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Abstract. In this paper we describe a reduction process that allows us to

define Hamiltonian structures on the manifold of differential invariants of
parametrized curves for any homogeneous manifold of the form G/H, with

G semisimple. We also prove that equations that are Hamiltonian with re-
spect to the first of these reduced brackets automatically have a geometric

realization as an invariant flow of curves in G/H. This result applies to some

well-known completely integrable systems. We study in detail the Hamiltonian
structures associated to the sphere SO(n + 1)/SO(n).

1. Introduction

For a completely integrable systems we understand PDEs for which one can find
an infinite family of preserve functionals in involution. Most of these systems are
bi-Hamiltonian, i.e., they are Hamiltonian with respect to two different but compat-
ible Hamiltonian structures (compatible means that their sum is also a Hamiltonian
structure). The Hamiltonian structures are used to generate a recursion operator,
an operator that when reiteratively applied to one initial preserved functional, it
generates the entire family - or hierarchy - (see [17]). In recent years a large num-
ber of publications have shown that many completely integrable systems appear
linked to the geometric background of curves and surfaces (see for example [1],
[5], [7], [8], [12, 14], [15, 16], [26], [28], [29, 30], [31], [18]-[23], [24] and references
within). Some of this work relates the integrable systems to invariant flows of (in
general parametrized) curves in different types of manifolds through geometric real-
izations, i.e., evolutions of curves inducing the integrable system on its curvatures,
or differential invariants in general. Perhaps the best known example of such a
geometric realization is that of the non linear Shrödinger equation (NLS) by the
Vortex Filament flow (VF). In [11] Hasimoto showed that VF, viewed as a flow
of spacial Euclidean curves, induced NLS on its curvature and torsion via what it
became known as the Hasimoto transformation. The Hasitomo transformation was
proved to be a Poisson map between two equivalent bi-Poisson manifolds, that of
the standard curvature and torsion and the manifold of natural curvatures (see [15],
[24]).

The author of this paper has linked the bi-Hamiltonian structures of many of
these integrable systems to a process that allows us to reduce well-known compati-
ble Poisson brackets on the manifold of Loops in the dual of a Lie algebra, we will
call it Lg∗, to the manifold of differential invariants. This reduction process was de-
scribed in [18] for homogenous manifolds of the form G/H where g, the Lie algebra
associated to G, is |1|-graded. These include RPn+1, the conformal Möbius sphere,

1



2 GLORIA MARÍ BEFFA

the Grassmannian, the Lagrangian Grassmannian and others. The reduction pro-
cess was also described in [19] for the case of affine geometries, i.e., homogeneous
manifolds of the form G n Rn/G with G semisimple. In both cases a well-known
Poisson structure (we will refer to it as our first bracket) on Lg∗ can be reduced to
the space of differential invariants to produce some of the best known Hamiltonian
structures used in the integration of PDEs. This structure is also linked to geomet-
ric realizations in the sense that under minimal conditions one can find geometric
realizations for any Hamiltonian evolution, and hence for bi-Hamiltonian integrable
systems. The reduction of a second compatible bracket is not guaranteed, and nei-
ther is the existence of an associated integrable system. Indeed the author showed
in [22] that in the Lagragian 2-Grassmannian manifold (or Grassmannian of La-
grangian planes in R4), the second bracket in Lsp(2)∗ never reduces. No completely
integrable systems induced by Lagrangian flows on the differential invariants have
been found. On the other hand, the reduction of the second bracket, whenever
possible, points at the existence of an associated completely integrable system, or
at least it is so in all known examples. Coming from a different direction, the
authors of [28], [29] and [30] start their study by constructing classical completely
integrable systems that are Hamiltonian with respect to the reduction of the second
bracket, bracket defined on coadjoint orbits, and after they know of their existence
they link them to our first bracket. These two different approaches have not been
clearly bridged yet.

Even in the cases where the second bracket does not reduce, one can at times
find integrable systems as level sets of Hamiltonian evolutions: the second bracket
might not reduce to the complete manifold of differential invariants, but it might
reduce to a submanifold of it defined by some chosen invariants. The geometric
realization might exist if initial conditions are restricted to the types of curves
for which the undesired invariants are constant. For example, in the case of the
Lagrangian n-Grassmannian the second Poisson bracket does not reduce in general,
but it does always reduce to the submanifold defined by the eigenvalues of the so
called Lagrangian Schwarzian derivatives, whenever the other invariants vanish. In
fact, it has been conjectured (and studies are supportive of this) that the type of
Poisson structures/integrable systems and the character of the chosen invariants
are closely related. For example, one can usually reduce the second bracket to a
submanifold of differential invariants of projective type (as done in [18], [20] and
[21]) to obtain Poisson structures and integrable systems of KdV type (for example,
KdV equation or systems of decoupled KdV in [18], [20], [21], complexly coupled
KdV equations in [20] and Adler-Gel’fand-Dikii evolutions in [18]). Similarly, one
can reduce to a submanifold of curvatures of natural-type to obtain modified KdV
vector equations and NLS systems (as in [1], [24], [26], [28], [29]).

A last relevant feature of these brackets is the following: some of the Poisson
structures obtained when reducing our first bracket are not truly structures asso-
ciated to parametrized curves, but trivial extensions of Poisson brackets associated
to unparametrized curves and extended trivially to the differential invariant of arc-
length type (as defined in [23]). Except for the case G = GL(n, R), all classical affine
geometries GnRn/G possess first reductions for which Hamiltonian evolutions will
necessarily preserve the invariant of arc-length type ([23]). On the other hand, all
known examples for semisimple parabolic cases (G/P , P parabolic) have reductions
of the first bracket which do not preserve parameters of arc-length type. Indeed,
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geometric realizations of equations of KdV type do not preserve any invariant of
arc-length type. Thus, having first reductions on parametrized or unparametrized
curves also seems to be linked to the type of geometry that the manifold has.

In this paper we describe the reduction process for the general case of a homoge-
nous manifold G/H with G semisimple. Semisimplicity can be trivially assumed
for the definition of the bracket, otherwise the bracket will only be defined on the
semisimple component of the algebra. The reduction process here is, in fact, a
simplification of the process in [18]. We also prove (Theorem 4.3) that any system
which is Hamiltonian with respect to the first reduced bracket possesses a geometric
realization by an invariant flow on G/H. Our running example is that of SO(2, 2)/P
for an appropriate choice of parabolic subgroup P . This manifold is geometrically
equivalent to RP1 × RP1 and we show that both brackets reduce to produce a de-
coupled system of KdV bi-Hamiltonian structures. The manifold SO(3, 1)/P (the
conformal plane) is known ([22]) to produce a system of two complexly coupled
KdV equations. Thus, we show that the exchange

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

→


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


in the bilinear form defining the group effectively decouples the KdV system.

Finally, our last section studies the Hamiltonian structures of the sphere SO(n+
1)/SO(n). This case has been already studied in [28] and [1] where a geometric re-
alization was found for a vector system of modified KdV equations. The authors do
not study the generation of the mKdV bi-Hamiltonian structures, or their possible
definition by reduction (the author of [1] provides a recursion operator that is said
to be encoded by the geometry, but he provides no explanation on how the encoding
takes place). The case of SO(n + 1)/SO(n) is interesting from the following point
of view: being a semisimple case (albeit not a parabolic one), one would think that
the arc-length does not need to be preserved; or said differently, the first reduced
Poisson structure should be expected to be a structure on parametrized curves. On
the other hand, the mKdV systems found in [1] and [28] associated to this geo-
metric background (and found also in the Euclidean case, an affine manifold) are
arc-length preserving. In the last section we show that the first reduced bracket
does not preserve the arc-length, so that the bracket is defined on parametrized
curves - in accordance with the manifold being homogeneous and semisimple -.
But here it is the second bracket that always preserves arc-length and, hence, forces
any bi-Hamiltonian system to be arc-length preserving - in accordance with vector
mKdV being the associated integrable system -. The system of vector mKdV is
shown to be a bi-Hamiltonian system with respect to both reductions.

The reduction method we use is strongly rooted on the use of group-based moving
frames. The method is relatively new so we include a description in our first section,
together with other background definitions.

2. Background definitions

2.1. Moving frames, differential invariants, Serret-Frenet equations and
geometric realizations. The classical concept of moving frame was developed
by Élie Cartan ([3], [4]). A classical moving frame along a curve in a manifold
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M is a curve in the frame bundle of the manifold over the curve, invariant under
the action of a transformation group under consideration. This method is a very
powerful tool, but its explicit application relied on intuitive choices that were not
clear on a general setting. Some ideas in Cartan’s work and later work of Griffiths
([10]), Green ([9]) and others laid the foundation for the concept of a group-based
moving frame, that is, an equivariant map between the jet space of curves in the
manifold and the group of transformations. Recent work by Fels and Olver ([6])
finally gave the precise definition of the group-based moving frame and extended its
application beyond its original geometric picture. In this section we will describe
Fels and Olver’s moving frame and its role in our study. From now on we will
assume M = G/H with G, semisimple, acting on M via left multiplication on
representatives of a class. We will also assume that curves in M are parametrized
and, therefore, the group G does not act on the parameter.

Definition 2.1. Let Jk(R,M) the space of k-jets of curves, that is, the set of
equivalence classes of curves in M up to kth order of contact. If we denote by u(x)
a curve in M and by ur the r derivative of u with respect to the parameter x,
ur = dru

dxr , the jet space has local coordinates that can be represented by u(k) =
(x, u, u1, u2, . . . , uk). The group G acts naturally on parametrized curves, therefore
it acts naturally on the jet space via the formula

g · u(k) = (x, g · u, (g · u)1, (g · u)2, . . . )

where by (g · u)k we mean the formula obtained when one differentiates g · u and
then writes the result in terms of g, u, u1, etc. This is usually called the prolonged
action of G on Jk(R,M).

Definition 2.2. A function

I : Jk(R,M) → R
is called a kth order differential invariant if it is invariant with respect to the
prolonged action of G.

Definition 2.3. A map
ρ : Jk(R,M) → G

is called a left (resp. right) moving frame if it is equivariant with respect to the
prolonged action of G on Jk(R,M) and the left (resp. right) action of G on itself.

The group-based moving frame already appears in a familiar method for calcu-
lating the curvature of a curve u(s) in the Euclidean plane. In this method one
uses a translation to take u(s) to the origin, and a rotation to make one of the
axes tangent to the curve. The curvature can classically be found as the coefficient
of the second order term in the expansion of the curve around u(s). The crucial
observation made by Fels and Olver is that the element of the group carrying out
the translation and rotation depends on u and its derivatives and so it defines a
map from the jet space to the group. This map is a right moving frame, and it
carries all the geometric information of the curve. In fact, Fels and Olver developed
a similar normalization process to find right moving frames (see [6] and our next
Theorem).

Theorem 2.4. ([6]) Let · denote the prolonged action of the group on u(k) and
assume we have normalization equations of the form

g · u(k) = ck
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where at least some of the entries of ck are constants (they are called normalization
constants). Assume we have enough normalization equations so as to determine g
as a function of u, u1, . . . . Then g = ρ is a right invariant moving frame.

Next is the description of the equivalent to the classical Serret-Frenet equations.
We are denoting by L∗g (resp. R∗

g), the map induced on TG by Lg, the left multipli-
cation by g (resp. Rg, the right multiplication). From now on, we will also assume
the (local) connection on M is flat, although some modifications can be introduced
to assume constant curvature.

Definition 2.5. Consider Kdx to be the horizontal component of the pullback of
the left (resp. right)-invariant Maurer-Cartan form of the group G via a left (resp.
right) moving frame ρ. That is

K = L∗ρ−1ρx ∈ g (resp. K = R∗
ρ−1ρx)

We call K the left (resp. right) Serret-Frenet equations for the moving frame ρ.

Notice that, if ρ is a left moving frame, then ρ−1 is a right moving frame and
their Serret-Frenet equations are the negative of each other. A complete set of
generating differential invariants can always be found among the coordinates of
group-based Serret-Frenet equations, a crucial difference with the classical picture.
The following Theorem is a direct consequence of the results in [6]. A more general
result can be found in [13].

Theorem 2.6. Let ρ be a (left or right) moving frame along a curve u. Let us fix
a basis for g. Then, the coordinates of the (left or right) Serret-Frenet equations
for ρ contain a basis for the space of differential invariants of the curve. That is,
any other differential invariant for the curve is a function of the coordinates of K
and their derivatives with respect to x.

If we find a moving frame using a set of normalization equations as in (2.4),
we can also find algebraically the explicit form of the Serret-Frenet equations of
the frame, following a parallel set of recurrence equations. Let K · u represent
the infinitesimal action of the algebra g, likewise with K · u(k) which represents
the infinitesimal prolonged action. The following theorem is a re-writing of results
appearing in [6].

Theorem 2.7. Let K = L∗ρ−1ρx be the left Serret-Frenet equation associated to the
left moving frame ρ. Let ρ be determined by normalization equations of the form
ρ−1 · uk = ck. Then, the following equations are satisfied by K

K · uk|I = ck+1 − (ck)x

where K ·uk|I denotes what is usually called the invariantization of K ·uk, i.e., the
expression K · uk with all ur substituted by cr.

Finally, we give our definition of geometric realization of an evolution of invari-
ants.

Definition 2.8. Let k denote a vector whose entries form an independent and
generating system of differential invariants for curves. That is: (a) k is a vector
whose entries are differential invariants for the curve; (b) the entries of k and their
derivatives are functionally independent (no entry can be written as a function
of the other entries and their derivatives); (c) any other differential invariant is a
function of the entries of k and their derivatives.
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Let

(1) kt = F (k,kx,kxx, . . . )

be an evolution of k. We say that

(2) ut = Q(u, ux, uxx, uxxx, . . . )

is a geometric realization of (1) on G/H whenever u(t, x) ∈ G/H, (2) is invariant
under the action on G (i.e. G takes solutions to solutions) and the evolution induced
on k by (2) is (1). Equivalently, we say that (1) is the invariantization of (2).

2.2. Poisson brackets on Lg∗. Consider the group of Loops LG = C∞(S1, G)
and its Lie algebra Lg = C∞(S1, g). Let

B̂ : g× g → R

be an ad-invariant non-degenerate bilinear form of the algebra. We can use B̂ to
identify g∗ with g so that X∗ = B̂(X, ·) ∈ g∗. For example, if g ⊂ gl(n, R), then B̂
can be the trace of the matricial product. With this bilinear form, the dual to Eij

(the matrix having 1 in place (i, j) and 0 elsewhere) is given by Eji. The bilinear
form

(3) B(X, Y ) =
∫

S1
B̂(X, Y )dx

will give us the analogous form defined on Lg, and we can identify Lg∗ (the regular
part of (Lg)∗) with Lg using B.

One can define two natural Poisson brackets on Lg∗ (see [27] for more informa-
tion). If H,G : Lg∗ → R are two functionals defined on Lg∗, then δH

δL denotes the
variational derivative of H at L and it can be identified, using (3), with an element
of Lg so that

(4)
d

dε
|ε=0H(L + εV ) =

∫
S1

B̂(
δH
δL

, V )dx.

Likewise with G. If L ∈ Lg∗, we define

(5) {H,G}(L) =
∫

S1
〈
(

δH
δL

)
x

+ ad∗(
δH
δL

)(L),
δG
δL
〉dx

where 〈, 〉 is the natural coupling between g∗ and g and where we are identifying(
δH
δL

)
x
. Notice that if we identify L with its dual, then ad∗( δH

δL )(L) = −ad( δH
δL )(L).

One also has a compatible family of second brackets, namely

(6) {H,G}(L) =
∫

S1
〈(ad∗(

δH
δL

)(L0),
δG
δL
〉dx

where L0 ∈ g∗ is any constant element.
In our next section we will show how (5) can be always reduced to the space of

differential invariants of curves. The compatible bracket (6) can only be reduced
sometimes. Recall that the appearance of compatible pairs of Poisson brackets
often indicates the existence of completely integrable systems.
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3. Geometric Poisson brackets on the space of differential
invariants of curves

Since H ⊂ G is a subgroup, the algebra g has a splitting of the form

(7) g = h⊕m

where m is a vector subspace complement to the subalgebra h, but not a subalgebra
in general. From now on we will also assume that our curves on homogeneous
manifolds have a group monodromy, i.e., there exists m ∈ G such that

u(t + T ) = m · u(t)

where T is the period. Under these asumptions, the Serret-Frenet equations will
be periodic and will belong to Lg∗ (under proper identification). Alternatively, one
could assume that u is asymptotic at ±∞, so the invariants vanish at infinity, and
describe a similar situation.

Theorem 3.1. Let u be a generic curve on the homogenous manifold G/H. Let ρ
be a left moving frame with ρ ·o = u. Locally, we can find moving frames for curves
û in a neighborhood of u (with respect to the C∞ topology) such that ρ · o = û. Let
K be the submanifold of Lg given by the Serret-Frenet equations associated to these
left moving frames, in the sense of the previous section. Then, when identified with
its dual, K defines a section of the quotient Lg∗/LH, where the subgroup LH acts
on Lg∗ via the standard gauge action

a(g)(L) = L∗g−1gx + Ad∗(g)(L)

and where, again, the element L∗g−1gx is identified with its dual element.

Proof. This theorem is proved using the definition of moving frame. Indeed, assume
m ∈ Lg∗ and identify the element with an element in the algebra. Let η be a
(local) solution of the equation L∗η−1ηx = m. We call u = η · o and we denote by
ρ a left moving frame associated to u, with ρ · o = u. The frame ρ has the same
monodromy as u, and u has the same monodromy as η. Hence, ρ and η have the
same monodromy.

With these choices we have that ρ = ηη−1ρ = ηg and g ·o = η−1ρ·o = η−1 ·u = o.
Since H is the isotropy group of o (which represents the class of H in G/H), we
conclude that g(x) ∈ H for any x. Furthermore, the monodromy of both ρ and η
are the same, and therefore g ∈ LH. The action of LG on the space of solutions
η → ηg induces the gauge action described in the statement of the Theorem on
the elements of Lg∗ defining the equations satisfied by η. Indeed, if identified with
Lg, Ad∗(g)(L) = Ad(g−1)(L) and the action on Lg induced by the gauge action is
L∗g−1gx + Ad(g−1)L. The theorem is now proved. �

Example 3.2. Our running example will be the case G = SO(2, 2) for H = P
given by a particular parabolic choice. Assume SO(2, 2) is the isotropy group of
the bilinear form defined by the matrix

J =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,
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that is, o(2, 2) is the set of matrices which are skew-symmetric with respect to the
secondary diagonal. Locally, g ∈ SO(2, 2) can be factored as

g = g1(v)g0(α, Θ)g−1(y)

=


1 v1 v2 −v2v1

0 1 0 −v2

0 0 1 −v1

0 0 0 1


α 0 0

0 Θ 0
0 0 α−1




1 0 0 0
y1 1 0 0
y2 0 1 0

−y2y1 −y2 −y1 1


with α ∈ R and Θ ∈ SO(1, 1). This factorization corresponds to the algebra
gradation o(2, 2) = g1 ⊕ g0 ⊕ g−1 as in the diagram

0 +1 +1 +1
−1 0 0 +1
−1 0 0 +1
−1 −1 −1 0

 .

Let us choose the parabolic subgroup H = P = G1 · G0, that is, the subgroup
defined by elements g such that y1 = y2 = 0. Notice that SO(3, 1) has the exact
same description, with one difference, namely Θ ∈ SO(2) (here −v1v2 = − 1

2 ||v||J -
see below -, while for SO(3, 1) we would have − 1

2 ||v|| = − 1
2v

T v instead).
With this representation, the action of SO(2, 2) on SO(2, 2)/H is determined by

the relation gg−1(u) = g(g · u)h for some h ∈ H. We will be using the section
ς : SO(2, 2)/H → SO(2, 2) given by ς(u) = g−1(u) to locally identify the manifold
SO(2, 2)/H with G−1. The subgroups Gi are the exponential of the Lie subalgebras
gi. One can readily find an explicit formula for the action using this notation, it is
given by

(8) g · u =
α−1Θ(u + y) + α−2

2 ||u + y||2Jv∗

1 + α−1vT Θ(u + y) + α−2

4 ||v||2J ||u + y||2J

where ||x||J = x̂T Jx̂ for x̂ = (0, x, 0) and where, if v =
(

v1

v2

)
, then v∗ =

(
v2

v1

)
. One

can check that this action decouples into two projective actions. If Θ ∈ SO(1, 1)

with Θ =
(

a 0
0 a−1

)
, the two projective actions are given by (y1, aα−1, v1) acting

projectively on u1 and (y2, aα−1, v2) acting projectively on u2. This is due to the
fact that the isomorphism o(2, 2) ∼= sl(2, R)⊕sl(2, R) induces a splitting of SO(2, 2)
into SL(2, R)× SL(2, R) and also an equivalence of O(2, 2)/P with RP1 ×RP1. (A
choice of Θ on the second connected component of O(1, 1) will simply produce an
involution exchanging u1 and u2.)

If g is as in (8), the zero normalization equation is g · u = 0, which can be
solved with the choice y = −u. If u = u(x), the first normalization equation
is g · u1 = c1, obtained by differentiating the action (8) with respect to x and
substituting y = −u. It is given by

α−1Θu1 = c1.

Since Θ =
(

a 0
0 a−1

)
∈ O(1, 1), we need to choose nonvanishing normalization

values for each of the entries of c3. We choose c1 =
(

1
1

)
(rather than the usual
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c1 = e1 favored in normalizations. In this case e1 would be a singular choice). This
choice forces the values

α = ||ux||J2−1/2, Θ−1

(
1
1

)
=
√

2ux

||ux||J
.

This condition completely determines

Θ =
(

α(u1
x)−1 0
0 α−1u1

x

)
.

The second normalization equation is obtained differentiating (8) twice and sub-
tituting previously found values. It is given by

α−2Θuxx − v = c2 = 0

which is readily resolved choosing v = α−2Θuxx. This last equation completely
determines the right moving frame. Following [6], a set of independent and gener-
ating invariants is given by the entries of c3, we have two invariants of third order.
The interested reader can proceed to differentiate once more, find the third nor-

malization equations and find the explicit formula for c3. It is given by c3 =
(

k1

k2

)
with ki = S(ui), where S(f) = 1

fx

(
fxxx − 3

2

(
fxx

fx

)2
)

is the Schwarzian derivative

of f . The Schwarzian derivative is the generator of projective differential invariants
in RP1.

Let us call ρ the left moving frame, that is, the inverse of the frame we just found

ρ =

1 −(u∗)T − 1
2 ||u||

2
J

0 I u
0 0 1

α−1 0 0
0 Θ−1 0
0 0 α

1 −vT − 1
2 ||v||J

0 I v∗

0 0 1

 .

Parallel to the normalization equations we can use recurrence formulas (2.7) to
determine the matrix K = ρ−1ρx. If K = K1 + K0 + K−1 are the gradated
components of K and K0 = Kα +KΘ are the two components of K0, the recurrence
formulas are given by

K · u|I = K−1 = c1 − c′0 = c1 =
(

1
1

)
K · u1|I = KΘc1 −Kαc1 = c2 − c′1 = 0.

The last equation imply KΘ = 0 and Kα = 0. The two equations describe K as
being of the form

(9) K =


0 k1 k2 0
1 0 0 −k2

1 0 0 −k1

0 −1 −1 0

 .

The general theory tells us that the entries of K generate all other differential in-
variants for u and, hence, k1 and k2 must be generators. If one writes the recurrence
equations (2.7) for the second prolongation we also see that K1 coincides with c3.
Notice that this matrix is very similar to the one obtained in the case G = O(3, 1)
for which G/H is the conformal plane (see [20]). The only difference is that in
the conformal case c1 = e1 is a regular value and K−1 = e1 was chosen instead.
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This minimal difference will create a very significant one for the reduced Poisson
brackets and their associated integrable systems.

Our next Theorem shows that (5) can be reduced to K, and its proof gives an
algebraic method to calculate the reduced bracket explicitly (and also the reduction
of (6) whenever possible).

Theorem 3.3. The Poisson bracket defined on Lg∗ by (5) is reducible to the sub-
manifold K. We call this the first reduced Poisson bracket associated to curves on
G/H.

Proof. To prove this theorem we need to observe that K is given locally by the
quotient Lg∗/LH, where LH acts in Lg∗ via the gauge action.The symplectic
leaves of the bracket (5) are formed by the orbits of the gauge action itself. For
more information on these brackets, see [27]. Assume we have two functionals R,G
such that δR

δL , δG
δL ∈ Lg vanish on the tangent to the LH-leaves. That means

(10)
(

δR
δL

)
x

− ad

(
δR
δL

)
(K) ∈ h0

and likewise for G (we are identifying Lg with Lg∗). Then, the bracket (5) of these
two functionals will also vanish on the tangent to the leaves (equivalently, it will be
constant on the leaves), one only needs to apply Jacobi’s identity for (5) to arrive
to that conclusion. Hence, the bracket will represent a well-defined functional on
the quotient K.

Following the same reasoning as in [25], let r, g : K → R be two functionals and
let R and G be two extensions that are constant on the leaves of LH. The bracket

(11) {r, g}(K) =
∫

S1
〈
(

δR
δL

)
x

− ad

(
δR
δL

)
(K),

δG
δL
〉dx

describes a well-defined functional on K. It is a Poisson bracket on K, Jacobi’s
identity is given directly by the Jacobi identity of (5). For a complete description
of this and other Poisson reductions for finite dimensional manifolds, see [25]. Our
infinite dimensional case is a straightforward generalization of the results there. �

Although this bracket seems to be complicated to compute, in all known cases
their calculation follows a purely algebraic process that can be done by hand in low
dimensions. The essence of the algebraic process is the use of (10).

Example 3.4. we now go back to the case G = SO(2, 2). In this case h = g0 ⊕ g1

and so h0 = g1. If K is given as in (9), then an extension R of a functional
r : K → R to Lo(2, 2)∗ will coincide with r in the direction of k1 and k2. The
variational derivative of R is defined as in (4), and so

(12)
δR
δL

(K) =


β a b 0
δr
δk1

c 0 −b
δr
δk2

0 −c −a

0 − δr
δk2

− δr
δk1

−β

 .
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If we substitute these values in condition (10), we get the following equation along
K

β′ + k1
δr
δk1

+ k2
δr
δk2

− a− b a′ + ck1 − βk1 b′ − ck2 − βk2 0(
δr
δk1

)
x

+ β − c c′ + a + k2
δr
δk2

− k1
δr
δk1

− b 0 ∗(
δr
δk2

)
x

+ β + c 0 ∗ ∗
0 ∗ ∗ ∗



=


0 ∗ ∗ 0
0 0 0 ∗
0 0 0 ∗
0 0 0 0

 .

From here we obtain

β = −1
2

(
δr

δk1
+

δr

δk2

)′
, c =

1
2

(
δr

δk1
− δr

δk2

)′
a = −1

2

(
δr

δk1

)′′
+ k1

δr

δk1
, b = −1

2

(
δr

δk2

)′′
+ k2

δr

δk2

The reduced Poisson bracket is defined by (11), where R and G are appropriate
extensions with variational derivatives as above. After straightforward calculations,
these can be written as

{r, g}(k) =
∫

S1

δg

δk1

(
−1

2
D3 + Dk1 + k1D

)
δr

δk1
+

δg

δk2

(
−1

2
D3 + Dk1 + k1D

)
δr

δk2
,

therefore the first reduced bracket is defined by two decoupled second Poisson struc-
tures for KdV equations, one in each k1 and k2. We can also check whether or not,
for some choice of L0, the bracket (6) reduces to K by evaluating (6) in our exten-
sions. If we choose L0 = E12−E21 + E13−E31 (that is, the dual element to K−1),
the result is

{r, g}0(k) =
∫

S1
〈δG
δL

(K),
[
L0,

δR
δL

(K)
]
〉dx = −2

∫
S1

δg

δk1
D

δr

δk1
+

δg

δk2
D

δr

δk2
.

Again, the second reduced bracket is given by two decoupled first Poisson structures
for KdV equations.

This result fits well with the equivalence SO(2, 2)/H ∼= RP1 × RP1. Indeed,
the two reduced Poisson brackets associated to the geometry of flows in RP1 are
known to be the two KdV Hamiltonian structures. On the other hand, O(3, 1)/P
is the conformal plane and the two reduced Poisson brackets were given by the two
Hamiltonian structures for a complexly coupled system of KdV equations ([22]).
Thus the change O(3, 1) → O(2, 2) decouples the Hamiltonian structures.

4. Geometric realizations of Hamiltonian evolutions

Let Φg : G/H → G/H be defined by the action of g ∈ G on the quotient, that is,
Φg(x) = Φg([y]) = [gy] = g · x. Let ς : G/H → G be a section of the homogeneous
quotient such that ς(o) = e. The section is compatible with the action of G on
G/H, that is,

(13) gς(x) = ς(Φg(x))h

for some h ∈ H. This relation in fact determines the action of the group on G/H
uniquely, as we saw in our running example. As before, we consider the splitting
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of the Lie algebra g = h⊕m, where m is not, in general, a Lie subalgebra. Since ς
is s section, dς(o) is an isomorphism between m and ToM .

The following theorem was proved in [19] and it describes the most general form
of invariant evolutions in terms of left moving frames.

Theorem 4.1. Let u(t, x) ∈ G/H be a flow, solution of an invariant evolution of
the form

ut = F (u, ux, uxx, uxxx, . . . ).

Assume the evolution is invariant under the action of G, that is, G takes solutions
to solutions. Let ρ(t, x) be a family of left moving frames along u(t, x) such that
ρ · o = u. Then, there exists an invariant family of tangent vectors r(t, x), i.e., a
family depending on the differential invariants of u and their derivatives, such that

ut = dΦρ(o)r.

One interpretation of this theorem is the following: if we choose coordinates
and dΦρ(o) is considered as an element on GL(n, R), then its columns dΦρ(o) =
(T1, . . . , Tn) form a classical moving frame, i.e., an invariant curve in the frame
bundle. If in those coordinates r = (r1, . . . , rn)T , then ut = r1T1 + · · · + rnTn

for some ri functions of the differential invariants and their derivatives. Many
readers might be more familiar with this writing of an invariant evolution, and it
is equivalent to ours.

Before we describe the relation between the evolutions of u and geometric Hamil-
tonian evolutions, it is convenient to prove the following lemma.

Lemma 4.2. Let u(t, x) be a one-parameter family of curves in G/H. Assume
u(t, x) evolves following an evolution which is invariant under the action of G.
Assume the evolution is written as

(14) ut = dΦρ(o)r

where ρ is a left moving frame that can be locally factored as ς(u)ρH with ρH ∈ H,
and where r is some invariant tangent vector.

Let N = L∗ρ−1ρt be the left invariant vector field defining the evolution of ρ under
(14). Let N = Nm + Nh be the splitting of N in its m and h component. Then
Nm = dς(o)r.

Notice that since ρH ∈ H, ρH · o = o. Using (13) we have

ς(u)ς(o) = ς(u) = ς(ς(u) · o)h

uniquely determined for some value of h ∈ H. The choices h = e and ς(u) · o = u
satisfy the equation, so we can conclude that ς(u) · o = u.

Proof. Assume ρ = ς(u)ρH . If we calculate N we have

N = Ad(ρ−1
H )L∗ς(u)−1dς(u)ut + L∗

ρ−1
H

dρH(u)ut.

Since L∗
ρ−1

H

dρH(u)ut ∈ h we need to look only for the m component of

Ad(ρ−1
H )L∗ς(u)−1dς(u)ut.

On the other hand, differentiating (13) one gets

L∗gdς(u)ut = dς(Φg(u))dΦg(u)uth(u, g) + ς(Φg(u)dh(u)ut.
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Evaluating this at g = ρ−1 we get

L∗ρ−1dς(u)ut = R∗
h(u,ρ−1)dς(o)dΦρ−1(u)ut + dh(u, ρ−1)ut.

Also from (13)

ρ−1ς(u) = ρ−1
H = ς(ρ−1 · u)h(u, ρ−1) = ς(o)h(u, ρ−1) = h(u, ρ−1),

and (
dΦρ−1(u)

)−1 = dΦρ(ρ−1 · u) = dΦρ(o).

Therefore

R∗
ρH

L∗ρ−1dς(u)ut = R∗
ρH

R∗
h(u,ρ−1)dς(o) (dΦρ(o))

−1
ut = dς(o)r

whenever u evolves as in (14). This is precisely Nm. �

In what follows we will assume the manifold to be flat, so its Cartan connection
is given by the Maurer-Cartan form. If, for example, the manifold has constant
curvature, some modifications can be introduced to adapt the result, much as it
was done in [28], [1] or [24].

Theorem 4.3. Assume that K is described by an affine subspace of Lg∗. Assume
that (14) is an invariant evolution of curves on G/H and assume there is a Hamil-
tonian functional h : K → R such that, if H : Lg∗ → R is an extension of h
satisfying condition (10), then

δH
δL

(k)m = dς(o)r,

where δH
δL (k) = δH

δL (k)m + δH
δL (k)h are the components defined by the splitting of the

algebra. Then, the evolution induced on K by (14) is Hamiltonian with respect to
the first reduced Poisson bracket (11), with Hamiltonian functional h. In particular,
any Hamiltonian evolution in k with respect to the first reduced Poisson bracket (11)
and Hamiltonian functional h(k) has a geometric realization given by

ut = dΦρ(o)dς(o)−1 δH
δL

(k)m

where H is any extension of h satisfying (10).

Proof. Assume that an evolution of u as in (14) induces a Hamiltonian evolution on
K, with Hamiltonian functional h : K → R. If K is an affine subspace of Lg∗, the
Kt is a linear subspace of Lg∗. Assume that r : K → R is any other Hamiltonian
functional and let R be an extension satisfying (10). Then∫

S1
〈Kt,

δR
δL

(K)〉dx = {h, r}(K).

On one hand, if H is an extension of h holding (10), then

(15) {h, r}(K) =
∫

S1
〈
(

δH
δL

(K)
)

x

+ ad∗
(

δH
δL

(K)
)

(K),
δR
δL

(K)〉.

On the other hand, if N = L∗ρ−1ρt, applying the structure equation for the Maurer-
Cartan form to the commuting vector fields d

dx and d
dt along ρ results on the com-

patibility condition
Kt = Nx + ad(K)(N).
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Therefore, we obtain that

〈Kt,
δR
δL

(K)〉 = 〈
(

δH
δL

(K)
)

x

+ ad∗
(

δH
δL

(K)
)

(K),
δR
δL

(K)〉

= 〈Nx + ad∗(N)(K),
δR
δL

(K)〉,

where we are, again, identifying K with its dual so that ad(K)(N) = ad∗(N)(K).
Finally, from (10), the only component involved in (15) is δR

δL m
. Likewise for δH

δL

by skew-symmetry. Therefore, if δH
δL m

= Nm, the evolution induced on k will be
Hamiltonian with Hamiltonian functional h. Using the lemma, we arrive to the
conclusion of the theorem. �

Notice that, in general, N and δH
δL are different. Only their components tangent

to the manifold need to coincide.

Example 4.4. Using the data we have on SO(2, 2)/H, one can easily calculate the
formula for a general invariant evolution to be

ut = dΦρ(o)r = αΘ
(

r1

r2

)
=
(

u1
x 0
0 u2

x

)(
r1

r2

)
which results on the decoupling ui

t = ui
xri, i = 1, 2, where ri are any functions

depending on k1, k2 and their derivatives. The evolutions are not decoupled unless
ri are decoupled. From the data we obtained in (12) we have that

δH
δL

(K)m =


0 0 0 0
δh
δk1

1 0 0
δh
δk2

0 1 0
0 − δh

δk2
− δh

δk1
0


and

dς(o)r =


0 0 0 0
r1 1 0 0
r2 0 1 0
0 −r2 −r1 0


so that, the condition for a geometric realization to exist is δh

δki
= ri, i = 1, 2. In

particular, a pair of decoupled KdV equations is obtained when

h(k1, k2) =
1
2

∫
S1

(k2
1 + k2

2)dx

for which ri = ki produces a geometric realization. In the conformal case G =
O(3, 1), these same choices produced a geometric realization for a complexly coupled
system of KdV equations. That is, the change SO(3, 1) → SO(2, 2) effectively
decouples the system of coupled KdV equations.

5. The sphere SO(n + 1)/SO(n)

In this case G = SO(n + 1) and H = SO(n) is not a parabolic subgroup. We
consider the following splitting of the Lie algebra into subspaces (unlike the previous
example, only h is a Lie subalgebra here) o(n + 1) = m⊕ h with

(16)
(

0 y
yT 0

)
∈ m

(
A 0
0 0

)
∈ h
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where y ∈ Rn and A ∈ o(n). Associated to this splitting we have a local fac-
torization in the group into factors belonging to H = SO(n) and exp(m). This
factorization is given by

(17) g =
(

Θ 0
0 1

)(
I + cosy yyT siny y
−sinyyT cos(||y||)

)
where cosy =

cos(||y||)− 1
||y||2

, siny =
sin(||y||)
||y||

and ||y||2 = yT y. The factorization

exists locally.
Let ς : M → G be the section defined by the exponential, that is

ς(u) =
(

I + cosu uuT sinu u
−sinuuT cos(||u||)

)
.

One clearly has that dς(o) : ToM → m is an isomorphism given by

dς(o)y =
(

0 y
yT 0

)
.

The action of SO(n + 1) on the sphere, let’s denote it by g ·u, is determined by the
relation

gς(u) = ς(g · u)h

for some h ∈ SO(n) which is also determined by this relation. Let g be as in (17).
Straightforward calculations show that, if η = g · u, then

(18) sinη η = sinu Θu +
(
cosy sinu yT u + siny cos(||u||)

)
Θy

and

(19) cos(||η||) = cos(||y||) cos(||u||)− sinu siny yT u.

5.1. Left moving frames, Serret-Frenet equations and Geometric Hamil-
tonian structures for generic curves on the sphere.

5.1.1. Moving frames. With the factorization above in mind we can use normaliza-
tion procedures to calculate a right moving frame along a generic curve u. Indeed,
if g is as in (17), then the first normalization equation is

g · u = o

which is resolved by choosing y = −u. Notice that, if ς is our section, ς(u)−1 =
ς(−u), and SO(n) preserves the origin o.

The first normalization equation is given in terms of the prolonged action of
the group. The action at hand is an action on parametrized curves. Therefore,
its explicit expression is found, as before, by differentiating g · u with respect to
the parameter. If we do that and later substitute y = −u, the resulting first
normalization equation is given by

sinu Θu1 + (1− sinu)
||u||1
||u||

Θu = se1

where s =
(
sin2

u ||ux||2 + (1− sin2
u)||u||2x

) 1
2 is the spherical arc-length invariant. The

vector e1 is an arbitrary choice, any other unit vector can be chosen instead. We will
not, in general, consider unparametrized curves, so this invariant is not, a priori,
constant.
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Further normalization equations (up to n order) will determine Θ−1ei, i =
2, . . . , n and with it Θ. The rth normalization equation will be of the form

Θfr(u(r)) = cr

for some function fr depending on u and its derivatives. The fact that Θ ∈ o(n)
implies that the vector cr is a function of r differential invariants of order r. Among
these r differential invariants, r − 1 of them will be functions of lower order differ-
ential invariants and their derivatives. Hence, at each step we get a new invariant
of order r which is functionally independent from those of lower order. Thus, we
have n invariants or increasingly high order, the order increasing by one at each
step. According to the theory developed in [6], these would be generators of all
differential invariants of the curve u. For the purpose of this example, no more
details are needed.

5.1.2. Serret-Frenet equations and natural moving frames. First of all, the m com-
ponent of ρ(ρ−1)x = K̂ is equal to dς(0)(e1), as we proved in our previous section
when studying the general case.

Indeed, after some straightforward calculations,

ρ(ρ−1)x =
(

Θ 0
0 1

)
s(u)(s(−u))x

(
Θ−1 0

0 1

)
+
(

Θ
(
Θ−1

)
x

0
0 0

)

=

(
Θ
(
Θ−1

)
x

+ Θ
(
cosu u1u

T − cosu uuT
1

)
Θ−1 sinu Θu1 + (1− sinu) ||u||1||u|| Θu

− sinu uT
1 ΘT − (1− sinu) ||u||1||u|| uT ΘT 0

)

=
(

K0 se1

−seT
1 0

)
= K̂.

Theorem 5.1. There exists a left moving frame ρ such that its associated Serret-
Frenet equations are given by

(20) K =

 0 −υT s
υ 0 0
−s 0 0


where s is the arc-length invariant and υ = (υi) are the natural curvatures. The
moving frame will be, in general, non-local, and it is known as the natural moving
frame (see [2]).

Proof. Let ρ be our previous moving frame. Any other left moving frame will be of
the form ρg, where g ∈ LSO(n + 1) is an invariant element of the group, that is, a
matrix in SO(n + 1) depending on the differential invariants and their derivatives.
Since we do not want to change the m component of the equation, we will choose
g ∈ LH. If the natural frame (let us call it ρn) exists, then ρn = ρg for some
invariant g and K = (ρg)−1(ρg)x = g−1K̂g + g−1gx. If

g =
(

θ 0
0 1

)
this relation becomes

K =
(

θT θx + θT K0θ sθT e1

−seT
1 θ 0

)
.
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We want the m component to remain the same, and so θ should leave e1 invariant.
That is,

θ =
(

1 0
0 η

)
, η ∈ SO(n− 1).

Furthermore, we need

θT θx + θT K0θ =
(

0 υT

υ 0

)
, that is, ηT ηx + ηT K1η = 0

for K0 =
(

0 ∗
∗ K1

)
. In general, the solution of ηx = −K1η will be non-local. Also,

the solution will in general have a monodromy and it does not need to be periodic.
Hence, the calculations that follow are, in that sense, formal. This situation was
discussed in [19]. For the original definition of natural moving frame, please see
[2]. �

There is one reason why we need to choose a natural moving frame, versus
a classical Riemannian one. The reduced Hamiltonian structures and integrable
systems are recognizable when we choose this frame. Any other choice of frame
given an equivalent system, but it will not look familiar to us in general. this is our
reason for choosing a natural frame versus others.

5.1.3. Geometric Hamiltonian structures. Finally, we will look into the reduced
Poisson bracket defined on the affine subspace K ⊂ Lo(n + 1)∗ given by matri-
ces of the form (20). For this example we will use as bilinear form the usual
〈M,N〉 = 1

2 tr(MN). As explained in the previous section, we start by considering
a Hamiltonian functional h : K → R and extend it to H : Lo(n + 1)∗ → R so that
its variational derivative satisfies

(21)
(

δH
δL

(K)
)

x

+
[
K,

δH
δL

(K)
]
∈ o(n)0.

If we denote by

(22)
δH
δL

(K) =

 0 δh
δυ

T − δh
δs

− δh
δυ H0 v

δh
δs −vT 0


for some H0(s, υ) ∈ o(n− 1) and v(s, υ) ∈ Rn, then condition (21) becomes

0
(

δh
δυ

T
)

x
− υT H0 − svT −

(
δh
δs

)
x
− υT v

−
(

δh
δυ

)
x
−H0υ + sv (H0)x + υ

(
δh
δυ

)T − δh
δυ υT vx − δh

δs υ + s δh
δυ(

δh
δs

)
x

+ vT υ −vT
x − s δh

δυ

T
+ δh

δs υT 0

 =

0 0 ∗
0 0 ∗
∗ ∗ 0

 .

This results in

v =
1
s

((
δh

δυ

)
x

+ H0υ

)
, H0 = D−1

(
δh

δυ
υT − υ

(
δh

δυ

)T
)

.

If h, g : K → R are two such functionals and the notation is as above, then the
reduce bracket defined on K is given by

{h, g}R(s, υ) =
∫

S1
〈
(

δH
δL

(K)
)

x

+
[
K,

δH
δL

(K)
]

,
δG
δL

(K)〉dx
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=
∫

S1
〈

 0 0 −
(

δh
δs

)
x
− υT v

0 0 vx − δh
δs υ + s δh

δυ(
δh
δs

)
x

+ vT υ −vT
x − s δh

δυ

T
+ δh

δs υT 0

 ,

 0 δg
δυ

T
− δg

δs

− δg
δυ G0 vg

δg
δs −vT

g 0

〉dx

= −
∫

S1

δg

δs

((
δh

δs

)
x

+ vT υ

)
+ vT

g

(
vx +

δh

δs
υ − s

δh

δυ

)
dx.

Substituting the known values for v and vg we get an explicit expression of the
first reduced Hamiltonian structure on the sphere. Let us call Q( δh

δυ ) = H0υ =

D−1
(

δh
δυ υT − υ δh

δυ

T
)

υ. It is known (see [1], [28] for example) that D +Q defines a
Poisson bracket. In terms of this operator, the reduced bracket is written as

(23) {h, g}(s, υ) = −
∫

S1

(
δg
δs

δg
δυ

)
P
(

δh
δs
δh
δυ

)
dx

where P is the matrix of differential operators given by

P =
(

D 1
sυT D + 1

sυTQ
Dυ 1

s +Q 1
sυ −D 1

sD 1
sD −D 1

sD 1
sQ−Q 1

sD 1
sD −Q 1

sD 1
sQ−D +Q

)
.

The first fact that calls our attention is the this bracket does not preserve arc-
length. In that sense it is a true bracket on parametrized curves. We will come
back to this point later.

The companion bracket (6) also reduces to K for the value L0 = E1,n+1−En+1,1.
Indeed
(24)

{h, g}0(s, υ) =
∫

S1
〈δG
δL

,

[
L0,

δH
δL

]
〉dx =

∫
S1

vT δg

δυ
− vT

g

δh

δυ
=
∫

S1

δg

δυ

T

P0
δh

δυ
dx

where the Poisson operaotr P0 is given by

(25)
(

0 0
0 1

sD + D 1
s + 2Q

)
.

This operator, in turn, leaves the arc-length parameter invariant and, hence, is in
fact a Poisson brackets defined on invariants of unparametrized curves. A discussion
about this difference follows in the next subsection. Our last theorem has now been
proved.

Theorem 5.2. The space K of differential invariants of the Riemannian sphere
SO(n+1)/SO(n) is a bi-Poisson manifold with compatible geometric Poisson brack-
ets given by (23) and (24).

5.2. Geometric realizations of Hamiltonian k-evolutions, a geometric re-
alization for a vector modified KdV evolution. In our final section we will
describe the general formula for an invariant evolution of curves u and determine
which ones are Hamiltonian with respect to (23).

Theorem 5.3. Let
ut = F (u, ux, uxx, . . . )

be an invariant evolution of curves on the sphere SO(n+1)/SO(n). Let Θ be given
by our right moving frame under the factorization in (17). Then

(26) ut =
(

sin−1
u

(
I − uuT

||u||2

)
+

uuT

||u||2

)
Θ−1r

for some invariant vector r depending on s, υ and their derivatives.
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Proof. First of all, the action of H on the manifold is linear (α, Θ) · u = α−1Θu.
On the other hand, ρH = (1,Θ−1) and so dΦρH

(o)u = Θ−1u. The action of ς(u) is
slightly more complicated, we can calculate directly that

dΦς(u)(o) = sin−1
u

(
I − uuT

||u||2

)
+

uuT

||u||2

Following Theorem 4.1 we can straightforwardly calculate the most general form
for an invariant evolution to be given by

ut =
(

sin−1
u

(
I − uuT

||u||2

)
+

uuT

||u||2

)
Θ−1r

for some invariant vector r depending on υ, s and their derivatives. �

Theorem 5.4. If u(t, x) evolves following (26), then the differential invariants
(s, υ) evolve following the equations

st = (r1)x − υT r̂

υt =
1
s

(
r̂xx + (r1υ)x −D−1 1

s
(υr̂T

x − r̂xυT )
)

where r =
(

r1

r̂

)
.

Proof. We want to calculate N = ρ−1ρt whenever ρ(x, t) is the natural left moving
frame along the flow u(x, t). Lemma 4.2 tells us that N is of the form

N = ρ−1ρt =
(

N0 r
−r 0

)
.

Evaluating the Maurer-Cartan structure equations along d
dx , d

dt implies

Kt = Nx + [K, N ]

that is(
Υ se1

−seT
1 0

)
t

=
(

N0 r
−rT 0

)
x

+
(

[Υ, N0]− s(e1rT − reT
1 ) Υr− sN0e1

−seT
1 N0 + rT Υ 0

)
where Υ =

(
0 −υT

υ 0

)
. The m component of the equation gives ste1 = rx + Υr−

sN0e1 and implies

N0e1 =
1
s

(
0

r̂ + r1υ

)
where r = (ri) and r̂ = (r2, r3 . . . , rn−1)T , and

(27) st = (r1)x − υT r̂.

The evolution in the o(n) block

Υt = (N0)x + [Υ, N0]− s(e1rT − reT
1 )

imposes conditions on N0. Namely, if

N0 =
(

0 −r̂T − r1υ
T

r̂ + r1υ N̂0

)
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then N̂0 = D−1 1
s (υr̂T

x − r̂xυT ). We also get directly the evolution of υ

(28) υt =
1
s

(
r̂xx + (r1υ)x −D−1 1

s
(υr̂T

x − r̂xυT )υ
)

.

�

Finally, our last theorem is the direct translation of Theorem 4.3, having in mind
the description in (22).

Theorem 5.5. Let (26) be an invariant evolution such that

r =
(

r1

r̂

)
=
(

− δh
δs

1
s (D +Q) ( δh

δυ )

)
for some Hamiltonian functional h(s, υ). Then (26) induces an evolution on (s, υ)
that is Hamiltonian with respect to (23), with Hamiltonian functional h.

The choice of invariant vector r1 = 1
2 ||υ||

2 and r̂ = υx results in an arc-length
preserving evolution (st = 0, we will assume s = 1) given by

υt = υxxx +
3
2
||υ||2υx

i.e. the vector modified KdV equation. This was already pointed out in [28] and
[1].

The final question is whether or not the modified KdV equation is biHamiltonian
with respect to the two compatible Poisson brackets we found. Our previous general
theorem (4.3) states that the condition for the evolution to be Hamiltonian is the
existence of a Hamiltonian h : K → R and an extension H : Lg∗ → R such that
δH
δL m

= dς(o)r. Using (22), this condition is equivalent to

−δh

δs
= r1 =

1
2
||υ||2, v =

(
δh

δυ

)
x

+Q(
δh

δυ
) = r̂ = υx.

Notice that the second relation is satisfied by δh
δυ = υ.

Finally, consider the Hamiltonian functional

h(s, υ) =
∫

S1
−1

2
||υ||2s + ||υ||2

Clearly, δh
δs = − 1

2 ||υ||
2 and δh

δυ = (2 − s)υ. On the preserved level set s = 1, the
Hamiltonian has the desired properties.

Finally, the vector modified KdV equation is also Hamiltonian with respect to our
second reduced Poisson bracket. If we consider as Hamiltonian operator h0 : K → R
given by

h0(υ) =
1
2

∫
S1
−||υx||2 +

1
4
||υ||4

then

υt = υxxx +
3
2
||υ||2 = P0

(
υxx +

1
2
||υ||2υ

)
= P0

δh0

δυ
.

Therefore, the modified KdV vector equation is biHamiltonian with respect to both
brackets as far as we assume the parameter to be the spherical arc-length. This
condition is forced upon the equations if we want the equations to be Hamiltonian
with respect to the second reduced bracket (24). The second bracket appeared
already in [28] and [1], although not the first one.
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The role of invariants of arc-length type was studied in [21] in the case of affine
geometries, manifolds of the form G n Rn/G. In the case of the classical Lie
groups, all manifolds except when G = GL(n) have a common feature: their first
geometric Poisson bracket (11) always preserves an invariant of arc-length type,
they are brackets associated to unparametrized curves. Therefore, any Hamiltonian
evolution will have geometric realizations by evolutions that preserve arc-length
type parameters. This is not a choice, it is imposed by the background geometry.
On the other hand, homogeneous manifolds of the form G/H in general do not have
this property. All known examples have a geometric Poisson bracket defined as in
(11) that does not preserve a parameter of arc-length type (as defined in [23]). On
the other hand, the modified KdV equation is usually associated to Riemannian
manifolds in general, and to natural frames in particular. And it is always the
invariantization of a curve evolution parametrized by arc-length. Thus, it seemed
to be contradictory the fact that it appears on manifolds of the form G/H, with G
semisimple, or at least, counterintuitive. As we saw in our example, the imposition
of arc-length preservation does not come from the first geometric bracket, but from
the second. The first bracket does not preserve arc-length, in agreement with all
other examples of the type G/H, but the second one does, in agreement with
modified KdV being an evolution associated to evolutions that do so.
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[22] G. Maŕı Beffa, Poisson brackets associated to the conformal geometry of curves, Trans.

Amer. Math. Soc. 357 (2005) 2799-2827.

[23] G. Maŕı Beffa. Hamiltonian evolutions of curves in classical affine geometries, Physica D
(2008), doi:10.1016/j.physd.2008.08.009
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