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Abstract. In this paper we describe Poisson structures defined on the space

of Serret-Frenet equations of curves in a flat homogeneous space G/H where
G is semisimple. These structures are defined via Poisson reduction from

Poisson brackets on Lg∗, the space of Loops in g∗. We also give conditions

on invariant geometric evolution of curves in G/H which guarantee that the
evolution induced on the differential invariants is Hamiltonian with respect

to the most relevant of the Poisson brackets. Along the way we prove that

differential invariants of curves in semisimple flat homogeneous spaces have
order equal to 2 or higher, and we also establish the relationship between

classical moving frames (a curve in the frame bundle) and group theoretical

moving frames (equivariant G-valued maps on the jet space).

1. Introduction

The subject of infinite dimensional Hamiltonian structures has applications to
different branches in mathematics but its study has traditionally been an important
component in the study of completely integrable systems. In fact, the majority
of completely integrable systems of PDEs are Hamiltonian with respect to two
different but compatible infinite dimensional Hamiltonian structures, that is, they
are biHamiltonian. This property allows the generation of a recursion operator that
produces an infinite sequence of preserved functionals.

The connection between classical differential geometry and completely integrable
PDEs dates back to Liouville, Bianchi and Darboux ([Li], [Bi], [Da]), but it was
after Hasimoto’s work in the vortex filament flow evolution that the close relation
between integrable PDEs and the evolution of curvature and torsion (rather than
the curve flow itself) was clear. In fact, Hasimoto ([Ha]) proved that the vortex
filament flow induces a completely integrable evolution on the curvature and torsion
of the flow. In particular, the evolution of curvature and torsion was biHamiltonian.
Langer and Perline pointed out in their papers on the subject (see [LP1], [LP2])
that the Hamiltonian structures that were used to integrate some of these systems
were defined directly from the Euclidean geometry of the flow. This situation was
known to exist not only in Riemannian geometry but also in projective geometry.
In fact, the Schwarzian KdV equation

ut = uxS(u)
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where S(u) = uxxxux−3/2u2
xx

u2
x

is the Schwarzian derivative of u, has been known to
be a curve evolution inducing a KdV evolution on S(u). The Schwarzian deriva-
tive S(u) is the differential invariant of reparametrizations of the projective line (or
curves in IRP1). There are also PSL(n, IR)-invariant flows of curves in IRPn induc-
ing generalized KdV equations on the projective differential invariants of the flow
([DS]). The Hamiltonian structures used to integrate them can be defined directly
from the projective geometry of the curves ([M2]). Still, the methods used in [M2]
are complicated and non intuitive. Thus, the question of integrability of invariant
geometric evolutions can be shifted to a question of integrability of the flow of the
differential invariants along the curve and to the study of compatible Hamiltonian
structures on the space of invariants and whether or not they can be obtained from
the local geometry.

Although integrable systems is a motivation for this paper, it is not its sub-
ject. In this paper we describe the general procedure that allows the generation of
Poisson brackets from the geometry of curves in a general flat semisimple homo-
geneous space. Furthermore, we give conditions on geometric flows guaranteeing
that the flow of their invariants is Hamiltonian with respect to the new found
brackets. Semisimplicity is needed for the definition of the bracket, although some
nonsemisimple cases (e.g. the semidirect product of a semisimple group with IRn)
can be reduced to the semisimple situation (see [M1] for the Euclidean case and
[M4] for the general one). Also, being flat is not necessary for much of the study,
but except in the three dimensional constant curvature Riemannian case, the gen-
eral role of the curvature in the Poisson geometry of differential invariants is still
unknown, so we will restrict ourselves to the flat case.

The procedure can be described as follows: Assume our manifold is a flat ho-
mogenous space of the form G/H, where G is semisimple. In section 5 we first
choose an appropriate moving frame along curves using Fels and Olver’s moving
frame method ([FO1], [FO2]). A key result to the paper is to prove that the space
of Serret-Frenet equations (or differential invariants) K can be identified with a
quotient of a submanifold of the (regular part) of the dual of the algebra of Loops
in the Lie algebra, Lg∗. In fact, we can find a submanifold U ⊂ Lg∗ and a foliation
Φ such that K ∼= U/Φ. The result is described in Theorem 6. There is a well-known
Poisson bracket defined on Lg∗. The bracket is induced on Lg∗ by the Lie-Poisson
bracket of the Kac-Moody algebra of g associated to S1. We show that this Poisson
bracket is Poisson reducible to the quotient U/Φ, and hence it defines a Poisson
bracket on the manifold of differential invariants (Theorem 7). Another family of
simpler and compatible brackets on Lg∗ are defined in section 7, one can then in-
vestigate their reductions in a case-by-case basis. When reducible, these brackets
are all compatible and they induce compatible Hamiltonian structures on the space
of differential invariants. All best known Poisson brackets used in the integration
of PDEs can be obtained in this geometric way. Except for the planar case ([CQ1],
[CQ2]), integrable systems associated to conformal and other geometries are largely
unexplored. Their study is likely to shed light on the geometry of curves itself.

Once we identify Poisson structures on the space of differential invariants, we
would like to know which invariant geometric evolutions of curves will induce a
Hamiltonian evolution on the differential invariants. Evolutions of curves which
are invariant under the group action are known to be of the form

ut = Rr
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where R is a matrix defined by a classical moving frame (in invariant theory R is an
invertible matrix of vector relative differential invariants associated to a Jacobian
weight) and where r is a vector of differential invariants. In section 6, Theorem
10, we show that if we can find a Hamiltonian functional h : K → IR defined on
the space of differential invariants K and an extension H : Lg∗ → IR constant on
the leaves of Φ and such that the component of δH

δL in the direction of Te(G/H)
coincides with r, then the evolution induced on the differential invariants by the
u-evolution above is Hamiltonian with respect to the Kac-Moody reduced bracket
and h is its associated Hamiltonian. The projective case is described throughout
the paper to illustrate the relative simplicity of the procedure as compared with
the one in [M2].

Several results of independent interest are proved along the study. For example,
in the appendix we prove that differential invariants of curves in flat G/H with G
semisimple have order greater than 1. In section 6, Theorem 8, we also describe
the precise relation between classical and group theoretical moving frames. This
relation was previously known only for some affine and projective geometries and
was recently described by the author in the conformal case ([M3]). Work by Ochiai
([Oc]), although perhaps due to Cartan, shows that a moving frame ρ(u(k)) ∈ G can
be locally factored as ρ = ρ−1ρ0ρ1 with ρ0(u(k)) ∈ G0 identified with an element
of GL(n, IR), where n is the dimension of the manifold G/H. We show that we
can identify ρ0 with a matrix in GL(n, IR) containing in columns a classical moving
frame (a curve in the tangent manifold) along u. A similar situation can be found
for nonsemisimple cases in [M4].

As we said before, this is not a paper on the subject of completely integrable
systems. We aim to define what we call geometric Poisson brackets and to directly
relate geometric flows with Hamiltonian PDEs. Some new results have been already
obtained using the brackets defined here. In [M6] the author found integrable
systems associated to geometric flows of Lagrangian planes in symplectic IR2n.
Still, the general classification of these geometric completely integrable systems is
pending and includes the classification of compatible and nondegenerate geometric
Poisson brackets. Although there are available tools to tackle given particular cases,
the general study is still open. Integrable PDEs is also not the only application of
the results presented here. In our last section, we describe on-going research and
some open problems. The author would like to thank Professors Georgia Benkart,
Peter Olver and Joel Robbin for continuous support and discussions.

2. Definitions and basic results

In this section we will give the basic definitions and results on flat homogeneous
spaces associated to the action of semisimple Lie groups and their Cartan geome-
tries. The definitions and results in this section are mainly stated as in [Oc] and
[Sh].

Let G be a Lie group and let H be a closed subgroup. The homogeneous space
G/H is called flat of order 2 if the following two conditions hold true:

(a) the Lie algebra g of G has a graded Lie algebra structure

(2.1) g = g−1 ⊕ g0 ⊕ g1;

(b) h = g0 ⊕ g1 is the Lie subalgebra corresponding to H.
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The homogeneous space G/H is called semisimple flat if G is furthermore semisim-
ple. It is well-known that a flat semisimple homogeneous space is flat of order 2
([KO]).

The following results on the geometry of flat semisimple homogeneous spaces
can be found in [Oc].

Proposition 1. Denote by B the Killing form of g. Then
(1) g−1 ⊕ g1 and g0 are perpendicular to each other with respect to B, so that

both B|g−1 ⊕ g1 and B|g0 are nondegenerate;
(2) g−1 is the dual vector space of g1 under the pairing (x, z) → B(x, z).
(3) There exists a unique element e in g0 such that

[e, x] = −x, for x ∈ g−1,

[e, y] = 0, for y ∈ g0

[e, z] = z, for z ∈ g1.

Now we introduce the group in the picture. Let G1 (resp. G−1) be the con-
nected Lie subgroup of G corresponding to g1 (resp. g−1). We define G0 to be the
normalizer of g0 in H, that is, G0 = {a ∈ H|Ad(a)(g0) = g0}.

Proposition 2. The exponential mapping exp : g1 → G1 and exp : g−1 → G−1

are bijective. Furthermore, G0 is also the normalizer of g−1 in H and H is the
semidirect product of G0 and G1.

The subgroup G0 is called the linear isotropy subgroup of the semisimple flat
homogeneous space G/H and it is clearly locally bijective, via the exponential
map, to g0.

Example 1. Consider the group G = PSL(n + 1, IR) acting on IRn projectively.
That is, if x ∈ IRn we lift it to IRn+1 as (x, 1), we apply g ∈ G and we project it
back into IRn. The isotropy subgroup of the origin is given by

H = {
(

g0 0
w α

)
} ⊂ G

where α 6= 0, α ∈ IR.
It is known that IRPn ' G/H is a flat semisimple homogeneous space. The Lie

algebra g splits as in (2.1) where(
0 v
0 0

)
∈ g−1,

(
A 0
0 a

)
∈ g0,

(
0 0
w 0

)
∈ g1,

and where

e =
(

0 0
0 1

)
.

The corresponding subgroups are given by elements of the form(
I ∗
0 1

)
∈ G−1,

(
Θ 0
0 `

)
∈ G0,

(
I 0
∗ 1

)
∈ G1,

with ` 6= 0 and det Θ = `−1.

Definition 1. [Sh] A Cartan Geometry (P, ω) on a manifold M modeled on (G, H)
consists of the following data:

(1) a smooth manifold M ;
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(2) a principal H–bundle P over M ;
(3) a g–value 1-form on P satisfying the following conditions

(i) for each point p ∈ P , the linear map ωp : TpP → g is an isomorphism;
(ii) (Rh)∗ω = Ad(h−1)ω for all h ∈ H;
(iii) ω(0, X) = X for all X ∈ h

where, as usual, Rh denotes the right multiplication map, h ∈ H, Ad represents
the Adjoint action of the group, and (0, X) is a trivialization of the element in P
associated to X ∈ h. The form ω is usually called the Cartan Connection .

If (M,P, ω) is a Cartan geometry, the g–valued 2-form on P given by

(2.2) Ω = dω +
1
2
[ω, ω]

is called the curvature. Equation (2.2) is called the structural equation.
If Ω = 0 we say the Cartan connection is flat. It is known (see [Oc]) that any flat

Cartan connection on the principal bundle G → G/H is locally isomorphic to the
connection defined by the Maurer–Cartan form of G. In this paper we will consider
a semisimple flat homonegeous space with its standard Cartan connection.

Next we will describe the action of G0 and G1 on the bundle of frames. This
description will connect us to the moving frame method described in the next
section.

Definition 2. Let M be a manifold. We fix a point in the manifold as the origin o.
Let V and V ′ be two neighborhoods of o and let U and U ′ be two neighborhoods
of a point x ∈ M . Two diffeomorphisms f : V → U and f ′ : V ′ → U ′ are said to
define the same r–frame whenever f ′(o) = f(o) = x and f and f ′ have the same
partial derivatives at o up to order r. The r-frame given by f is usually denoted
by jr

o(f).

Let Fr(M) be the set of r–frames (or frames of rth order contact.) The set
Fr(M) is a principal bundle over M with projection π(jr

o(f)) = f(0). If dimM = n,
its structure group is denoted by Gr(n) and it is given by the set of r-frames at
o ∈ M leaving o invariant and acting by composition on the right (see [K] for more
details.) The operation of the group is also composition. The bundle F1(M) is
the frame bundle and clearly G1(n) is isomorphic to GL(n, IR). Finally two further
points: first GL(n, IR) can be considered as a subgroup of Gr(n) if we consider the
jets of linear maps. Also, there exists a natural projection of 2-frames on 1-frames
and we will denote it by ν

(2.3) ν : F2(M) → F1(M).

In the context of flat semisimple homogenous spaces, each element g ∈ G can be
identified with the diffeomorphism of M , φg, given by the action (or left multipli-
cation) of G on M . Thus, every g ∈ G determines a jet jr

o(φg) ∈ Gr(n). With this
identification the following results are true and their proof can be found in [Oc].

Theorem 1.
(1) H = G0 ·G1 is a subgroup of G2(n);
(2) If we identify G1(n) with GL(n, IR) then, as subgroups of G2(n), ν(H) =

G0, where ν is as in (2.3);
(3) G → G/H is an flat H–subbundle of F2(G/H) → G/H.
(4) ν(G) → G/H is a flat G0-subbundle of F1(G/H) → G/H.
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Given g ∈ G, since the map g−1 ⊕ g0 ⊕ g1 → G taking v = v−1 + v0 + v1 to
exp(v−1)exp(v0)exp(v1) is a local diffeomorphism, we can, locally, define a factor-
ization

(2.4) g = g−1g0g1

such that gi ∈ Gi. From (2) above we conclude that, if

φg0g1 : G/H → G/H

takes x to g0g1x, then dφg1(o) = I and we can identify dφg0(o) ∈ GL(n, IR) with g0

itself, identifying this way G0 with a subgroup of GL(n, IR). The action of G0 on
the tangent to G/H at e (that is, g−1) is given by the standard action of GL(n, IR)
on IRn.

The following proposition can be found in [Oc] and will be used later in the
paper.

Proposition 3. The subgroup H = G0 ·G1 (as an element of G2(n)) leaves g−1⊕g0

(as contained in g−1 ⊕ gl(g−1)) invariant. Its action onto g−1 ⊕ g0 is identical to
the action of H on g/g1 induced by the Adjoint action Ad(a) : g → g, a ∈ H.

The action in Proposition 3 is the action on g−1 as To(G/H) and on g0 as
TI(G1(n)), where I is the identity, induced by the action of H on G/H and G1(n)
(this last one by composition), respectively. In particular, if g0 ∈ G0, then the
action on To(G/H) induced by φg0 is given by the adjoint action of G0 on g−1. We
will come back to this point in the next section.

3. Moving frames

In this section we will describe the method of moving frames as redesigned by
Fels and Olver in [FO1] and [FO2].

Definition 3. Let G be a Lie group acting on a manifold M . We say that G acts
(locally) effectively on subsets if, for every open subset U ⊂ M , the global isotropic
subgroup of U given by

{g ∈ G such that g · s = s, for all s ∈ U}

is trivial, that is, equal to {e}. We say the group acts freely on M if the isotropy
subgroups Gx = {g ∈ G such that g · x = x} are all trivial.

Definition 4. Let G be an r-dimensional Lie group acting on an n-dimensional
manifold. We say that the group acts regularly on M if all its orbits have the
same dimension and each point x ∈ M has arbitrarily small neighborhoods whose
intersection with each orbit is a connected subset thereof. If the second condition
in the definition is ommited we say the group acts semi-regularly.

If G acts semi-regularly on M a (local) cross-section is a (n − s)-dimensional
submanifold C ⊂ M such that C intersects each orbit transversally. The implicit
function theorem guarantees the existence of a transverse section through each
point in M .

Definition 5. Given a transformation group G acting on a manifold M , a moving
frame is a smooth G-equivariant map

(3.1) ρ : M → G.
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Since we can consider either the right or the left action of G on itself, we can talk
about right or left moving frames. We are going to work with left moving frames.
The following theorem determines which group actions admit a moving frame. Its
proof can be found in [FO1].

Theorem 2. If G acts on M , then a moving frame exists in a neighborhood of a
point x ∈ M if, and only if G acts freely and regularly near x.

Perhaps the most interesting part of Fels and Olver’s method is that it describes
a simple way of constructing moving frames based on the so-called normalization
equations.

Definition 6. Let C ⊂ M be a cross-section to the G orbits. The normalization
equations associated with C are the system of equations

(3.2) w = g · z = c

where c ∈ C.

It is quite simple to see that, if G acts freely and C is a regular cross section, then
there is a unique solution g = ρ(z) to the normalization equations, determining the
right moving frame associated with C.

Moving frames are used to find a complete set of invariants of the action. These
invariants can be found in two different ways.

Theorem 3. If ρ(x) is a moving frame, then the components of the map I : M →
M defined by I(x) = ρ(x) · x provide a complete set of invariants for the group.

Therefore, the normalization procedure provides a simple direct method for de-
termining invariants of free group actions. Unlike Lie’s method, it does not require
integrating any differential equation.

Next, we will describe the situation when the manifold M is the jet space asso-
ciated to curves in a homogeneous space. A variation of what will be defined below
needs to be adopted whenever the group G acts also on the independent variable,
which is not the case at hand.

Definition 7. Given a manifold M , we define the nth order jet bundle J n(M)
to be the set of equivalence classes of curves under the equivalence relation of nth
order contact. The fibers of πn : J n → M are generalized Grassman manifolds (see
[O].)

We introduce local coordinates u = (uα) on M . The induced coordinates in the
jet bundle J n(M) are denoted by (x, u(n)), where x is the independent variable
and where the components of u(n) are uα

k representing the kth derivative of the
dependent variable uα with respect to x, for any k ≤ n. Any transformation group
G acting on M preserves the order of contact between curves. Therefore, there is an
induced action of G on the nth order jet bundle J n known as the nth prolongation
of G. In our special case the prolonged action is locally given by

g · (x, u, u1, . . . , un) = (x, g · u, (g · u)1, . . . , (g · u)n)

where, again, the subindex indicates the number of derivatives with respect to x.
The invariants of the prolonged action are naturally called differential invariants.
The best known differential invariants are the curvature and torsion for curves in
Euclidean space.
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Definition 8. A (nth order) differential invariant is a (locally defined) scalar func-
tion I : J n → IR which is invariant under the prolonged action of G.

The key element of Fels and Olver’s method is that, for a high enough order of
contact, a moving frame always exists for the prolonged action. In fact, a theorem
by Ovsiannikov [Ov] (corrected by Olver in [O2]) states that if a group acts (locally)
effectively on subsets, then there exists an integer k0 such that the prolonged action
of the given group is locally free on an open and dense subset of the k0th order jet
space. This subset is formed by the so-called regular jets (see [FO1]). Direct appli-
cation of Theorem 2 implies that, if the group acts (locally) effectively on subsets,
then for n large enough, there exists a moving frame defined on a neigbourhood of
regular jets (that is, for generic curves). Moreover, this moving frame can be found
solving the normalization equations (3.2) for some choice of transversal section.

Fels and Olver’s method provide also a complete description of generating dif-
ferential invariants. Let ρ(u(k)) be a moving frame. From Theorem 3 a complete
set of differential invariants is contained in ρ(u(k)) · ur, r = 0, 1, 2, . . . . But given
the normalization equations, some of these differential invariants are constant. We
call the constant invariants phantom differential invariants. The following theorem
can be found in [FO2] (I have adapted the notation to our particular case).

Theorem 4. A generating system of differential invariants consist of
(a) All non-phantom zeroth order invariants ρ · u and x.
(b) All non-phantom differential invariants (ρ(u(k)) · ur)α for which (ρ(u(k)) ·

ur−1)α was phantom. ( The expression ()α represents the entry α as an
element of IRn.)

From this theorem, if ρ(u(k)) · ur = cr has maximal rank, then all rth order
differential invariants will be phantom invariants and differential invariants will
have higher order (or lower if some appeared first). This is the idea behind the
method of used in the appendix to show that, the case at hand, there are no first
order differential invariants and ρ(u(k)) ·u1 = c1 has maximal rank for some c1 6= 0.
It is also the same idea behind the method of Cartan polygons found in [G].

A second method to compute the invariants is to find the Serret-Frenet equations
or moving coframe associated to a moving frame.

Definition 9. Suppose that G acts freely and regularly on J k. Let ρ : J k → G be
a (left) moving frame. We let ζ = ρ∗ω denote the pull-back of the (left–invariant)
Maurer–Cartan forms to M . Let Kdx = ω(ρx)dx be its horizontal component. We
call K the Serret-Frenet equations or moving coframe associated with the given
moving frame along the curve u.

The entries of the Serret-Frenet equations associated to a moving frame also
provides a complete set of invariants of the group (see [FO1]), although there could
be algebraic relations among its entries.

Definition 10. A vector R : J n → IRn is said to be a relative differential invariant
corresponding to the Jacobian multiplier if

(3.3) R(g · u(k)) = JgR(u(k))

where Jg(x) ∈ GL(n, IR) is the Jacobian matrix of the map φg : M → M , φg(x) =
g · x.
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Along a curve, a nondegenerate matrix of relative differential invariants with
Jacobian multiplier and a classical moving frame (a curve in the tangent bundle)
are the same concept. The first one emphasizes the algebraic properties under the
prolonged action of the group and the second one the geometric meaning.

4. Poisson Geometry of the spaces of Loops in the dual of a Lie
algebra. Poisson reduction.

This section is the last piece of our puzzle. In section 5 we will start putting
sections 2, 3 and 4 together.

Let G be a semisimple Lie group, and g its Lie algebra. Let LG = C∞(S1, G)
be the group of Loops on G and let Lg = C∞(S1, g) be its Lie algebra. Let
Lg∗ = C∞(S1, g∗) be its dual (it is not really its dual but what is called the regular
part of the dual, dense in the dual of the algebra of Loops.) The space of Loops
could be replaced by functions from IR to G vanishing at infinity, or any condition
that ensures that no boundary terms will appear when we integrate by parts.

There exists a well known Poisson bracket defined on this space. If we have a

functional H : Lg∗ → IR, its variational derivative,
δH
δM

(M), is given by an element
of Lg and it is defined by the Frechet derivative of the functional, namely

d

dε
|ε=0

1
ε
H(M + εV ) =

∫
S1

B(
δH
δM

(M), V )dx

where B is the nondegenerate pairing between g and g∗. (Notice that semi-
simplicity of the algebra is a fundamental condition on the definition of this bracket.)
If H and G are two functionals defined on Lg∗, then their Poisson bracket is given
by the formula

(4.1) {H,G}(M) =
∫

S1
B

(
δG
δM

(M),
(

δH
δM

(M)
)

x

+ ad∗(M)(
δH
δM

(M))
)

dx.

To learn about the relationship between this Poisson bracket and the central ex-
tensions of Lg∗ please see [PS]. In fact, the above is the Lie-Poisson bracket on the
regular part of the dual of the Kac-Moody algebra of G on S1.

For us, perhaps the fundamental property of this Poisson bracket is the fact that
its symplectic leaves (the leaves where the flow of Hamiltonian systems lie) coincide
with the orbits in Lg∗ under the action of the group of Loops LG given by

(4.2) A(g)(M) = g−1gx + Ad∗(g)M

whose infinitesimal action of the Lie algebra Lg is given by

(4.3) a(N)(M) = Nx + ad∗(N)(M).

See [PS] for more information. If we view g as a subalgebra of the algebra of
matrices gl(m, IR) and G as a subgroup of GL(m, IR), action (4.2) coincide with the
action by conjugation of the group on operators of the form

(4.4) L =
d

dx
+ M.

This action can also be viewed as the action on solutions of dX
dx = XM . Indeed, if

Y = Xg with g ∈ LG, then the operator (4.4) associated to Y is given by

d

dx
+ A(g)(M).
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Notice that, if M is periodic, a solution X will have a monodromy, that is, there
exists Γ ∈ G such that X(x + T ) = ΓX(x) for all x, where T is the period. In fact,
symplectic leaves of this bracket are known to be classified by the G-conjugation
class of the monodromy.

We will now describe the Poisson reduction that will be implemented in the
next section. The general reduction procedure that we will apply is identical to
the one described in [MR]: Let (P, {, }) be a Poisson manifold, Let M ⊂ P be a
submanifold and i : M→ P the inclusion. Let E ⊂ TP|M be a subbundle of the
tangent to P restricted to M. Assume the following conditions are satisfied:

(a) E ∩ TM is integrable and define a foliaton on M. We will call the foliation
Φ.

(b) The space of leaves is a manifold and π : M→M/Φ is a submersion.
(c) E leaves {, } invariant. That is, if H,G : P → IR are smooth functions on P

with differentials vanishing on E, then the differential of {H,G} also vanish on E.
One says that E preserves the Poisson bracket {, }.

Definition 11. We say (P,M, E, {, }) is Poisson reducible if M/Φ has a Poisson
structure, {, }R such that for any smooth h, g : M/Φ → IR and for any smooth
extensions H,G of f ◦ π and g ◦ π with differentials vanishing on E we have

(4.5) {H,G} ◦ i = {h, g}R ◦ π.

The following theorem can be found in [MR] for the finite dimensional case,
although it can be applied to infinite dimensional cases, as the authors state. In
either case, the geometric picture is very clear.

Theorem 5. (Reduction Theorem) Assume (P,M, E, {, }) satisfy assumptions (a)-
(b)-(c) and let P : T ∗P → TP be the map associating to each variational derivative
its Hamiltonian vector field. Then, (P,M, E, {, }) is Poisson reducible if, and only
if

(4.6) P (E0) ⊂ TM+ E.

5. Geometric Poisson brackets on the space of differential
invariants of curves in a flat semisimple homogeneous space

This section contains one of the key results of this paper. We will show that, if
G/H is a flat semisimple homogeneous manifold, then the space of Serret-Frenet
equations can be identified with a quotient of Lg∗. This fact enables us to readily
reduce the Poisson bracket defined in the previous section to the manifold of in-
variant coframes ( or differential invariants of curves in G/H). From now on we
will assume that G/H is a flat semisimple homogeneous space.

The first step in the identification of the quotient is to prove a lemma introducing
a constant element Λ ∈ g−1. The rest of the choices will depend on Λ and its
isotropy subgroup.

Lemma 1. Given any moving frame ρ along a curve u : I → G/H, where I is
some open interval in IR, denote by K = ω(ρx) its associated Serret-Frenet equation
(ω is the Cartan connection). Let K = K−1 + K0 + K1 be the decomposition of K
associated to (2.1).

There exists a left moving frame ρ such that K−1 = Λ is constant, independent
from x. Furthermore, if ρ = ρ−1ρ0ρ1 is the local factorization of the frame as in
(2.4), then ρ−1 can be identified with u itself.
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Proof. The proof of this lemma is based on the normalization procedure used in
the Fels-Olver method. Following that method, for m high enough, we can choose
a constant transversal section C to the orbits of the prolonged action of G on
Jm(G/H), and we can obtain a moving frame by simply solving the normalization
equation

g · u(m) = c

c ∈ C, for g. Assume g = g1g0g−1 is the local factorization of g and assume
c = (c0, c1, c2, . . . , cm) with the normalization equations given by (g · u)k = ck, ck

constant. We choose c0 = o = [x0] ∈ G/H. The equation

g1g0g−1 · u = o

has maximal rank and can be solved the following way: we first solve for g−1 ·u = o
which can be uniquely solved for g−1 in terms of u because of the transitivity of the
action. In fact, the usual (local) identification of M with G−1 (or with a transverse
section of G/H) is given by uniquely solving u = gu · o for gu ∈ G−1. Under this
identification g−1

−1 = gu will identify with u. We call g−1 = ρ̂−1. Since g1g0 ∈ H
leaves c0 = o invariant, this first step determines the G−1 component of the moving
frame.

Next, we look at the first jet space. We choose c1 to be a constant element in the
tangent of our homogeneous space. With the previous choice of ρ̂−1 = g−1 = g−1

u

we solve for ρ0 so that we satisfy condition

(g1g0g−1 · u)1 |g−1=g−1
u

= c1.

The above is equal to

dφg1(o)dφg0(o)dφg−1(u)u1 = c1.

As we explained after Theorem 1, φg1 , g1 ∈ G1, does not affect F1(M) and so
dφg1(o) = I. Now, notice that if we consider u ∈ Vu ⊂ G/H locally identified with
gu ∈ Wu ⊂ G−1, then g−1 ·u is simply left multiplication g−1gu, and also ρ̂−1 = g−1

u .
Therefore dφg−1(u)u1 is simply the left invariant identification of u1 ∈ Tg·uG−1 with
an element in the algebra TeG−1 = g−1. We denote this identification as gu1 , and
so dφg−1(u)u1 |g−1=g−1

u
= gu1 ∈ g−1.

With this in mind, we only need to solve for

dφg0(o)gu1 = c1.

Here we apply the appendix’s result stating that there are no first order differential
invariants of curves in flat semisimple homogenous spaces. From the appendix, the
rank of the equation above is maximal for a generic curve and for some choice of
constant c1. Hence, we can partially solve for g0 to satisfy the equation. Since
the equation is linear, we have c1 6= 0. One would go on to higher orders of
differentiation to complete the moving frame. How high one needs to go will depend
on the manifold.

The result of this normalization process is a right invariant moving frame. Thus,
the left invariant moving frame will be its inverse ρ = ρ̂−1 = ρ̂−1

−1ρ̂
−1
0 ρ̂−1

1 = ρ−1ρ0ρ1.
Notice that ρ−1 = gu is identified with u.

Finally it is not hard to see that, since ω is the left invariant Maurer-Cartan
form, the moving coframe K can be split into

K = Ad(ρ−1
1 ρ−1

0 )(ω((ρ−1)x)) + Ad(ρ−1
1 )(ω((ρ0)x)) + ω((ρ1)x)
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so that the g−1 component is the g−1 component of Ad(ρ−1
1 )[Ad(ρ−1

0 )(∗ω((ρ−1)x))].
A very basic use of Campbell’s formula shows that the g−1 component is

K−1 = Ad(ρ−1
0 )(ω((ρ−1)x)).

On the other hand, ω((ρ−1)x) is the left-invariant identification of u1 ∈ J 1 with an
element of g−1 (that is, ω((ρ−1)x) = gu1). Application of Proposition 3 allows us
to conclude that K−1 is constant since Ad(ρ−1

0 )(ω((ρ−1)x)) = Ad(ρ̂0)(ω((ρ−1)x))
is given by the action of ρ̂0 on u−1, which, by Proposition 3 equals

Ad(ρ̂0)(ω((ρ−1)x)) = dφg0(0) |g0=ρ̂0 gu1 = c1.

We call
K−1 = Λ = c1

and we end the proof of the lemma. ♣

Incidentally, one can find other relations between K and the constants cr’s. For
example, we can check with a short straightforward calculation similar to the one
above that [K0,K−1] = c2.

Comment: From the discussion in the proof of the lemma, K−1 contains the first
order differential invariants of our curve. From our appendix, flat homogeneous
semisimple manifolds do not have invariants of that order and therefore K−1 is
constant (all first order differential invariants are phantom differential invariants).
There exists known nonsemisimple flat cases for which Poisson brackets of the kind
presented here exist ([M1], [M4]). In these cases we do have one first order differen-
tial invariants, namely the arc-length. But in the reduction process applied to these
cases one needs to ask for the arc-length to be constant and to be preserved by the
geometric evolutions under consideration. This condition has two consequences:
first we don’t have non-phantom differential invariants of first order any longer,
second we transform our bracket into a bracket not on g∗ ⊕ IR but rather on g∗,
effectively gaining semisimplicity. After introducing the change, a modification of
the reduction presented in this section also works in Euclidean, special affine and
other cases, see [M1] and [M4].

Example 2. We go back to the projective case. If N ∈ PSL(n + 1, IR) is given by(
I 0
w 1

) (
A 0
0 a

) (
I v
0 1

)
=

(
A Av

wA a + wAv

)
with a = det(A)−1, one can describe the action of PSL(n + 1, IR) on u ∈ IRPn as

N · u =
A(u + v)

wA(u + v) + a
.

Following Fels and Olver’s method we normalize the zero order action, namely we
set

(5.1) N · u = 0

and we solve for v, namely v = −u. This choice determines

(5.2) ρ̂−1(u) =
(

I −u
0 1

)
.
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The standard local identification of IRPn with PSL(n + 1, IR)/H is given by

u → gu =
(

I u
0 1

)
= ρ̂−1

−1(u) = ρ−1(u)

With this choice of ρ̂−1, after we evaluate the normalizations, we have that the
denominator of the action is given by wA(u + v) + a = a. We then proceed with
the normalizations that will partially determine A and a. Indeed, the action on the
first jet is given by

Au1

wA(u + v) + a
− A(u + v)(wAu1)

(wA(u + v) + a)2
.

If we use the normalization (5.1) and set the above equals en, we obtain the relation

(5.3) aA−1en = u1

for some choice of ρ̂0 = ρ−1
0 =

(
A 0
0 a

)
. The identification of G0 with GL(n, IR) is

given by identifying
(

A 0
0 a

)
with a−1A. This information suffices to find the K−1

component of the moving coframe, which equals

K−1 = Ad(
(

A 0
0 a

)
)
(

I −u
0 1

) (
0 u1

0 0

)
=

(
0 a−1Au1

0 0

)
=

(
0 en

0 0

)
= Λ.

For simplicity, we will identify Lg∗ with Lg using the standard nondegenerate
pairing defined by integrating the Killing form (so that Ad∗(g) becomes Ad(g−1),
for example). Let M be the submanifold of Lg∗ given by

(5.4) M = L(g0 ⊕ g1)⊕ SΛ

where SΛ is the subspace of Lg−1 given by

(5.5) SΛ = {βΛ, for any β positive β ∈ C∞(S1)}.

Next, consider LL0 ⊂ LG0 to be the subgroup of LG0 preserving SΛ (its isotropy
subgroup). Let L be the semidirect product of LL0 and LG1,

(5.6) L = LL0 · LG1 ⊂ LH.

Let l be the Lie algebra associated to L. The subbundle of TLg∗|M that will be
used in the reduction process will be the one generated by the orbits of L using the
action given by (4.2). Indeed, let

(5.7) E ⊂ TLg∗|M

be the distribution generated by the Hamiltonian vector fields corresponding to
functionals F such that δF

δM (M) ∈ l for any M ∈ M. It is known that E is
integrable and its leaves coincide with the action of L on M as in (4.2) .

These are our players. We will first check that a transverse section to an open
set of the leaves of E is given by the submanifold of differential invariants along
curves in G/H (which will be defined shortly). We will then readily check that the
Lie–Poisson bracket defined in section 4 can be Poisson reduced to M/E.
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Lemma 2. Consider the action on the right of G on itself. Then, the induced
action of LG on ω(ρx), where ρ is a moving frame, is as in (4.2). That is, if ρ is
a moving frame and g ∈ LG, then

ω((ρg)x) = A(g)K = ω(gx) + Ad(g−1)K

where K is the moving coframe associated to ρ and ω is the left-invariant Cartan
connection.

Proof. The proof is obvious from properties of the Cartan connection. ♣

Comment: If m ∈ M, locally we can find a map ρ : J → G for some interval J
containing 0 and such that ω(ρx) = m where ω is the Maurer–Cartan form in the
group and ρ(0) = e ∈ G. To produce ρ we need to extend m(x) to a (x-dependent)
left invariant vector field in the group, say Xm(ρ, x). We then locally solve the
equations

dρ

dx
= Xm(ρ(x), x).

If we choose a faithful representation of g and we take G to be a Lie group asso-
ciated to g and a subgroup of GL(n, IR), then ω(ρx) = ρ−1ρx and ρ would be the
fundamental matrix solution of the system dρ

dx = ρ(x)m(x). Furthermore, if m(x)
is periodic in x, ρ will always have a monodromy, that is, there will be Γ ∈ G such
that ρ(x + T ) = Γρ(x) for any x.

Theorem 6. Let L ⊂ LG be the subgroup given as in (5.6). Given m ∈ M, let ρ
be such that ω(ρx) = m with ρ(0) = e. Let ρ = ρ−1ρ0ρ1 be the local factorization
described in previous sections. Then, there exists a unique g ∈ L such that ρg = ρK ,
where ρK is the moving frame associated to the curve u defined by ρ−1 under the
identification described in the proof of Lemma 1. Furthermore, there exists and
open set U ⊂ M such that the quotient U/E can be locally identified with K, the
space of moving coframes.

Proof. Let ρ : J → G be such that ω(ρx) ∈ M, and let ρ = ρ−1ρ0ρ1 be its local
unique factorization (guaranteed locally around e). Let g0 ·g1 ∈ L, where g0 ∈ LL0,
g1 ∈ LG1. Then

ρg = ρ−1 [ρ0g0]
[
g−1
0 ρ1g0g1

]
.

Since G0 is the Stabilizer of g1, we have that g−1
0 ρ1g0g1 ∈ G1, ρ0g0 ∈ G0 and

ρ−1 ∈ G−1.
Let u : J → G/H be the curve represented by ρ−1, that is ρ−1 = gu. We will

show that g as above can be chosen so that ρg = ρK , were ρK is the moving frame
associated to u as in Lemma 1. Indeed, we need to choose g0 so that ρ0g0 = (ρ0)K

and g1 so that g−1
0 ρ1g0g1 = (ρ1)K . These two relations uniquely determine g0 and

g1. After this determination one needs to prove:
(i) g0 = ρ−1

0 (ρ0)K leaves SΛ invariant and hence it is in L0, and
(ii) g = g0g1 is periodic, that is ρ and ρK have the same monodromy.
Indeed, if ρ and ρ̃ are such that ω(ρx) = m ∈M and ω(ρ̃x) = m̃ ∈M, and such

that ρ−1 = ρ̃−1, then one has

Ad(ρ−1
0 )(ω((ρ−1)x)) = βΛ
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for some β > 0, since Ad(ρ−1
0 )(ω((ρ−1)x)) is the g−1 component of ω(ρx) as we saw

in Lemma 1. Likewise for ρ̃0 with a different choice β̃. Hence

Ad(ρ̃−1
0 )Ad(ρ0)(Λ) =

1
β

Ad(ρ̃−1
0 )ω((ρ−1)x) =

β̃

β
Λ,

which shows that g0 leaves SΛ invariant. Furthermore, if ω(ρx) = m ∈M, then m
is periodic and there exists Γ ∈ G such that ρ(x+T ) = Γρ(x) for all x. If we factor
ρ out we have

Γρ−1ρ0ρ1 = Γguρ0ρ1 = gΓ·uρ̂0ρ̂1 = ρ(x + T ) = gu(x + T )ρ0(x + T )ρ1(x + T )

using Corollary 1 (notice that the proof of the corollary does not depend on results
here). Therefore gΓ·u = gu(x + T ) and, since gu(x + T ) = guT

with uT (x) =
u(x+T ), we also have u(x+T ) = Γ ·u(x). From the definition of prolonged action
Γ · u(k)(x) = u(k)(x + T ) also. The normalization equations gives us

u(k)(x) = ρK(x) · ck

and so

Γ · u(k)(x) = ΓρK(x) · ck = u(k)(x + T ) = ρK(x + T ) · ck,

for any k. From here we can conclude that ρK(x + T ) = ΓρK(x) and so K =
ω((ρK)x) will be periodic since ρK and ρ have the same monodromy.

To end the proof we need to show that K can be identified locally with U/E,
where U is an open subset of M. This is an immediate consequence of the contin-
uous dependence of solutions of ODEs on their equations, which guarantees that,
if an orbit in M intersects K, a nearby orbit will remain in M (that is β > 0) and
will intersect K. ♣

Example 3. In the projective case, the moving frame is well known. Its original
description is due to Wilczynski [W] and it is as follows: given a curve in IRn

assume that the curve is nondegenerate, that is, that the Wronskian of the functions
u1, u2, . . . , un is positive. Let’s denote this Wronskian by W . We next lift u to IRn+1

uniquely so that the Wronskian of the lift is constant and equals one. Namely
v = (φu, φ)T with φ = W− 1

n+1 . Let ρ be the matrix having vn, vn−1, . . . , v1, v in
columns. From the construction ρ ∈ PSL(n+1). The map associating to each curve
u the matrix ρ is the classical projective (left) moving frame for u. Its associated
coframe is easily seen to be of the form

(5.8) ω(ρ̂x) = ρ̂−1ρ̂x =


0 1 0 . . . 0

k̂n−1 0 1 . . . 0
...

. . .
...

k̂1 0 . . . 0 1
k̂0 0 . . . 0 0


and k̂i, i = 0, 1, . . . , n − 1 are the well-known Wilczynski invariants, independent
differential invariants that generate any other projective differential invariant for u.
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A change of frame replacing parts of the ρ0 factor and the ρ1 factor can be found
to transform this Serret-Frenet equations into the more convenient one

(5.9) ω(ρx) = ρ−1ρx =


0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
...

0 0 . . . 0 1
k0 k1 . . . kn−1 0


One can see that these moving frame can be obtained using Fels and Olver’s method
as above. The interested reader can fill in the details of this change, we will avoid
further explanations.

For the projective case we choose

M = {
(
∗ βen

∗ ∗

)
, β > 0, β ∈ C∞(S1)}

and

L = {
(

A0 0
0 a0

) (
I 0
∗ 1

)
, a−1

0 = det A0, A0 =
(

A1 0
∗ a1

)
, a1 > 0} ⊂ LPSL(n, IR).

The theorem above shows that any matrix in M can be taken to one of the form
(5.9) using the action (4.2), with g ∈ L.

Next theorem will finally show that the Poisson bracket described in the previous
section can be Poisson reduced using M and E. The resulting bracket will be
a Hamiltonian structure defined on the manifold of Serret-Frenet equations (or
differential invariants) associated to curves in the homogeneous manifold G/H.

Theorem 7. Let M and E be as in (5.4) and (5.7). Let {, } be the Poisson bracket
(4.1) defined on Lg∗. Then (Lg∗,M, E, {, }) is Poisson reducible and there exists a
Poisson bracket {, }R defined on the manifold of coframes K. The reduced bracket
is defined by relation (4.5).

Proof. First of all, we have seen already that conditions (a) and (b) needed to
apply the Reduction Theorem are satisfied since the map

π : M→K
is given by m → A(g)m where g is as in Theorem 6. Next, (c) is also satisfied.
Indeed, if δF

δM (M) and δG
δM (M) belong to E0 clearly their Hamiltonian vector fields

P ( δF
δM (M)) and P ( δG

δM (M)) belong to l0 along M. Therefore, if R is such that
δR
δM (M) ∈ l we have

{F,R}(M) = {G, R}(M) = 0
for any M ∈M, and so

δ{G, R}
δM

(M),
δ{F,R}

δM
(M) ∈ (TM)0.

If l0 is the Lie algebra associated to the isotropy subgroup L0 and l00 represents its
annihilator within g0, we have l0 = g1⊕ l00 and so Ll0 ⊂ TMM as vector subspaces.
From here (TMM)0 ⊂ Ll and, using Jacobi’s identity

{{G, F}, R}(M) = 0

for any M ∈M. That is, (c) is satisfied.
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Finally, condition (4.6) is also satisfied since E0 is generated by elements F such
that P (F )(M) ∈ l0. Therefore

P (E0) ⊂ Ll0 ⊂ TMM

for any M ∈M. ♣

If one wishes to obtain the reduced bracket explicitly, the reduction process
might not seem to be very practical. In many specific examples though, obtaining
an explicit formula is not too complicated, as the projective example shows. The
conformal and Euclidean cases were worked out in [M1] and [M3].

Example 4. Let K ⊂ M be the submanifold of matrices as in (5.9). In the
projective case, the reduced Poisson bracket can be found as follows: if H is any
extension of h : K → IR constant of the leaves of E, then

H =
δH
δM

=
(

H0 h
H1 h0

)
where h =

(
δh
δki

)
is the variational derivative of h. Since H must be constant on

the leaves of E we have that

(H)x + [K, H] =
(

(H0)x + [α, H0] + enH1 − hkT hx + αh + h0en −H0en

(H1)x + kT H0 −H1α− h0kT (h0)x + kT h−H1en

)
should belong to g1 ⊕ l00, where K is as in (5.9), that is K equals

K =
(

α en

kT 0

)
, α =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . . . . .

...
0 0 . . . 0 1
0 0 0 0 0

 .

Hence, we obtain the following equations for H0, H1 and h0

H1en = (h0)x + kT h(5.10)
(H0 − h0I)en = hx + αh(5.11)

(H0)x + [α, H0] + enH1 − hkT =


0 0 . . . 0
...

...
...

...
0 0 . . . 0
∗ . . . ∗ ∗

(5.12)

It is not hard to see that these equations determine H0 − h0I (notice that h0 =
−trH0) and H1en in terms of k and h through algebraic manipulation (that is, no
integration needed). Since we know the bracket will be independent of the extension
from M to Lg∗, other entries in H1 will not appear in the final expression. Indeed,
once we solve for H0 and H1en using the equations above, the reduced bracket is
given by
(5.13)

{h, g}R(K)
=

∫
S1((H1)x −H1α + kT (H0 − h0I))g +

(
eT
n ((H0)x + [α, H0] + enH1 − hkT )

)
G0endx

.

But, from the equations above we know that G0en = gx + αg + g0en. Notice that
the last entry of eT

n ((H0)x + [α, H0] + enH1 − hkT ) vanishes since the trace of
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Hx + [K, H] is zero. Hence, we can ignore g0en. The reduced Hamiltonian vector
field associated to h is then given by

(5.14)
ξR
h = kT (H0 − h0I)

− d
dx

(
eT
n ((H0)x + [α, H0])− hnkT

)
+

(
eT
n ((H0)x + [α, H0])− hnkT

)
α,

where hn is the n-entry of h.
The fact that the bracket (4.1) with g = sl(n+1, IR) was Poisson reducible to the

space K of periodic matrices of the form (5.9) was originally proved algebraically by
Drinfeld and Sokolov in [DS] and later linked to the geometry of curves in IRPn in
[M2]. Although the original procedure used in [DS] and [M2] seems quite different
than the one presented here (and the one in [DS] is purely algebraic), one can easily
show that, in the sl(n + 1, IR) case, they are indeed equivalent. The manifold M
and foliation E used in Drinfel’d and Sokolov’s paper are different from the ones
presented here but it is not hard to see that the resulting reduced bracket is the
same. In those papers the manifold used for reduction was

M1 = Γ + B

where

Γ =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . . . . .

...
0 0 . . . 0 1
0 0 . . . . . . 0


and where B ⊂ Lsl(n + 1, IR) is given by lower triangular matrices. The foliation

involved in the reduction is described by L1 the same way ours is described by
L, where L1 equals the identity plus strictly lower triangular periodic matrices.
Clearly M1 ⊂M and E1 ⊂ E. It was also proved that M1/E1 is locally equal to
our M/E. Since we are reducing in both cases the same Poisson bracket on the
dual of the Kac-Moody algebra of PSL(n + 1, IR), it is simple to conclude that the
reduced Poisson brackets coincide in both cases.

Drinfel’d and Sokolov showed that the reduced Poisson bracket coincides with
the so-called Adler–Gel’fand–Dikii bracket or second Hamiltonian structure for gen-
eralized KdV equations and so is ours in the PSL(n+1, IR) case. Their brackets in
cases other than PSL(n + 1, IR) are not in general equal to the geometric brackets
obtained here. For example, in the O(n + 1, 1) case the resulting quotient in [DS]
has dimension less than the number of independent differential invariants needed to
generate differential invariants of curves in the Möbius sphere (the flat conformal
geometry case). Therefore, their reduced bracket cannot coincide with ours. It
would be interesting to study the precise relation between both brackets and the
consequences for completely integrable systems.

6. Hamiltonian systems induced by geometric evolutions

In this section we want to answer the following question: Let u(t, x) be a family
of curves in the homogeneous space G/H. Assume u(t, x) are solutions of the
evolution

(6.1) ut = Z(u, u1, u2, . . . )
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where ui = diu
dxi . Assume further than evolution (6.1) is invariant under the action

of G, that is, assume G takes solutions to solutions. In that case there exists a
naturally induced evolution on the space of differential invariants of the curves.
This evolution will give us a natural evolution on the manifold K of coframes along
u.

(6.2) kt = Y (k,k1,k2, . . . )

where ki = dik
dxi . We want to determine which invariant evolutions of the form (6.1)

will produce evolutions of the form (6.2) which are Hamiltonian with respect to the
reduced bracket presented in the previous section. How simple this relation is will
depend on the choice of frame, as we explain below.

First of all, a standard result in invariant theory (see for example [O]) states
that equation (6.1) is invariant under the action of the group if and only if

(6.3) ut = Rr

where R is a nondegenerate matrix of relative differential invariants with Jacobian
multiplier (or a matrix formed by a classical moving frame) and where r is a vector
whose entries are differential invariants. Our next results will bring this general
invariant evolution description into the group picture.

First of all, the precise relation between moving frames and classical moving
frames is not known in general. Fels and Olver described the known cases (Euclidean
and projective) in section 7 of [FO1]. The author further described the relation in
the conformal case in [M3]. The following theorem establishes the relation in the
general flat semisimple case.

Theorem 8. Under the identifications made in Lemma 1, if ρ is a moving frame
associated to a curve u, with ρ = ρ−1ρ0ρ1 and ρ−1 = gu, then ρ0 as an element of
GL(n, IR) is a nondegenerate matrix of relative differential invariants with Jacobian
weight.

Proof. Indeed, let φg, g ∈ G, be the map defined by left multiplication, φg : V → G
where V ⊂ G−1 is a neighbourhood of e ∈ G−1 identified locally with a neighbour-
hood of o ∈ M . If we decompose φg(x) into its G−1, G0 and G1 components

φg(x) = gx = g−1(x)g0(x)g1(x)

we know from (2) in Theorem 1 that g0(x) can be identified with the matrix as-
sociated to dφgx(o) = dφg(x)dφx(o). Having this in mind, let ρ = ρ−1ρ0ρ1 be the
moving frame from Lemma 1. Since ρ is a left-invariant moving frame

ρ(g · u(k)) = gρ(u(k))

where g · u(k) is the prolonged action. On the other hand, as we discussed above,
gρ−1(u(k))ρ0(u(k))ρ1(u(k)) = g−1(u)g0(u)g1(u)ρ0ρ1. Since G0 is the Stabilizer of
G1, g1(u)ρ0 = ρ0ĝ1(u) for some ĝ1 ∈ G1. Therefore

gρ−1ρ0ρ1 = g−1(u)g0(u)g1(u)ρ0ρ1 = g−1(u)g0(u)ρ0ĝ1(u)ρ1

and so
(6.4)
g−1(u) = ρ−1(g · u(k)), g0(u)ρ0(u(k)) = ρ0(g · u(k)), ĝ1(u)ρ1(u(k)) = ρ1(g · u(k)).

Since g0 is identified with the element of GL(n, IR) defined by the matrix associated
to dφg(ρ−1)dφρ−1(o), and since dφρ−1(o) = I as pointed out in Lemma 1, we have
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that g0(u) is given by the Jacobian of φg at u. Hence ρ0 can be identified with an
invertible matrix of relative differential invariant with Jacobian weight. ♣

The following corollary was used in the previous section and it is an immediate
consequence of (6.4) above.

Corollary 1. Assume ρ̃(x) ∈ G for all x and assume we are close enough to e ∈ G
so that there is a unique factorization ρ̃ = ρ̃−1ρ̃0ρ̃1. Assume that ρ−1 = ρ̃−1 = gu as
in Lemma 1. Let Γ ∈ G be also close to e, so that Γρ̃ = ρ̂−1ρ̂0ρ̂1. Then ρ̂−1 = gΓ·u.

Proof. Let ρ−1 = gu and let ρ be the moving frame corresponding to u and found
using Fels ad Olver’s method. Let ρ = ρ−1ρ0ρ1 be its factorization. From (6.4)
above Γρ−1ρ0ρ1 = gΓ·uρ̂0ρ̂1 which implies Γρ−1 = gΓ·uν for some ν(x) ∈ H. Thus

Γρ̃ = gΓ·uνρ̃0ρ̃1

and since νρ̃0ρ̃1(x) = ρ̂0ρ̂1 ∈ H we obtain the result. ♣

Lemma 3. Under the identifications made in Lemma 1, if ρ is the moving frame
associated to a curve u found in that lemma and ρ = ρ−1ρ0ρ1 with ρ−1 = gu, then
an invariant equation of the form (6.3) can be written as

(6.5) ω((ρ−1)t) = Ad(ρ0)vr

where vr ∈ g−1 is the element in g−1 defined by some invariant vector r if we left
invariantly identify g−1 with the tangent to G/H, and where ω((ρ−1)t)dt is the
t-horizontal component of the pull back of the the Cartan connection by ρ−1(t, x)
(that is ρ−1

−1 (ρ−1)t).

Proof.
This proof is very simple if we apply the previous theorem. The left invariant

identification of ut with an element in g−1 is given by ω((ρ−1)t) since ω is defined
by the Maurer-Cartan form of G. Also, ρ0 as an element of GL(n, IR) identifies
with a nondegenerate matrix of relative invariants. The action of G0 (as subgroup
of GL(n, IR)) on g−1 is given by the adjoint action. Hence, writing an invariant
evolution of the form (6.3) in the algebra g−1 results in equation (6.5), if we choose
as R the matrix given by ρ0. ♣

Example 5. In the PSL(n + 1, IR) projective case, the first moving frame is easily
seen to be

ρ(u(k)) =
(

(uφ)(n) . . . (uφ)′ uφ
φ(n) . . . φ′ φ

)
=

(
I u
0 1

) (
A1 0
0 φ

) (
I 0
v1 1

)
φ = W− 1

n+1 as before and where v = φ−1
(
φ(n) . . . φ′ φ

)
and A =

(
(uφ)(n) . . . (uφ)′

)
−

u
(
φ(n) . . . φ′

)
. (The reader might want to use Fels and Olvers’ method of nor-

malization to quickly obtain this formula in the case n = 2.) In the more convenient
choice of second frame (5.9), we need to change A1 and v1 conveniently. In any

case, the G0 component
(

A 0
0 φ

)
is identified with φ−1A ∈ GL(n, IR). If we write

(6.5) we obtain(
0 −u
0 0

) (
0 ut

0 0

)
=

(
A 0
0 φ

) (
I r
0 1

) (
A−1 0
0 φ−1

)
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that is (
0 ut

0 0

)
=

(
0 φ−1Ar
0 0

)
.

Evolution ut = φ−1Ar, where r is a vector of differential invariants, that is de-
pending on k and its derivatives, is the most general form of an invariant evolution
under the projective action of SL(n + 1, IR).

Our next step towards the classification of geometric evolutions is to write down
a formula for the evolution induced on the manifold of moving coframes K by an
invariant evolution of curves of the form (6.3). Once we write down the formula,
its relation to the reduced bracket will become clear.

Theorem 9. Let u be a two parameter family of curves solution of an invariant
evolution of the form (6.3). Then, their associated moving coframes are solution of
the equation

(6.6) Kt = Nx + [K, N ]

where N = N1 + N0 + N−1 ∈ g is such that N−1 = vr is the left invariant identifi-
cation of r with an element in g−1.

Proof. As we said in Section 2, G → G/H is a H-principal bundle with a flat
Cartan connection given by the Maurer–Cartan form on G. The structural equation
is given by

dω +
1
2
[ω, ω] = 0.

Let ρ be a moving frame along u and let ρx and ρt represent the vector fields d
dx and

d
dt along the two parameter family of curves ρ in G. If we evaluate the structural
equation on these two fields along ρ we obtain

(6.7)
d

dt
ω(ρx)− d

dx
ω(ρt) + ω([ρx, ρt]) = [ω(ρx), ω(ρt)].

Since ω is the Cartan connection, ω(ρx) = K is the associated moving coframe.
Let’s call N = ω(ρt) and notice that t and x are independent variables so, as fields
on G, [ρx, ρt] = 0. From here (6.7) becomes

(6.8) Kt = Nx + [K, N ]

which is (6.6). Assume ρ = ρ−1ρ0ρ1. Then, as we saw in previous sections, if
N = N−1 + N0 + N1

N−1 = Ad(ρ−1
0 )ω((ρ−1)t).

From (6.5) we have N−1 = vr. ♣

Using the previous theorem and the definition of the reduced Poisson bracket we
will be able to give a geometric interpretation of r in the Hamiltonian picture. We
will show that, if u induces a reduced Hamiltonian evolution on K with Hamiltonian
h, then r can be identified with the component tangent to G/H of the variational
derivative of an extension of the Hamiltonian constant on the leaves of the foliation
used for the reduction. But first, as a point of reference, we will look into the
situation in the projective case.
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Example 6. Assume ut = φ−1Ar is a projective geometric evolution and let K be
the submanifold of Lsl(n + 1, IR) given by matrices of the form (5.9). If we denote
by k = (k1, . . . ,kn),

α =


0 1 . . . 0
...

. . . . . .
...

0 . . . 0 1
0 . . . 0 0


and if we write

N =
(

N0 r
N1 n0

)
we can write (6.8) as

(6.9)
(

0 0
kT

t 0

)
=

(
(N0)x + [α, N0]− rkT + enN1 rx + αr− (N0 − n0I)en

(N1)x −N1α + kT (N0 − n0I) kT r + (n0)x −N1en

)
.

We can solve these equations for N0 and N1 in terms of k and r and their derivatives,
and we can substitute the values we obtain in the entry for kt to obtain the evolution
of the curvatures. In fact, the above implies the following equations hold true

N1en = (n0)x − kT r

(N0 − n0I)en = rx + αr

(N0)x + [α, N0] + enN1 + N1enI − rkT − krI = 0.

Compare these equations to equations (5.10). If h = r then N0 = H0, n0 = h0

and so will the last entries of H1 and N1, since the equations are identical. Fur-
thermore, the last row of the last equation above will also determine N1 completely
in terms of k and r so that

N1 = eT
n (−(N0)x − [α, N0]− rkT ).

The evolution induced on the projective invariants is

kT
t = (N1)x −N1α + kT (N0 − n0I)

which, with the value of N1 above, coincide with the reduced Hamiltonian evolution
given in (5.14). That is, the condition for the u-evolution to induce a Hamiltonian
evolution on the differential invariants is that the invariant coefficients of the u-
evolution, r, coincide with the variational derivative of some Hamiltonian h : K →
IR. In that case, the evolution of the invariants is Hamiltonian with Hamiltonian
functional h.

In general, we cannot expect to have such a simple relationship. The simplicity
in the projective case relies on the fact that TK lies on g1, the dual to g−1, which
is itself the tangent to G/H at e. That is, if h : K → IR is a Hamiltonian, any
extension of h to Lg∗ will have h in the g−1 component of its variational derivative
H, where h is the variational derivative of h. It is this tangential component that
we must identify with r to make the k evolution Hamiltonian.

Definition 12. We say that a functional h : K → IR is local if it depends on k and
its derivatives.
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In general we need to assume that local Hamiltonians exist. The non-local cases
can be often dealt with formally (see [MS], [M1] and [M3] in the natural cases), but
some care needs to be taken and we will avoid the complication here.

Theorem 10. Let u(t, x) be a family of curves solution of an invariant evolution
of the form (6.3), where r is a vector depending on k and its derivatives. Assume
that there exists a local functional h : K → IR and a local extension H : M → IR
constant on the leaves of the foliation Φ used in our reduction. Assume further
than δH

δM = H = H−1 + H0 + H1 with H−1 = vr.
Then, the evolution induced by (6.3) on k is a Hamiltonian evolution with respect

to the reduced bracket {, }R, with associated Hamiltonian given by h.

Proof. Assume h : K → IR and g : K → IR are two local functionals with two
local extensions H : M → IR, G : M → IR constant on the leaves of E. If we
denote by H = δH

δM (K) and G = δG
δM (K) we know that Hx + [K, H], Gx + [K, G] ∈

l0 = Lg1 ⊕ Ll00. Assume l̂0 is a complement to l0, as vector subspaces, within g0

so that g0 = l0 ⊕ l̂0 and l00 = l̂∗0, the dual to l̂0. Let H = H1 + H0 + H−1 be the
decomposition given by the gradation and let us denote by Ĥ0 the component of
H0 in l̂0. Assume the same decomposition for K and G. Since Hx + [K, H] ∈ l0 we
have

(H−1)x + [K−1,H0] + [K0,H−1] = 0

which determines Ĥ0 in terms of K−1,K0 and H−1. In fact, because H is local, Ĥ0

can be written in terms of derivatives of H−1 and k. That is, we can write

(6.10) Ĥ0 = D(H−1)

for some differential operator D with coefficients depending on k and its derivatives.
Let us now write the reduced bracket. Since Hx + [K, H] ∈ l0

ξh(g) = −ξg(h) = {h, g}R(K) =
∫

S1
B(Hx + [K, H], G)dx

(6.11)

= −
∫

S1
B(D∗ ((G0)x + [K−1, G1] + [K1, G−1] + [K0, G0])+(G1)x+[K1, G0]+[K0, G1],H−1)dx

where D∗ denotes the adjoint differential operator to D with respect to B.
Now we go back to the curve evolution ut = Rr. We know that the induced

evolution on the curvatures is given by Kt = Nx + [K, N ] with N = ω(ρt) and
N−1 = vr. Notice that, since K−1 = Λ is constant

(N−1)x + [K−1, N0] + [K0, N−1] = 0

and so N̂0 is determined as a function of N−1 = vr, its derivatives, and the deriva-
tives of k. In fact

(6.12) N̂0 = D(N−1)

where D is given as in (6.10).
Since Kt ∈ TK, for any local extension G of g, the variational derivative of g,

denoted by g, will appear in the TK∗ components of G. That is, regardless of what
the other components of G are, we have that, considering kt as a vector field on K

kt(g) =
∫

S1
B(G, Kt)dx =

∫
S1

B(G, Nx + [K, N ])dx = −
∫

S1
B(Gx + [K, N ], N)dx.
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Using the fact that Gx + [K, G] ∈ l0, the above equals

−
∫

S1
B((G0)x+[K−1, G1]+[K−1, G−1]+[K0, G0], N̂0)+B((G1)x+[K1, G0]+[K0, G1], N−1)dx.

if we compare this expression to (6.11) using (6.12) we obtain that, if vr = N−1 =
H−1 both vector fields ξh and kt are equal.

♣

7. Compatible Hamiltonian structures

As we explained in the introduction, one of the main applications of infinite
dimensional Poisson Geometry to completely integrable systems is the use of Pois-
son brackets to integrate the equations. Most completely integrable systems are
biHamiltonian, that is, Hamiltonian with respect to two different and compatible
Poisson structures. If one of these structures is symplectic, it can be formally in-
verted and a sequence of symmetries can be then found by recursion. This family of
symmetries integrates the equation (see [AF]). Because of this application we will
briefly describe possible Poisson structures compatible with the geometric Poisson
structure presented before.

In the projective case generalized KdV are biHamiltonian and one of the brackets
(the so-called Second Hamiltonian KdV structure) is the reduced one presented
here. It is then natural to ask whether or not the reduced Poisson bracket {, }R

has one (or more) compatible Poisson structures. Indeed, the bracket (4.1) has a
well-known compatible companion, namely the bracket

(7.1) {H,G}(L) =
∫

S1
B(

δG
δL

, ad∗(H1)(
δH
δL

))dx

where H1 ∈ g∗ is any constant element. Therefore, we need to look for constant
elements H1 such that (7.1) reduces to K. Such a reduction would provide a com-
patible Poisson structure to {, }R and with it the possibility of finding integrable
systems associated to flat geometries. (For the reader looking for a thrill, what
about finding a completely integrable system associated to E6 or E7?) The study
of possible reductions of (7.1) provided a known Hamiltonian structure for general-
ized KdV equation in the projective case, the so-called first KdV structure ([DS])
and also three compatible Hamiltonian structures in the n = 3 Euclidean case
([MS]), including the ones integrating the Vortex filament flow and modified KdV.
As far as the author knowns, except for the planar case, conformal and the general
case are still largely open. Integrable systems in the planar case have been classified
in [CQ1], [CQ2], although they have not been linked to this Hamiltonian structures
yet. One of the main obstacles to the swift application of these results is the iden-
tification of possible reductions and non-degenerate brackets among the reduced
ones. Another one is, of course, the fact that in many geometries moving frames
and differential invariants are not known! These problems are already within reach
of being solved in a case-by-case basis. It is still not clear how to classify geometric
integrable systems in general.

A quick review of several examples show that there is not a clear general condition
that guarantees the reduction of (7.1). One of the reduction conditions will restrict
the possible values of H1. Indeed, one needs

{E0, ·}(M) ⊂ TMM
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for any M ∈M. An element in E0 can have g−1 component and so, if we want to
guarantee ad∗(H1)(H(M)) ∈ g1 ⊕ g0 we will usually need H1 ∈ g1.

Example 7. For simplicity, let us calculate {, }1R in the PSL(2, IR) case. In this
case

K = {
(

0 1
k 0

)
, k periodic}

and l0 = g1. Let’s choose

H1 =
(

0 0
1 0

)
.

If h : K → IR is a Hamiltonian, and h is its gradient, the variational derivative

of any extension will be given by H =
(

a h
b −a

)
and condition Hx + [K, H] ∈ l0

implies a = 1
2hx and b = − 1

2hxx + kh. Therefore, the Poisson bracket {, }1R is
defined as

{h, g}1R(k) =
1
2

∫
S1

tr([H1,H]G)dx

=
1
2

∫
S1

tr

(
−hag −hg

hbg + 2ahag 2ahg − hag

)
dx =

∫
S1

(ahg − hag)dx =
∫

S1
hxgdx.

Hence, the reduced structure is Dx, which is the well-known first Hamiltonian
structure for KdV.

Example 8. Consider G = O(4, 1). It was shown in [M3] that K is given by
matrices of the form 

0 1 0 0 0
k1 0 0 0 1
k2 0 0 k3 0
0 0 −k3 0 0
0 k1 k2 0 0

 .

One can check that (7.1) reduces only if

H1 =


0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0

 .

In that case, if we write the reduced Poisson bracket as {h, g}1R(k =
∫

S1
δg
δk

T
D δh

δkdx
for some matrix of differential operators D it is not hard to see that (we denote
D = d

dx )

D =

D 0 0
0 −D −k3

k2
D

0 −D k3
k2

D 1
k2

D 1
k2

D

 .

Computations similar to those in [M6] show that other constant elements do not
produce Poisson structures.
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Example 9. Consider G = Sp(4). In [M6] it was shown that K is defined by
matrices of the form 

0 k1 1 0
k1 0 0 1
k2 0 0 k1

0 k3 −k1 0

 .

It was also shown in [M6] that no value of H1 will produce reduced Poisson struc-
tures compatible with the geometric Poisson structure.

On the other hand, some Poisson submanifolds of K have been identified as
producing completely integrable systems. For example, when G = O(4, 1) one
can restrict to k3 = 0 to obtain first and second Hamiltonian structures for the
complexly coupled KdV equations. If G = Sp(4), we can restrict to k1 = 0 and get
a decouple system of KdV equations. This holds true in general for Sp(2n) (see
[M6]).

8. Further questions

It is hard to briefly describe all the related problems that remain open in this
topic since there are many possible applications of the classical geometric machin-
ery to several subjects. One of the most important ones is, of course, the thorough
study of integrable systems attached to these brackets. Some new results have been
obtained in [M6] where the author found integrable systems associated to geometric
evolutions of Lagrangian planes in symplectic IR2n. These systems are biHamilto-
nian with respect to the brackets presented here in the case of the symplectic group.
In general, one needs to classify reducible and invertible companion brackets and
find integrable systems using {, }R and {, }1R. All best known Poisson brackets used
for integration of PDEs are now known to be geometric, sometimes associated to
more than one geometry as it is the case with KdV (appearing in projective as
structures for KdV and in special affine as structures for Sawada-Kotera equations)
and mKdV brackets (appearing in several examples).

An interesting question raised by Prof. Peter Olver is whether {, }R is related to
the invariantization of Euler-Lagrange operator associated to invariant variational
problems, and how. Work in that direction is under way.

A second topic of much interest is the role of the curvature in integration. In
the constant curvature Riemannian case ([MS]) it was the curvature tensor that
provided one of the symplectic operators used for integration. The precise role of
this tensor in the integrability picture is very intriguing, especially in the general
case of a Cartan geometry, where there are several possible choices of curvature
tensors (see [Sh]).

It will also be interesting to link Drinfel’d and Sokolov’s brackets to the ones pre-
sented here. Drinfel’d and Sokolov obtained what they called KdV-type integrable
systems associated to their bracket. They also defined their reduced manifold as
defined by Lax operators. The geometric background in spaces of Lax operators
(and in general with differential operators) could lead to finding normal forms for
those operators, the way it was done in [M5]. This is a traditional analysis problem.
Hence, it would be interesting to know how both, DS and geometric brackets are
related and to study the corresponding normal forms using transversal sections.
Work in that direction is also under way.
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9. APPENDIX: The order of the differential invariants of curves in
flat semisimple homogeneous spaces

This section proves a result that was used in section 5. We will show that a
generic parametrized curve in a flat homogeneous semisimple space does not have
differential invariants of first order (we are not counting here the parameter x, which
has order zero).

Theorem 11. Let G/H be a flat semisimple homogeneous space. If k is a differ-
ential invariant for a curve u : I → G/H, then the order of k is greater or equal to
two. That is, there are no differential invariants of order one.

We have seen that the first prolonged action of the group is given by the linear
isotropy faithful representation of G0 on g−1. Hence, to show that there are no
first order differential invariants for these geometries we merely need to analyze the
rank of this action and show that it has maximal rank.

The Lie algebras of flat semisimple groups are classified in [KO]. They are direct
sums of simple ones found in the list below. Furthermore, each simple Lie algebra
has a splitting of the form (2.1) and the adjoint action also splits accordingly ([Oc]).
Hence, to prove the general case it suffices to prove that the first prolongation action
has maximal rank for each simple case classified in [KO]. The following is a list of
g, g0 and g−1 together with their isotropic representation as found in [KO]. We are
denoting by Mp×q the space of p by q real matrices. All algebras are over the real
numbers.

1.

g = sl(p + q), g0 = {Â =
(

A 0
0 B

)
∈ sl(p + q)} ' sl(p)⊕ sl(q)⊕ IR

g−1 = {Ŷ =
(

0 Y
0 0

)
, Y ∈ Mp×q},' Mp×q `(Â)(Ŷ ) = AY − Y B.

2.

g = so(n, n),

g0 = {Â =
(

A1 A2

A2 A1

)
, A1 ∈ so(n), A2 ∈ Sym(n)} ' {A = A1 + A2} ' gl(n)

g−1 = {Ŷ =
(

Y Y
−Y Y

)
, Y ∈ so(n)} ' so(n), `(Â)Ŷ = AY + Y AT .
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3.

g = so(p + 1, q + 1),

g0 = {A =


0 0 a a
0 A1 0 A2

a 0 0 0
0 AT

2 0 A3

 , A1 ∈ so(p), A2 ∈ Mp×q, A3 ∈ so(q), a ∈ IR}

' so(p + q)⊕ IR,

g−1 = {


0 −Y T

1 0 Y T
2

Y1 0 Y1 0
0 Y T

1 0 −Y T
2

Y2 0 Y2 0

 , Y1 ∈ Mp×1, Y2 ∈ Mq×1} ' Mp+q×1,

`(A)Y = a

(
A1 A2

AT
2 A3

) (
Y1

Y2

)
4.

g = sp(n), g0 = {
(

A 0
0 −AT

)
, A ∈ gl(n)}

g−1 = {
(

0 Y
0 0

)
, Y ∈ Sym(n)}, `(A)Y = AY + Y AT .

5.
g = E6, g0 = so(5, 5).

The representation of g0 on g−1 is given by the standard spin representation
of so(5, 5) on a 16 dimensional vector space.

6.
g = E7, g0 = E6 ⊕ IR,

and again the isotropy representation is given by the standard representa-
tion of E6⊕ IR on the space of 3× 3 Cayley Hermitian matrices, as we will
describe in a lemma below.

In order to finish the proof of the theorem we need to go through 1 to 6 and
calculate the dimensions of generic orbits for each one of them. We will break this
calculation in three lemmas, one for 1-4, the classical algebras, and one for each E6

and E7 cases.

Lemma 4. The minimal dimension of the isotropy algebra of the representation
given in cases 1-4 equals

(9.1) dimg0 − dimg−1.

Proof. In each case we want to study the dimension of the subalgebra

{A ∈ g0, `(A)(ξ) = 0}

for a generic ξ ∈ g−1.
Looking into case 4 first, the dimension of elements taking Y to zero coincide with

the dimension of the subgroup of GL(n) leaving Y invariant. Since Y is symmetric,
if generic, this will coincide with the dimension of so(n). On the other hand, gl(n)
can be split into the direct sum of symmetric matrices and so(n), and hence (9.1)
holds true.
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One can reason in a parallel way in case 2. Here Y is skew symmetric and the
dimension of the matrices that generically leave a skew symmetric matrix invariant
equals the dimension of the symplectic algebra in even dimensions, and the dimen-

sion of the algebra of matrices leaving

 0 0 0
0 I 0
−I 0 0

 invariant in odd dimensions.

In each case a simple dimension counting gives the desired result. For example, in
the even case, the dimension of the symplectic algebra is n2

2 + n
2 and the dimension

of so(n) is n2

2 − n
2 which adds up to the dimension of gl(n).

Case number 3 is simply the projective action of so(p, q)⊕ IR on IRp+q which is
known to be transitive.

Finally, in the first case g0 has dimension p2 + q2 − 1 and g−1 has dimension
pq. Since Y is a general p × q matrix, for a generic Y the solution on A and B of
equation AY − Y B = 0 will be given by a p2 + q2 − 1− pq dimensional set, using
basic linear algebra. ♣

Lemma 5. The minimal dimension of the isotropy algebra of the spin representa-
tion of so(5, 5) is equal to dim(so(5, 5))− 16 = dimg0 − dimg−1

Proof. To prove this lemma it is enough to find one element for which the dimension
of the isotropy algebra is minimal and as above. That element will be generic
automatically. But first let us briefly describe the spin representation of so(10, C).
The complex dimension of the isotropy algebra for the complex case coincides with
the real dimension of the isotropy algebra for the spin action of so(5, 5), so we
will study the complex case. The following description of the spin representation
of so(2n, C) is as found in [F]. We will avoid many of the necessary details, like
definitions of Clifford algebras, etc, in favor of simplicity. For a complete description
of the representation please see [F].

Assume our standard quadratic form in 2n dimensions is given by

Q(v, w) = vT

(
0 I
I 0

)
w

so that, if ei represent the standard basis in Cn, then ei and en+i are dual elements
with respect to the inner product defined by the matrix above. Assume SO(2n, C)
is the group of matrices preserving this inner product. An element in so(2n, C)
is a combination of elements of the form αij = 1/2(Ein+j − Ejn+i), where we are
adopting the convention of identifying 2n with zero whenever j or i is larger than
n.

With this description, let W = Cn and let
∧∗

W be the exterior algebra of W ,
which is 2n dimensional. The positive spin representation, one of the irreducible
representations of so(2n, C), is defined on the 2n−1 dimensional space V =

∧even
W

of even products of W . This space represents g−1 in the case g = E6. The odd
powers of W represent g1 and they are the domain of the negative spin represen-
tation. First of all we will describe an action of C2n on V and we later use it to
describe the representation of so(2n, C).

If ei is such that i ≤ n, and ξ ∈ V , define

(9.2) λ(ei)(ξ) = ei ∧ ξ.
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If ei is such that i > n define λ(ei)(ξ) = i(ei)(ξ), where i is the interior product,
that is

(9.3) λ(ei)(w1 ∧ w2 ∧ · · · ∧ wr) =
r∑

j=1

(−1)j−1Q(ei, wj)(w1 ∧ · · · ∧ ŵj ∧ · · · ∧ wr).

Now, if αij ∈ so(2n, C) is as above, define the following action of so(2n, C) on∧even
W

(9.4) ρ(αij)(ξ) =
1
2
(λ(ei) ◦ λ(ej)− λ(ej) ◦ λ(ei))(ξ)

where λ is defined as in (9.2) and (9.3), depending on the value of the subindex,
and where ◦ denotes composition. Representation (9.4) is the so called positive
spin representation of so(2n, C) on

∧even
W .

With this definition it is not very hard to show that there are elements whose
isotropy algebra has minimum dimension in the case n = 5. Indeed, consider the
vector

ξ = e1 ∧ e2 + e2 ∧ e3 + e3 ∧ e4 + e4 ∧ e5 + e5 ∧ e1.

It is a straight forward calculation to show that ρ(so(10, C))(ξ) =
∧even

W . In fact,
if we consider αij with 1 ≤ i, j ≤ 5, one can easily check that ρ(αij)(ξ) generates∧4

W as i and j change. If 1 ≤ i ≤ 5 and 5 < j ≤ 10, then one can also easily check
that ρ(αij) will generate

∧2
W as i and j change, and also clearly, if 5 < i, j ≤ 10

their image will generate
∧0

W = C. Therefore, the isotropy algebra of this element
will have the dimension established by the lemma. ♣

Lemma 6. The minimal dimension of the isotropy algebra of the natural represen-
tation of E6⊕IR on the space of 3×3 Hermitian Cayley matrices is dimE6+1−27 =
dimg0 − dimg−1

Proof. First of all, let us describe the natural representation of E6 in 3 × 3 Her-
mitian Cayley matrices. More details about the following description can be found
in [S].

Let O be the eight dimensional nonassociative alternative algebra of octonions
(a Cayley algebra over IR, see [S]). There exists an involution of the algebra that we
denote by x → x̄ such that xy = ȳx̄, x̄ = x and such that x+ x̄ ∈ IR, xx̄ = x̄x ∈ IR,
for any x, y ∈ O. Let H3×3 be the set of matrices of the form

(9.5)

α c b̄
c̄ β a
b ā γ


with α, β, γ ∈ IR and a, b, c ∈ O. As a vector space over the real numbers, H3×3 has
dimension 27. On H3×3 define the following commutative (nonassociative) product

N ·M =
1
2
(NM + MN),

where NM is the nonassociative product of matrices in H3×3. With this product,
H3×3 is a Jordan algebra. Let ξ be an element as in (9.5) and let us write it as

ξ = αE11 + βE22 + γE33 + A1 + A2 + A3
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where

A1 =

0 0 0
0 0 a
0 ā 0

 = (a)1, A2 =

0 0 b̄
0 0 0
b 0 0

 = (b)2, A3 =

0 c 0
c̄ 0 0
0 0 0

 = (c)3.

A very simple calculation shows

Eii · Eii = Eii, i = 1, 2, 3, Eii · Ejj = 0, i 6= j,

Eii ·Ai = 0, i = 1, 2, 3, Eii ·Aj =
1
2
Aj , i 6= j,

(a)i · (b)i = (a, b)(Ejj + Ekk), i 6= j, k

(a)i · (b)j = (b̄ā)k, for any i, j, k cyclic permutation of 1, 2, 3

where (a, b) is the nondegenerate bilinear form on O defined as (a, b) = 1
2 (āb + b̄a).

Let LX : H3×3 → H3×3 be defined by

(9.6) LX(ξ) = X · ξ.
The natural representation of E6 ⊕ IR on H3×3 identifies E6 ⊕ IR with the algebra

{LX , X ∈ H3×3} ∪ {[LX , LY ], X, Y ∈ H3×3}
where [LX , LY ] = LX ◦ LY − LY ◦ LX represents the commutator. This algebra
acts on H3×3 using (9.6) (see [S]).

As in the previous lemma, it is easy to find an element with an isotropy algebra
whose dimension matches the one given in the statement of the lemma. Indeed, if

ξ = E11 + E22 + E33

one can check, using (9.6), that

LX(ξ) = X, [LX , LY ](ξ) = 0

for any X, Y ∈ H3×3. Therefore, the dimension of the isotropy algebra of ξ equals
the dimension of E6 ⊕ IR minus the dimension of H3×3, as stated. ♣
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