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Abstract. In this paper we describe a family of compatible Poisson structures

defined on the space of coframes (or differential invariants) of curves in flat
homogeneous spaces of the form M ∼= (G n IRn)/G where G ⊂ GL(n, IR)

is semisimple. This includes Euclidean, affine, special affine, Lorentz, and

symplectic geometries. We also give conditions on geometric evolutions of
curves in the manifold M so that the induced evolution on their differential

invariants is Hamiltonian with respect to our main Hamiltonian bracket.

1. Introduction

Most known completely integrable systems can be integrated with the use of two
Hamiltonian structures. It is well known that, if the system is Hamiltonian with
respect to two compatible Hamiltonian structures (that is, it is biHamiltonian) and
one structure is non-degenerate, a recursion operator can be found and with it a
sequence of integrals of the flow. This family of preserved quantities integrates the
system (see [Ma]).

The relationship between completely integrable systems and classical geometry
of curves was fully established when Hasimoto [Ha] showed how the curvature and
torsion of the Vortex filament flow satisfied a Nonlinear Shrödinger equation, a well
known integrable system. Furthermore, is was pointed out ([LP1], [LP2]) that one
of the Hamiltonian structures used to integrate the NLS flow could be defined using
the Euclidean geometry of the flow itself. This situation was also known to be true
for a family of projective flows linked to KdV type equations ([DS], [M4]). That is,
if a flow is invariant under the action of the group (G = O(n) in the Euclidean case
and G = PSL(n, IR) in the projective case) the question of integrability could be
shifted to a question of integrability of the flow of the differential invariants (what
we call the invariantization of the flow) and, with it, to the construction and study
of compatible Hamiltonian structures in this space. Several integrable systems have
been obtained this way by looking at the evolution of the differential invariants of
curves in different geometries and by trying to find known completely integrable
systems among them (see [SW], [KQ1], [KQ2] and references within) although there
was no study of the Hamiltonian structures themselves or of the relationship of the
Hamiltonian structures to geometry.

In a series of recent papers, the author identified Hamiltonian structures defined
by the geometry of curves in Euclidean and conformal flat spaces ([M2], [M3]).
The present paper generalizes the construction done in [M3] to obtain a family of
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Hamiltonian structures associated to the geometry of curves in a flat homogeneous
space of the form (Gn IRn)/G with G ⊂ GL(n, IR) semisimple. This includes Eu-
clidean, affine, special affine, Lorentz and symplectic geometries among others. The
condition of semisimplicity is fundamental to the construction of the bracket, but
the requirement that the space is flat is included because of the lack of knowledge
on what the precise role of the curvature in the production of Poisson brackets is.
The basic idea is that one can find a foliation Φ in Lg∗ (the space of loops on the
dual of the Lie algebra g) and an open set U ⊂ Lg∗ such that the quotient U/Φ is
identified locally with the space of differential invariants of curves in (Gn IRn)/G
(Theorem 4). There are well-known compatible Poisson brackets defined on Lg∗
and we show that they can be Poisson reduced to the quotient U/Φ, generating a
family of compatible Poisson structures in the space of differential invariants (The-
orems 5 and 6). Among the structures in this family, the one obtained when we
reduce the so-called Kac-Moody Lie-Poisson structure is directly linked to flows
of geometric evolutions in (G n IRn)/G. In fact, it has been suggested that the
invariantization of the Euler–Lagrange equation could be directly related to this
special Poisson bracket. We give conditions on geometric evolutions in (Gn IRn)/G
ensuring that the corresponding invariantization is Hamiltonian with respect to
the reduced Poisson bracket (Theorem 8). Theorem 1 also establishes the relation
between classical and group based moving frames.

2. Preliminaries

2.1. Moving frames. The classical concept of moving frame is that of an invariant
curve in the frame bundle along a curve u in the manifold. Cartan’s original idea was
that differentiating such a classical moving frame will produce enough differential
invariants to determine the curve itself. In fact, if one thinks briefly about the
Euclidean case one of the differential invariants (the arc-length) is needed in advance
in order to produce the classical Euclidean moving frame and cannot be produced
by it. This problem appears again in conformal geometry, where a classical frame
can only generate n − 2 of the n generating differential invariants (see [F], the
conformal arc-length is one of two invariants that the classical frame equation fails
to produce). On the other hand, a different concept of moving frame, that of an
equivariant map defined on the jet space of the manifold, produces a complete
system of generating differential invariants, as it was shown in [FO1] and [FO2].

Let M be a manifold and let J (k)(M) be the kth order jet bundle or set of
equivalence classes of curves under the equivalence relation of kth order contact.
If we introduce coordinates u = (uα) on M, x is the parameter and we denote

by uαr = druα

dxr , we can introduce coordinates in J (k)(M) given by (x, u(k)) =
(x, uα, uα1 , u

α
2 , . . . , u

α
k ).

Definition 1. If a transformation group G acts on M, the action preserves the
order of contact between curves and so there is an induced action in J (k)(M) called
the prolonged action or kth prolongation. It is locally given by

g · (x, u(k)) = g · (x, u, u1, . . . , uk) = (x, g · u, (g · u)1, . . . , (g · u)k).

A (kth order) differential invariant is a local scalar function I : J (k)(M) → IR
invariant under the prolonged action of G, that is, such that I(g · (x, u(k))) =
I(x, u(k)) for all g ∈ G.
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A kth order relative differential invariant with Jacobian weight is a vector func-
tion V : J (k)(M)→ IRn such that

V
(
g · (x, u(k))

)
= Jg(u)V (x, u(k))

where Jg is the Jacobian matrix of the map φg : M → M given by φg(u) =
g · u. That is, Jg(u) = dφg(u) (see [O] for more details on the Jacobian multiplier
representation).

A kth order left (resp. right) moving frame is a smooth G-equivariant map

ρ : J (k)(M)→ G

where we consider the left (resp. right) action of G on itself and the prolonged
action of the group on J (k)(M).

A theorem by Ovsiannikov [Ov], corrected by Olver in [O2], states that if a
group acts locally effectively on subsets, then there exists an integer k0 such that
the prolonged action of the given group is locally free on an open and dense subset
of the k0th order jet space. This subset is formed by the so called regular jets.
A theorem in [O] states that a moving frame exists locally if, and only if G acts
freely and regularly in a neighborhood of the point. Hence, one can always raise
the order of the jet space enough to guarantee the existence of moving frames on
a neighborhood of regular jets (regular jets correspond to what it is usually called
non-degenerate curves in a given geometry – curves for which differential invariants
can be found). Fels and Olver ([FO1], [FO2]) have recently developed a general
method to generate explicitly moving frames, including the frames presented here.
One of the most important features of their method is that right moving frames can
be found by solving the so called normalization equations, equations of the form

g · (u, u1, . . . , uk) = (c0, c1, . . . , ck)

for some constant vectors ci ∈ IRn. The discussion above guarantees that, if we
raise the order k high enough and for a proper choice of constants ci’s, the equations
will determine g and the resulting element

g = ρ(u(k))

will be a right moving frame. A letf moving frame (we will need left moving frames
for our study) will be given by its inverse. See [FO1] and [FO2] for more details.

One of the many advantages of this kind of moving frames (I will refer to them
as group based moving frames) versus the classical kind is as follows.

Definition 2. Suppose G acts freely and regularly on an open set of J (k)(M). Let
ρ be a left (resp. right) moving frame and let ξ = ω(ρx) be the pull-back of the left
(resp. right) invariant Maurer–Cartan form on G. Then ξ is called the left (resp.
right) moving coframe associated to ρ.

The entries of a moving coframe provides a generating set of differential invariants
although there could be algebraic relations among them (see [FO1], [FO2]). If G is
a matrix group, the moving coframe will be the element in the algebra defining the
differential equation satisfied by ρ, that is, the group based version of the Frenet
equations. But, in the group based version all differential invariants appear in
the entries of the moving coframe, including, in the Euclidean case, the arc-length
(see [FO2]) and, in the conformal case, the two independent differential invariants
missing in the classical frame equation in [F] (see [M2]).
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Classical frames and relative differential invariants with Jacobian weight are
the same concept, the first one emphasizes geometric properties while the second
emphasizes the invariance under the prolonged action (see [O]). The following
theorem describes the relation between classical and group based moving frames.
This relation was described by the author in [M1] for flat semisimple homogeneous
spaces.

Theorem 1. Assume M ∼= G/H is a homogeneous space and let o ∈ M be the
class of H. Let u : I →M be a non-degenerate curve and let

ρ : J (m)(M)→ G

be a group based left moving frame such that ρ(u(m)) · o = u. Consider dφρ(u(m))(o)

(the Jacobian matrix of φρ(u(m)) at o) as an element in GL(n, IR). Then, the matrix

dφρ(u(m))(o) contains in columns a classical moving frame. That is, dφρ(u(m))(o) is
a non-degenerate matrix of relative differential invariants with Jacobian weight.

Proof. The proof is very simple. Since ρ is a left moving frame, for any g ∈ G

ρ(g · u(m)) = gρ(u(m)).

Now, since ρ(u(m)) · o = u and ρ(g · u(m)) · o = g · u for all g ∈ G, we obtain by
differentiation

dφρ(g·u(m))(o) = dφg(u)dφρ(u(m))(o) = Jgdφρ(u(m))(o).

It is trivial to see that each column of dφρ(g·u(m))(o) is simply the corresponding

column in dφρ(u(m))(o) with u(m) substituted by g · u(m). Hence, each column

in dφρ(u(m))(o) is a relative differential invariant with Jacobian weight and so the
theorem follows. ♣

2.2. Poisson reduction. Let G ⊂ GL(n, IR) be a semisimple Lie group, and g
its Lie algebra. Let LG = C∞(S1, G) be the group of loops on G and let Lg =
C∞(S1, g) be its Lie algebra. Let Lg∗ = C∞(S1, g∗) be the regular part of the
dual, dense in the dual of the algebra of loops. There exists a well known Poisson
bracket defined on this space. If H and G are two functionals defined on Lg∗ and
B is the Killing form of g, then their Poisson bracket is given by the formula

(2.1) {H,G}(M) =

∫
S1

B

(
δG
δL
,

(
δH
δL

)
x

+ ad∗(
δH
δL

)(M)

)
dx,

where δH
δL is the variational derivative of H at M , M ∈ Lg∗.

For us, the fundamental property of this Poisson bracket is the fact that its
symplectic leaves (the leaves where the flow of Hamiltonian systems lie) coincide
with the orbits in Lg∗ under the action of the group of loops LG given by

(2.2) A(g)(M) = g−1gx +Ad∗(g)M

whose infinitesimal action of the Lie algebra Lg is given by

(2.3) a(N)(M) = Nx + ad∗(N)(M).

See [PS] for more information.
This action can also be viewed as the action on solutions of

(2.4)
dX

dx
= XM
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where M ∈ Lg∗ is identified with a matrix the usual way. Indeed, if Y = Xg with
g ∈ LG, then the equation (2.4) associated to Y is dY

dx = Y A(g)M . Notice that,
if M is periodic, a solution X will have a monodromy, that is, there exists Γ ∈ G
such that X(x+ p) = ΓX(x) for all x, where p is the period.

The bracket (2.1) is known to be compatible with the family of brackets

(2.5) {H,G}0(M) =

∫
S1

B

(
δG

δL
, ad∗

(
δH
δL

)
(H0)

)
dx

for any choice of constant element H0 ∈ g∗.
We will now describe the Poisson reduction procedure. It was originally described

in [MR]. We have modified the statement to make it simpler since the general
version is not needed here. Let (P, {, }) be a Poisson manifold and let E ⊂ TP be
a subbundle of the tangent to P. Assume the following conditions are satisfied:

(a) E ∩ TP is integrable and defines a foliaton on P. We will call the foliation
Φ.

(b) The space of leaves is a manifold and π : P → P/Φ is a submersion.
(c) E leaves {, } invariant. That is, if H,G : P → IR are smooth functions on P

with differentials vanishing on E, then the differential of {H,G} also vanish on E.
One says that E preserves the Poisson bracket {, }.

Definition 3. We say (P, E, {, }) is Poisson reducible if P/Φ has a Poisson struc-
ture, {, }R such that for any smooth h, g : P/Φ→ IR and for any smooth extensions
H,G of h ◦ π and g ◦ π with differentials vanishing on E we have

(2.6) {H,G} = {h, g}R ◦ π.

The following theorem can be found in [MR] for the finite dimensional case,
although it can be applied to infinite dimensional cases, as the authors state.

Theorem 2. (Reduction Theorem) Assume (P, E, {, }) satisfy assumptions (a)-
(b)-(c). Then, (P, E, {, }) is Poisson reducible.

3. Poisson brackets on the space of differential invariants

In this section we will describe how the Poisson brackets (2.1) and (2.5) reduce
to the space of moving coframes locally around a curve u. The idea is that, locally,
any element in an open set U of Lg∗ can be taken to a moving coframe via the
action (2.2) where g is in LN , a certain subgroup of LG. First of all we proceed to
identify the key elements in the reduction.

Assume G is a semisimple matrix group and assume the nonsemisimple group
Gn IRn acts on IRn as

(g, v) · u = gu+ v.

The group GnIRn can be viewed as the subgroup of GL(n+1, IR) given by elements

of the form

(
1 0
v g

)
acting on IRn as(

1 0
v g

)(
1
u

)
=

(
1

gu+ v

)
.

Hence, a moving frame along a a curve u : J → IRn would be of the form

(3.1) ρ =

(
1 0
ρu ρG

)
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and its associated moving (left) coframe will be given by

(3.2) ρ−1ρx =

(
0 0

ρ−1
G (ρu)x ρ−1

G (ρG)x

)
.

Theorem 3. There exists a left moving frame ρ such that ρu = u and such that
ρ−1
G (ρu)x contains all first order differential invariants.

Proof. The proof of this theorem is based on the application of Fels and Olver’s
normalization procedure. Instead of finding a left moving frame we will find first a
right invariant one by solving Fels and Olver’s normalization equations. The zero
order normalization equation is given by

ρ̂ · u = gu+ v = 0

which is solved choosing v = −gu. The first order normalization equation is given
by

ρ̂ · u1 = gu1 = c1

for some nonzero constant c1 ∈ IRn. In some cases (for example G = O(n) or
G = O(n − 1, 1)) this equation does not have maximal rank and so gu1, after
g = ρ̂(u(k)) has been found, is not in general c1 but rather the first order differential
invariants (see [FO1], [FO2]). As indicated in the preliminaries, completing the
normalization procedure results in the right invariant moving frame

ρ̂ =

(
1 0
−gu g

)
.

The left invariant one will be its inverse, namely

ρ =

(
1 0
ρu ρG

)
=

(
1 0
u g−1

)
.

Clearly ρ−1
G (ρu)x = gu1 = c1 and so the theorem is proved. ♣

Example 1. Our running example in this paper will be G = SL(2, IR) or the
geometry of special affine transformations on the plane. In this case, the zero order
normalization equations (

1 0
v F

)(
1
u

)
=

(
1
0

)
determine v = −Fu. If we denote uk = dku

dxk
and if {e1, e2} is the usual basis of IR2,

then the first order normalization equations(
1 0
v F

)(
0
u1

)
=

(
0
e1

)
produce F−1e1 = u1. The second order normalization equations(

1 0
v F

)(
0
u2

)
=

0
0
∗


and the condition F ∈ SL(2, IR) determine F−1e2 = u2

d where d = det(u1, u2)
(∗ above denotes an equation we are not using to normalize). Therefore, the left
moving frame is given by

ρ =

(
1 0

−F−1v F−1

)
=

(
1 0 0
u u1

u2

d

)
.
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The SL(2, IR) block provides a standard moving frame along the curve, namely
{u1,

u2

d }. A nondegenerate curve is one for which d 6= 0 and we can assume that
d > 0. Finally, the moving coframe is given by

ρ−1ρx =

0 0 0

1 0 det(u3,u2)
det(u1,u2)

0 det(u1, u2) 0

 .

Clearly k1 = det(u1, u2) = d and k2 = det(u3,u2)
det(u1,u2) are two generating differential

invariants of the action. Invariant k1 is the affine arc-length.

Assume that the first order differential invariants of the curve are all constant
either because the prolonged group action is transitive on an open subset of J1,
so there are no first order differential invariants (such is the case in our running
example) or because we can make them somehow constant. In all known cases this
can be achieved by choosing x to be a special parameter of arc–length type (such
is the case in Euclidean geometry where the order of the arc-length is one). Under
these assumptions ρ−1

G (ρu)x = Λ ∈ IRn. The subgroup we will use for our reduction
is defined as LN , where N ⊂ G is the stabilizer of Λ, that is

(3.3) N = {g ∈ G such that gΛ = Λ}.

Let E be the distribution defined by the Hamiltonian vector fields ξH, Hamiltonian
with respect to the bracket (2.1), and such that δH

δM (M) ∈ Ln, where n is the Lie
algebra of N . It is known that E is integrable and its leaves are the LN–orbits of
the action (2.2).

Let K be the set of elements of the form ρ−1
G (ρG)x, where ρG is defined by the

moving frame (3.1) associated to curves locally in a beighborhood of u.

Theorem 4. There exists an open subset of Lg∗, U , such that U/E ∼= K

Proof. We will show that, in an open set of Lg∗, any point is taken to K by the
action (2.2) of a unique element in LN . For convenience we will identify g with g∗

using the non-degenerate Killing form.
Let m ∈ Lg∗ and let ρ(x) ∈ G be such that ρ−1ρx = m. To obtain ρ we

would need to extend m to a left invariant vector field in the group and solve the
associated equations. Once we have obtained ρ we choose u to be a non-degenerate
curve (that is a curve whose jet is a regular jet in J (k)(M)) such that ρΛ = u1. Due
to the continuous dependence of solutions of ODEs on parameters this condition will
determine an open set in Lg∗, locally around u since u itself is non-degenerate. Let
ρG be the G component (or classical moving frame) of the moving frame associated
to u as in (3.1). Let g0 = ρ−1ρG. We simply need to show that g0 ∈ LN and the
proof will be finished.

Indeed, since both ρ and ρG take Λ to u1, g0 will belong to the stabilizer of Λ.
Furthermore, g0 is periodic since we will prove that both ρ and ρG have the same
monodromy. Let Γ ∈ G be such that ρ(x+T ) = Γρ(x) for any x. Applied to Λ this
implies u1(x + T ) = Γu1(x) and the same property would hold for a good choice
of u. Since ρG is determined uniquely by a fixed choice of normalization constants,
we clearly obtain ρG(x+ T ) = ΓρG(x). ♣

We will next apply Theorem 2 to U and E to quickly obtain a Poisson bracket
on K. This bracket will be our main Poisson bracket among the family we will
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reduce. In fact, it can be directly linked to geometric evolutions of curves inM, as
we will see in the next section.

Theorem 5. If we choose U = P and E as above, Theorem 2 can be applied and
the bracket (2.1) is Poisson reducible to K. The resulting bracket is defined by
relation (2.6).

Proof. The application of Theorem 2 is very simple. Indeed, (a) and (b) are
known to be true so the only condition that remains to be proved is the preservation
of the bracket by E. If F and H are two Hamiltonian functionals whose variational
derivatives vanish on E, then it is immediate to check that their Hamiltonian vector
fields ξF (M) and ξH(M) vanish on n for any M ∈ U . Therefore, if a functional R
is such that its variational derivative belong to n, we have

{H,R}(M) = {F ,R}(M) = 0

for any M ∈ U . Application of Jacobi’s identity guarantees (c). ♣

Finally, we look at the brackets (2.5). They will trivially reduce to U/E, and
hence to K, for any choice of H0 ∈ g and they will provide us with a family of
Poisson brackets compatible with {, }R.

Theorem 6. The Poisson brackets (2.5) are also Poisson reducible to K for any
choice of H0 ∈ g.

Proof. Again, we only need to check that the bracket preserves the foliation.
The fact that the brackets do not depend on the point M makes the proof of this
condition trivial. ♣

Example 2. We will use here the definition of reduced Poisson bracket to calculate
them in the case G = SL(2, IR). Let h, f : K → IR be two functionals defined on K,
where

(3.4) K = {
(

0 k2

k1 0

)
, k1 > 0, k1, k2 ∈ C∞(S1)}.

Let H and F be two extensions of h and f to Lsl(2, IR)∗ constant on the leaves of
E. That is, if H = δH

δM (K) and F = δF
δM (K) are their variational derivatives at

K ∈ K, then

(3.5) Hx + [K,H] ∈ n0, Fx + [K,F ] ∈ n0

where n0 is the annihilator in sl(2, IR)∗ of the Lie subalgebra n associated to the
subgroup N defined in (3.3). In our case Λ = e1 and n0 is formed by matrices of
the form (

α β
0 −α

)
.

Now, if we assume that δh
δk =

(
h1

h2

)
, given that H is an extension, we have H =(

α h1

h2 −α

)
. Condition (3.5) results in (h2)x + 2k1α = 0, which determines α =

− 1
k1

(h2)x and hence H. Likewise for F . Using these values the reduced Poisson
bracket is given by

{h, f}R(K) =

∫
S1

B(F,Hx + [K,H])dx =

∫
S1

(
f1 f2

)
D
(
h1

h2

)
.
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where D = d
dx and

D =

(
0 0

0 k2
k1
D +D k2

k1
− 1

2D
1
k1
D 1
k1
D

)
.

If we now choose bracket (2.5) to reduce, with the choice H0 =

(
a b
c −a

)
∈ g∗,

then

{h, f}0R(K) =

∫
S1

B(F, [H0, H])dx =

∫
S1

(
f1 f2

)
D0

(
h1

h2

)
where

D0 =

(
0 −cD 1

k1
+ 2a

−c 1
k1
D − 2a b(D 1

k1
+ 1

k1
D)

)
.

The choice a = 0 produces an invertible Poisson bracket when reduced. So does
c = b = 0. As a result of our theorem {, }0R and {, }R are compatible.

4. Geometric evolutions with Hamiltonian invariantization

Assume we have a geometric evolution on (Gn IRn)/G, that is, an evolution of
curves in (Gn IRn)/G which is invariant under the action of the group Gn IRn. It
is known ([O]) that such evolution is necessarily of the form

(4.1) ut = Rr

where R is an invertible matrix containing in columns a classical moving frame
(equivalently, a nondegenerate matrix of relative differential invariants with Jaco-
bian weight), and where r is a vector of differential invariants, that is, a vector
depending on the differential invariants and their derivatives with respect to x.

Using Theorem 1 we can write explicitly the evolution induced on the moving
coframes by a geometric evolution of the form (4.1). Indeed, in our special case the
action of G on IRn is linear and so g ∈ G can be identified with the Jacobian matrix
dφg(u) ∈ GL(n, IR). Hence, if ρ : J (m)(IRn)→ Gn IRn is a left moving frame and,

locally, ρ =

(
1 0
ρu ρG

)
∈ GL(n+ 1, IR) with ρG(x, u(m)) ∈ G, then ρG contains in

columns the classical moving frame associated to the geometry.
This allows us to write the evolution induced on K by geometric evolutions the

same way we did in [M1]. Let ω be the Maurer Cartan form on Gn IRn.

Theorem 7. Let ρ be a moving frame along u and let u evolve following (4.1) where
R is given by ρG. Assume that either there are no first order differential invariants
or the parameter x can be chosen so that the first order differential invariants are
constant (for example x would be the arc-length in the Euclidean case). Assume
evolution (4.1) preserves the parameter x. Then, the component K in the moving
coframe (3.2) evolves following the equation

(4.2) Kt = Tx + [K,T ]

where T = ρ−1
G (ρG)t. If the parameter is fixed so that it depends on time, the

preservation of x(t) by evolution (4.1) is guaranteed whenever T satisfies TΛ =
rx +Kr.

Proof. First of all, notice that, if ρ is as in (3.1) with ρu = u , then

ρ−1ρt =

(
0 0

ρ−1
G (ρu)t ρ−1

G (ρG)t

)
=

(
0 0
r ρ−1

G (ρG)t

)
.
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Equation (4.2) is simply the result of evaluating the structure equation

dω +
1

2
[ω, ω] = 0

for the Maurer Cartan form ω on the vector fields ρx and ρt along the curve (u, ρ).
Since evolution (4.1) preserves first order differential invariants we have that, as
vector fields, [ρx, ρt] = 0 and so one obtains

(4.3)
d

dt

(
0 0
Λ K

)
=

d

dx

(
0 0
r ρ−1

G (ρG)t

)
+

[(
0 0
Λ K

)
,

(
0 0
r ρ−1

G (ρG)t

)]
,

where K = ρ−1
G (ρG)x. If all first order differential invariants are assumed to be

constant, Λ will be constant. If we call T = ρ−1
G (ρG)t condition 0 = r′+Kr−TΛ is

the first order invariants preserving condition on the evolution (4.1). We conclude
the proof. ♣

An interesting aspect of this theorem is that, in all known cases, the condition
TΛ = rx + Kr and the fact that T must satisfy equation (4.2) determines T
completely in an algebraic manner. Hence, one does not need to know ρ before
finding T .

Example 3. In the SL(2, IR) case equation (4.3) becomes(
0 0
0 Kt

)
=

(
0 0

rx +Kr−Ne1 Nx + [K,N ]

)
.

If r = (ri) and T = (tij) we have

Te1 = rx +Kr =

(
t11

t21

)
=

(
(r1)x + k2r2

(r2)x + k1r1

)
and (

0 k2

k1 0

)
=

(
(t11)x + k2t21 − k1t12 (t12)x − 2k2t11

(t21)x + 2k1t11 −(t11)x − k2t21 + k1t12

)
.

This implies t12 = 1
k1

((t11)x + k2t21) and so T is given by

T =

(
(r1)x + k2r2

1
k1

(r1)xx + 1
k1

(k2r2)x + k2
k1

(r2)x + k2r1

(r2)x + k1r1 −(r1)x − k2r2

)
.

Theorem 8. If there exists a Hamiltonian h : K → IR and a local extension H
constant on the leaves of E such that

(4.4)
δH
δM

Λ = rx +Kr

then the invariantization of evolution (4.1) is Hamiltonian with respect to the re-
duced bracket {, }R and its associated Hamiltonian is h.

Proof. To prove this theorem we will write the evolution induced by (4.1) on K
and compare it to the reduced Hamiltonian evolution induced on K by {, }R with
Hamiltonian given as in the statement of the theorem. We will conclude that both
vector fields are equal.

Let’s denote by 〈, 〉 the non-degenerate pairing of Lg with Lg∗ given by the
integral of the Killing form. Let Kt be the evolution (4.2) induced on K by (4.1).
Since Kt is tangent to K, if g : K → IR is a functional, its variational derivative
along K will be an element in the dual of the tangent to K. Any extension constant
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on the leaves of E, call it G, will have variational derivative with the exact same
component in the direction dual to the tangent of K. That is, as vector fields on K,

Kt(g) =

〈
Kt,

δg

δK

〉
=

〈
Tx + [K,T ],

δG
δM

(K)

〉
= −

〈
T,

(
δG
δM

(K)

)
x

+

[
K,

δG
δM

(K)

]〉
.

On the other hand, the Poisson bracket induced on K is given by

{h, g}R(K) = ξh(g) =

〈(
δH
δM

(K)

)
x

+

[
K,

δH
δM

(K)

]
,
δG
δM

(K)

〉
= −

〈
δH
δM

(K),

(
δG
δM

(K)

)
x

+

[
K,

δG
δM

(K)

]〉
for any extensions H and G constant on the E–leaves. But if G is constant on the
leaves of E, the vector field

(
δG
δM (K)

)
x

+
[
K, δGδM (K)

]
is in the annihilator of n. If

we split (as vector spaces) g = n ⊕ m, then no = m∗. We can then conclude that,
if the m component of T and δH

δM (K) coincide, then both vector fields Kt and ξh
coincide (recall that we are identifying g and g∗ using the non-degenerate Killing
form).

Let T = Tn + Tm and δH
δM =

(
δH
δM

)
n

+
(
δH
δM

)
m

be splittings given by g = n⊕m.

If TmΛ =
(
δH
δM

)
m

Λ then Tm −
(
δH
δM

)
m
∈ n and so Tm =

(
δH
δM

)
m

. Condition (4.4)
guarantees that

TmΛ = TΛ =

(
δH
δM

)
m

Λ =
δH
δM

Λ

and so we conclude the proof. ♣

In practice, checking whether or not an evolution as in (4.1) satisfies (4.4) is not
as complicated as it might seem. Since any extension will have the gradient of the
original functional h in the direction dual to TK, we know what those entries are.
We also know that

(
δH
δM

)
x

+[K, δHδM ] ∈ no and, in all known example, this condition

determines δH
δM (K)Λ algebraically in terms of the variational derivative of h and

K. Making it equal to rx + Kr usually allows you to solve for δh
δK and to check if

h exists. See [M3] for examples in the Euclidean case.

Example 4. In the SL(2, IR) case we know that, given h : K → IR the variational
derivative of a proper extension at K is given by

H =
δH
δM

(K) =

(
− 1

2k1
(h2)x h1

h2
1

2k1
(h2)x

)
.

Therefore, condition (4.4) becomes

(4.5)
δH
δM

(K)e1 =

(
− 1

2k1
(h2)x
h2

)
=

(
(r1)x + k2r2

(r2)x + k1r1

)
for some r1 and r2 depending on k1, k2 and their derivatives with respect to x.
Hence, if there exists a Hamiltonian on K such that h2 = δh

δk2
holds (4.5) the

evolution of curves

ut = r1u1 +
r2

det(u1, u2)
u2

will be Hamiltonian with respect to {, }R.
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[M3] G. Maŕı Beffa. Poisson brackets associated to invariant evolutions of Riemannian curves, to
appear in the Pacific Journal of Mathematics.
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