τ .
The connection with the internal semigroup Tτ is given by:

Lemma 10.8 For any V ∈ ∗L2(Ω, M̄),

Tτ (V � ∗[0,∞)) = (LτV ) � ∗[0,∞)). (46)

Proof From the definitions. 2

To proceed it is necessary to make one further definition, the counterpart
of C for two-sided solutions. Recall the set B = Xρ of one-sided approximate
solutions.

Definition 10.9
(a) Define B̄ by

B̄ = {U ∈ ∗L2(Ω, M̄) : U � ∗[0,∞) ∈ B},

(i.e. the processes in B are extended to negative times in an arbitrary man-
ner) and in the same way for each k ∈ N define

B̄k = {U ∈ ∗L2(Ω, M̄) : U � ∗[0,∞) ∈ Bk},

(b) Define
D =

⋂

{Lτ B̄ : τ ≥ 0, τ finite}.

Lemma 10.10 X̄ ⊆ B̄.

Proof Let U ∈ X̄ and let r = r(k2). Since X̄ = Lr(X̄ ), U = LrV for
some V ∈ X̄ . Then V � ∗[0,∞) ∈ Xk2 , and by (46) we have

U � ∗[0,∞) = (LrV ) � ∗[0,∞) = Tr(V � ∗[0,∞)) ∈ TrXk2 ⊆ B.

Therefore U ∈ B̄. 2

The main result will follow from its counterpart at the level of approxi-
mate solutions:

Theorem 10.11 (a) D = X̄ .

(b) C = D � ∗[0,∞).
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Proof (a) We have X̄ ⊆ B̄ and Lτ X̄ = X̄ for finite τ , so

X̄ = Lτ X̄ ⊆ Lτ B̄

for finite τ ≥ 0. Hence X̄ ⊆ D.
Conversely, let V ∈ D. Then for each n ∈ N we have V = LnVn for some

Vn ∈ B̄2n. Overflow gives an infinite J ∈ ∗N with V = LJVJ and VJ ∈ B̄2J .
Thus VJ � ∗[0,∞) = UJ is in B2J . From the definition of B2J we can read
off the properties of V on the interval ∗[− J,∞) and check that V ∈ X̄ . For
example, the property (X 22J) for UJ gives the approximate equation (22) on
∗[1/(2J), 2J ], and so V satisfies the same equation on ∗[ − J + 1/(2J), J ],
which ensures that V satisfies condition (X̄2n) for all n ∈ N.

The rest of the properties needed for V ∈ X̄ are easily checked.

(b) Writing q(V ) = V � ∗[0,∞) for a two-sided process V we have by
definition

B̄ = q−1(B) and D =
⋂

0≤τ<∞

Lτ B̄.

Thus

D � ∗[0,∞) = q(D)

= q

(

⋂

0≤τ<∞

Lτ (q−1(B))

)

⊆
⋂

0≤τ<∞

q(Lτ (q−1(B)))

=
⋂

0≤τ<∞

Tτ (q(q−1(B)))

=
⋂

0≤τ<∞

TτB

= C,

giving one inclusion. For the other direction, let U ∈ C. So U = TnUn with
Un ∈ B2n for each n ∈ N. By overflow we have U = TJUJ for some infinite
J ∈ ∗N, with UJ ∈ B2J . Take any VJ such that VJ � ∗[0,∞) = UJ , so that
(LJVJ) � ∗[0,∞) = TJUJ = U , using (46). It now suffices to show that
LJVJ ∈ D.

For any finite τ ≥ 0,

LJVJ = Lτ ◦ LJ−τVJ

Now
(LJ−τVJ) � ∗[0,∞) = TJ−τ (VJ � ∗[0,∞)) = TJ−τUJ ∈ BJ ,

using (46) again, and Proposition 8.8. This gives LJ−τVJ ∈ B̄J ⊆ B̄, and so
LJVJ ∈ Lτ B̄. 2

As a simple corollary we now have the main result of this section.
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Theorem 10.12 (=Theorem 10.3)

A = X̄ � [0,∞).

Proof

A = ◦C = ◦(D � ∗[0,∞)) = ◦(X̄ � ∗[0,∞)) = X̄ � [0,∞)

using Theorems 10.6 and 10.11. 2

The next theorem is proved in the same way as the corresponding results
for A:

Theorem 10.13 laww(X̄) is compact.

Proof Modify the proof that laww(A) is compact in Theorem 9.12. 2

11 Noncompactness Results

In this section we prove results showing that one usually cannot expect the
attractor for the stochastic Navier-Stokes equation to be a compact set.

Theorem 11.1 Suppose that ΩΩ = (Ω,F , (Ft)t∈R, P ) is an arbitrary filtered
probability space carrying a two-sided Brownian motion and suppose there is
an attractor A for the stochastic Navier-Stokes equations satisfying Theorem
10.12. Suppose further that A has at least two distinct elements u, v, and
there are sets Zn, n ∈ N in F−∞ of measure 1/2 that are independent of each
other and of w, u, v. Then A is not compact in the topology of convergence
in probability (a fortiori, A is not compact in L2(Ω,M)).

Proof We have P [|u − v| ≥ r] ≥ r for some r > 0. By definition of A,
there exist two-sided solutions u′, v′ ∈ X such that ut = u′t and vt = v′t for
all t ≥ 0. For each n, define the process xn on ΩΩ by

xn(ω) =
{

u(ω) if ω ∈ Zn

v(ω) otherwise.

and define x′n analogously. Since Zn is F−∞-measurable, it follows that each
x′n is a two-sided solution of the Navier-Stokes equation belonging to X̄, and
therefore each xn belongs to A. For each m 6= n,

P [|xm − xn| ≥ r] ≥ r · P [Zm∆Zn] = r/2,

since {|xm − xn| ≥ r} ⊇ {|u − v| ≥ r]} ∩ (Zm∆Zn). Therefore A is not
compact in the topology of convergence in probability. 2
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Remark It is well-known that when the filtration (Ft)t∈R is generated by
the Wiener process wt (t ∈ R), F−∞ is the trivial algebra (e.g. see [11], page
583), so the above theorem does not apply. In all known proofs of existence
for solutions to the stochastic Navier-Stokes equations in 3-dimensions, how-
ever, the space required is richer than the Wiener space - for example the
Loeb space that we have used in the present paper. Here the non-compactness
of A can be verified, due to the following consequence of the richness of the
space.

Lemma 11.2 In the filtered Loeb space ΩΩ of Section 10, for any countable
collection of Loeb measurable sets y0, y1, . . . there exists an F−∞-measurable
set Z of measure 1/2 which is independent of each yn.

Proof Let Q be the internal measure on Ω which generates the Loeb
space ΩΩ. For each n ∈ N, let Yn be an internal approximation of yn. For
each h ∈ N there is a finite internal partition of Ω into G−h-measurable sets of
Q-measure 1/h. By saturation, there is a hyperfinite partition Xi, i ≤ H of Ω
into G−H-measurable sets of Q-measure 1/H. Let PH be the internal counting
measure on 2H . For each γ ∈ 2H let Z(γ) be the internal F−∞-measurable
set

Z(γ) =
⋃

{Xi : i ≤ H, γ(i) = 1}.

Fix n ∈ N for the moment and let Y = Yn. It is sufficient to show that
for a.a. γ we have Q(Z(γ)) ≈ 1

2 and Z(γ) is independent of Y with respect
to the Loeb measure, – i.e. Q(Z(γ) ∩ Y ) ≈ 1

2Q(Y ).
For each 1 ≤ i ≤ H and γ ∈ 2H , define the random variable ηi(γ) by

ηi(γ) =
(

Q(Y ∩ Z(γ) ∩Xi)−
1
2
Q(Y ∩Xi)

)

=
{

1
2Q(Y ∩Xi) if γ(i) = 1
−1

2Q(Y ∩Xi) if γ(i) = 0.

With respect to PH , the random variables ηi, i ≤ H, are mutually inde-
pendent and have expected values Eηi = 0. Moreover, |ηi(γ)| ≤ (2H)−1, so
ηi has variance ≤ (2H)−2 with respect to PH .

Define a random variable

ξ(γ) =
H

∑

i=1

ηi(γ).

Then with respect to PH ,

E(ξ2) =
H

∑

i=1

E(η2
i ) ≤

1
4H

≈ 0.
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Since the sets Xi partition Ω, we have
H

∑

i=1

Q(Y ∩ Z(γ) ∩Xi) = Q

(

H
⋃

i=1

(Y ∩ Z(γ) ∩Xi)

)

= Q(Y ∩ Z(γ))

and
H

∑

i=1

Q(Y ∩Xi) = Q

(

H
⋃

i=1

(Y ∩Xi)

)

= Q(Y ).

Therefore
ξ(γ) = Q(Y ∩ Z(γ))− 1

2
Q(Y ).

Thus, for (PH)L-a.a. γ we have Q(Y ∩ Z(γ)) − 1
2Q(Y ) ≈ 0, and so

Q(Z(γ) ∩ Y ) ≈ 1
2Q(Y ) as required. Applying this to Y = Ω also gives that

Q(Z(γ)) ≈ 1
2 for a.a. γ. 2

Corollary 11.3 In the filtered Loeb space ΩΩ of Section 10, if the Navier-
Stokes attractor has more than one element, then it is not compact in the
topology of convergence in probability.

To see how, in a general setting, simply enlarging the space eliminates
compactness of an attractor, we have the following.

Let ΩΩ = (Ω,F , (Ft)t∈R, P ) be a filtered probability space equipped with
a family of measure preserving maps (θt)t≥0 satisfying properties (θ1, θ2, θ3)
of Section 3. Let (Ω′,F ′, P ′) be another probability space. The product
Ω̄Ω = ΩΩ×ΩΩ′ is the filtered probability space (Ω×Ω′,F×F ′, (Ft×F ′)t∈R, P×P ′)
with the measure preserving maps (θ̄)t(ω, γ) = (θt(ω), γ).

For a stochastic process u on ΩΩ, let ū be the process defined on Ω̄ by
ūt(ω, γ) = ut(ω).

If w is a two-sided Brownian motion on ΩΩ, then w̄ is a two-sided Brownian
motion on Ω̄Ω.

Note that for each set D ∈ F ′, Ω×D is F−∞ ×F ′-measurable.
With this notation we have the following non-compactness result.

Corollary 11.4 Let w be a two-sided Brownian motion in ΩΩ, and sup-
pose the stochastic Navier-Stokes equations have an attractor A satisfying
Theorem 10.12, and A has at least two distinct elements. Let ΩΩ′ be an atom-
less probability space, and let Ā be the stochastic Navier-Stokes attractor for
(Ω̄Ω, w̄). Then Ā is not compact in the topology of convergence in probability.

12 Final Remarks

On any filtered probability space ΩΩ with a family of measure preserving maps
θt as in section 3 we can define the sets Xk, X and X̄ of solutions and a set
A by

A =
⋂

SnB
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with B = Xρ. A natural question is to isolate the properties of ΩΩ that are
needed to give the main results above – namely that A = X̄ � [0,∞) and that
A is an attractor in some sense (and the above results about compactness of
families of laws hold).

A further natural question is to isolate the particular properties of the
Navier-Stokes equations and/or the families of solutions X that are needed
to develop a theory such as this.

We will present one approach to these questions in the sequel [18] to this
paper.

13 Appendix: Nonstandard preliminaries

We work in an ℵ1-saturated nonstandard universe that contains a nonstan-
dard extension ∗J for every mathematical object J involved in our theory.
In particular we have ∗H, ∗M, ∗C0(R), ∗Wiener measure, etc.

Given a standard Hausdorff space S, we identify each point x ∈ S with
∗x, so that S ⊆ ∗S. If x ∈ S and X ∈ ∗S, we say that x is the standard
part of X, in symbols x = ◦X, if X ∈ ∗O for every open neighborhood O
of x. Since S is Hausdorff, each X ∈ ∗S has at most one standard part.
An element X ∈ ∗S is said to be near-standard, in symbols X ∈ ns(S), if
X has a standard part. Thus the standard part function maps ns(S) onto
S and is the identity on S. The standard part of a set B ⊆ ns(S) is the
set ◦B = {◦X : X ∈ B}. Here is a useful immediate consequence of the
definition of standard part.

Remark 13.1 Suppose x = ◦X in a Hausdorff space S.
(a) If O is open in S, x ∈ O implies X ∈ ∗O.
(b) If C is closed in S, X ∈ ∗C implies x ∈ C.

In the particular case of a standard metric space (S, ρ), x = ◦X if and
only if ∗ρ(X, x) ≈ 0, and two points X, Y ∈ ∗S are said to be infinitely close,
in symbols X ≈ Y , if ∗ρ(X,Y ) ≈ 0.

We need the following compactness criterion ([20], Lemma 4.9).

Proposition 13.2 Let S be a standard metric space, let En be an internal
subset of ∗S for each n, and let E =

⋂

n En.
(a) ◦(E ∩ ns(S)) is closed.
(b) If E ⊆ ns(S), then ◦E is compact.

Proof We give a proof here for the sake of completeness, and so we can
refer to the proof later on. We may assume without loss of generality that
E1 ⊇ E2 ⊇ · · ·.

(a) Suppose xn ∈ ◦(E ∩ ns(S)) and xn → x ∈ S. Take a subsequence
xm such that ρ(xm, x) < 1/m for each m ∈ N. Choose Xm ∈ E ⊆ Em with
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◦Xm = xm, and choose X ∈ ∗S with ◦X = x. Then ∗ρ(Xm, X) < 1/m for
each m. By the triangle inequality, ∗ρ(Xm, Xn) < 2/m whenever m ≤ n.
By ℵ1-saturation, there is a Y ∈ ∗S such that Y ∈ En for each n, and
∗ρ(Xm, Y ) < 2/m for each m. Then Y ∈ E and Y ≈ X, so x = ◦Y and
Y ∈ E ∩ ns(S). Thus x ∈ ◦(E ∩ ns(S)), so ◦(E ∩ ns(S)) is closed.

(b) Since S is a metric space, to show that ◦E is compact it suffices to
show that every countable open cover {On} of ◦E has a finite subcover. Let
Amn = {x ∈ S : ρ(x, S \ Om) > 1

n}. Then Amn is open, Amn ⊆ Om, and
{Amn} covers ◦E. By 13.1 (a), {∗Amn} covers E. By ℵ1-saturation, there is a
k such that {∗Amn : m,n ≤ k} covers Ek. Then by 13.1 (b), {Amn : m,n ≤ k}
covers ◦E. Therefore {Om : m ≤ k} covers ◦E. 2

The book [7] gives information about the standard part mapping for var-
ious topologies on the standard set H. The most important are as follows.
Here, ∗H has an internal ∗basis {∗en}n∈∗N, and we write En = ∗en. Thus for
each N ∈ ∗N, HN = ∗span{E1, . . . , EN} ⊆ ∗H. We also write u(n) = (u, en)
and U(n) = (U,En).

Lemma 13.3 Let U ∈ HN . Then:

(a) If |U | < ∞ (i.e. |U | is finite) then U is weakly nearstandard in H, and
the weak standard part u = stweak(U) is defined by

u(n) = ◦(U(n)), n ∈ N.

(b) If U is nearstandard in the strong topology of H then |U | < ∞ and

stweak(U) = st(U).

(c) If ‖U‖ < ∞ then U is (strongly) nearstandard in H.

In view of the consistency (b) above we use ◦U to denote the standard
part of U whenever |U | is finite.

Near-standard points and standard parts also appear in the setting of
Loeb spaces. For an internal probability space ΩΩ = (Ω,G, Q) we write QL

for the corresponding Loeb measure. The theory of Loeb measure and Loeb
integration is assumed (see [7, 16, 17] for example). For convenience, we
assume here that ΩΩ is ∗countably additive, although most of the general
theory carries over to the ∗finitely additive case. Recall that a ∗measurable
function U : Ω → ∗R is S-integrable if E(|U |) is finite and

∫

|U(ω)|≥J |U |dQ(ω) ≈
0 for all infinite J ∈ ∗N. The following notation, taken from [19, 20], is used.

Definition 13.4 Suppose that (S, ρ) is a separable metric space (we will
mainly have S = M and S = M × C0).
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(a) L0(Ω, S) is the space of all random variables on v : Ω → S with the topol-
ogy of convergence in probability, and for 0 < p ≤ ∞ the spaces Lp(Ω, S) are
defined as usual.

(b) SL0(Ω, S) = ∗L0(Ω, ∗S) = {V : Ω → ∗S; V is G-measurable}.
(c) ns0(Ω, S) = {V ∈ SL0(Ω, S) : V (ω) ∈ ns(S) for QL a.a. ω ∈ Ω}. If
V : Ω → ∗S is in ns0(Ω, S) then we write v = ◦V for the member of L0(Ω, S)
given by

(◦V )(ω) = ◦(V (ω)),

and we say that V is a lifting of v and that v is the standard part of V .

(d) For p ∈ [1,∞), SLp(Ω, S) is the set of all V ∈ ∗L0(Ω, S) such that
ρ(V (ω), z)p is S-integrable for some (equivalently, any) z ∈ S. If V ∈
SLp(Ω, S), we say that V is SLp on Ω.

(e) For p ∈ [1,∞),

nsp(Ω, S) = ns0(Ω, S) ∩ SLp(Ω, S).

(Note that nsp(Ω, S) ⊆ ∗Lp(Ω, ∗S), and if V ∈ nsp(Ω, S) then ◦V ∈ Lp(Ω, S))

(f) Since p = 2 occurs frequently, we write NS = ns2(Ω, S) with the particular
Ω and S being clear from the context.

This notation is actually a generalization of the standard part in stars of
Hausdorff spaces. In the case that Ω = {ω} is a one-point space, the points
of SL0({ω}, S) can be identified with the points of ∗S in the obvious way, so
that

SL0({ω}, S) = SLp({ω}, S) = ∗S, ns0({ω}, S) = nsp({ω}, S) = ns(S),

and the standard part mapping for ns0({ω}, S) is the same as for ns(S).
Given a set B ⊆ SLp(Ω, S), where p ∈ {0} ∪ [1,∞), the standard part of

B is the set ◦B = {◦V : V ∈ B}. The following result is needed:

Proposition 13.5 Let E =
⋂

n∈NEn where each set En ⊆ SL0(Ω, S) is
internal. Then for each p ∈ {0} ∪ [1,∞), the set

◦(E ∩ nsp(Ω, S))

is closed in Lp(Ω, S).

Proof Exactly the same as the proof of Proposition 13.2 (a). 2

We need the following fact about S-integrability on a product space.

Proposition 13.6 Suppose V : ∗[0, 1]×Ω → ∗[0,∞) is ∗-measurable on the
product, and V (τ, ·) is S-integrable on Ω for each τ . Then V is S-integrable
on the product.
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Proof This result is well-known, but we include a proof for complete-
ness. Take any infinite J ∈ ∗N. For each τ ∈ ∗[0, 1],

∫

V (τ, ω)dQ(ω) is
finite, and by overspill,

∫

V (τ, ω)dQ(ω) has a uniform finite bound. There-
fore

∫ 1
0

∫

V (τ, ω)dQ(ω)dτ is finite. Moreover, for each infinite J ∈ N,
∫

V (τ,ω)≥J
V (τ, ω)dQ(ω) ≈ 0.

Therefore
∫ 1

0

∫

V (τ,ω)≥J
V (τ, ω)dQ(ω)dτ ≈ 0.

By the transfer of the Fubini Theorem, it follows that V is S-integrable
on the product. 2

The following proposition and corollary explain how the “truncation”
functions ψn and ϕn are used to characterize S-integrability.

Proposition 13.7 Let V : Ω → ∗[0,∞) be an internal random variable.
Then the following are equivalent.

(a) V is S-integrable.

(b) E(V ψJ(V )) ≈ 0 for all sufficiently small infinite J .

(c) ◦E(V ψn(V )) → 0 as n →∞, (n ∈ N).

Proof Assume (a), so that
∫

V≥K V ≈ 0 for all infinite K ∈ ∗R. Writing

E(V ψJ(V )) =
∫

V <K
V ψJ(V ) +

∫

V≥K
V ψJ(V )

for infinite K we see that the second term on the right is infinitesimal since
0 ≤ ψJ ≤ 1. For the first term, if we now set K = J

1
2 we have

∫

V <K
V ψJ(V ) ≤ KψJ(K) = K

(

(

K
J2 − 1

)3

+ 1

)

≈ 0,

which establishes (b). The converse implication (assuming (b)) is trivial since
E(V ψJ(V )) ≥

∫

V≥J V . The equivalence of (b) and (c) is routine. 2

Recalling that ϕn(u) = |u|2ψn(|u|2) in any Hilbert space, we have

Corollary 13.8 Let U : Ω → ∗S be an internal random vector where S is a
Hilbert space. The following are equivalent.

(a) |U |2 is S-integrable, that is, U ∈ SL2(Ω, S).

(b) E(ϕJ(U)) ≈ 0 for all sufficiently small infinite J .
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(c) ◦E(ϕn(U)) → 0 as n →∞, (n ∈ N).

As indicated in Section 3.2, the space of all Borel probability measures
on a separable metric space S is denoted by M1(S), and for v ∈ L0(Ω, S),
law(v) ∈ M1(S) is the probability induced by v. The Prohorov metric on
M1(S) gives weak convergence of measures, and part (a) of the following is
well-known (see [20] Prop 5.7 for example).

Proposition 13.9 Let V ∈ SL0(Ω, S).
(a)

V ∈ ns0(Ω, S) ⇔ ∗law(V ) ∈ ns(M1(S)),

and if either side holds then law(◦V ) = ◦(∗law(V )).
(b) For the particular case S = M

V ∈ NS = ns2(Ω,M) ⇔ ∗law(V ) ∈ ns(M1,2(M)),

and if either side holds then law(◦V ) = ◦(∗law(V )).

Proof (b) follows from (a) together with the observation that for Λ =
∗law(V ) ∈ ns(M1,2(M)) there is the additional requirement that

EΛ|U |2 =
∫

|V (ω)|2dP (ω) ≈
∫

|◦V (ω)|2dPL = Eλ|u|2,

where λ = law(◦V ). This condition is precisely that V (ω) is SL2 on Ω, which
ensures that V ∈ NS. 2

Finally, we need the following result from [26], Theorem 8.1, on liftings
of continuous adapted stochastic processes. (The equivalence of (a) and (b)
is proved there, and it is an easy exercise to show that (b) is equivalent to
(c)).

Proposition 13.10 Let x : [0,∞) × Ω → R be a stochastic process in the
filtered Loeb space ΩΩ given in Definition 5.1. The following are equivalent.

(a) x is adapted and almost surely continuous.
(b) There is an internal process X : ∗[0,∞) × Ω → ∗R and a positive

δ ≈ 0 such that X(·, τ) is Gτ -measurable for all τ ≥ δ, and for almost all ω,
◦X(τ, ω) = x(◦τ , ω) for all finite τ .

(c) There is an internal Gτ -adapted process X : ∗[0,∞) × Ω → ∗R and
a positive δ ≈ 0 such that X(ω, τ) = 0 for τ < δ, and for almost all ω,
◦X(τ, ω) = x(◦τ , ω) for all finite τ ≥ δ.
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[3] M. Capiński and N.J. Cutland, A simple proof of existence of weak
and statistical solutions of Navier–Stokes equations, Proc. Royal. Soc.
London A 436 (1992), 1-11.
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