Wn-ALGEBRAS AND FRACTIONAL POWERS OF DIFFERENCE
OPERATORS

GLORIA MARI BEFFA

ABSTRACT. In this paper we describe a Poisson pencil associated to the lattice
W -algebras defined in [7], and we prove that the Poisson pencil is equal to the
one defined in [10] and [3] using a type of discrete Drinfel’d-Sokolov reduction.
We then show that, much as in the continuous case, a family of Hamiltonians
defined by fractional powers of difference operators commute with respect to
both structures, defining the kernel of one of them and creating an integrable
hierarchy in the Liouville sense.

1. INTRODUCTION AND BACKGROUND

The space of operators of the form ug(z)+. . .+t _2(2)0™2-0™, where 0 := 0/0z
and the coefficients u;(z) are periodic functions, has a remarkable quadratic Poisson
structure, called the second Adler-Gelfand-Dickey bracket [8, 1], and defined by
Lax almost 50 years ago. Its Poisson algebra is known as the classical W,,-algebra.
Adler-Gelfand-Dickey structures are perhaps better known through its connection
to integrable systems as they are Poisson brackets for KdV-type equations [8].
These equations are biHamiltonian, i.e. Hamiltonian with respect to two compatible
Poisson structures whose sum is also Poisson. All best-known integrable systems
are biHamiltonian. The Adler-Gelfand-Dickey bracket can be constructed in at
least two equivalent ways: as defined by the multiplicative structure on the algebra
of formal pseudo-differential operators interpreted as a Poisson-Lie structure on
the extended group of such operators [9]); or defined through a Drinfeld-Sokolov
reduction on the dual of an affine (Kac-Moody) Lie algebra [4].

In a recent paper [7], the authors defined a discrete version of these constructions,
the lattice W,,-algebra. This Poisson algebra can also be constructed in two different
ways, similarly to the continuous case. One can define a multiplicative structure on
the space of monic m order difference operators of the form (-1)™"! +u!'T + ... +
u™ 2T _T™ where u’ are bi-infinite N-periodic sequences, that is u’ = (u’,)F>
with uﬁl .y = ul, for any n, and where 7 acts on the space of bi-infinite periodic
sequences u = (u,) by shifting the subindex once, i.e. (Tu), = tn+1. The space of
any m order difference operators has a natural multiplicative structure that allow
us to define a natural Poisson bracket. The authors in [7] showed that the resulting
bracket can be reduced using left and right multiplication by bi-infinite N-periodic
sequences to a bracket on the space of monic operators with constant zero term, as
above, to define what they called the W,,-lattice algebra.

This bracket had an earlier definition through a modified discrete version of the
Drinfel’d-Sokolov reduction. In [10] the authors proved that a bracket introduced by
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Semenov-Tian-Shansky in [12] could be reduced to a quotient of the form PSL(m +
)N/HN where RP™ = PSL(m + 1)/H is the homogeneous representation of the
projective space, with H™V acting on PSL(m+1)" by discrete gauges. The resulting
bracket coincides with the reduced bracket on monic operators, as shown in [7].
The authors also identified a second bracket defined through the same reduction
process, but failed to prove that the two brackets were compatible. The authors
of [3] naturally connected the Hamiltonians with respect to the quadratic bracket
to invariant evolutions of projective polygons, lifting the two Poisson structures to
pre-symplectic forms on the space of projectively invariant polygonal vector fields.
They used this connection to show that the two brackets where compatible and some
associated evolutions were biHamiltonian. Through these general constructions one
can recover familiar structures that have appeared in the literature as Hamiltonian
structures for the lattice Visasoro algebra or Volterra lattice [13, 5], and the lattice
Ws-algebra [2].

In this paper we aim to describe this Hamiltonian pencil using the W,,-algebra
definition as in [7], and we will prove that the companion bracket to the W,,-algebra
coincides with the companion bracket defined in [10]. This interpretation will allow
us to readily identify a Liouville integrable system defined by Hamiltonians defined
by the traces of fractional powers of the difference operators

F(D) = Y, T(D*™),

much like in the continuous case. The proof of the equivalence of both pencils is
achieved through the identification of the pre-symplectic forms w;, ¢ = 1,2, that
lift both Poisson structures {, };, i = 1,2, to the space of invariant vector fields on
twisted polygons in centro-affine geometry, that is, the case of arbitrary u® (rather
than constant).

Finally, we will show that if the lift of an F-Hamiltonian evolution with respect
to {,}1 to a polygonal vector field is denoted by X7, then X7 is the Hamilton-
ian vector field with respect to the pre-symplectic form wq, for both centro-affine
and projective cases. In particular, in the projective case X7 is defined by the
nonnegative part of D*/™, for any s.

The author is deeply grateful to Professor Anton Izosimov for discussions and
for his input on the content of section 5. His suggestions and ideas facilitated the
results presented in this paper.

2. A DISCRETIZATION OF THE ADLER-GELFAND-DIKII BRACKET: DISCRETE
W,n-ALGEBRAS

We denote the space of N-periodic upper-triangular difference operators of order
m by DO(N,m). That is, its elements are of the form

(1) D= ZaiTia
=0

where a;’s are N-periodic functions Z — R acting on functions of the same kind
by term-wise multiplication, while 7 is the left shift operator (7 f)(x) = f(z +
1) (the term wupper-triangular is used to distinguish such operators from those
which may also contain terms of negative power in 7). We define an N-periodic



Wpn-ALGEBRAS AND FRACTIONAL POWERS OF DIFFERENCE OPERATORS 3

pseudodifference operator as an expression of the form

k
(2) T
j=—00
where k € Z, and each b:Z — R is an N-periodic function. Such an expression can
be regarded either as a formal sum, or as an actual operator acting on the space
{&Z >R |3jeZ:&(x) =0V x> j} of eventually vanishing functions.

We will denote the set of N-periodic pseudodifference operators by YDO(N).
This set is an associative algebra. Moreover, almost every pseudodifference op-
erator is invertible. In particular, (2) is invertible if the coefficient v* of highest
power in T is a non-vanishing sequence. We will denote the set of invertible N-
periodic pseudodifference operators by IWDO(N). This is a group with respect to
multiplication. At least formally, one can regard it as an infinite-dimensional Lie
group.

The following proposition was proved in [7]

Proposition 2.1. There exists a natural Poisson structure w on the group TWDO(N)
of N -periodic invertible pseudodifference operators. This structure has the following
properties:

1. It is multiplicative, in the sense that the group multiplication is a Poisson
map. In other words, the group IVDO(N), together with the structure ,
18 a Poisson-Lie group.

2. The subset IDO(N, k) := IWDO(N)nDO(N, k) of order k invertible upper-
triangular difference operators is a Poisson submanifold.

3. The Poisson structure m vanishes on the submanifold IDO(N,0) of invert-
ible order zero operators.

4. The Poisson structure 7 is invariant under an automorphism of INUDO(N)
given by conjugation D — fDf~1 with quasiperiodic f:7 — R.

The natural Poisson structure defined above appears on any Lie group which
is embedded as an open subset into an associative multiplicative algebra A (for
example, as its invertible elements). In that case, the Lie algebra of G (or the
tangent space to G at any point) can be naturally identified with A. Assume also
that A is endowed with an invariant inner product, that is, (zy,z) = (z,yz) for
any x,y,z € A (in particular, the inner product is adjoint invariant). Furthermore,
assume that r A — A is a skew-symmetric operator satisfying the modified Yang-
Baxter equation

(3) [ra,ry] =rlre,y] - rlz,ry] = -[z,y] Va,yeg.

Then G carries a structure of a factorizable Poisson-Lie group. Identifying the
cotangent space T;G with the tangent space TyG = A by means of the invariant
inner product, one can then write the formula for the corresponding Poisson tensor
on G as

(4) mg(z,y) = (r(xg),y9) - (r(9x),9y) VgeG,z,yeA.

Property 4 in proposition 2.1 allows us to reduce the natural Poisson bracket on
IDO(N,m) given by operators as in (1), to difference operators where a™ = -1 and
a’ = (-1)™1, both constant. The reasons for these particular choices will become
clear in our next section.
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With this construction in mind, consider the inner product on ¥DO(N) given
by

N
(VW) = Z Tr(VIW)(n)
n=0
where if V = ¥ v"T", Tr(V) = v°. This inner product is invariant and can be used
to define a Poisson bracket on the space of invertible difference operators. Indeed, if
F :IDO(N,m) — R, its variational derivative is represented by a pseudo-difference
operator of order m, denoted here by §pF and defined uniquely by

Lo F(D(e) = 0F, o D))

de
With this notation, the quadratic Poisson bracket above becomes
N
(5) {F,G}(D) = Z Tr (r(DépF)D - Dr(6pFD),6pG) (n)
n-1

where 7(L) = $(L, - L_). Notice that we can substitute r by 7*(L) = L, + 1 Ly and
obtain the same bracket.

If the bracket is reduced, it will have an identical formula, with 6 pF modified
in standard fashion by the corresponding reduction. For more details about this
construction, please see [7].

3. A DISCRETIZATION OF THE DRINFEL'D-SOKOLOV REDUCTION

The authors of [10] defined a pair of Poisson structures associated to the back-
ground geometry of projective twisted polygons in RP™ ™. The pair was shown
to be compatible in a subsequent paper [3], where the authors linked them to pre-
symplectic forms on the space of projectively-invariant polygonal vector fields. In
this section we will briefly recount the definition of the pair, defined through a
discrete version of the well-known Drinfel’d-Sokolov reduction [4].

As a homogenous space, the projective space RP™ ! can be described as PSL(m)/H,
where the subgroup H is the isotropy subgroup of a distinguished point. The pro-
jective group PSL(m) acts on the quotient via left multiplication on class repre-
sentatives. We say an infinite polygon in RP™ ' is N-twisted is there exists an
element of the projective group M € PSL(m) called the monodromy, such that, if
v is the nth vertex, then v,+n = M -7,, for all n. We focus on the moduli space of
equivalent classes of polygons in RP™ ! under the action of the projective group,
and define coordinates for this space. The authors of [10] proved that an N-twisted
projective polygon v completely determines the solution of a recursion equation of
the form

m—-1 m—2 1 m—1
(6) Tp+m = Ay Tnim-1 T Ay " Tpym-2 +eeet Ay Tn+l + (_1) Ln

for any n, up to the action of the projective group on -y, whenever N and m are
co-prime (the case m = 3 appeared in [11]). The solution z is defined by the entries
of a unique lift of v to R™, more about this in our next section. The discrete
functions a*, k = 1,...,m — 1 define bi-infinite N-periodic sequences, which are
invariant under the projective action of PSL(m) on the polygon 7. Therefore, they
can be considered to be coordinates in the moduli space. The same description
holds if we consider the centroaffine space R™ with GL(m) acting on it linearly. In
this case the invariant coordinate a?, coefficient of z,,, will not be constant.
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The following proposition was proven in [10] for the projective case, below is the
GL(m) case in [7]. The proofs are identical and we do not include it.

Proposition 3.1. The moduli space of non-degenerate twisted polygons under
the linear action of GL(m) can be identified with an open and dense subset of
GLY (m)/HN , where H c GL(m) is the subgroup H = {g € G, gey = e1}. HN acts
on GL(m)"N wvia the right discrete gauge action

(7) (h.g) > (Th)gh™")
with h e HN and g € GL(m)" representing a bi-infinite N -periodic sequence.
Finally, let
1
r= ZElj ®Eji+ 7ZE’!‘T®ETT
1>7 2 T
be the standard r matrix for G = GL(m), where E;; has a 1 in the entry (7,7) and
zeroes elsewhere. Given F,H smooth scalar-valued functions on GV and A € GV,
the twisted Poisson bracket is defined as in [6]:
N N
{(FHIA) = X r(VeF AVH) + ) r(VF AVH)
s=1 s=1
(8) N N
> r((Te)(ViFRVH)) + > r((Te1)(ViH e VF)),
s=1 s=1

where £ A = %(f ®n-n®E&), and V'F and VF are the right and left gradient,
respectively. Equation (8) defines a Hamiltonian structure on GV, as shown by
Semenov-Tian-Shansky in [12]. Moreover, the right gauge action of GV on itself

(9) (9,4) = ((T9)Ag™)
is a Poisson map and its orbits coincide with the symplectic leaves [6, 12].

Theorem 3.2. ([7]) The Poisson bracket (8) reduces locally to the quotient GN JH™
where HY is acting on GN wvia de right gauge action.

This theorem will naturally define a Poisson bracket on the open a dense subset
of GN/HY with a' defined in (6) as coordinates. In our next section, we will
describe how both brackets, the one defining the W,,, algebras, and the one defined
by the discrete Drinfel’d-Sokolov reduction, coincide. The proofs and all details can
be found in [7].

4. CONNECTION BETWEEN BOTH BRACKETS

There is a natural connection between evolutions of difference operators of the
form (1) with o™ = -1, and those of projective polygons defined by the kernel of the
operators. This relation also exists in many other geometric backgrounds, including
centro-affine geometry (the case when G = GL(m)). In this section we remind the
reader about this connection for both centro affine and projective cases, and we
summarize the results in [7] that used this connection to prove that both brackets
defined in previous sections coincide.

Assume v € (R™)Y defines a twisted polygon in R™, twisted with respect to
the linear action of GL(m) on R™. Simply from dimensional reasons, there exist
a¥ eRN k=0,1,...,m -1 such that

(10) Tm')/ _ am—le71,Y+am—27—m—27+.._+a0,,y.
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As proven in [11] for m = 3 and in [10] for any m, given a N-twisted projective
polygon, there exists a unique lift to R satisfying (10) with a® = (=1)™!, whenever
N and m are co-primes. The following theorem was proven in [10] for the projective
case and in [7] for the centro-affine case. The proof was constructive, showing that
the vector field could be obtained explicitly and algebraically from the variation of
the Hamiltonian.

Theorem 4.1. Let a*(t), k = 0,1,2...,m — 1 be the coordinates of a solution
to an evolution that is Hamiltonian with respect to the reduced bracket defined in
subsection 3.2, with Hamiltonian f(a). Let D(t) be defined by

(11) D(t)=-T™+a™ ' ()T™  +- +a* ()T +a"(t)

and let y(t) be the twisted polygon in R™ defined by its kernel, D(vy) = 0. There
exists a unique polygonal vector field X7 in an open and dense subset of (R™)N
such that

(12) =X (4(1)).
And vice-versa, if v is a solution of (12), then the invariants a* will evolve following
an f-Hamiltonian evolution with respect to the bracket in theorem 3.2.

It is worth to briefly describe X/’s connection to the invariants a*, as we will

use it in our next section. Let p = (v,77,...,T™ 'v) and assume v, = X7, where
f(a) is an invariant Hamiltonian function. Then

s
(13) pr = pQ¥

for some invariant matrix QX ! depending on a® and their shifts. The matrix QX !
defines X/ and its shifts and it is directly connected to the group right and left
gradients appearing in (8), as we will see in our next section where it will be widely
used.

Moving now to the W,,-algebra picture, one can readily find the « evolutions
that are directly linked to evolutions of difference operators which are Hamiltonian
with respect to the bracket (18). If D(v) = 0, then D¢() + D(y) =0 and if D is
Hamiltonian with respect to (18), with Hamiltonian F, then

Dy =r(DépF)D - Dr(6pFD)
and so D(7;) = =Dy(y) = Dr(6pFD) (7). We call Y the vector field
Y* =r(6pFD) ().
Theorem 4.2. ([7]) If F(D) = f(a) whenever D and a are related as in (11), then
Xr=y”

along . As a corollary, both brackets (18) and the one in theorem 3.2 coincide
when defined on the coordinates a = (a*).

5. A POISSON PENCIL

The space DO(N,m) is a Poisson submanifold with the quadratic bracket (18)
defined on the space or difference operators. In this section we will identify its
compatible bracket. Consider the 1-parameter family of maps

o : DO(N,m) - DO(N,m)
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with A € R, defined as ¢ (X% a'T*) = ¥ a'T" + A'a". Furthermore, consider
the push-forward of the quadratic bracket (18) {, }x = (¢r)«({,}) defined as

(14) {F,GIND) = {F o r,Goda}(¢3' (D))
Clearly {, } is Poisson for any A # 0.

Theorem 5.1. The bracket (14) is a Poisson bracket for any X € R. In fact, it is
a Poisson pencil, that is, linear in X.

Proof. The proof is a straightforward calculation. For simplicity we will denote the
operator 6pF by V and 6pG by W. We will denote by V, (resp. V_) its positive
(resp. negative) part as operator, and Vj its zero term. Therefore

¢x'(D) = ADgy + D
and
§(Foppn) =3V =X"Vp+ V..

(Notice that Vi = 0). We will next substitute these values in (14) and use (18).
This will require calculating individual terms, which we will do next.

P ((F 09203 (D)) = (V1 Wo 4 V) (ADy + D)) = A VoD + VoD 47 (V-Dy),
and from here
(15) ¢35 Y. Tr (Dyr* (6pF D), 6pG)

= ;Tr()\_l%D+ + %VODO +rY(V_D,),,(W_+ /\‘1W0)(D+/\D0)) .

The terms in

(16) ¢x . Tr (r*(DypépF) Dy, 6pG)

will be analogous but with the factors in different order. When both terms are
brought together in (14), the terms in (15) will carry a negative sign.

The coefficient of A2 in (15) is given by Tr(Vy D, WD, ), and the corresponding
coefficient in (16) can be equally calculated to be Tr(D, Vo D, Wy) = Tr(Vo D Wy D,.).
Therefore, they will cancel in (14).

The coefficient of A~ in (15) is

1
Te(VoDuW-D. + VoDyWoDo + 5 VoDoWoDs + 7 (V-D2)Wo D)

=Tr(VoD,W_D,)

and the corresponding one for (16) can be equally calculated to be Tr(D, VoD, W_).
Thus, the A™! term in (14) equals

S -Tr(VoD,W_D,) + Te(D, VoD, W-) = 0
n

Therefore, the expression in (14) is indeed a pencil and the coefficients of A! and
A0 define compatible Poisson brackets. ([l
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One can find a companion bracket straightforwardly. The coefficient of A in (15)
is given by

Tr((%VODO . r*(V,D+))W,D0) — Te(r+* (V_D,))W._D).
And when placed in (14) together with its counterpart in (16), we have the A
coefficient of (14) to be

{F,G}a(D) = 3 Tr (r* (D V) DoW- = 1*(V_D4)W_Dy) .
This is the companion bracket to our original quadratic bracket. While this bracket

is also quadratic, upon reduction to SL(m) we do have a linear bracket since Dy =
(-1)™"1. In that case, the bracket becomes

(17)
{F,G}2(D) = (_l)m—l ZTI'([(D+V_)+ + %(D+V_)0]W_ -[(V_D,),W_ - %(V_DJ,)OW_)

— (_1)7n—1 Z’I‘I‘([D+,V_:|+W)

6. PRE-SYMPLECTIC FORMS ON POLYGONAL VECTOR FIELDS AND THE
EQUIVALENCE OF POISSON PENCILS

The authors of [3] defined a pair of Poisson brackets and lifted them to pre-
symplectic forms on projectively invariant vector fields on polygons in RP™. In
this section we will describe the corresponding pre-symplectic forms for the centro-
affine case (a” generic), and we will show that the Poisson pencil just found on our
previous section is equal to the one found in [3] for the projective case. Consider
the two Poisson tensors generating the pencil

(18) {F,G}1(D) = ZTr (r(DndpF)Dy, — Dpr(6pFDy,),6pG)

where r(L) = (L, - L_), and
(19)  {F.G}2(D) = 3 Tr ([Do((0pF)-(Dn)+)+ = ((Dn)+(6pF)-)+Do] 6pG)

Asume X7 is defined as in (12), and define p, = (YnsYn+1s- -+ Ynem-1) and d,, =
det p,. In the projective case d,, = 1 for all n and ~ is a lift for the projective
polygon determined uniquely by that property ([10]). Define also the discrete form
6 = (6,,) along polygons given by

GR(X) = det(Xn,’)/rﬁlv cee a’)/n+m71)

whenever X is a vector field along v in R™.
Let F: DO(N,m) - R and let f:R™*DN L R be defined as

(ST ) - 1.
r=0
From the definition of variational derivative, we can see that

SpF =N T "0 f
r=0
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where J,- f is the standard variational derivative of f in the a” direction. Recall
that the reduction of both brackets to the SL(m) case is explicitly achieved using
the left and right multiplication so that if

m

L= d"T*

k=0
we reduce by finding a, b such that a=*b"'Lb = D. The same process is used if we are
to work in the GL(m) case, in which case we only need to find b so that o™ = -1,
while a® is still unconstrained.

If we equate the m terms, b~*a™b,, = -1, or b~'b,, = —a%n, which has a unique

solution if (N, m) = 1. Notice that if ¢ = -1, then b = 1. In any case, the reduced
variational derivative in GL(m) (a™ = -1) will look like

m-1
6pF =Y [T "0arf+T ™3 0ur f]
r=0

for some 8" that can easily be found explicitly, but which will cancel in our calcu-
lations and hence we do not need to know.

Theorem 6.1. Assume N and m are co-prime. Then, the Poisson bracket (19)
satisfies

{F,G}2(Dn) = (-1 wa (X7, X7)
where wy = Y, d(5-0,), that is

n

(XY = L Y000 = X0,(0) = (Y. X]) + T (0n(V) X () = 0u(X)Y ()]

n n

and where X7 is as in (12).

Proof. Straightforward calculations show that

Do((3pF)=(Dn)=)s - ((Da)+(65F)-)+Do

m—-1 m-2 m—1
= Ty f =T "Gy fT™ ]+ 3 Y [a°T T ahbay fT° = a3, T° 7" 8ay fa°].
r=1 r=1 s=r+l1

Using this expression, we get

m-—1

(20){F,G}a(Dn) = 3 ¥ Sap-rg[T" "0 60y f = T "0ay fT™] T
n r=1
m-2 m-1
(21) + Y Sasrg[a®T AN 0ar T - al, T %0 f]T77°.
r=1 s=r+l
Let QX € gl(m) be defined as in (13), that is, defined by the relation
X(p) = pQ*.

If X = X/ is as in (12), and A is defined by pp.1 = pnA, then X(A) = ATQ - QA,
and

Q¥ = (q,ATq,..., ATATA...TATq)

where q is an invariant vector defined by X () = pq and T appears m — 1 times
in the last column of the matrix above. As pointed out before, the matrix QX
was explicitly related to the left and right gradients in the Lie group (called VF
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and V'F in (8)) in [7] and we will refer the reader to that paper for details of this
relation, we will simply quote them next.
We know from [7] that if X = X7/, then

1

9 (Vn_lj: + V;L]:)el

(22) Qner=
(equation (35) in [7]), where

(23)
o [~a%0ag [ —af(8a, F)T _ * *
VnF = ( % % B} V'n,F = _(5anf)T —a25a91,f —a,- 5anf

(Lemma 4.5 in [7]). Recall that since (8) has been reduced using the Lie group
discrete gauge action of HY, we have that

Vi F = Vo F eh’

for any n, where b is the Lie algebra of H, and h° is its annihilator.
Using this information we can find both er +1 and Qﬁm. Indeed

Q%es1 =KTQe, T '=KTK ... TKTQe T " = %KTK...TK(v]-'JrTv’]-'T‘l)elT‘T

with 7 appearing r times. We notice that when calculating er +1 Do entries from
the first row of V'F are involved. Therefore, since

(24) TV FT -V, Fep®

we can substitute V.F by TV'FT ! above to obtain
eTQ%e,1 =KTK ... TK(VF)e1 T

Finally, KVF = V'FK, and so

e1Q%e,s1 = el KTK..TKT(VF)KexT "=el KTK ... TKT(V'F)eaT"
eI KTK ... TKVFe;sT " =el KTK ... TV FKeyT " = = el KTV Fe, T7!

(25) Q1,41 = GP{V'}_eHl = —aoéarf

forany r=1,2,...,m-1.
Also from (22), (24) and (23) we see that if r=2,...,m

T
Qa1 = %(T_lvj:T +V' F)er=e, T 'VFerT = e, T 'KVFeiT =T 'a’e;,VFerT

= e T KVFerT+T a0, fT =l \ T 'V FKex T+ T a0, fT
= T 'VFeT+T ' 60 fT = el T 2VFeT? +T a5 fT

Iterating this process we obtain that

m—r
T—sas+r—15a5 f7-s + 6’117;7-7‘—771—1 Vf€m7r+17-m_r+1

S

(26) Qr,l

Il
=

(27) — T—saer'rfl(saS fT—s _ Tr—m—léamirﬂfr]-'m—wrl.

s=1

|
3
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We are now ready to put everything together. Using all the information above
we can conclude that

> )Y, X) = Z — [¥0,(X) = X0, (¥) = 6 ([¥. X])]
= Zdl7:2_:[det(Xm'ym,l,...,Yn+k,...,’}/n+m_1)—det(Yn,’YnH,u-aXn+ka--~7'7n+m—1)]
- sl@dme) - (QY)11TY(QX)+Z[(Qy)k1(QX)1k—(QX)k1(QY)1k]]

5 Lo, (Y)X(d,) + Z @)k (@)1 - (Qf)k,l(QZ)l,k]]»

n d k=1

I
=[]
| o—|
[N
(V)
>
3
~~
D
N
=
(=8
3

and substituting (25) and (26) above, we get, after some minor rewriting,

m-1 m—1
UJQ(X‘f, Xq) = Z ( a 5agy_rg(5a?‘rf - Z a’7(’)71+m7‘§a?_7‘f6a2+WL—7”g)
n r=1

3 S

2m-r-1 0 m-2 m—1
+ +
( Z ana:L_‘_i,(Sar f(savswrsg Z Z an+m 9 2 " 55 :‘1+m 595all‘sf) '

r=1 s=1 r=1 s=r+1

=[]

We can compare this expression times (=1)""! to (20) and, after some straightfor-
ward modifications, conclude that they are equal. O

Theorem 6.2. The Poisson bracket (18) coincides with the negative of the bracket
previously defined as a reduction of (8). Furthermore, let D,, = ZL”;Ol ak Tk —Tm
so that D, () =0 for any lift of its associated projective polygon . Then

{F.G}(Dn) = (-1 wr (X9, X7)

where
wi(X,Y) = % 3 d1+1 [X0,(D(Y)) - Y0, (D(X)) - 0,(XD(Y) - YD(X)))]
‘ﬁ [0,(D(Y))X (dn) - 0,(D(X))Y (dn)].

Proof. The fact that the reduction of (8) and (18) are equal was proved in [7].
Given that D, (v) = 0 for all n, and differentiating in the direction of a vector
field Y, we obtain

m—1
(Dn)ty (V) + DY =0 - Dy(Y)=- Z (@) ey Ynss-
s=0
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From here, if the n + k field is placed in the 7, .; position in d,,, we have
X0, (D(Y)) -Y0,(DX)) - 0n(XD(Y) - Y D(X))

m—1
= Z [det(DnY, Ynsty -« s Xnaks o ooy Ynam—1) = Aet(Dn X, Yni1s oy Yok s Ynam—1) ]

k=1
m—1 & m=1 A

= Z (an)ty det(Xn+k77n+1a--~77n+ka--~77n+m—1)_ Z (an)tx det(Yn+k7’7n+1a--~77n+k7-~-77n+m—1)
k=1 k=1

m=1 m—1
- (ag)ty Z det(rynv'Yn-#la vy Xngky oo 7'Yn+m—1) + (agl)tX Z det(’)’m'ﬁwlv ey Yok a7n+m—1)
k=1 k=1

m=1 m—1
= Z (a];;,)ty det(Xn+k77n+1a-~-77n+k7-~-77n+m—1)_ Z (alz)tx det(Yn+k77n+1a--~7’Yn+k7"-7’7n+m—1)
k=0 k=0
= (ap)ey X(dn) +(a7)ex Y (da).
As in the previous proof, and using (25)

f
det(X7{+k37n+1a sy Ytk - 7’7n+m—1) = dn(Qf )1,k:+1 = _dna?l(;agf-

Also, given that D,,(7) = 0, we conclude that a2 = (—l)m‘l%. Therefore

n

1 m
L det(X7]:+k7’Yn+17 sy Ttk - - 77n+7n—1) = (_1) 5a§;f
n+
and
1 m-1 X f
Z d . Z (an)txg det(X7l+k,’Yn+17 s Ytk e 77n+m71)
n “n+l k=0
= (_1)m2(aﬁ)txgaaﬁf: (_1)m_1{fvg}1(a)'
n
Finally
. 1 1
(an)tx = di det(Ln(X)aanrl» (R a’Yner—l) = dian(D(X))
The theorem follows. O

Corollary 6.3. Both w1 and ws are closed forms when defined on the space of
invariant vector fields, and hence pre-symplectic. Furthermore, X7 = Y/ is the
f-Hamiltonian vector field with respect to w1 .

Proof. Using that X/ induces the f-Hamiltonian evolution with respect to {,};
on the invariants a, we get that X/ is the Hamiltonian vector field for w; when
restricted to invariant fields. That is, w(Xf,Y) = Y(f) for every f invariant.
We then get that [X7, X9] = X{/911 and from here w; will be a closed form on
the space of invariant vector fields since the property is equivalent to {, }; being
Poisson.
We obtain directly that ws is also closed since it is an exact form.
O
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7. COMMUTING FAMILY OF HAMILTONIANS

In this section we will assume that we are working on the SL(m) case. Notice
that while the previous results were proven for the GL(m) case, the SL(m) case
is directly obtained through reduction. We will prove that, as it happened in the
continuous case, there exists a hierarchy of completely integrable systems with
{, }1-Hamiltonians given by

(28) Fo(D) =Y. Tr(D;/™)

for any s=1,...,m -1, where the fractional powers are naturally defined. We will
do so by showing that the Hamiltonians above are in involution with respect to
both Poisson brackets. In addition to this integrable system there is an additional
system, the Boussinesq Lattice, which is also biHamiltonian with respect to our
pencil (see [10]), with {, }o-Hamiltonian given by

H(D) = Ina,,.
The authors of [10] showed that H is in the kernel of the Poisson bracket {, }1-{, }2.

Proposition 7.1. Let F, be defined as in (28). Then the variational derivative of

Fs after the reduction to SL(m) is given by the difference operator

(29) z2=2p
m

s—m

o (—1)m%TrDS/m

for any s.

Proof. First of all we will investigate the effect of the reduction by left and right
multiplication on L on the fractional power. Denote by L(e) = a™'b™1(L + V)b
the reduced operator, and define a’ = %k:oa with a® = (-1)™"1 @™ = -1. Since
a®(e) =Tr(L +€eV) and a™ = Tr(T ™ (L + €V)), we have that

a =(-1)""(a") = (-1)" ' TrV.
Define .

Z(1,V) = (E() ™Y |p.

Using (LY™)™ = L = a™'b"'(L + V)b, we conclude that, if we differentiate and
evaluate at D, we obtain

m-—1

S DM Z(1L,V)D™ 5 =V —d'D-V'L+ LV
s=0
and from here
m—1 . ) .
S D™ z(1,V)D™/™ = (V -a'D-¥'D + D¥) D=
=0

Applying the trace
-

mTr(Z(1,V)) = Te(VD =) + (-1)™TeVTrDY™ - Tx(b' DY™ — Db’ D
- Tr(V(DlTTm + (—1)’"Tw1/m))

1-m

™)

1-m

and therefore Z' = % (D mo+ (—1)mTrD1/m).
Likewise, if

Z(s,V) = ((L())*"™)'|p
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we have that

s—1 ) i s—1 ) o
Z(s,V)= Y D™ z(1,V)D5 = 3 pilm [Z(l,V)D -
=0 =0

]D*i/m.

We also know that
m—1
S D™ z(1,v)D% D™
i=0
1-m s—1 s—m

=(V-ad'D-VD+DV)D» Dw =(V-a'D-bD+Db)D ™=

and from here

s—1 s—m

mTr(Z(1,V)D% ) = Te(VD =" —a' D¥™)
Putting everything together

s=1

Tr(Z(s,V)) = sTe(Z(1,V)D ) = %Tr(VD% — ()™ 'V Do)

= STy (V(DS 4 (-1)™TeD™)
m
and so Z° = %(D_im + (~1)™TrD*/™), as stated. O

Theorem 7.2. The family {Fs}2, commute with respect to both (18) and (19),
and so they generate an integrable system hierarchy. Furthermore, the kernel of wo
is at least m — 1 dimensional.

Proof. The proof that they commute with respect to (19) is straightforward sub-
stituting Z° = dpF and ZP = 0pG in (19) and observing that they both vanish
when the 70 term in D, is constant and independent from n. Indeed [Z%, D, ], =
[Z2,D], =D, D], =0, and so Fy is in the kernel of (19) for all s, proving that
the dimension of the kernel of wy is at least m — 1.

We also have that

{Fp: Fs11(D) =

L ((Dz?)D - Dr(27D), 7°)
m
- %(Di’/’”D+(—1)mD+Tr(DP/M)D—Dﬁ/mD—DDf/’”+(—1)m—1DTr(DP/M)D++DD{’/’”,ZS)
_ L p/m p/m p/m s\ _ £ p/m p/m s
= 2m<[D+ , D]+[Tr(DP'™ D]+[D, D*'"™], Z°) = m([D+ , D]+[Tr(D?'™), D], Z°)
where we have used that [D?/™, D] = 0.
Substituting Z* and noticing that the zero order term in [D?/™, D]+[Tr(D?/™), D]
vanishes when a° is constant, we get

{Fo Fhu(D) = E (DY DY+ [Te(D”/™), D), D).

We also have

s—m

Tr([Te(DP™), D]D#*) = Tr(Tx(DP'™)[D, D

s—m

™ 1) =0,

Te([DY™, D)D) = Te(DY™[D, D)) = 0,
and therefore, {F,, Fs}(D) = 0 for any p, s.
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The existence of this hierarchy was conjectured in [3] as linked to the two ele-
ments in the kernel of wy described in that paper (the statement in that paper is
not correct, as the dimension is higher than 2. A brief correction is forthcoming).
Indeed, the two vector fields in that paper, X' and X? coincide with X7 and
X 72 as shown next.

Theorem 7.3. Let X/ be the polygonal invariant vector field inducing the f-
Hamiltonian on D, where D(y) = 0. Then X7+ is defined by the nonnegative
part of Dslm

X7 = 2 (DeIm = DI () = 2D (D) ().

Proof. Give the Hamiltonian Fy as in (28) and its variation (29), its Hamiltonian
evolution with respect to (18) is given by

D, = 5 ((DZ°). - (D2*) 1D - DI(Z°D). - (2°D) ).

Upon substituting (29) we obtain

D = % (D™D - DDY™ + DD™ - D™D+ (<1)"™(D, D™D - DD D.)).

Next we observe that [D, D*™] = 0 and so [D,D*™] = -[D, D™ + Dg/m]. We
also note that

D.D{™D-DD™D, = DD{™D-DD™D-DyD:™D+DD™ D,
= (-1 YDDy™ - D™ D).

Substituting these above we obtain

Dy = % (DD + D™D - D(DY™ + DY™)).

Finally, D(7) =0 implies that
S s/m s/m
D(v) = =Di(3) = —D(DI™ + D™)(7).

From here, the theorem follows as the kernel of D does not include any invariant
vector field. 0
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