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Abstract. In this paper we investigate discretizations of AGD flows whose

projective realizations are defined by intersecting different types of subspaces

in RPm. These maps are natural candidates to generalize the pentagram map,
itself defined as the intersection of consecutive shortest diagonals of a convex

polygon, and a completely integrable discretization of the Boussinesq equation.
We conjecture that the r-AGD flow in m dimensions can be discretized using

one (r − 1)-dimensional subspace and r − 1 different (m − 1)-dimensional

subspaces of RPm.

1. Introduction

The pentagram map is defined on planar, convex N -gons, a space we will denote
by CN . The map T takes a vertex xn to the intersection of two segments: one
is created by joining the vertices to the right and to the left of the original one,
xn−1xn+1, the second one by joining the original vertex to the second vertex to its
right xnxn+2 (see Fig. 1). These newly found vertices form a new N -gon. The
pentagram map takes the first N -gon to this newly formed one. As surprisingly
simple as this map is, it has an astonishingly large number of properties, see [16,
17, 18], [19], [14] for a thorough description.

The name pentagram map comes from the following classical fact: if P ∈ C5 is
a pentagon, then T (P ) is projectively equivalent to P . Other relations seem to be
also classical: if P ∈ C6 is a hexagon, then T 2(P ) is also projectively equivalent
to P . The constructions performed to define the pentagram map can be equally
carried out in the projective plane. In that case T defined on the moduli space
of pentagons is the identity, while defined on the moduli space of hexagons is an
involution. In general, one should not expect to obtain a closed orbit for any CN ;
in fact orbits seem to exhibit a quasi-periodic behavior classically associated to
completely integrable systems. This was conjectured in [18].

A recent number of papers ([14, 15, 16, 17, 18, 19, 20]) have studied the penta-
gram map and stablished its completely integrable nature, in the Arnold-Liouville
sense. The authors of [14] defined the pentagram map on what they calledN -twisted
polygons, that is, infinite polygons with vertices xr, for which xN+r = M(xr) for
all r, where M is the monodromy, a projective automorphism of RP2. They proved
that, when written in terms of the projective invariants of twisted polygons, the
pentagram map was in fact Hamiltonian and completely integrable. They displayed
a set of preserved quantities and proved that almost every universally convex N -gon
lie on a smooth torus with a T -invariant affine structure, implying that almost all
the orbits follow a quasi-periodic motion under the map. Perhaps more relevant to
this paper, the authors showed that the pentagram map, when expressed in terms

1



2 GLORIA MARÍ BEFFA

of projective invariants, is a discretization of the Boussinesq equation, a well-known
completely integrable system of PDEs.

The Boussinesq equation is one of the best known completely integrable PDEs.
It is one of the simplest among the so-called Ader–Gel’fand-Dickey (AGD) flows.
These flows are biHamiltonian and completely integrable. Their first Hamiltonian
structure was originally defined by Adler in [1] and proved to be Poisson by Gel’fand
and Dickey in [5]. The structure itself is defined on the space L of periodic and
scalar differential operators of the form

L = Dm+1 + km−1D
m−1 + · · ·+ k1D + k0,

Hamiltonian functionals on L can be written as

HR(L) =

∫
S1

res(RL)dx

for some pseudo-differential operator R, where res denotes the residue, i.e., the
coefficient of D−1. The Hamiltonian functionals for the AGD flows are given by

(1) H(L) =

∫
S1

res(Lr/m+1)dx

r = 1, 2, 3, 4, . . . ,m. The simplest case m = 1, r = 1 is equal to the KdV equation,
the case m = 2 and r = 2 corresponds to the Boussinesq equation. Some authors
give the name AGD flow to the choice r = m only.

The author of this paper linked the first AGD Hamiltonian structure and the
AGD flows to projective geometry, first in [6] and [13], and later in [10] and [12]
where she stablished a geometric connection between Poisson structures and homo-
geneous manifolds of the form G/H with G semisimple. In particular, she found
geometric realizations of the Hamiltonian flows as curve flows in G/H. The case
G = PSL(m + 1) produces projective realizations of the AGD flow. From the work
in [14] one can see that the continuous limit of the pentagram map itself is the
projective realization of the Boussinesq equation.

In this paper we investigate possible generalizations of the pentagram map to
higher dimensional projective spaces. Some discretizations of AGD flows have al-
ready appeared in the literature (see for example [9]), but it is not clear to us how
they are related to ours. In particular, we investigate maps defined as intersections
of different types of subspaces in RPm whose continuous limit are projective real-
izations of AGD flows. In section 2 we describe the connection between projective
geometry and AGD flows and, in particular, we detail the relation between the
AGD Hamiltonian functional and the projective realization of the AGD flow. In
section 3 we describe the pentagram map - and other maps with the same contin-
uous limit - as simple cases on which to describe our general approach. In section
4 we describe some of the possible generalizations.

In particular, in Theorems 4.1 and 4.2 we show that the projective realization
of the AGD flow associated to

H(L) =

∫
S1

res(L2/(m+1))dx

has a discretization defined through the intersection of one segment and one hyper-
plane in RPm. In section 4.2 we analyze the particular cases of RP3 and RP4. We
show that the projective realization of the flow associated toH(L) =

∫
S1 res(L3/4)dx
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can be discretized using the intersection of three planes in RP3, while the one as-
sociated to H(L) =

∫
S1 res(L3/5)dx can be done using the intersection of one plane

and two 3-dimensional subspaces in RP4 (we also show that it cannot be done with
a different dimensional choice). In view of these results, we conjecture that the
projective realization of the the AGD Hamiltonian flow corresponding to (1) can
be discretized using the intersection one (k − 1)-dimensional subspace and k − 1,
(m− 1)-dimensional subspaces in RPm.

These results are found by re-formulating the problem of finding the discretiza-
tions as solving a system of Diophantine equations whose solutions determine the
choices of vertices needed to define the subspaces. These systems are increasingly
difficult to solve as the dimension goes up, hence it is not clear how to solve the gen-
eral case with this algebraic approach. Furthermore, as surprising as it is that we
get a solution at all, the solutions are not unique. As we said before, the pentagram
map has extraordinary properties and we will need to search among the solutions
in this paper to hopefully find the appropriate map that will inherit at least some
of them. One should also check which maps among the possibilities presented here
are completely integrable in its own right, that is, as discrete system. It would be
very exciting if these two aspects were connected, as we feel this should be the way
to learn more before attempting the general case. This is highly non-trivial as not
even the geometric invariants of twisted polygons in RP3 are known.

This paper is supported by the author NSF grant DMS #0804541.

2. Projective geometry and the Adler-Gelfand-Dikii flow

2.1. Projective Group-based moving frames. Assume we have a curve γ :
R → RPm and assume the curve has a monodromy, that is, there exists M ∈
PSL(m+ 1) such that γ(x+ T ) = M · γ(x) where T is the period. The (periodic)
differential invariants for this curve are well-known and can be described as follows.
Let Γ : R→ Rm+1 be the unique lift of γ with the condition

(2) det(Γ,Γ′, . . . ,Γ(m)) = 1.

Γ(m+1) will be a combination of previous derivatives. Since the coefficient of Γ(m)

in that combination is the derivative of det(Γ,Γ′, . . . ,Γ(m)), and hence zero, there
exists periodic functions ki such that

(3) Γ(m+1) + km−1Γ(m−1) + · · ·+ k1Γ′ + k0Γ = 0.

The functions ki are independent generators for the projective differential invariants
of γ and they are usually called the Wilczynski invariants ([21]).

Definition 2.1. ([4]) A kth order left - resp. right - group-based moving frame is
a map

ρ : J (k)(R,RPm)→ PSL(m+ 1)

equivariant with respect to the prolonged action of PSL(m + 1) on the jet space
J (k)(R,RPm) (i.e. the action g · (x, u, u′, u′′, . . . , u(k)) = (g · u, (g · u)′, . . . , (g · u)(k))
and the left - resp. right - action of PSL(m+ 1) on itself.

The matrix K = ρ−1ρ′ (resp. K = ρ′ρ−1) is called the Maurer-Cartan matrix
associated to ρ. For any moving frame, the entries of the Maurer-Cartan matrix
generate all differential invariants of the curve (see [7]). The equation ρ′ = ρK is
called the Serret-Frenet equation for ρ.
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The projective action on γ induces an action of SL(m + 1) on the lift Γ. This
action is linear and therefore the matrix ρ̂ = (Γ,Γ′, . . . ,Γ(m)) ∈ SL(m + 1) is in
fact a left moving frame for the curve γ. We can write equation (3) as the system

ρ̂′ = ρ̂K̂ where

(4) K̂ =


0 0 . . . 0 −k0

1 0 . . . 0 −k1

...
. . .

. . .
...

...
0 . . . 1 0 −km−1

0 . . . 0 1 0

 ,

is the Maurer-Cartan matrix generating the Wilczynski invariants.
Group-based moving frames also provide a formula for a general invariant evo-

lution of projective curves. The description is as follows.
We know that RPm ≈ PSL(m+ 1)/H, where H is the isotropy subgroup of the

origin. For example, if we choose homogeneous coordinates in RPm associated to

the lift u →
(

1
u

)
, the isotropy subgroup H is given by matrices M ∈ SL(m + 1)

such that eTkMe1 = 0 for k = 2, . . . ,m+ 1, and we can choose a section ς : RPm →
PSL(m+ 1) given by

ς(u) =

(
1 0
u I

)
and satisfying ς(o) = I. Let Φg : RPm → RPm be defined by the action of g ∈
PSL(m+ 1) on the quotient, that is, Φg(x) = Φg([y]) = [gy] = g · x. The section ς
is compatible with the action of PSL(m+ 1) on RPm, that is,

(5) gς(u) = ς(Φg(u))h

for some h ∈ H. If h is the subalgebra of H, consider the splitting of the Lie algebra
γ = h⊕m, where m is not, in general, a Lie subalgebra. Since ς is a section, dς(o)
is an isomorphism between m and ToRPm.

The following theorem was proved in [11] for a general homogeneous manifold
and it describes the most general form of invariant evolutions in terms of left moving
frames.

Theorem 2.2. Let γ(t, x) ∈ RPm be a flow, solution of an invariant evolution of
the form

γt = F (γ, γx, γxx, γxxx, . . . ).

Assume the evolution is invariant under the action of PSL(m+1), that is, PSL(m+
1) takes solutions to solutions. Let ρ(t, x) be a family of left moving frames along
γ(t, x) such that ρ · o = γ. Then, there exists an invariant family of tangent vec-
tors r(t, x), i.e., a family depending on the differential invariants of γ and their
derivatives, such that

(6) γt = dΦρ(o)r.

Assume we choose the section ς above. If γ is a curve in homogenous coordinates

in RPm, then Γ = W−
1

m+1

(
1
γ

)
with W = det(γ′, . . . , γ(m)). In that case, if γ is a

solution of (6), with ρ = (Γ,Γ′, . . . ,Γ(m)), after minor calculations one can directly
obtain that Γ is a solution of

Γt = (Γ′, . . . ,Γ(m))r + r0Γ
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where, r = (ri)
m
i=1 and

r0 = − 1

m+ 1

Wt

W
−

m∑
s=1

(
W−

1
m+1

)(s)

rs.

The coefficient r0 can be written in terms of r and γ once the normalization con-
dition (2) is imposed to the flow Γ.

Summarizing, the most general form for an invariant evolution of projective
curves is given by the projectivization of the lifted evolution

Γt = rmΓ(m) + · · ·+ r1Γ′ + r0Γ

where ri are functions of the Wilczynski invariants and their derivatives, and where
r0 is uniquely determined by the other entries ri once we enforce (2) on Γ.

2.2. AGD Hamiltonian flows and their projective realizations. Drinfeld
and Sokolov proved in [8] that the Adler-Gelfand-Dickey (AGD) bracket and its
symplectic companion are the reduction of two well-known compatible Poisson
brackets defined on the space of loops in sl(m+ 1)∗ (by compatible we mean that
their sum is also a Poisson bracket). The author of this paper later proved ([12])
that the reduction of the main of the two brackets can always be achieved for any
homogeneous manifold G/H with G semisimple, resulting on a Poisson bracket
defined on the space of differential invariants of curve flows. The symplectic com-
panion reduces only in some cases. She called the reduced brackets Geometric
Poisson brackets. The AGD bracket is the projective Geometric Poisson bracket
([12]).

Furthermore, geometric Poisson brackets are closely linked to invariant evolu-
tions of curves, as we explain next.

Definition 2.3. Given aG-invariant evolution of curves inG/H, γt = F (γ, γ′, γ′′, . . . ),
there exists an evolution on the differential invariants induced by the flow γ(t, x) of
the form kt = R(k,k′,k′′, . . . ). We say that γ(t, x) is a G/H-realization of k(t, x).

As proved in [12], any geometric Hamiltonian evolution with respect to a Geo-
metric Poisson bracket can be realized as an invariant evolution of curves in G/H.
Furthermore, the geometric realization of the Hamiltonian system could be alge-
braically obtained directly from the moving frame and the Hamiltonian functional.
This realization is not unique: a given evolution kt = R(k,k′, . . . ) could be real-
ized as γt = F (γ, γ′, . . . ) for more than one choice of manifold G/H. For more
information, see [12].

We next describe this relation in the particular case of RPm.

Lemma 2.4. There exists an invariant gauge matrix g (i.e. a matrix in SL(m+1)
whose entries are differential invariants) such that

g−1gx + g−1K̂g = K
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where K̂ is as in (4) and where

(7) K =



0 κm−1 κm−2 . . . κ1 κ0

1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

. . .
. . .

. . .
...

...
0 . . . 0 1 0 0
0 . . . 0 0 1 0


,

for some choice of invariants κi. The invariants κi form a generating and func-
tionally independent set of differential invariants.

Proof. This lemma is a direct consequence of results in [8]. In particular, of the
remark following Proposition 3.1 and its Corollary.

The authors remark how the choice of canonical form for the matrix K is not
unique and other canonical forms can be obtained using a gauge. In their paper
the matrix K is denoted by qcan+Λ where Λ =

∑m−1
1 ei+1,i. If we denote by b the

subalgebra of upper triangular matrices in SL(m + 1) and by br the ith diagonal
(that is, matrices (aij) such that aij = 0 except when j − i = r) then we can
choose qcan =

∑
qr where qr ∈ Vr and Vr are 1-dimensional vector subspaces of br

satisfying br = [Λ, br+1]⊕ Vr, r = 0, . . . ,m− 1.
Since [Λ, br+1] is given by diagonal matrices in br whose entries add up to zero,

there are many such choices, and one of them is the one displayed in (7). �

Straightforward calculations show that in the RP3 case (m = 3) choosing

(8) g =


1 0 k2 k1 − k′2
0 1 0 k2

0 0 1 0
0 0 0 1

 .

results in the relation

g−1g′ + g−1K̂g =


0 −k2 −k1 + 2k′2 k′1 − k′′2 − k0

1 0 0 0
0 1 0 0
0 0 1 0


and hence k2 = −κ2, k1 = −κ1 − 2κ′2 and k0 = −κ0 − κ′1 − κ′′2 .

In the RP4 case, the choice

(9) g =


1 0 k3 k2 − 2k′3 k1 − k′2 + k′′3
0 1 0 k3 k2 − k′3
0 0 1 0 k3

0 0 0 1 0
0 0 0 0 1


gives us

g−1g′ + g−1K̂g =


0 −k3 3k′3 − k2 −3k′′3 + 2k′2 − k1 k′′′3 − k′′2 + k′1 − k0

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


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and from here k3 = −κ3, k2 = −κ2 − 3κ′3, k1 = −κ1 − 2κ′2 − 3κ′′3 and k0 =
−κ0 − κ′1 − κ′′2 − κ′′′3 .

One can also easily see that the first nonzero upper diagonal of g is always
given by km−1 for any dimension m, while - by homogeneity - the second diagonal
involves km−2 and multiples of k′m−1.

Theorem 2.5. ([11], [12]) Let ρ̂ be the Wilczynski moving frame, and let ρ = ρ̂g
be the moving frame associated to K, where g and K are given as in Lemma 2.4.
Then, the invariant evolution

(10) ut = dΦρ(o)r

is the projective realization of the evolution

κt = Pr

where P is the Hamiltonian operator associated to the AGD bracket as given in [1].

The choice of K is determined by the invariants κ being in the dual position
to the tangent to the section ς (see [10]). According to this theorem, in order to
determine the projective realizations of AGD Hamiltonian flows, we simply need
to fix the moving frame ρ using ρ̂ and g, and to find the Hamiltonian functional
H corresponding to the flow. Notice that, if kt = PδκH for some Hamiltonian
operator H, then the lift of (10) is given by

(11) Γt = ρ

(
r0

r

)
= ρ̂g

(
r0

δκH

)
where r0 is determined uniquely by property (2).

Next we recall the definition of the AGD Hamiltonian functionals. Let

(12) L = Dm+1 + km−1D
m−1 + · · ·+ k1D + k0

be a scalar differential operator, where D = d
dx , and assume ki are all periodic. The

AGD flow is the AGD Hamiltonian evolution with Hamiltonian functional given by

H(k) =

∫
S1

res(L
r

m+1 )dx

r = 2, 3, 4, . . .m, where res stands for the residue (or coefficient of D−1) of the
pseudo-differential operator Lr/(m+1). One often refers to the AGD flow as the one
associated to r = m, but any choice of r will define biHamiltonian flows (see [8]).
Therefore, any choice of r will result in a completely integrable flow. For a given
particular case this Hamiltonian can be found explicitly.

Proposition 2.6. The AGD Hamiltonian functional for m = 3 = r, is given by

H(k) =
3

4

∫
S1

(k0 −
1

8
k2

2)dx

while the one for m = 4 = r is given by

H(k) =
4

5

∫
S1

(k0 −
1

5
k2k3)dx.

Proof. To prove this proposition we simply need to calculate the corresponding
residues. We will illustrate the case m = 3, and m = 4 is identically resolved.
Assume

L = D4 + k2D
2 + k1D + k0
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so that

L1/4 = D + `1D
−1 + `2D

−1 + `3D
−3 + o(D−3).

Using the relation L = (L1/4)4 we can find the uniquely determined coefficients to
be `1 = 1

4k2, `2 = 1
4 (k1− 3

2k
′
2) and `3 = 1

4 (k0 + 5
4k
′′
2 − 3

2k
′
1− 3

8k
2
2). We also find that

L3/4 = D3 + 2`1D + 3(`′1 + `2) + (`′′1 + 3`′2 + 3`21 + 3`3)D−1 + o(D−1).

Using the periodicity of the invariants, we conclude that

H(k) =

∫
S1

(`′′1 + 3`′2 + 3`21 + 3`3)dx = 3

∫
S1

(`21 + `3)dx =
3

4

∫
S1

(k0 −
1

8
k2

2)dx.

�

Notice that, if we are to connect these Hamiltonian flows to their projective
realizations, we will need to express their Hamiltonian functionals in terms of the
invariants κi. In such case δκH = r for the Hamiltonian functional defining our
system in the new coordinates. If we wish to write the projective realizations in
terms of Wilczynski invariants, we can always revert to them once the realizations
are found.

3. The pentagram map

The pentagram map takes its name from an apparently classical result in pro-
jective geometry. If we have any given convex pentagon {x1, x2, x3, x4, x5}, we can
associate a second pentagon obtained from the first one by joining xi to xi+2 using
a segment xixi+2, and defining x∗i to be the intersection of xi−1xi+1 with xixi+2 as
in figure 1. The new pentagon {x∗1, x∗2, x∗3, x∗4, x∗5} is projectively equivalent to the
first one, that is, there exists a projective transformation taking one to another.
The map T (xi) = x∗i is the pentagram map defined on the space of closed convex
N -gons, denoted by CN . If instead of a pentagon (N = 5) we consider a hexagon
(N = 6), we need to apply the pentagram map twice to obtain a projectively
equivalent hexagon. See [14] for more details.

x1

x2

x3

x4

x5

T(x1)

T(x2)

T(x3)

T(x4) T(x5)

Fig. 1

If we consider the polygons to exist in the projective plane instead (all the
constructions are transferable to the projective counterpart), we conclude that the
pentagram map is the identity on the moduli space of pentagons in RP2 and
involutive on the moduli space of hexagons. This property does not hold for any
N -gon. In fact, in general the map exhibits a quasi-periodic behavior similar to
that of completely integrable systems (as shown in [14]).

The authors of [14] defined the pentagram map on the space of polygons with a
monodromy. They called these N -twisted polygons and denoted them by PN . These
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are infinite polygons such that xi+N = M(xi) for all i and for some projective
automorphism M of RP2. They proved that, defined on this space and when
written in terms of projective invariants of PN , the pentagram map was completely
integrable in the Arnold-Liouville sense. They also proved that, again when written
in terms of projective invariants, the pentagram map was a discretization of the
Boussinesq equation, a well-known completely integrable PDE. Furthermore, their
calculations show that T itself is a discretization of the projective realization of the
Boussinesq equation, as previously described; in fact, it shows that a certain unique
lift of T to R3 is a discretization of the unique lift of the projective realization given
in the previous section.

The pentagram map is not the only one discretizing the Boussinesq evolution. In
fact, other combinations of segments also do. For example, instead of the pentagram
map, consider the following map: T : PN → PN where T (xn) = xn−2xn+1 ∩
xn−1xn+2. Clearly this map coincides with the pentagram map when defined over
pentagons, and it will be degenerate over C2r for any r.

Proposition 3.1. The map T is also a discretization of the projective realization
of Boussinesq’s equation.

Proof. Although the result is intuitive and the proof can perhaps be done in a
simpler form as in [14], the following process will be carried out in higher dimensions
and it is perhaps simpler when illustrated in dimension 2. Instead of working with
the projective realization of the Boussinesq equation, we will prove that a unique
lifting of the projective realization to R3 is the continuous limit of the corresponding
unique lifting of the map T to R3. Thus, we move from the integrable system to
its projective realization and from there to its unique lift to find continuous limits
at that level.

Assume Γ(x) is a continuous map on R3 and assume det(Γ,Γ′,Γ′′) = 1 so that
Γ can be considered as the unique lift of a projective curve γ, as in [14]. Let
xn+k = γ(x+ kε) and assume γε is the continuous limit of the map T above (as in
[14] we are discretizing both t and x). Denote by Γε the unique lift of γε to R3 as
in the previous section and assume further than

Γε = Γ + εA+ ε2B + ε3C + o(ε3)

where A =
∑2
i=0 αiΓ

(i), B =
∑2
i=0 βiΓ

(i) and C =
∑2
i=0 γiΓ

(i). Then, the def-
inition of T assumes that Γε lies in the intersection of both the plane generated
by Γ(x − ε) and Γ(x + 2ε) and the one generated by Γ(x − 2ε) and Γ(x + ε). If
Γε = a1Γ(x − ε) + a2Γ(x + 2ε) = b1Γ(x − 2ε) + b2Γ(x + ε) for some functions
ai(x, ε), bi(x, ε), i = 1, 2, then equating the coefficients of Γ,Γ′ and Γ′′ we obtain
the relations

1 + α0ε+ β0ε
2 + o(e2) = a1 + a2 + o(ε3) = b1 + b2 + o(ε3)

α1ε+ β1ε
2 + o(ε2) = (−a1 + 2a2)ε+ o(ε3) = (−2b1 + b2)ε+ o(ε3)

α2ε+ β2ε
2 + γ2ε

3 + o(ε3) = (
1

2
a1 + 2a2)ε2 + o(ε3) = (2b1 +

1

2
b2)ε2 + o(ε3).

Here we use the fact that Γ′′′ is a combination on Γ and Γ′ according to the normal-
ization det(Γ,Γ′,Γ′′) = 1 to conclude that the remaining terms are at least o(ε3).
We obtain immediately α2 = 0.
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Let us denote a = (a1, a2)T and b = (b1, b2)T , and a =
∑

aiε
i, b =

∑
biε

i.
Then we have the following relations(

1 1
−1 2

)
a0 =

(
1 1
−2 1

)
b0 =

(
1
α1

)
;

(
1 1
−1 2

)
a1 =

(
1 1
−2 1

)
b1 =

(
α0

β1

)
and also the extra conditions

(13)
(

1
2 2

)
a0 =

(
2 1

2

)
b0 = β2;

(
1
2 2

)
a1 =

(
2 1

2

)
b1 = γ2.

Solving for ai and bi and substituting in the first condition in (13) we get

β2 = 1 +
1

2
α1 = 1− 1

2
α1

which implies β2 = 1 and α1 = 0.
Finally, substituting in the second condition in (13) we get

γ2 = α0 +
1

2
β1 = α0 −

1

2
β1

which results in γ2 = α0 and β1 = 0. The final conclusion comes from imposing
the lifting condition det(Γε,Γ

′
ε,Γ
′′
ε ) = 1 to our continuous limit. When expanded

in terms of ε, and after substituting A = α0Γ, B = Γ′′ + β0Γ we obtain

1 = 1 + 3α0ε+
(

3α2
0 + 3β0 + det(Γ,Γ′,Γ(4)) + det(Γ,Γ′′′,Γ′′)

)
ε2 + o(ε2).

Using the fact that det(Γ,Γ′,Γ(4))+det(Γ,Γ′′,Γ′′′) = 0, and the Wilczynski relation
Γ′′′ = −k1Γ′−k0Γ, we obtain α0 = 0 and β0 = − 2

3k0. From here, Γe = Γ+ ε2(Γ′′−
2
3k0Γ) + o(ε2). The result of the theorem is now immediate: it is known ([11])

that the evolution Γt = Γ′′ − 2
3k0Γ is the lifting to R3 of the projective geometric

realization for the Boussinesq equation. (One can also see this limit for lift of the
the pentagram map in [14].) �

The explicit relation between this lift and the Boussinesq equation can be found
in [2]. If we choose k0 = −q1 and k1 = 1

2q
′
1 − q0, then the equation induced on

(k0, k1) by this realization can be written in terms of q0 and q1 as

(q0)t +
1

6
q′′′1 +

2

3
q1q
′
1 = 0

(q1)t − 2q′0 = 0,

which is the (first) Boussinesq equation as given in [3].

4. Completely Integrable Generalizations of the pentagram map

4.1. Discretizations of an m-dimensional completely integrable system
with a second order projective realization. In this section we will describe
discrete maps defined on PN for which the continuous limit is given by a second
order projective realization of a completely integrable PDE. As we described before,
we will work with the lift of the projective flows. Assume m ≥ 2.

Let {xr} ∈ PN . Define ∆n
m to be a (m − 1)-dimensional linear subspace de-

termined uniquely by the points xn and xn+mi
i = 1, . . .m − 1, where mi are all

different from each other and different from ±1. For example, if m = 2s−1, we can
choose xn−s, xn−s+1, . . . , xn−2, xn, xn+2, . . . , xn+s. Assume that for every n this
subspace intersects the segment xn−1xn+1 at one point. We denote the intersection
T (xn) and define this way a map T : PN → PN . The example m1 = −2, m2 = 2
for the case m = 3 is shown in figure 2.
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xn

xn+m1

xn+r1

xn+r2

xn+m2

T(xn)

Fig. 2

Let γ : R → RPm and let Γ : R → Rm+1 be the unique lift of γ, as usual with
the normalization condition (2). Following the notation in [14] we call as before
γ(x+ kε) = xn+k and denote by γε the continuous limit of the map T . We denote
by Γε its lifting to Rm+1.

Theorem 4.1. Assume that mi 6= mj for all i 6= j and assume ∆n
m intersects the

segment xn−1xn+1 at one point for all n. Then, the lift to Rm+1 of the map T
defined as above is given by Γε = Γ + 1

2ε
2(Γ′′ − 2

m+1km−1Γ) + o(ε2).

Proof. As in the case n = 2, assume

(14) Γε = Γ + εA+ ε2B + ε3C + o(ε3),

and assume further that A,B and C decompose as combinations of Γ(k) as

A =

m∑
r=0

αrΓ
(r), B =

m∑
r=0

βrΓ
(r), C =

m∑
r=0

µrΓ
(r)

Since T (xn) belongs to the segment xn−1xn+1, we conclude that the line through
the origin representing Γε belongs to the plane through the origin generated by
Γ(x− ε) and Γ(x+ ε). That is, there exist functions a and b such that

Γε = aΓ(x− ε) + bΓ(x+ ε).

Putting this relation together with the decomposition of Γε according to ε, we
obtain the following m+ 1 equations relating α, β, a and b

a+ b = 1 + α0ε+ β0ε
2 + o(ε2),

(a+ b)ε2r = (2r)!(α2rε+ β2rε
2 + o(ε2)),

(b− a)ε2r−1 = (2r − 1)!(α2r−1ε+ β2r−1ε
2 + o(ε2))

r = 1, . . . , m2 if m is even, or r = 0, . . . , m+1
2 if m is odd. Directly from these

equations we get αr = 0 for any r = 2, . . .m and βr = 0 for any r = 3, . . . ,m. We
also get β2 = 1

2 , that is, A = α0Γ+α1Γ′ and B = β0Γ+β1Γ′+ 1
2Γ′′. The remaining

relations involve higher order terms of C and other terms that are not relevant.
Since T (xn) belongs also to the subspace ∆n

m, Γε belongs to the m-dim subspace
of Rm+1 generated by Γ and Γ(x+miε), i = 1, . . . ,m− 1. That is

(15) det(Γε,Γ,Γ(x+m1ε), . . . ,Γ(x+mm−1ε)) = 0.

We now expand in ε and select the two lowest powers of ε appearing. These are
ε1+···+m = ε

1
2m(m+1) and ε

1
2m(m+1)+1. They appear as coefficients of Γ(r), r =

0, . . . ,m situated in the different positions in the determinant. The term involving
Γ′ will come from the Γε expansion since this is the term with the lowest power of
ε.
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With all this in mind we obtain that the coefficient of ε
1
2m(m+1) is given by

Xα1

for some factor X that we still need to identify. In fact, we only need to know that
X 6= 0 to conclude that (15) implies α1 = 0.

The factor X corresponds to the coefficient of det(Γ,Γ′, . . . ,Γ(m)) when we ex-
pand

det

(
Γ′,Γ,

m∑
r=2

mr
1

r!
Γ(r), . . . ,

m∑
r=2

mr
m−1

r!
Γ(r)

)
.

When one looks at it this way it is clear that X is the determinant of the coefficients
in the basis {Γ,Γ′, . . . ,Γ(m)}; that is, the determinant of the matrix

0 1 0 0 . . . 0
1 0 0 . . . 0

0 0
m2

1

2!
m3

1

3! . . .
mm

1

m!
. . . . . . . . . . . . . . . . . .

0 0
m2

m−1

2!

m3
m−1

3! . . .
mm

m−1

m!

 .

Using expansion and factoring m2
i from each row, one can readily see that this

determinant is a nonzero multiple of the determinant of the matrix
1 m1 m2

1 . . . mm−2
1

1 m2 m2
2 . . . mm−2

2
...

...
... . . .

...
1 mm−1 m2

m−1 . . . mm−2
m−1

 .

This is a Vandermonde matrix with nonzero determinant whenever mi 6= mj , for
all i 6= j. Therefore X 6= 0 and α1 = 0. Using the normalization condition (2) for
Γε, we obtain

1 = det(Γε,Γ
′
ε, . . . ,Γ

(m)
ε ) = 1 + ε(det(α0Γ,Γ′, . . . ,Γ(m))

+ · · ·+ det(Γ,Γ′, . . . , α0Γ(m))) + o(ε) = 1 + (m+ 1)εα0 + o(ε)

and therefore α0 = 0 and A = 0.
Finally, the coefficient of ε

1
2m(m+1)+1 in (15) is given by

Xβ1 +
1

2
Y

where Y is a sum of terms that are multiples of only one determinant, namely
det(Γ,Γ′,Γ′′, . . . ,Γ(m−1),Γ(m+1)) (since Γ′′ carries ε2 in B, one of the derivatives

in the remaining vectors needs to be one order higher to obtain ε
1
2m(m+1)+1. This

determines Y uniquely). This determinant is the derivative of det(Γ,Γ′, . . . ,Γ(m)) =
1 and hence zero. Therefore, since X 6= 0 we also obtain β1 = 0. This result will
be true for any different choice of the vertices when constructing ∆n

m, as far as
xn belongs to ∆n

m and our choice is non-singular, that is, as far as ∆n
m intersects

xn−1xn+1.

Using (2) for Γε again, together with B = 1
2Γ′′+β0Γ and Γ(m+1) =

∑m−1
r=0 krΓ

(r),
results in the relation

(m+ 1)β0 +
1

2
2km−1 = 0

and from here we obtain the continuous limit as stated in the theorem. �
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One can check that the segment xn−1xn+1 can be substituted for any choice of the
form xn−rxn+r to obtain the continuous limit Γε = Γ+ 1

r! (Γ
′′− 2

m+1km−1Γ)ε2+o(ε2)
instead. Any segment choice of the form xn+rxn+s, s 6= −r, will give us different
evolutions, most of which (although perhaps not all) will not be biHamiltonian
with respect to the AGD Poisson pencil.

Theorem 4.2. The evolution on the invariants induced by the projective evolution
corresponding to the lifted curve evolution Γt = Γ′′ − 2

m+1km−1Γ is a completely
integrable system.

Proof. The proof of this theorem is a direct consequence of section 2.2. Indeed, if

L = Dn + kn−2D
n−2 + · · ·+ k1D + k0

and if

L1/n = D + `1D
−1 + `2D

−2 + o(D−2)

then,

L2/n = D2 + 2`1 + (`′1 + 2`2)D−1 + o(D−1)

and from here the Hamiltonian H(L) =
∫
S1 res(L2/n)dx is H(L) = 2

∫
S1 `2dx. As

before, we can use the relation (L1/n)n = L to find the value for `2. Indeed, a short
induction shows that

Lr/n = Dr + r`1D
r−2 +

(
r`2 +

(
r

2

)
`′1

)
Dr−3 + o(Dr−3)

which implies `1 = 1
nkn−2 and `2 = 1

nkn−3 −
(
n
2

)
1
n2 k
′
n−2. This implies

H(L) =

∫
S1

res(L2/n)dx =
2

n

∫
S1

kn−3dx

with an associated variational derivative given by

(16) δkH =
2

n
e2.

It is known ([8]) that Hamiltonian evolutions corresponding to Hamiltonian func-
tionals H(L) =

∫
S1 res(Lr/n)dx, for any r, are biHamiltonian systems and com-

pletely integrable in the Liouville sense. Denote by δκH the corresponding varia-
tional derivative of H, with respect to κ.

Recall than from (11), this Hamiltonian evolution has an RPn−1 projective re-
alization that lifts to the evolution

Γt =
(
Γ Γ′ Γ′′ . . . ,Γ(n−1)

)
g

(
r0

δκH

)
where g is given as in lemma 2.4 and where r0 is uniquely determined by the
normalization condition (2) for the flow. Recall also that according to the comments
we made after lemma 2.4, the upper diagonal of g is given by the entry kn−2, and
the second diagonal by kn−3 and multiples of k′n−2. That means the lift can be
written as

Γt =
(
Γ Γ′ Γ′′ + kn−2Γ . . .

)( r0

δκH

)
.

The normalization condition imposed here to find r0 is the exact same condition
we imposed on Γε to obtain the coefficient of Γ in the continuous limit, and they
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produce the same value of r0. Therefore, we only need to check that δκH is also a
multiple of e2. The change of variables formula tells us that

(17) δκH =

(
δk

δκ

)∗
δkH

and one can easily see from the proof in lemma 2.4 that

(18)
δk

δκ
=


−1 0 . . . 0
∗ −1 . . . 0
...

. . .
. . .

...
∗ . . . ∗ −1


where the diagonal below the main one has entries which are multiple of the differ-

ential operator D. Clearly,
(
δκ
δκ

)∗
e2 = e2 since D(1) = 0 and hence the coefficient

of e1 in
(
δκ
δκ

)∗
e2 vanishes.

In conclusion, our integrable system has a geometric realization with a lifting of
the form Γt = 1

n (Γ′′ − 2
nkn−2Γ). When n = m+ 1 the theorem follows. �

4.2. Discretizations of higher order Hamiltonian flows in RP3 and RP4. As
we previously said, all Hamiltonian evolutions with Hamiltonian functionals of the
form (1) induce biHamiltonian and integrable systems in the invariants k. When
looking for discretizations of these flows, the first thing to have in mind is that these
flows have projective realizations of order higher than 2. That means their lifts - the
evolution of Γ - will involve Γ(r), r > 2. From the calculations done in the previous
section we learned two things: first, the evolution appearing in the coefficient B
will be second order, and so any hope to recover a third order continuous limit will
force us to seek maps for which A = B = 0, and to look for the continuous limit
in the term involving ε3. That is, if we go higher in the degree, we will need to
go higher in the power of ε. Second, no map defined through the intersection of
a segment and a hyperplane will have B = 0 since that combination forces B to
have Γ′′ terms. Thus, we need to search for candidates among intersections of other
combinations of subspaces.

4.2.1. The RP3 case. A simple dimensional counting process shows us that in R4

three 3-dimensional hyperplanes through the origin generically intersect in one line,
so do one 2-dimensional subspace and a 3-dimensional hyperplane. These are the
only two cases for which the generic intersection of subspaces is a line. The projec-
tivization of the first case shows us that the intersection of three projective planes
in RP3 is a point, and the second case is the one we considered in the previous
section. Thus, we are forced to look for discretizations among maps generated by
the intersection of three planes in RP3. Since there are many possible such choices,
we will describe initially a general choice of planes and will narrow down to our
discretization, which turned out to be not as natural as those in the planar case.
The calculations below will show that the choices of these planes need to be very
specific to match the evolution associated to the AGD flows. This is somehow not
too surprising: integrable systems are rare and their Hamiltonians are given by
very particular choices. One will need to tilt the planes in a very precise way to
match those choices.
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xn

xn+r1

xn+m2

xn+n3

xn+m1=xn+n1

xn+r2=xn+n2

xn+r3=xn+m3

T(xn)

Fig. 4

As before, assume xn+r = Γ(x+rε) and consider three projective planes Π1, Π2,
Π3 intersecting at one point that we will call T (xn). Assume our planes go through
the following points

Π1 = 〈xn+m1 , xn+m2 , xn+m3〉, Π2 = 〈xn+n1 , xn+n2 , xn+n3〉,

Π3 = 〈xn+r1 , xn+r2 , xn+r3〉
for some integers mi, ni, ri that we will need to determine. Figure 4 shows the
particular case when xn+m1

= xn+n1
, xn+r2 = xn+n2

and xn+m3
= xn+r3 .

As before, denote by Γε(x) the lifting of T (xn). Given that T (xn) is the inter-
section of the three planes, we obtain the following conditions on Γε

Γε = a1Γ(x+m1ε) + a2Γ(x+m2) + a3Γ(x+m3)(19)

= b1Γ(x+ n1ε) + b2Γ(x+ n2) + b3Γ(x+ n3)(20)

= c1Γ(x+ r1ε) + c2Γ(x+ r2) + c3Γ(x+ r3)(21)

for functions ai, bi, ci that depend on ε. Also as before, assume Γε = Γ+εA+ε2B+
ε3C + ε4D + ε5E + o(ε5) and assume further that

A =

3∑
0

αiΓ
(i), B =

3∑
0

βiΓ
(i), C =

3∑
0

γiΓ
(i), D =

3∑
0

ηiΓ
(i), E =

3∑
0

δiΓ
(i).

Proposition 4.3. If A = B = 0, then

(22) m1m2m3 = n1n2n3 = r1r2r3.

In this case γ3 = 1
6m1m2m3. Under some regularity conditions, (22) implies A =

B = 0.

Proof. Equating the coefficients of Γ(i), i = 0, . . . , 3, condition (19) implies α2 =
α3 = β3 = 0 and the equations

1 + α0ε+ β0ε
2 = a1 + a2 + a3 + o(ε3)

(23)

α1 + β1ε+ γ1ε
2 = a1m1 + a2m2 + a3m3 + o(e2)

(24)

2(β2 + γ2ε+ η2ε
2) = a1m

2
1 + a2m

2
2 + a3m

2
3 −

2

4!
k2(a1m

4
1 + a2m

4
2 + a3m

4
3)ε2 + o(ε2)

(25)
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with the additional condition

(26) 6(γ3+η3ε+δ3ε
2) = a1m

3
1+a2m

3
2+a3m

3
3−

1

20
k2(a1m

5
1+a2m

5
2+a3m

5
3)ε2+o(ε2).

The terms with k2 appear when we use the Wilczynski relation Γ(4) = −k2Γ′′ −
k1Γ′ − k0Γ. We obtain similar equations with bi, ni and with ci, ri.

Denote by a = (ai) and decompose a as a =
∑

aiε
i, with analogous decomposi-

tions for b and c. Then, the first three equations above allow us to solve for ai, bi
and ci, i = 0, 1, namely ai = A(m)−1vi,bi = A(n)−1vi, ci = A(r)−1vi with

(27) A(s) =

 1 1 1
s1 s2 s3

s2
1 s2

2 s2
3

 , v0 =

 1
α1

2β2

 , v1 =

α0

β1

2γ2


We can now use (26) to obtain conditions on the parameters αi and βi. Indeed,
these are

6γ3 =
(
m3

1 m3
2 m3

3

)
a0 =

(
n3

1 n3
2 n3

3

)
b0 =

(
r3
1 r3

2 r3
3

)
c0.

After substituting the values for a0,b0 and c0, these three equations can be alter-
natively written as the system

(28) 6γ3

1
1
1

 =

M1 M2 M3

N1 N2 N3

R1 R2 R3

 1
α1

β2


where

M1 =
1

det(A(m))
det

m3
1 m3

2 m3
3

m1 m2 m3

m2
1 m2

2 m2
3

 ,M2 =
1

det(A(m))
det

 1 1 1
m3

1 m3
2 m3

3

m2
1 m2

2 m2
3

 ,

M3 =
1

det(A(m))
det

 1 1 1
m1 m2 m3

m3
1 m3

2 m3
3


with similar definitions for Ni (using ni instead of mi) and Ri (using ri).

The following lemma identifiesMi’s as elementary symmetric polynomials. Thank
you to one of the referees for pointing out that the expression below describes some
Shur polynomials in terms of elementary symmetric ones - a well known relation.

Lemma 4.4. Assume A(m) is an s×s Vandermonde matrix with constants m1, . . . ,ms.

Let Mi = detAi(m)
detA(m) , where Ai(m) is obtained from A(m) when substituting the ith

row with ms
1, . . . ,m

s
s. Then Mi = (−1)sps−i+1, where pr are the elementary sym-

metric polynomials defined by the relation

(x−m1) . . . (x−ms) = xs + ps−1x
s−1 + · · ·+ p1x+ p0.

Proof of the lemma. One can see that

(x−m1) . . . (x−ms) = (−1)s detA(m)−1 det


1 1 . . . 1
x m1 . . . ms

x2 m2
1 . . . m2

s
...

... . . .
...

xs ms
1 . . . ms

s


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since both polynomials have the same roots and the same leading coefficient. The
lemma follows from this relation. �

We continue the proof of the Proposition. From the lemma we know the values
of Mi to be

(29) M1 = m1m2m3, M2 = −(m1m2 +m1m3 +m2m3), M3 = m1 +m2 +m3.

It is now clear that, if A = B = 0, then α1 = β2 = 0 and the system implies
M1 = N1 = R1 as stated in the proposition.

Notice that the condition M1 = N1 = R1 does not guarantee A = B = 0; this
will depend on the rank of the matrix in (28). Notice also that the same condition
applies to a1, b1 and c1, we only need to substitute F0 by F1 in the calculations.
Therefore, if the rank of

(30)

M2 M3

N2 N3

R2 R3


is maximal, then M1 = N1 = R1 if, and only if α1 = β2 = 0, and also β1 = γ2 = 0.
Assume that the rank of this matrix is 2. Then, A = α0Γ and condition (2) applied
to Γε as before becomes

0 = ε4α0 + o(ε)

implying α0 = 0 and A = 0. Likewise, if the rank is two then β1 = β2 = 0 and
B = β0γ. Applying (2) again we will obtain β0 = 0 and B = 0. �

If we now go back to (23)-(24)-(25)-(26) and we compare the powers of ε2, we
can solve for a2,b2, c2 as a2 = A(m)−1va2 , b2 = A(n)−1vb2, c2 = A(r)−1vc2 with

va2 =

 β0

γ1

2η2 + 1
12k2m4 · a0

 , vb2 =

 β0

γ1

2η2 + 1
12k2n4 · b0

 , vc2 =

 β0

γ1

2η2 + 1
12k2r4 · c0


where m4 = (m4

1,m
4
2,m

4
3). From now on we will denote mi = (mi

1,m
i
2,m

i
3) and

we will have analogous notation for ni and ri. Using these formulas in the extra
condition (26), we obtain a system of three equations. As before, we can rearrange
these equations to look like the system

(31) M

 γ1

2η2

−3!δ3

 =



1

20
m5A

−1(m)e1 −
M3

12
m4A

−1(m)e1

1

20
n5A

−1(n)e1 −
N3

12
n4A

−1(n)e1

1

20
r5A

−1(r)e1 −
R3

12
r4A

−1(r)e1


k2

where

M =

M2 M3 1
N2 N3 1
R2 R3 1


Since γ3 = m1m2m3

6 , at first look it seems as if the numbers (m1,m2,m3) =
(−1,−2, 3), (n1, n2, n3) = (−1, 2,−3) and (r1, r2, r3) = (1,−2,−3) would be good
choices for a generalization of the pentagram map (it would actually be a direct
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generalization of the map in proposition 3.1). As we see next, the situation is more
complicated.

Lemma 4.5. Assume m2
1 + m2

2 + m2
3 = n2

1 + n2
2 + n2

3 = r2
1 + r2

2 + r2
3. Then the

continuous limit of Γε is not the AGD flow and it is not biHamiltonian with respect
to the AGD bracket.

Proof. We already have A = B = 0 and γ2 = 0. Equation (31) allows us to solve for
γ1. After that, γ0 will be determined, as usual, by the normalization equation (2).
Direct calculations determine m5A

−1(m)e1 = M1M5 and m4A
−1(m)e1 = M1M3,

where M1,M2,M3 are as in (29) and where

(32) M5 = m2
1 +m2

2 +m2
3 +m1m2 +m1m3 +m2m3 = M2

3 +M2.

From here we get

1

20
M5 −

1

12
M2

3 = − 1

30
(M5 +M2) +

7

60
M2.

M5 +M2 = m2
1 +m2

2 +m2
3, and so M5 +M2 = N5 +N2 = R5 +R2 by the hypothesis

of the lemma. We have

γ1 = M1
k2

det M

− 1

30
det

M5 +M2 M3 1
N5 +N2 N3 1
R5 +R2 R3 1

+
7

60
det

M2 M3 1
N2 N3 1
R2 R3 1


=

7M1

60
k2.

Since γ3 = M1

6 we finally have that Γε is expanded as

Γε = Γ +
M1

6
(Γ′′′ +

7

10
k2Γ′ + r0Γ)ε3 + o(ε3),

where r0 is uniquely determined by (2).
Let’s now find the lifting for the projective realization of the AGD flow. From

lemma 2.4 the moving frame associated to K is given by ρ = ρ̂g where g is the
gauge matrix in the case of SL(4), given as in (9). We also know that the lifted
action of SL(4) on R4 is linear. With this information one can conclude that the
lift of the evolution (10) to R4 is of the form

Γt = ρ

(
r0

δκH

)
=
(
Γ Γ′ Γ′′ + k2Γ Γ′′′ + k2Γ′ + (k1 − k′2)Γ

)( r0

δκH

)
.

According to (17), we also know that

δκH =
δk

δκ

∗
δkH =

δk

δκ

∗
− 1

4k2

0
1

 =

 1
4k2

0
−1

 .

Therefore, the lifting of the projective realization of the AGD flow is Γt = −Γ′′′ −
3
4k2Γ′ − r0Γ, with r0 determined by (2). Although a change in the coefficient of
Γ′ seems like a minor difference, the change is in the Hamiltonian of the evolution
and any small change usually results in a system that is no longer biHamiltonian,
as it is the case here. The calculations that show that the resulting Hamiltonian
flow is no longer biHamiltonian with respect to the AGD bracket are very long
and tedious, and we are not including them here. �
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According to this lemma, in order to find a discretization of the AGD flow we
need to look for planes for which the hypothesis of the previous lemma does not
hold true. Although there might be more examples, the ansatz below provides
some of them.

Theorem 4.6. Assume (m1,m2,m3) = (−c, a, b), (n1, n2, n3) = (c,−a, b) and
(r1, r2, r3) = (c,−1, ab). Then, the map T is a discretization of the AGD flow
whenever

(33)
c− 1 + a(b− 1)

b− c
= −5

4
.

Proof. With the choices above one can check that

det

M2 M3 1
N2 N3 1
R2 R3 1

 = −2(c− a)(a− 1)(b+ 1)(b− c)

while

det

M5 M3 1
N5 N3 1
R5 R3 1

 = −2(c− a)(a− 1)(b+ 1)(c− 1 + a(b− 1)).

With this particular ansatz, the rank of (30) is maximal whenever c 6= a, a 6= 1,
b 6= −1 and b 6= c. Using the fact that

1

20
M5 −

1

12
M2

3 = − 1

30
M5 +

1

12
M2

we obtain

γ1 = − 1

30
M1

c− 1 + a(b− 1)

b− c
+

1

12
M1.

As we saw before, the lifting of the realization of the AGD flow is given by Γt =
Γ′′′ + 3

4k2Γ′ + r0Γ (after a change in the sign of t), where r0 is determined by (2).

Since γ3 = M1

6 , to match this flow we need γ1 = 1
8k2M1. That is, we need

c− 1 + a(b− 1)

b− c
= −5

4

as stated in the theorem. �

Equation (33) can be rewritten as

z + xy = 1

where z = c, x = 4a+ 5, y = 1 − b. In principle there are many choices like
c = −2, a = −2, b = 2 that solve these equations, but these are not valid choices
since the planes associated to (−c, a, b), (c, a,−b) are not well defined (they are
determined by only two points). Thus, looking for appropriate values is simple, but
we have to be careful. In particular, we cannot choose any vanishing value, since
m1m2m3 = n1n2n3 = r1r2r3 would imply that all three planes intersect at xn (the
zero value for mi, ni and ri) and T would be the identity. We also do not want
to have the condition in lemma 4.5 (hence a and b cannot be ±1), plus we want
to have the matrix (30) to have full rank, which implies c 6= a, a 6= 1, b 6= −1 and
b 6= c. A possible choice of lowest order is

a = −2, b = 3, c = −5
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and other combinations involving higher values. Choosing this simplest value, we
see that the planes are Π1 = 〈xn−2, xn+3, xn+5〉, Π2 = 〈xn−5, xn+2, xn+3〉 and Π3 =
〈xn−5, xn+1, xn−6〉, which shows just how precise one needs to be when choosing
them. Of course, these are not necessarily the simplest choices, just the ones given
by our ansatz. Using a simple C-program and maple one can show that 6 is the
lowest integer value that needs to be included, so our choice is in fact minimal in that
sense (there is no solution if we only use −5,−4 . . . , 4, 5 for mi, ni and ri). One
can check that, for example, Π1 = 〈xn+2, xn−3, xn+5〉, Π2 = 〈xn+5, xn−2, xn+3〉,
Π3 = 〈xn+5, xn+1, xn+6〉 and Π1 = 〈xn+1, xn−3, xn−4〉, Π2 = 〈xn−1, xn−3, xn+4〉
and Π3 = 〈xn+1, xn+2, xn+6〉 are also choices.

It will be valuable and very interesting to learn the geometric significance (if
any) of this condition and whether or not the map T , when written in terms of the
projective invariants of elements of Pn, is also completely integrable as it is the case
with the pentagram map. Learning about their possible discrete structure might
aid the understanding of condition (33) and would greatly aid the understanding
of the general case. Doing this study is non-trivial as even the geometric (versus
algebraic) projective invariants of twisted polygons in three dimensions are not
known.

4.2.2. The RP4 case. One thing we learned form the RP3 case is that choosing
an appropriate set of linear subspaces intersecting to match discretizations of bi-
Hamiltonian flows involve solving Diophantine problems. This will also become
clear next. These Diophantine problems grow increasingly complicated very fast,
but, nevertheless they seem to be solvable. Our calculations are telling: a general
Diophantine problem of high order is unlikely to have solutions. Ours can be sim-
plified using the symmetry in the values mi, ni and ri to reduce the order as we
write them in terms of elementary symmetric polynomials. Still, as we see next, in
cases when, based on degree and number of variables, one should expect a solution,
we have none. In other apparently similar cases we have an infinite number. Hence,
the fact that our cases have solutions hints to a probable underlying reason to why
they do. In this section we find a discretization for the second integrable AGD flow
in RP4, and we will draw from it a conjecture for the general case.

Proposition 4.7. The projective geometric realization of the AGD Hamiltonian
system associated to the Hamiltonian

H(L) =

∫
S1

res(L3/5)dx

has a lift given by

(34) Γt = Γ′′′ +
27

5
k3Γ′ + r0Γ

where again r0 is determined by the property (2) of the flow.

Proof. As before, we need to find δkH, change the variable to δκH (to relate it to
the coefficients of the realizing flow), and write these coefficients in terms of the
Wilczynski invariants ki.

If L1/5 = D + `1D
−1 + `2D

−2 + `3D
−3 + o(D−3), then

L3/5 = D3 + 3`1D + 3(`′1 + `2) + (`′′1 + 3`′2 + 3`21 + 3`3)D−1 + o(D−1)
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so that

H(L) =

∫
S1

res(L3/5)dx = 3

∫
S1

(`21 + `3)dx.

Using (L1/5)5 = L we find directly that

`1 =
1

5
k3, `3 =

1

5
(k1 − 2k′2 + 2k′′3 + 2k2

3).

Therefore

H(L) =
3

5

∫
S1

(
11

5
k2

3 + k1

)
dx

and δkH = 3
5 (e3 + 22

5 k3e1). In what follows we can ignore the 3
5 factor since it will

not affect the main (and consequent) result.
Using expression (18) and Lemma 2.4 we get

δk

δκ
=


−1 0 0 0
−3D −1 0 0
−3D2 −2D −1 0
−D3 −D2 −D −1

 .

δκH =

(
δk

δκ

)∗
δkH =


− 22

5 k3

0
−1
0

 .

Finally, the matrix g appearing in Lemma 2.4 is in this case given by (9) and the
lifting of the projective realization associated to the H Hamiltonian evolution is
given by

Γt = (Γ,Γ′,Γ′′,Γ′′′,Γ(4))g

(
r̂0

δκH

)
= −Γ′′′ − 27

5
k3Γ′ − r0Γ,

where r0 = −r̂0 + k2 − 2k′3. A simple change of sign in t will prove the theorem.
�

There are 4 possible combinations of linear submanifolds in RP4 intersecting at
a point: four 3-dim subspaces, two 2-dim planes, one 2-dim plane and two 3-dim
subspaces and one line and one 3-dim subspace. These correspond to the following
subspaces through the origin in R5 that generically intersect in a line:

(1) Four 4-dimensional subspaces.
(2) Two 3-dimensional subspaces.
(3) One 3-dimensional subspace and two 4-dimensional ones.
(4) One 2-dimensional subspace and one 4-dimensional one.

Case (4) corresponds to the intersection of a projective line and hyperplane, the
case we studied first. Case (1) is a natural choice for the fourth order AGD flow,
and one can easily check that it cannot have a third order limit but a fourth order
one. Therefore, we have choices (2) and (3) left.

Theorem 4.8. If a nondegenerate map T : PN → PN is defined using combination
(2) in RP4 and its lifting has a continuous limit of the form Γt = aΓ′′′ + bΓ′ + cΓ,
then b = 3

10a and c is determined by (2).
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Proof. Two 3-dim subspaces through the origin in R5 are determined by three
points each. Assume xn+mi , i = 1, 2, 3 are the points in one of them, while xn+ni

are the points in the other one. If Γ(x+ εr) = x(n+ r) for any r, then Γε belongs
to the intersection of these two subspaces whenever

Γε = a1Γ(x+m1ε) + a2Γ(x+m2ε) + a3Γ(x+m3ε)(35)

= b1Γ(x+ n1ε) + b2Γ(x+ n2ε) + b3Γ(x+ n3ε)(36)

If, as before, Γε = Γ+εA+ε2B+ε3C+ε4D+ε5E+ε6F+o(ε6) and A =
∑4
i=0 αiΓ

(i),

B =
∑4
i=0 βiΓ

(i), C =
∑4
i=0 γiΓ

(i), D =
∑4
i=0 δiΓ

(i), E =
∑4
i=0 ηiΓ

(i) and F =∑4
i=0 νiΓ

(i) then α2 = α3 = α4 = 0 = β3 = β4 = γ4 and (35) can be split into

1 + α0ε+ β0ε
2 + γ0ε

3 + o(ε3) = a1 + a2 + a3 + o(ε3) = b1 + b2 + b3 + o(ε3)

α1 + εβ1 + ε2γ1 + o(ε2) = m1 · a + o(ε2) = n1 · b + o(ε2)

β2 + εγ2 + ε2δ2 + o(ε2) =
1

2!
m2 · a + o(ε2) =

1

2!
n2 · b + o(ε2)

corresponding to the coefficients of Γ, Γ′ and Γ′′ and

γ3 + εδ3 + ε2η3 + o(ε2) =
1

3!
m3 · a−

ε2

5!
k3m5 · a + o(ε2)

=
1

3!
n3 · b−

ε2

5!
k3n5 · b + o(ε2)

δ4 + εη4 + ε2ν4 + o(ε2) =
1

4!
m4 · a−

ε2

6!
k3m6 · a + o(ε2)

=
1

4!
n4 · b−

ε2

6!
k3n6 · b + o(ε2)

corresponding to the coefficients of Γ(3) and Γ(4). Here we have used the relation
Γ(5) = −k3Γ′′′−k2Γ′′−k1Γ′−k0Γ and we have used the notation mr = (mr

1,m
r
2,m

r
3),

as we did in the previous case. Likewise with n.
If, as before, we use the notation a =

∑∞
j=0 ajε

j , b =
∑∞
j=0 bjε

j , then the first
three equations completely determine ai and bi, i = 0, 1, 2. Indeed, they are given
by ai = A(m)−1vi, bi = A(n)−1vi, where A(s) is given as in (27) and where

(37) v0 =

 1
α1

2!β2

 , v1 =

 α0

β1

2!γ2

 , v2 =

 β0

γ1

2!δ2

 .

The last four equations above are extra conditions that we need to impose on these
coefficients. They can be rewritten as

3!γ3 = m3 · a0 = n3 · b0(38)

3!δ3 = m3 · a1 = n3 · b1(39)

3!η3 = m3 · a2 −
3!

5!
k3m5 · a0 = n3 · b2 −

3!

5!
k3n5 · b0(40)

and

4!δ4 = m4 · a0 = n4 · b0(41)

4!η4 = m4 · a1 = n4 · b1(42)

4!ν4 = m4 · a2 −
4!

6!
k3m6 · a0 = n4 · b2 −

4!

6!
k3n6 · b0.(43)
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If as before we write (m3
1,m

3
2,m

3
3)A(m)−1 = (M1,M2,M3), where Mi are the

negative of the basic symmetric polynomials as shown in Lemma 4.4, then equation
(38) imply

(
M1 M2 M3

) 1
α1

2!β2

 =
(
N1 N2 N3

) 1
α1

2!β2

 = 3!γ3.

Since our continuous limit needs to be third order, and hence appearing in C, to
have the proper continuous limit we need A = B = 0, thus α1 = β2 = 0 and
M1 = N1 = 3!γ3.

From the proof of Lemma 4.5 and direct calculations, we know that m4A(m)−1 =
(M1M3,M4,M5), where M4 = −(m1 + m2)(m2 + m3)(m1 + m3) = M3M2 + M1

and M5 = M2
3 +M2 is as in (32). Therefore, equation (41) can be rewritten as

(
M1M3 M4 M5

) 1
α1

2!β2

 =
(
N1N3 N4 N5

) 1
α1

2!β2

 = 4!δ4

from which we can conclude that, if α1 = 0 = β2, then M1M3 = N1N3, that is
M3 = N3. (Notice that M1 = N1 6= 0 since M1 = N1 = 0 implies both planes
intersect at xn and T is the identity.)

In order to have (34) as continuous limit we will need v1 = 0 which implies
a1 = b1 = 0. Using (39) and (42) we get δ3 = η4 = 0.

Finally v2 = γ1e2 + 2!δ2e3 and m5A
−1(m)e1 = M1M5 = M1(M2

3 + M2) as in
the proof of Lemma 4.5. Therefore (40) becomes

3!η3 = M2γ1 + 2!M3δ2 −
3!

5!
M1(M2

3 +M2) = N2γ1 + 2!N3δ2 −
3!

5!
N1(N2

3 +N2).

Since we already know that M1 = N1 and M3 = N3, this equation becomes

M2(γ1 −
3!

5!
M1) = N2(γ1 −

3!

5!
M1).

From here, either γ1 = 3!
5!M1 = (3!)2

5! γ3, resulting in the continuous limit displayed
in the statement of the Theorem, or M2 = N2. But, from Lemma 4.4 conditions
M1 = N1, M2 = N2 and M3 = N3 imply m1 = n1,m2 = n2 and m3 = n3. This is
a degenerate case, the three planes are equal. �

Theorem 4.9. There exists a map T : PN → PN in RP4 defined using option (3)
whose continuous limit (as previously defined) is integrable and has a lifting given
by (34). The map is not unique.

Before we prove this theorem, let me point at the apparent pattern we see here:

The L
2

m+1 -Hamiltonian flow, m ≥ 2, is the continuous limit of a map obtained

when intersecting a 1-dim line and a (m − 1)-dim subspace of RPm. The L
3

m+1 -
Hamiltonian flow, m = 3, 4, is the continuous limit of a map defined by intersecting
one 2-dim plane and two (m− 1)-dim subspaces in RPm. This pattern leads us to
the following conjecture.

Conjecture 4.10. The AGD Hamiltonian flow associated to the L
r

m+1 –Hamiltonian
is the continuous limit of maps defined analogously to the pentagram map through
the intersection of one (r− 1)-dimensional subspace and r− 1 (m− 1)-dimensional
subspaces of RPm.
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Proof of the theorem. The proof is a calculation similar to the one in the previous
Theorem. Because of the symmetry in the integers mi, ni and ri, we will write the
equations for the planes in terms of the elementary symmetric polynomials Mi, Ni
and Ri. This will both simplify the equations and will reduce their order, making
it easier to solve.

If we use the notation in Theorem 4.8 we get similar initial equations, except
for the fact that the plane corresponding to integers m1,m2,m3 and associated to
a = (a1, a2, a3) coefficients is three dimensional, while the ones associated to inte-
gers n1, n2, n3, n4 and r1, r2, r3, r4 and associated to b and c are four dimensional,
b = (b1, b2, b3, b4), c = (c1, c2, c3, c4). Therefore, instead of (37) and subsequent
equations, we have

1 + α0ε+ β0ε
2 + γ0ε

3 + o(ε3) = a1 + a2 + a3 + o(ε3)

= b1 + b2 + b3 + b4 + o(ε3)

= c1 + c2 + c3 + c4 + o(ε3)

α1 + εβ1 + ε2γ1 + o(ε2) = m1 · a + o(ε2) = n1 · b + o(ε2) = r1 · c + o(ε2)

β2 + εγ2 + ε2δ2 + o(ε2) =
1

2!
m2 · a + o(ε2)

=
1

2!
n2 · b + o(ε2) =

1

2!
r2 · c + o(ε2)

corresponding to the coefficients of Γ, Γ′ and Γ′′ and

γ3 + εδ3 + ε2η3 + o(ε2) =
1

3!
m3 · a−

ε2

5!
k3m5 · a + o(ε2)

=
1

3!
n3 · b−

ε2

5!
k3n5 · b + o(ε2)

=
1

3!
r3 · c−

ε2

5!
k3r5 · c + o(ε2)

δ4 + εη4 + ε2ν4 + o(ε2) =
1

4!
m4 · a−

ε2

6!
k3m6 · a + o(ε2)

=
1

4!
n4 · b−

ε2

6!
k3n6 · b + o(ε2)

=
1

4!
r4 · c−

ε2

6!
k3r6 · c + o(ε2)

corresponding to the coefficients of Γ′′′ and Γ(4). Using the first three equations we
can solve for a0, a1 and a2 as ai = A−1

3 (m)vi, where the subindex in the A3(m)
refers to the size of the Vandermonde matrix, and where vi are as in (37). Using
the fourth equation for a we can solve for γ3, δ3 and η3, values that we will use in
our next step. Using the first four equations for b and c, we can solve for bi and
ci, i = 0, 1 as bi = A−1

4 (n)wi, ci = A−1
4 (r)wi with

w0 =


1
α1

2!β2

3!γ3

 , w1 =


α0

β1

2!γ2

3!δ3


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and we can also solve for b2 = A−1
4 (n)wb2, c2 = A−1

4 (r)wc2 where

wb2 =


β0

γ1

2!δ2
3!η3 + 3!

5!k3n5A
−1
4 (n)w0

 , wc2 =


β0

γ1

2!δ2
3!η3 + 3!

5!k3r5A
−1
4 (r)w0

 .

Substituting all these values in the last equation gives us a number of equations
that will help us identify the parameter values for αi, βi, γi, etc.

There are three zeroth order equations for δ4. We can eliminate δ4 to obtain
the following two equations for α1 and β2. (The calculations are a little long, but
otherwise straightforward.)

M1M3 − (N1 +N4M1) + [M4 − (N2 +N4M2)]α1 + 2![M5 − (N3 +N4M3)]β2 = 0

M1M3 − (R1 +R4M1) + [M4 − (R2 +R4M2)]α1 + 2![M5 − (R3 +R4M3)]β2 = 0

where Mi i = 1, 2, 3, Ni and Ri, i = 1, 2, 3, 4 are as in lemma 4.4, and M4 =
M3M2 + M1, M5 = M2

3 + M2 were given in the proof of the previous theorem.
From here, conditions

(44) M1M3 = N1 +N4M1, M1M3 = R1 +R4M1

together with the matrix

(45) M =

(
M4 − (N2 +N4M2) M5 − (N3 +N4M3)
M4 − (R2 +R4M2) M5 − (R3 +R4M3)

)
having full rank, will ensure that α1 = β2 = 0. As a result of this we have

v0 = e1, γ3 =
1

3!
M1, w0 = e1 +M1e4.

There are also three first order equations for η4. Notice that α0 = 0 once we impose
condition (2) to Γε. Again, after some rewriting we get the system

0 = [M4 − (N2 +N4M2)]β1 + 2![M5 − (N3 +N4M3)]γ2

0 = [M4 − (R2 +R4M2)]β1 + 2![M5 − (R3 +R4M3)]γ2

and hence the rank condition on matrix (45) will ensure β1 = γ2 = 0. With these
values we also get v1 = 0, δ3 = 0 and w1 = 0. Using the normalization of Γε again
we obtain β0 = 0, and from here

A = B = 0, C =
1

3!
Γ′′′ + γ1Γ′ + γ0Γ.

We are left with the determination of γ1, since γ0 is determined by normalizing
conditions.

From now on, let us assume that both the n-plane and the r-plane include xn,
so that we can assume that n4 = 0 = r4. In such case, N1 = R1 = 0 and so
conditions (44) becomes M3 = N4 = R4. With this assumption, and using the fact
that M4 = M1 +M3M2 and M5 = M2

3 +M2, the matrix (45) becomes

(46) M =

(
M1 −N2 M2 −N3

M1 −R2 M2 −R3

)
.

Finally, we use the equations involving ν4. We have three of them, and so we can
get rid of ν4 and obtain a system of equations for γ1 and δ2. The calculations are a
little long, but they are straightforward if we use the following relations (themselves
obtained straightforwardly).
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m6A
−1
3 (m)e1 = M1(M3

3 + 3M1 + 2M2M3)

n5A
−1
4 (n)e1 = N1N4

n5A
−1
4 (n)e4 = N2

4 +N3

n6A
−1
4 (n)e1 = N1(N2

4 +N3)

n6A
−1
4 (n)e4 = N3

4 + 2N4N3 +N2

and the fact that N4 = M3. The resulting system is given by M

(
γ1

2!δ2

)
= N ,

where M is the matrix in (46) and where

N = − 1

60
k3M1

(
M3(N3 −M2) + 2(N2 − 3M1)
M3(R3 −M2) + 2(R2 − 3M1)

)
.

Clearly, γ1 is then given by

γ1 = − 1

60 detM
k3M1 det

(
M3(N3 −M2) + 2(N2 − 3M1) M2 −N3

M3(R3 −M2) + 2(R2 − 3M1) M2 −R3

)
.

If we now impose the condition

γ1 =
27

5
γ3 =

27

6!5
M1k3

we get the equation

20 det

(
M3(N3 −M2) + 2(N2 − 3M1) M2 −N3

M3(R3 −M2) + 2(R2 − 3M1) M2 −R3

)
= −9 det

(
M1 −N2 M2 −N3

M1 −R2 M2 −R3

)
This equation can be easily programed. Using Maple to calculate the equations
and a simple C-program to solve them, one can check that the smallest solutions
involve integer values up to 7. Some of these solutions are

m1 = 7,m2 = −1,m3 = −7, n1 = 3, n2 = −1, n3 = −3, r1 = 6, r2 = −3, r3 = −4,
m1 = 7,m2 = −1,m3 = −7, n1 = 3, n2 = −1, n3 = −3, r1 = 4, r2 = −2, r3 = −3
m1 = 7,m2 = −1,m3 = −7, n1 = 6, n2 = −3, n3 = −4, r1 = 4, r2 = −2, r3 = −3.

�
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