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Abstract. In this paper we describe moving frames and differential invari-
ants for curves in two different |1|-graded parabolic manifolds G/H, G =

O(p + 1, q + 1) and G = O(2m, 2m), and we define differential invariants of

projective-type. We then show that, in the first case, there are geometric
flows in G/H inducing equations of KdV-type in the projective-type differen-

tial invariants when proper initial conditions are chosen. We also show that

geometric Poisson brackets in the space of differential invariants of curves in
G/H can be reduced to the submanifold of invariants of projective-type to be-

come Hamiltonian structures of KdV-type. The study is based on the use Fels

and Olver moving frames. In the second case we classify differential invariants
and we show that for some choices of moving frames we can find geometric

evolutions inducing a decoupled system of KdV equations on the projective-
type differential invariants, if proper initial values are chosen. We describe the

differences between this case and the Lagrangian Grassmannian case in detail.

1. Introduction

A new concept of moving frame has recently been introduced by Fels and Olver
in [FO1, FO2]. Instead of the classical concept of moving frame along a curve
u : I → M as a curve in the frame bundle of M over u, Fels and Olver introduced
the idea of a moving frame as an equivariant map. For them, a (left-invariant)
moving frame of m-order along u is a map from the space of jets J (m)(IR,M) to
the group G, equivariant with respect to the prolonged action of the group G on
J (m)(IR,M) and the left action of G on itself. Hints of this idea can be found in the
work of Cartan [C] (who defined a moving frame along a curve in projective space
as a matrix in SL(3)), Green ([G]), Griffiths ([Gr]) and others. In [FO1, FO2] the
authors give a constructive method to find moving frames using constant transverse
sections to the prolonged leaves of the group (also called normalization equations).

A fundamental problem with the traditional moving frame concept was that in
non-affine geometries (projective, conformal, etc) the classical Frenet equation of
the moving frame did not provide a complete set of generators of differential invari-
ants for the curve. For example, in the projective case the traditional moving frame
method could not be used at all to find projective curvatures. In the conformal case
all but two invariants can be found using traditional Frenet equations, the other
two invariants need to be found by other means (see [Fi]). This is not a problem
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with Fels and Olver’s frame, if M = G/H is a homogeneous space, a complete set
of generators of differential invariants can always be found among the entries of the
matrix defining its Frenet equation ([H]).

The reason for the shortcomings of the traditional approach was explained in
[M3] when M = G/H is a homogeneous space. Indeed, if ρ : J (k)(IR,M) → G
is a left invariant moving frame and φρ : M → M is defined as the action of
ρ(u(k)) on M , that is, φρ(u) = ρ(u(k)) · u, then dφρ(o), identified with an element
of GL(n, IR), contains in columns a classical moving frame along the curve, where
o = [H] ∈ G/H. That is, only invariants determined by the linear action of the
group can be determined using the classical moving frame. One needs to consider
a moving frame that will take into account the complete action to ensure that all
invariants will be found. The authors of [FO2] pointed out that equivariant moving
frames can be interpreted in terms of higher order frame bundles. From that point
of view, classical frames involve only first order frames.

This paper studies the geometry of curves u : I → M = G/H, G/H flat, for two
different cases where G is semisimple and its Lie algebra has a length one gradation
(these are called |1|-graded parabolic manifolds). We study the cases G = O(p +
1, q+1) and G = O(2m, 2m). We want to find and classify all differential invariants
for these curves and study the evolution under some geometric flows of what we
will call differential invariants of projective type. We will consider G-invariant
evolution of curves in G/H, or geometric evolutions. If a curve evolution in G/H
is invariant under the group, it induces an evolution on the differential invariants
of the flow. We aim to identify completely integrable systems that are related to
geometric evolutions much like the nonlinear Shrödinger equation is related to the
Vortex filament flow via the Hasimoto transformation ([Ha], see also [Ca]). These
are called geometric realizations of the integrable system.

Some examples have already been studied by the author, namely that of the
Möbius sphere, or local model for flat conformal manifolds ([M2], the choice is G =
O(n+1, 1)), the case of flat projective IRPn ([M3], with choice G = PSL(n+1, IR)),
and the case of the Lagrangian Grassmannian or manifold of Lagrangian planes in
IR2n ([M4], with choice G = Sp(2n)). In the conformal case there exist two projec-
tive type differential invariants. Furthermore, one can find a geometric evolution
of curves such that a level set of the evolution is given by a complexly coupled
system of KdV equations on these differential invariants. In the projective case all
invariants are projective-type, and one can find a geometric evolution of curves in
IRPn inducing an Adler-Gel’fand-Dikii evolution on the projective invariants of the
flow. In the case of the Lagrangian Grassmannian there exist a geometric evolution
of curves inducing an evolution on its differential invariants that has as level set
a system of decoupled KdV equations on the differential invariants of projective
type. The author has conjectured that these are the only types of KdV evolutions
appearing in |1|-graded parabolic manifolds.

A paper by Kobayashi ([KO]) classifies all |1|-graded parabolic manifolds. In-
deed, for those manifolds the Lie algebra g is a direct sum of the simple Lie algebras
listed in [KO] and the group actions decouple. Hence, it suffices to study each one
of the cases listed in [KO] (we will not work on the exceptional cases). This paper
studies the cases G = O(p + 1, q + 1) and G = O(2m, 2m), while a projective case,
SL(p + q), and O(2m + 1, 2m + 1) (possibly similar to O(2m, 2m)) will be left for
later papers.
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One of the main difficulties of these studies, if not the main one, is that moving
frames along curves for homogenous manifolds are not known in general, only in
some cases. In particular they were not known for the cases presented here and
the ones that are still pending. In fact, to be able to effectively study the Poisson
brackets for PDEs associated to these (Cartan) geometries one needs not only to
find the moving frames, but to find moving frames of a convenient enough form
so that the evolution of the differential invariants under geometric flows is clear
and recognizable as completely integrable systems. The identification of the asso-
ciated integrable evolutions is usually based on the identification of Hamiltonian
structures that are obtained by reduction to the space of differential invariants
(the so-called geometric Poisson brackets for PDEs). Hence, identifying the re-
sult of such reduction requires that the space of differential invariants is not only
described, but described in a form that is simple enough for further use. In the
case of G = SL(p + q) such a frame requires a different approach from the one
presented in this paper, while in the case of O(2m + 1, 2m + 1) the quotient can be
identified with skew-symmetric matrices. The evolving one dimensional kernel of
generic 2m + 1 dimensional skew symmetric matrices complicates the calculation
of the moving frame with the techniques used here. Even without this problem,
one can already see complications in the O(2m, 2m) case. Indeed, we prove that
no choice of constant transverse section (or zero order in the differential invariants
of projective type) will result in a geometric evolution preserving vanishing fifth
order differential invariants and inducing KdV-type evolutions on the invariants
of projective type. This is the first example of |1|-graded parabolic manifolds for
which this happens for any constant section of the prolonged leaves. On the other
hand, one can find geometric evolutions that preserve the submanifold of vanishing
fourth order differential invariants, but not the fifth order ones. In fact, for most
dimensions a moving frame can be found via a constant cross section such that on
the submanifold of vanishing fourth order differential invariants the evolutions of
projective-type and fifth order invariants decoupled. The first group evolves fol-
lowing a decoupled system of KdV equations (like the Lagrangian Grassmannian
case). It will be very interesting to study the geometry of these manifolds and to
learn what factors determine a proper choice of invariants.

The reader will notice similarities between the two cases we study in this paper.
It is perhaps possible to write a common description of the moving frame calcu-
lation up to a certain point. But because soon the results become different and
need different treatment we have opted for individual explanations, even if some
repetition takes place. Some calculations are similar to those in [M2] and [M4] and
we will refer the reader to those papers when such is the case.

In section 2 we describe Fels and Olver definition of moving frame and their
method to find them. We also list the results that will be needed along the paper.
This method is used in sections 4.1 and 5.1 to find the moving frames in the cases
of G = O(p + 1, q + 1) and G = O(2m, 2m), respectively. The moving frames are
then used to classify differential invariants and Frenet equations for these two cases.
The three sections can be read independently from the rest of the paper.

In section 3 we describe Geometric Hamiltonian structures and their properties.
We also describe how these brackets are directly related to some evolutions of curves
in G/H for any |1|-graded parabolic manifold, that is, one can always find geomet-
ric realizations of the Hamiltonian evolutions in G/H. We use these definitions and
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the results listed in section 3 to obtain biHamiltonian evolutions of KdV type for
projective-type differential invariants in the case of G = O(p + 1, q + 1). We show
that the situation is very much like the situation in the conformal case. These evo-
lutions have a geometric realization on G/H that we give explicitly, together with
its biHamiltonian structures. This is described in 4.2. The case G = O(2m, 2m) is
studied in 5.2. There we show that no choice of constant or zero order transverse
section generating the moving frame can preserve the manifold of vanishing fifth
order invariants. Furthermore, we show that for most dimensions the evolutions
of third and fifth order decouple and the third order follows a decoupled system
of KdV equations. We explain the basic differences between this case and the La-
grangian Grassmannian case, the main one being the appearance in the O(2m, 2m)
case of differential invariants of fifth and higher order that did not exist in the
former.

2. Moving frames

In this section we will briefly describe the method of moving frames as redesigned
by Fels and Olver in [FO1] and [FO2], and adapted to our particular case.

Definition 1. Let G be a Lie group acting on a manifold M . We say that G acts
effectively on subsets if, for every open subset U ⊂ M , the global isotropic subgroup
of U given by

GU = {g ∈ G such that g · s = s, for all s ∈ U}
is trivial, that is, equal to {e}. We say G acts locally effective in subsets if GU is a
discrete subgroup of G for every open set U ⊂ M . We say the group acts freely on
M if the isotropy subgroups Gx = {g ∈ G such that g · x = x} are all trivial.

Definition 2. Let G be an r-dimensional Lie group acting on an n-dimensional
manifold. We say that the group acts regularly on M if all its orbits have the
same dimension and each point x ∈ M has arbitrarily small neighborhoods whose
intersection with each orbit is a connected subset thereof. If the second condition
in the definition is omitted we say the group acts semi-regularly.

Definition 3. Given a transformation group G acting on a manifold M , a moving
frame is a smooth G-equivariant map

(2.1) ρ : M → G.

Since we can consider either the right or the left action of G on itself, we can
talk about right or left moving frames. The following theorem determines which
group actions admit a moving frame. Its proof can be found in [FO1].

Theorem 1. If G acts on M , then a moving frame exists in a neighborhood of a
point x ∈ M if, and only if G acts freely and regularly near x.

Perhaps the most interesting part of Fels and Olver’s method is that it describes
a simple way of constructing moving frames based on the so-called normalization
equations. One can also find a generating set of differential invariants using those
equations.

Definition 4. Assume G acts semi-regularly on M with orbits of dimension s. A
local cross-section to the orbits is an r-dimensional submanifold, C, r = dim(M)−s,
such that C intersects each orbit transversally. If C intersects each orbit in one
point at most, then we say C is a regular cross-section.
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Definition 5. Let C ⊂ M be a local cross-section to the G orbits. The normal-
ization equations associated with C are the system of equations

(2.2) w = g · z = c

where c ∈ C.

It is quite simple to see that, if G acts freely and C is a regular cross section, then
there is a unique solution g = ρ(z) to the normalization equations, determining the
right moving frame associated with C. Moving frames are used to find a complete
set of invariants of the action. These invariants can be found in two different ways,
the first one being described by the following Theorem.

Theorem 2. If ρ(x) is a (right invariant) moving frame, then the components of
the map I : M → M defined by I(x) = ρ(x) · x provide a complete set of invariants
for the group.

Therefore, the normalization procedure provides a simple direct method for de-
termining invariants of free group actions. Next, we will describe the situation
when the manifold M is the jet space associated to curves in a homogeneous space.
A variation of what will be defined below needs to be adopted whenever the group
G acts also on the independent variable, which is not the case at hand.

Definition 6. Given a manifold M , we define the nth order jet bundle J (n)(IR,M)
to be the set of equivalence classes of curves under the equivalence relation of nth
order contact. The fibers of πn : J (n)(IR,M) → M are generalized Grassman
manifolds (see [O].)

We introduce local coordinates u = (uα) on M . The induced coordinates in
the jet bundle J (n)(IR,M) are denoted by (x, u(n)), where x is the independent
variable and where the components of u(n) are uα

k representing the kth derivative
of the dependent variable uα with respect to x, for any k ≤ n. Any transformation
group G acting on M preserves the order of contact between curves. Therefore,
there is an induced action of G on the nth order jet bundle J (n)(IR,M) known as
the nth prolongation of G. In our special case the prolonged action is locally given
by

g · (x, u, u1, . . . , un) = (x, g · u, (g · u)1, . . . , (g · u)n)
where, again, the subindex indicates the number of derivatives with respect to x.
The expression (g · u)k defines a formula in terms of u, u1, . . . , uk which indeed
defines the prolonged action. We are using (g · u)k to represent that formula.
The invariants of the prolonged action are naturally called differential invariants.
The best known differential invariants are the curvature and torsion for curves in
Euclidean space (O(n) n IRn)/O(n) ∼= IRn.

Definition 7. A (nth order) differential invariant is a (locally defined) scalar func-
tion I : J (n)(IR,M) → IR which is invariant under the prolonged action of G.

The key element of Fels and Olver’s method is that, for a high enough order of
contact, a moving frame always exists for the prolonged action. In fact, a theorem
by Ovsiannikov [Ov] (corrected by Olver in [O2]) states that if a group acts (locally)
effectively on subsets, then there exists an integer k0 such that the prolonged action
of the given group is locally free on an open and dense subset of the k0th order jet
space. This subset is formed by the so-called regular jets (see [FO1]). Direct appli-
cation of Theorem 1 implies that, if the group acts (locally) effectively on subsets,
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then for n large enough, there exists a moving frame defined on a neigbourhood of
regular jets (that is, for generic curves). Moreover, this moving frame can be found
solving the normalization equations (2.2) for some choice of transversal section.

Fels and Olver’s method provides also a complete description of generating differ-
ential invariants. Let ρ(u(k)) be a right invariant moving frame. From Theorem 2 a
complete set of differential invariants is contained in ρ(u(k)) ·ur, r = 0, 1, 2, . . . . But
given the normalization equations, some of these differential invariants are constant.
We call the constant invariants phantom differential invariants. If ρ(u(k)) · ur =
cr ∈ IRn, we call cr the r-normalization constant. The following theorem can be
found in [FO2]. We have simplified and adapted the notation. Although this ver-
sion applies to our particular group action, it does not cover the general case. For
complete information see [?].

Theorem 3. A generating system of differential invariants consist of
(a) All non-phantom zeroth order invariants ρ · u and x.
(b) All non-phantom differential invariants (ρ(u(k)) · ur)α for which (ρ(u(k)) ·

ur−1)α was phantom. (The expression ()α represents the α-entry of a vector
in IRn.)

From this theorem, if ρ(u(k)) · ur = cr has maximal rank, then all rth order
differential invariants will be phantom invariants and differential invariants will
have higher order. It is important to point out at this moment that, although
not explicit in [FO1, FO2], one has choices other than a constant cross section.
Indeed, the normalization constants cr can be chosen to be functions of differential
invariants of order lower than r (and their derivatives). The resulting moving frame
will still generate all differential invariants (see [H]).

A different way to find a complete set of generators of differential invariants is
to find the so called Serret-Frenet equations of a moving frame.

Definition 8. Let ρ : J (k)(IR, G/H) → G be a (left or right invariant) moving
frame. We let ρ∗ω denote the horizontal component of the pull back of the (left)
Maurer-Cartan forms. We call ρ∗ω the Serret-Frenet equations associated to ρ, and
they define the system of linear equations that has ρ as solution.

It is trivial to see that the left invariant Serret-Frenet equations are the negative
of the right invariant ones, since the left invariant moving frame is the inverse of
the right invariant one. The entries of the Serret-Frenet equations always contain a
complete set of generating differential invariants. This was shown in [H] in general,
and it is a consequence of [FO1, FO2] for the case at hand.

3. Geometric Hamiltonian structures.

Given a semisimple Lie group G there exist natural families of Poisson brackets
defined on the space of loops on the dual of its Lie algebra, Lg∗. They can be defined
as follows: let H : Lg∗ → IR be a functional defined on Lg∗ and let δH

δM (M) ∈ Lg
be its variational derivative.

Given two functionals on Lg∗ we can define their Kac-Moody Lie-Poisson bracket
as the bracket given by the relation

(3.1) {H,G}(L) =
〈

δG
δM

(M),
(

δH
δM

(M)
)

x

+ ad∗
(

δH
δM

(M)
)

(L)
〉



PROJECTIVE-TYPE DIFFERENTIAL INVARIANTS AND KDV EVOLUTIONS 7

where here we are identifying g and g∗ using the nondegenerate Killing form. This
bracket is well-known to be a Poisson bracket in the space of functionals on Lg∗.
Furthermore, its symplectic leaves (the leaves where Hamiltonian flows lie) coincide
with the orbits in Lg∗ under a Kac-Moody action of the group LG on Lg∗. This
action is given by

(3.2) A(g)(L) = g−1gx + Ad∗(g)L.

There is an additional family of simpler Poisson brackets defined on Lg∗. Given
two functionals on Lg∗ we define their Poisson bracket by the formula

(3.3) {H,G}0(k) =
〈

δG
δM

(M), ad∗(L0)
(

δH
δM

(M)
)〉

where L0 ∈ g∗ is any constant element.
These families of Poisson brackets are all known to be compatible, that is, any

linear combination of these brackets is also a Poisson bracket.
The definition of geometric Poisson brackets is based on the following fact: one

can describe the set of Serret-Frenet equations (or moving coframes) as a quotient of
a submanifold of Lg∗ by the Kac-Moody action (3.2) of a properly chosen isotropy
subgroup of LG. This implies that the bracket (3.1) can be reduced to the space of
invariants and one can easily check that the brackets (3.3) are also reducible. We
call these reductions geometric Poisson brackets.

Geometric Poisson brackets are found explicitly as follows. Assume G is semisim-
ple and G/H is flat. It is known ([Oc]) that in that case the Lie algebra has a
gradation of the form

(3.4) g = g−1 ⊕ g0 ⊕ g1

where g1 and g−1 are dual of each other with respect to the Killing form, and where
G0 ⊂ G, the Lie subgroup associated to g0, acts, via the adjoint map, linearly on
both g1 and g−1. The Lie subgroup G0 is called the isotropy subgroup of G.

First of all, assume that ρ is a left moving frame and ρ = ρ−1ρ0ρ1 is the local
factorization induced by the splitting (3.4) (locally G = G−1 ·G0 ·G1 where Gi is the
subgroup corresponding to gi). Let K = ρ−1ρx = K−1 + K0 + K1 be the splitting
induced on the associated (left invariant) Serret-Frenet equation. The following
theorems can be found in [M1].

Theorem 4. There exists a left moving frame ρ such that K−1 = Λ is constant and
ρ−1 can be identified with u. Λ is determined by the first normalization constants.

Since the adjoint action of G0 on g−1 is linear, any element in G0 can be identified
with an element in GL(n, IR). The following theorem can be found in [M1].

Theorem 5. Let ρ be a left moving frame and assume ρ = ρ−1ρ0ρ1 is as above. If
ρ0 (acting linearly on g−1 via the adjoint action) is identified with an element of
GL(n, IR), then the columns of ρ0 form a classical moving frame along the curve u,
that is an invariant curve in the frame bundle along the curve.

Let M⊂ Lg∗ be the submanifold generated by loops with values in

g0 ⊕ g1 ⊕ {Λ}

and with positive Λ-component. Let N0 ⊂ G0 be the isotropy subgroup of Λ in G0

and let N = L(G1 ·N0).
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Theorem 6. There exists an open set U ⊂ M such that N acts on U with ac-
tion (3.2), and such that U/N can be identified with K, the space of differential
invariants. Furthermore, the Poisson bracket (3.1) can be Poisson reduced to U/N .

A theorem in [M1] states that the brackets (3.3) can also be easily reduced to
U/N whenever L0 ∈ g1.

There are two significant advantages of reducing (3.1) to K. One of them is that
in many cases one can find explicitly the reduced bracket for a choice of G. Indeed,
writing the explicit geometric bracket becomes an algebraic problem, as we will see
later. The other one is that the associated reduced Hamiltonian flow can be readily
related to geometric evolutions of curves, that is, evolutions of curves for which the
group G takes solutions to solutions. Geometric evolutions are those of the form

(3.5) ut = Fr = r1F1 + r2F2 + · · ·+ rnFn

where F = (F1, F2, . . . , Fn) is an invertible matrix, {Fi} forms a classical moving
frame along u and where r = (r1, . . . , rn)T is a vector whose entries are differential
invariants of u.

Theorem 7. ([M1]) Let u(t, x) be a family of curves solution of a geometric evo-
lution of the form (3.5). Let vr ∈ g−1 be determine by r if we left-identify g−1 with
the tangent to G/H. Let k be the differential invariants defined by K = ρ−1ρx,
where ρ = ρ−1ρ0ρ−1, ρ−1 is identified with u and ρ0 is determined by F as in
Theorem 5. Assume that there exists a local functional h : K → IR and a lo-
cal extension H : M → IR constant on the orbits of N . Assume further than
δH
δM (M) = H−1 + H0 + H1 is the splitting induced by (3.4) with H−1 = vr. Then,
the evolution induced by (3.5) on k is Hamiltonian with respect to the reduction of
(3.1) and its associated Hamiltonian is h.

For more details on geometric Poisson brackets see [M1].

4. The case G = O(p + 1, q + 1) and complexly coupled KdV equations

In this section we study the case of G = O(p + 1, q + 1) acting on IRp+q as
described in [Oc]. Using the gradation (3.4) as appearing in [K] we can locally
factor an element of the group as g = g1g0g−1, with gi ∈ Gi where
(4.1)

g1(Z) =


1− 1

2 ||Z||
2 ZT

1
1
2 ||Z||

2 ZT
2

−Z1 Ip Z1 0
− 1

2 ||Z||
2 ZT

1 1 + 1
2 ||Z||

2 ZT
2

Z2 0 −Z2 Iq

 , g0(a, b, Θ) =


a 0 b 0
0 Θ11 0 Θ12

b 0 a 0
0 Θ21 0 Θ22

 ,

g−1(Y ) =


1− 1

2 ||Y ||
2 −Y T

1 − 1
2 ||Y ||

2 Y T
2

Y1 Ip Y1 0
1
2 ||Y ||

2 Y T
1 1 + 1

2 ||Y ||
2 −Y T

2

Y2 0 Y2 Iq

 .

The matrix Ir is the r × r identity matrix, Z =
(

Z1

Z2

)
, Y =

(
Y1

Y2

)
, ||X||2 = XT JX

with J =
(

Ip 0
0 −Iq

)
and also Θ =

(
Θ11 Θ12

Θ21 Θ22

)
∈ O(p, q), a2 − b2 = 1. The
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corresponding splitting in the algebra is given by

(4.2)

V1(z) =


0 zT

1 0 zT
2

−z1 0 z1 0
0 zT

1 0 zT
2

z2 0 −z2 0

 , V0(α, A) =


0 0 α 0
0 A11 0 A12

α 0 0 0
0 A21 0 A22

 ,

V−1(y) =


0 −yT

1 0 yT
2

y1 0 y1 0
0 yT

1 0 −yT
2

y2 0 y2 0

 ,

where y =
(

y1

y2

)
, z =

(
z1

z2

)
and where A = (Aij) ∈ o(p, q). The algebra structure

can be described as
(4.3)

[V0(α, A), V1(z)] = V1(JAJz + αz), [V0(α, A), V−1(y)] = V−1(Ay − αy),

[V1(z), V−1(y)] = 2V0

(
zT y,

(
z1y

T
1 − y1z

T
1 −z1y

T
2 − y1z

T
2

−z2y
T
1 − y2z

T
1 z2y

T
2 − y2z

T
2

))
,

[V0(α, A), V0(β, B)] = V0(0, [A,B]).

With this factorization one chooses H = G0 · G1 and uses G−1 as a local section
of G/H. As it is the case for any homogenous space, the action of G on G/H is
uniquely determine by the relation

gg−1(u) = g−1(g · u)h

where h ∈ H. If g = g1(Z)g0(a, b, Θ)g−1(Y ), the above condition gives us the
formula for the action

(4.4) g · u =
(a− b)Θ(u + Y ) + (a− b)2||u + Y ||2JZ

1 + (a− b)2||u + Y ||2||Z||2 + 2(a− b)ZT Θ(u + Y )

for any u ∈ IRp+q. Notice that this can be written as g · u = L(u)(1 + ZT L(u))−1,
where L(u) = (a− b)Θ(u + Y ) + (a− b)2||u + Y ||2JZ.

4.1. Classification of differential invariants of curves in O(p + 1, q + 1)/H.
In this subsection we use Fels and Olvers moving frame method to find a generating
system of independent differential invariants for curves in IRp+q under the action
of O(p, q). The result is similar to the one obtained in [M2] in the conformal case
(the case q = 0) and some of the notation is taken from there. Using normalization
equations we will find a right invariant moving frame for the action. Locally, the
moving frame can be written as ρ = ρ1ρ0ρ−1, with ρi ∈ Gi. We will then find the
left invariant Serre-Frenet equation for the moving frame, K = −ρxρ−1. We will
show that, if K = K1 + K0 + K−1 according to the gradation (3.4), then K−1 is
constant, K1 contains in its entries two independent differential invariants of third
order, and the rest p + q invariants are generated by the linear action of O(p, q) on
IRp+q and can be obtained using a classical moving frame. They generate the entries
of K0. We call the two generators in K1 differential invariants of projective-type.

First of all, let’s describe the first three normalization equations and its conse-
quences. We will then describe the rest of the invariants looking at the remaining
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normalization equations. Clearly, from (4.4) the zero order normalization equation

g · u = 0

can be solved by choosing
Y = −u.

This determines the ρ−1 factor of the right invariant frame, that is ρ−1 = g−1(−u).
The first normalization equation is obtained by differentiating equation (4.4) with
respect to x and substituting Y = −u after the differentiation has been completed.
That is

g · u(1) = (a− b)Θu1 = e1

where ei will be the standard unit vectors in IRp+q (c1 = e1). Generically (for
example, whenever ||u||2 > 0) the equation has maximal rank and determines

a− b = ||u1||−1, Θ−1e1 =
u1

||u1||
.

We would need to choose ep+2 or ep+q instead of e1 if ||u1|| < 0 but the rest
of the results would be completely analogous. We now proceed to the second
normalization equation. Again, we need to differentiate the action (4.4) with respect
to x twice, and then substitute the values obtained in the previous two equations.
The result equals zero (c2 = 0) will be our second normalization equation. It is
given by

Θ
u2

||u1||
+ 2JÎZ = 0

where Ĩ =
(
−1 0T

0 Ip+q−1

)
. This equation determines

(4.5) Z = −1
2
ĨJΘ

u2

||u1||
and with it the g1-factor of the moving frame ρ1 = g1(Z). Finally we look at the
rest of the normalization equations and at how they will determine the remaining
columns of Θ−1 and with it the last factor of the moving frame ρ0. We will explicitly
write out the third normalization equation and describe the others. Notice that up
to this point all normalization equations have maximal rank and therefore there
are no zero, first or second order nontrivial differential invariants. Repeating the
process we obtain the third normalization equation by differentiating three times
the action, substituting the values obtained through previous normalizations and
making it equal to a vector with as many constant entries as possible. The equation
thus produced does not have maximum rank though and so we cannot make it equal
to a constant vector. Indeed, the vector we equate it to will determine the second
column of Θ−1, but this column needs to be orthogonal to the first column, and
also needs to be a unit vector (the inner product is always given by J). That means
the rank is two less than the maximum. We can then write

Θ
u3

||u1||
+ 6p12JZ + e1

(
6||Z||2 − 24(ZT e1)2

)
= k1e1 + k2e2.

where pij =
〈ui, uj〉
||u1||2

is defined similarly to the conformal case in [M2]. The dif-

ference here is that 〈, 〉 and || ||2 are determined by the J-inner product. Inverting
Θ and substituting previous values for Θ−1e1 we get an expression for Θ−1e2. If
we then impose on Θ−1e2 the condition of being orthogonal to Θ−1e1 and a unit
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vector, we determine the value of the first two differential invariants k1 and k2.
They are given by

(4.6)
k1 = p13 + 3

2p22 − 3p2
12

k2 = p33 − 6p23p12 − p2
13 + 6p13p

2
12 + 9p22p

2
12 − 9p4

12.

These are similar to the formulas found for the two third order conformal differential
invariants in [M1]. In that case k

1
4
2 was the conformal arc-length, and its behavior

under changes of the variable x also makes it a good candidate for arc-length choice
in our case. With these two invariants already determined, the second column of
Θ−1 is given by

Θ−1e2 =
1
k2

(
u3

||u1||
− 3p12

u2

||u1||
− (p13 − 3p2

12)
u1

||u1||

)
.

If we now look at the fourth order normalization equations we can easily observe the
pattern it is created and how the remaining invariants will be formed. The fourth
order equation will look like a linear combination of Θ ui

||u1|| . We can then make
the equation equal to a linear combination of e1, e2 and e3. From the recursion
formula in [FO2] we know that the coefficients of e1 and e2 will be functions of
k1, k2 and perhaps their derivatives with respect to x. But Θ−1e3 will need to be
orthogonal to the previous two columns and it needs to be a unit vector. That tells
us that the rank of the equation above is three less than the maximum. Therefore
we have one fourth order differential invariant, k̂3, the coefficient of e3 in the fourth
order normalization equation. Recursion formulas in [FO2] imply that this equation
will be equal to (k1)xe1 + (k2)xe2 + k̂3e3. We proceed this way until we determine
Θ−1ep+q, which will define one last new differential invariant k̂p+q. The fact that we
use J instead of I simply introduces a negative in the definition of some invariants.
Since we work in generic cases, this represents no impediment to our construction.
Notice that we need k̂r 6= 0, for all r to define Θ−1. We will be back to this point
in the next subsection. Now we have proved the following Theorem.

Theorem 8. A complete set of generating and independent differential invariants
for curves in O(p + 1, q + 1)/H is given by k1, k2 and k̂i, i = 3, . . . , p + q defined
above. The first two invariants have order 3 and k̂i has order i+1 for i = 3, . . . , p+q.

The last part of this subsection is the description of the Serre-Frenet equations
for a moving frame conveniently obtained from the one above. To be able to carry
out the study of the associated Poisson brackets, we will need to change the ρ0

factor of the moving frame we found. We will show that the third order differential
invariants appear in the g1 component of the equation, while the rest appears in the
g0 component. First a lemma to determine a different choice of Θ−1. Recall that
in [M1] it was proved that the G0 component of any left invariant moving frame, as
an element of GL(p + q, IR) acting on g−1 under the adjoint action, has in columns
an independent set of invariant vectors along the curve. That is, what it is known
as a classical moving frame.
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Lemma 1. We can choose a classical moving frame Fi

||u1|| , i = 1, . . . , p+q such that

〈 Fi

||u1|| ,
Fj

||u1|| 〉 = δj
i and such that, if Ω = ( F2

||u1|| , . . . ,
Fp+q

||u1|| ) then

(4.7) ΩT JΩx =



0 −κ3 . . . −κp −κp+1 . . . −κp+q

κ3 0 0 0 . . . 0 0
...

...
...

...
...

...
...

κp 0 0 0 . . . 0 0
−κp+1 0 0 0 . . . 0 0
−κp+2 0 0 0 . . . 0 0

...
...

...
...

...
...

...
−κp+q 0 0 0 . . . 0 0


with k1, k2, κi, i = 3, . . . , p + q forming a complete set of generating differential
invariants for the curve.

In fact, the procedure we will describe below is merely a choice to obtain a matrix
looking like the one in the statement of the lemma. One can choose several different
procedures and obtain different matrices. This was thoroughly explained in [M2].
In this lemma we choose the best suited for the calculations that follow.

Proof. Similarly to what was done for the Möbius sphere, choose F1 = ||u1||Θ−1e1

and F2 = ||u1||Θ−1e2 as determined by the normalization equations. We find (F2)x,
an invariant vector, and we project it on F⊥

1 . We call the vector (̂F2)x. We choose

κ2
3 = 〈(̂F2)x, (̂F2)x〉

and we define F̃3 = 1
κ3

(̂F2)x. It is immediate that κ3 is an invariant and F̃3 is an

invariant vector. We now consider (̂F̃3)x + κ3F2, J-orthogonal to F1, F2 and F̃3.
We call

κ2
4 = 〈(̂F3)x + κ3F2, (̂F3)x + κ3F2〉

and define F̃4 = 1
κ4

(̂F3)x + κ3F2. And so on. Clearly, this procedure generates
a classical moving frame along u. Namely {F1, F2, F̃3, . . . , F̃p+q}. But the matrix
Ω̃ = 1

||u1|| (F2, F̃3, . . . , F̃p+q) would not be the one in the lemma, rather it will look
like the classical Serret-Frenet equations in Riemannian geometry. Furthermore, if
we were to use this frame instead of the frame shown in the lemma, the geometric
Poisson brackets would be described in such a way that we would not be able to
find a clear restriction to the space of differential invariants of projective type, as
we will see later. Hence, we now describe the so-called natural frame. For this, we
choose

(F1, F2, . . . , Fp+q) = (F1, F2, F̃3, . . . , F̃p+q)
(

1 0
0 θ

)
.

As it was explained in [M2], θ(x) ∈ O(p − 2, q) can be solved to obtain a frame
with the properties in the statement of the lemma. The resulting set of differential
invariants, κr, r = 3, . . . , p + q are usually called natural curvatures. We refer the
reader to [M2] for the complete description and explanations. Notice that, although
the natural moving frame generates a complete set of invariants, these are non-local
in nature. Still, one can use geometric brackets effectively to obtain what we look
for. Also, notice that we are assuming p > 1. If p ≤ 1 one only needs minimal
changes to the proof above. ♣
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This lemma determines a classical frame and, from Theorem 5, the G0 component
of a moving frame with a−b = ||u1|| (this was determined by the first normalization
equation) and Θ−1 = (F1, F2, . . . , Fp+q). In fact, this frame can be merely produced
by choosing appropriate normalization equations of order fourth and higher. From
now on we choose ρ = ρ1ρ0ρ−1, with ρ1 and ρ−1 determined by the first three
normalization equations and ρ0 as determined by the lemma.

Theorem 9. The Serre-Frenet equation for ρ determined as above is given by
−ρxρ−1 = K = K1 + K0 + K−1 where Ki ∈ gi are given by

(4.8)

V−1(e1) = K−1 =


0 −eT

1 0 0
e1 0 e1 0
0 eT

1 0 0
0 0 0 0

 ,

V0(α0, K̂0) = K0 =


0 0 α0 0
0 A0 0 B0

α0 0 0 0
0 BT

0 0 0



V1(κ1e1 + κ2e2) = K1 =


0 κ1e

T
1 + κ2e

T
2 0 0

−(κ1e1 + κ2e2) 0 κ1e1 + κ2e2 0
0 κ1e

T
1 + κ2e

T
2 0 0

0 0 0 0

 ,

where α0 = −p12 and where

A0 =


0 0 0 0 . . . 0
0 0 −κ3 −κ4 . . . −κp

0 κ3 0 0 . . . 0
...

...
...

...
... 0

0 κp 0 . . . 0 0

 , B0 =


0 0 . . . 0

−κp+1 −κp+2 . . . −κp+q

0 0 . . . 0
...

...
...

...
0 0 . . . 0


Proof. The proof of this theorem is a simple calculation. The right invariant Serre-
Frenet equations are given by ρxρ−1, which, in terms of the factorization we have
used become

ρ1ρ0

(
(ρ−1)xρ−1

−1

)
ρ−1
0 ρ−1

1 + ρ1

(
(ρ0)xρ−1

0

)
ρ−1
1 + (ρ1)xρ−1

1 .

Using the values we found in the previous theorem and after some simplifications
we get that

ρ1ρ0

(
(ρ−1)xρ−1

−1

)
ρ−1
0 ρ−1

1 = V−1(−e1)

+V0

(
−2ZT

1 e1,

(
−2Z1e

T
1 + 2e1Z

T
1 2e1Z

T
2

2Z2e
T
1 0

))
+ V1(2ZeT

1 Z − ||Z||2e1),

where Vi is given as in (4.2). Similarly, the term ρ1

(
(ρ0)xρ−1

0

)
ρ−1
1 is given by

ρ1

(
(ρ0)xρ−1

0

)
ρ−1
1 = V1((ΘxΘ−1)T Z − (abx − bax)Z) + V0(abx − bax,ΘxΘ−1)).

It is trivial to check that (ρ1)xρ−1
1 is given by the g1 component V1(Zx).
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Putting these three terms together we get

ρxρ−1 = V−1(−e1) + V1

(
2ZeT

1 Z − ||Z||2e1 +
(
ΘxΘ−1

)T
Z − (abx − bax)Z + Zx

)
+V0

(
−2ZT

1 e1 + abx − bax,ΘxΘ−1 +
(
−2Z1e

T
1 + 2e1Z

T
1 2e1Z

T
2

2Z2e
T
1 0

))
.

Clearly, K−1 = −V−1(−e1). Using a− b = ||u1||−1 and a2 − b2 = 1 we can directly
find that abx − bax = p12. Also, using the second normalization equation (and
assuming p > 0, some minor changes need to be introduced if p = 0) we get that
ZT e1 = ZT

1 e1 = 1
2p12 and ||Z||2 = 1

4p22. (There is some abuse of notation here. We
are using e1 for both e1 ∈ IRp and e1 ∈ IRp+q, but it will always be determined by
the context.)

Recall from the Lemma that

Θ−1 =
1
||u1||

(
F1 F2 . . . Fp+q

)
=

(
F1
||u1|| Ω

)
= JΘT J ∈ O(p, q).

Therefore

ΘxΘ−1 = J


(

F T
1

||u1||

)
x

ΩT
x

 J
(

F1
||u1|| Ω

)
= J


(

F T
1

||u1||

)
x

J F1
||u1||

(
F T

1
||u1||

)
x

JΩ

ΩT
x

F1
||u1|| ΩT

x JΩ

 .

The vector F1
||u1|| is a J-unit vector and so

(
F T

1
||u1||

)
x

J F1
||u1|| = 0. Also, notice that from

the second normalization equations

Z =
(

Z1

Z2

)
= −1

2
ĨJΘ

u2

||u1||
=

 1
2

F T
1

||u1||

− 1
2ΩT

 J
u2

||u1||
=

 1
2 〈

F T
1

||u1|| ,
u2
||u1|| 〉

− 1
2ΩT J u2

||u1||

 .

Therefore, 2ZT
2 = − uT

2
||u1||JΩ. Given that F T

1
||u1||JΩ = 0 we can conclude that

(
F T

1
||u1||

)
x

JΩ+

2ZT
2 = uT

2
||u1||JΩ− uT

2
||u1||JΩ = 0.

The component K0 ∈ g0 is thus given by the negative of

V0

(
abx − bax − 2ZT

1 e1,ΘxΘ−1 +
(
−2Z1e

T
1 + 2e1Z

T
1 2ZT

2

2Z2 0

))
= V0

(
0, J

(
0 0
0 ΩT JΩx

))
where Ω is given as in the lemma. Direct application of the Lemma results in the
value of K0 in the statement of the Theorem with κi = k̂i, i = 3, . . . , p + q.

Finally, the g1 component is defined by Zx + 2ZeT
1 Z − ||Z||2e1 + (ΘxΘ−1)T Z −

(abx−bax)Z. Differentiating the second normalization equation and using the third
one we obtain the following formula

Zx = −Î(ΘxΘ−1)T ÎZ + 2p12Z − 3
4
p22e1 −

1
2
ÎJ(k1e1 + k2e2).

From above we can conclude that (ΘxΘ−1)T Z − Î(ΘxΘ−1)T ÎZ = −2p12Z + p22e1.
If we now put everything together we get that

K1 = V1(−
1
2
ÎJ(k1e1 + k2e2)).
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Choosing κ1 = − 1
2k1 and κ2 = 1

2k2 the proof is now completed. Notice that we are
assuming p > 1 but in other cases one only needs a couple of minor modifications
in the signs. ♣

4.2. Complexly coupled KdV equations associated to O(p + 1, q + 1)/H.
In this subsection we will show that the Poisson geometric brackets associated
to O(p + 1, q + 1)/H and defined on matrices of the form (4.8) can be reduced
to the submanifold K0 = 0 to obtain two Hamiltonian structures for the well-
known complexly coupled KdV equations. We will then give explicitly the geometric
evolution of curves on O(p + 1, q + 1)/H that, when proper initial conditions are
chosen, induces a system of complexly coupled KdV equations on κ1 and κ2, the
invariants of projective type. These evolutions will have to be understood as a
limit evolution. Indeed the submanifold K0 = 0 can be considered algebraically
and a Poisson restriction can be performed. But if we think geometrically, such
submanifold does not make sense since we are assuming the invariants appearing in
K0 not to vanish. Nevertheless, we will see how geometric evolutions that depend
only on F1 and F2 (the members of the frame that were generated without the use
of k̂i, i = 3, . . . , p + q) have a well defined limit as K0 → 0. That is, a complexly
coupled system of KdV equations is a level set of the invariant evolution. Our
evolution will depend only on F1 and F2. Our next proposition follows from a
well-known classical result, we are simply using the classical moving frame we just
found.

Proposition 1. Let
ut = F (u, u1, u2, . . . , )

be a curve evolution with u : U ⊂ IR2 → O(p + 1, q + 1)/H invariant under the
action of O(p + 1, q + 1), that is, the group takes solutions to solutions. Then,

F = (a + b)Θ−1r =
p+q∑
i=1

riFi

where Θ, a+b and Fi are as in the previous subsection and where r = (ri(κ)) ∈ IRp+q

is a differential invariant vector, that is a vector whose entries are functions of κi,
i = 1, 2, . . . , p + q and their derivatives with respect to x.

Theorem 10. Consider the geometric Poisson brackets associated to O(p + 1, q +
1)/H defined on matrices of the form (4.8). Then, the brackets are well defined
for matrices with K0 = 0. Furthermore, the brackets reduce to the submanifold
K0 = 0 to produce two compatible Hamiltonian structures usually associated to the
integration of a system of complexly coupled KdV equations.

Proof.
In order to prove this theorem we will write the geometric bracket in a way that

we can use.
Let n be given as in the construction of the geometric bracket. That is, n = g1⊕n0

with n0 = Stab(K−1) ⊂ g0. Let f, h : K → IR be two functionals on the space of
differential invariants and let F ,H be two extensions such that if F = δF

δL and
H = δH

δL , then

(4.9) H ′ + [K, H], F ′ + [K, F ] ∈ n0
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where n0 is the annihilator of n. This is the condition imposed by F and H being
constant on the N -orbits. It is not hard to check that

n0 = {V0(0, A), such that Ae1 = 0}

and hence

n0
0 = {V0(α, B), such that Bek = 0, k 6= 1}.

Let H = H−1 + H0 + H1 be given by the gradation. Assume H−1 = V−1(h),
h = (h1, h2, . . . , hp+q)T , and H0 = V0(αh, Ah). From (4.9) we obtain

H ′
−1 + [K−1,H0] + [K0,H−1] = 0(4.10)

H ′
0 + [K0,H0] + [K1,H−1] + [K−1,H1] ∈ n0

0.(4.11)

The geometric Poisson bracket is then given by

{f, h}(K) =
∫

S1
〈H ′

0 + [K0,H0] + [K1,H−1] + [K−1,H1], F0〉dx

+
∫

S1
〈H ′

1 + [K1,H0] + [K0,H1], F−1〉dx.

Assume that F0 = F̂0 + F 0
0 , where F̂0 ∈ n0 and F 0

0 ∈ n0
0 (or, in general, F 0

0 belongs
to a complement of n0 in g0 as vector subspaces). Then, from equations (4.10),
the geometric bracket depends only on H0

0 and F 0
0 . Also, since F ′

−1 + [K−1, F0] +
[K0, F−1] = 0 we have that the bracket can be written as

(4.12)

{f, h}(K) =
∫

S1
〈(H0

0 )′ + [K0,H
0
0 ], F 0

0 〉dx

+
∫

S1

(
〈[K1,H−1], F 0

0 〉 − 〈H0
0 , [K1, F−1]〉

)
dx

where H0
0 , F 0

0 ,H−1 and F−1 are determined completely by the equations in (4.10).
In fact the first equation determines H0

0 in terms of K−1 and [K0,H−1] and the
second equation determines the component of [K1,H−1] needed in the bracket in
terms of [K−1,H1],H0

0 and [K0,H0].
Finally, we clearly see that one can take the limit as K0 → 0. Then, from the

first equation in (4.10) we can solve for H0
0 completely in terms of H−1 and the

result is well defined in the limit . Also, since [K−1,H1] ∈ n0
0 always, the second

equation in (4.10) becomes H ′
0 + [K1,H−1] ∈ n0

0 in the limit which further relates
H−1 and H0.

Let K1 ⊂ K be the algebraic subset for which K0 = 0.
After this rewriting we will show that, if h is a functional on K constant on K0,

and f is a functional on K constant on K1, then {f, h}|K1 = 0. This will guarantee
the existence of a restriction of the limit bracket to K1. Finally we will calculate
the restricted bracket to finish the proof of the Theorem.

Assume h is constant on K0 and let H be an extension constant on the N -leaves,
the type we use to calculate the geometric bracket. Since h and H coincide on
K0, the variational derivative in that direction is zero and the entries of Ĥ0 in
the second row and column ought to vanish. It is straightforward to check that
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[K1,H−1] = 2V0(h1κ1 + h2κ2, B), where

B =


(κ1e1 + κ2e2)

h1

...
hp


T

−

h1

...
hp

 (κ1e
T
1 + κ2e

T
2 ) −(κ1e1 + κ2e2)

hp+1

...
hp+q


T

−

hp+1

...
hp+q

 (κ1e
T
1 + κ2e

T
2 ) 0


.

Therefore, equations (4.10) imply that, if h is constant on K0, then H−1 = V−1(h1e1+
h2e2). From the first equation in (4.10) we also get that αh = −h′1 and the first
row of Ah, the matrix defining H0, is given by h′2e2.

Assume f is constant on K1. Then, if F−1 = V−1(f), the first two entries in f
must be zero, and hence 〈H0

0 , [K1, F−1]〉 = 0. Also, from the first equation in (4.10)
we have that αfe1 − Afe1 = −f ′ and hence αf and the first two entries of Afe1

vanish. This implies that 〈(H0
0 )′, F0〉 = 0. Finally, since [K1,H−1] vanish outside

the first and second rows and columns, we have 〈[K1,H−1], F 0
0 〉 = 0. Putting all

together we get {f, h}|K1 = 0.
Let us now calculate the restricted bracket. Assume that both f and h are

constant on K0. This implies

H−1 = V−1(h1e1 + h2e2), F−1 = V−1(f1e1 + f2e2)

αh = −(h1)x, αf = −(f1)x, Ahe1 = (h2)xe2, Afe1 = (f2)xe2.
.

Then the bracket becomes

{f, h}(K1) =
∫

S1
〈V0((αh)x, (Ah)x), V0(αf , Af )〉dx

+
∫

S1
〈[K1,H−1], V0(αf , Af )〉dx−

∫
S1
〈V0(αh, Ah), [K1, F−1]〉dx,

where 〈, 〉 is half the trace of the product. Substituting the values obtained above
for the extensions of functionals that are constant on K0, and after trivial simpli-
fications we get

{f, h}(κ1, κ2) =
∫

S1
((h1)xx(f1)x − (h2)xx(f2)x + 2(f2)x(κ1h2 − h1κ2)) dx

−
∫

S1
(2(f1)x(h1κ1 + h2κ2) + 2(h1)x(f1κ1 + f2κ2)− 2(h2)x(κ1f2 − f1κ2)) dx

that is

{f, h}(κ1, κ2) = −2
(

δh

δK1

)T (
− 1

2D3 + κ1D + Dκ1 κ2D + Dκ2

κ2D + Dκ2
1
2D3 −Dκ1 − κ1D

)
δf

δK1
.

This is equivalent to the standard Hamiltonian structure for the complexly coupled
KdV system.

Let us now consider the bracket (3.3) with Λ = V1(e1) ∈ g1. The reduction to
K is then given by

{f, h}0(K) =
∫

S1
(〈[Λ,H0], F−1〉+ 〈[Λ,H−1], F0〉)dx.
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Following exactly the same procedure as before, we obtain that, if f is constant on
K1 and h is constant on K0, then

{f, h}0|K1 = 0

and if both f and h are constant on K0, then

{f, h}0|K1 = 4
(

δh

δK1

)T (
−D 0
0 D

)
δf

δK1
.

This is the invertible Poisson structure usually used to generate the recursion op-
erator that integrates the complexly couple KdV system. This finishes the proof of
the Theorem. ♣

Theorem 11. Assume that

(4.13) ut = r1F1 + r2F2

where r1 and r2 are differential invariants of the flow. Then, the flow induced on
the differential invariants has a limit as K0 → 0. Furthermore the limit is given by

(κ1)t = (− 1
2D3 + κ1D + Dκ1)r1 + (κ2D + Dκ2)r2(4.14)

(κ2)t = (κ2D + Dκ2)r1 + ( 1
2D3 − κ1D −Dκ1)r2(4.15)

If we choose r1 = κ1 and r2 = κ2, we obtain a complexly coupled system of KdV
equations.

Proof. Part of the proof of this theorem is essentially the same as the corresponding
Theorem in [M2], so we will simply outline it.

In [M2] it was shown that, if u is a solution of (4.13), then K is a solution of the
equation

Kt = Nx + [K, N ]

where N = ρ−1ρt and where N−1 = V−1(r) in the gradation N = N1 + N0 + N−1

with r = (r1, r2, 0, . . . , 0). The above equation determines the rest of the entries in
N in terms of K and r similarly to the way it was determined in [M2]. That is, if
K0 = V0(0,K2) with

K2 =

0 0 0
0 0 −κT

0 Jκ 0

 , κ =

 κ3

...
κp+q


the matrix N0 = V0(α0, A0) is given by

A0 =

 0 eT
1 a1 π(a1)

−eT
1 a1 0 aT

2

−Jπ(a1) −Ja2 A3

 ,
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and N1 = V1(z), K1 = V1(κ1e1 + κ2e2), K−1 = V−1(e1), the algebra commutation
relations and straightforward calculations of the equation above gives us the values

α0 = −(r1)x, a1 =
(

a1
1

π(a1)

)
= −

(
(r2)x

r2κ

)
zT e1 = − 1

2 (r1)xx + κ1r1 + κ2r2,

π(z) = 1
2

(
(r2)xx

(r2κ)x

)
− 1

2

(
r2||κ||2
(r2)xκ

)
−

(
κ1r2 − r1κ2

0

)
a2 = 1

κ2

(
κ1r2κ + ( 1

2 (r2)xx + κ2r1 − κ1r2 − 1
2r2||κ||2)κ + 1

2 ((r2)xκ)x − 1
2 (r2κ)xx

)
A3 = −JD−1

(
κaT

2 − a2κ
T
)

together with the evolutions
(4.16)

κt = −(a2)x − JA3Jκ

(κ1)t = − 1
2 (r1)xxx + (κ1r1)x + (κ2r2)x + κ1(r1)x + κ2(r2)x

(κ2)t = 1
2 (r2)xxx − (κ1r2)x − κ1(r2)x + (κ2r1)x + κ2(r1)x − 1

2 (r2||κ||2)x + π2(z) · κ.

One can now take the limit as κ → 0 in each one of the elements involved to check
that such a limit exists and it defines an evolution on k1 and k2 as in the statement
of the theorem. This concludes the proof of the theorem and this section. ♣

5. The case G = O(2m, 2m) and a decoupled system of KdV equations

In [M4] the author classified all differential invariants of curves in the Grassma-
nian Lagrangian, or manifold of Lagrangian planes in IR2m. This space corresponds
to the case G = Sp(2m). She showed that the differential invariants in the g1 com-
ponent of the Serre-Frenet equations were the eigenvalues of what is called the
Lagrangian Schwarzian derivative of a curve of Lagrangian planes. Those would
be invariants of projective type. She also showed that, for a proper choice of con-
stant cross section producing a moving frame, the geometric Poisson brackets can
be restricted to the space of invariants of projective type to produce n-decoupled
first and second KdV Hamiltonian structures. She showed that there exists an in-
variant evolution of Lagrangian planes whose flow, when the initial conditions are
properly chosen, induces a decoupled system of KdV equations in the eigenvalues
of the Lagrangian Schwarzian derivative of the flow.

In this section we will show that the case G/H with G = O(2m, 2m) has differ-
ential invariants of projective type very similar to those for curves of Lagrangian
planes. They are indeed given by the eigenvalues of the skew-symmetric Schwarzian
derivative of the flow. We will see how there is a critical difference with the La-
grangian Grassmannian produced by the appearance of differential invariants of fifth
and higher order. This is the first example of a |1|-graded parabolic manifold where
this situation is found (although not the first one for which higher order differential
invariants are found since projective curves certainly have higher order differential
invariants). It is unclear if a cross section depending on derivatives of differential
invariants of third order can be used to find a moving frame producing the same
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situation as in the Lagrangian Grassmannian. The case G = O(2m + 1, 2m + 1) is
fundamentally different in the fact that each u(x) ∈ G/H has a one dimensional
kernel that evolves with the curve. That makes the application of the moving frame
method more complicated as we can see in this section.

5.1. Classification of differential invariants of curves in O(2m, 2m)/H. The
space O(2m, 2m)/H and the action of O(2m, 2m) on the quotient can be described
as follows:

as before, we can locally factor an element of O(n, n) as g = g1g0g−1 where

g1(Z) =
(

I + Z −Z
Z I − Z

)
, g−1(Y ) =

(
I + Y Y
−Y I − Y

)

g0(Θ) =
(

1
2 (Θ + Θ−T ) 1

2 (Θ−T −Θ)
1
2 (Θ−T −Θ) 1

2 (Θ + Θ−T )

)
,

where Z and Y are skew-symmetric matrices and where Θ ∈ GL(n, IR). This
factorization is determined by the gradation (3.4) described in [Oc]. With this
description H = G1 ·G0, where G1 is the subgbroup generated by elements of the
form g1(Z) and G0 is the one generated by elements of the form g0(Θ). Thus,
G−1 can be chosen to be a section of O(2m, 2m)/H and the relation gg−1(u) =
g−1(g · u)h for some h ∈ H provides us with a formula for the action of O(2m, 2m)
on O(2m, 2m)/H. It is uniquely determined to be

(5.1) g · u = Θ(u + Y )
(
Θ−T + 4ZΘ(u + Y )

)−1
.

The Lie algebra decomposition is given by g = g1 ⊕ g0 ⊕ g−1, with Vi ∈ gi, i =
1, 0,−1, given by

V1(z) =
(

z −z
z −z

)
, V−1(y) =

(
y y
−y −y

)

V0(A + B) =
(

A B
B A

)
where z, y, A are skew symmetric matrices, and B is a symmetric matrix. Notice
that A and B are the symmetric and skew-symmetric components of C = A + B.
The commutation relations of the algebra are given by

[V1(z), V−1(y)] = 4V0(zy), [V0(C), V1(z)] = V1(Cz + zCT )

[V−1(y), V0(C)] = V−1(yC + CT y)

As before, we now proceed to write down normalization equations for this action
and to use them to determine a moving frame along a curve. We are assuming
g = g1(Z)g0(Θ)h−1(Y ). The zero order normalization equation is simply g · u = 0
which is readily solved choosing Y = −u. The first order normalization equations,
after restricted to previous normalizations results in

(5.2) g · u(1) = Θu1ΘT .

It is a well-known result in linear algebra that any generic skew symmetric matrix
can be taken to the matrix

J =
(

0 Im

−Im 0

)
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under a transformation (5.2). Thus, we choose the first normalization equation to
be

(5.3) Θu1ΘT = J

which determines Θ up to an element of the symplectic group Sp(2m).
Let Θ = θµ for some θ ∈ Sp(2m) to be determined by later normalizations. As

in our previous case, the second order normalization equations will determine the
factor ρ1 in the moving frame. Indeed, if we differentiate once more the action and
substitute the values we have obtained in previous normalizations we obtain

(5.4) g · u(2) = Θu2ΘT − 8JZJ = 0.

This equation solves for Z in terms of Θ, which we still have to determine com-
pletely. That is

(5.5) Z =
1
8
JΘu2ΘT J.

The third order normalization equations will determine part of the g1 component
of the Serre-Frenet equations. These equations, after some manipulation, are given
by

(5.6) g · u(3) = θµ

(
u3 −

3
2
u2u

−1
1 u2

)
µT θT .

We call

(5.7) S(u) = µ

(
u3 −

3
2
u2u

−1
1 u2

)
µT

a skew-symmetric Schwarzian derivative of u, unique up to the action of an element
of the symplectic group. This is the skew-symmetric version of the Lagrangian
Schwarzian derivative, first introduced by V. Ovsienko in [Ovs]. The question now
is: which one is the normal form of a generic skew symmetric matrix under the
above action of the symplectic group? A paper by Williamson ([Wi]) classifies
normal forms in a way that can be used in our context. The following theorem is
one of the results of Williamson’s paper (in fact he gives earlier references for this
particular case).

Theorem 12. Let A and B be two similar matrices. Assume AH = HAT and
BH = HBT . Then, the similarity matrix can be chosen such that MHMT = H.

In the case at hand, if S1 is a generic skew symmetric matrix with eigenvalues
±aki, k = 1, 2, . . . ,m and if

S2 =
(

0 D
−D 0

)
with D = diag(ak), then Ai = SiJ holds AiJH = H(AiJ)T for H = J . Fur-
thermore, they are also similar (they have both double ak eigenvalues and they
are diagonalizable) and so we can choose an element of the symplectic group as
similarity element. That is

gS1Jg−1 = S2J

where g ∈ Sp(2m). On the other hand, if g ∈ Sp(2m), g−1 = −JgT J and hence we
get

gS1g
T = S2.

We just obtained the following Theorem.
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Theorem 13. Let S be a nondegenerate 2m × 2m skew-symmetric matrix and
assume ±aki are its eigenvalues, k = 1, 2, . . . ,m. Then, there exists an element of
Sp(2m) such that

θSθT = D =
(

0 D
−D 0

)
where D is the diagonal matrix having ak down the diagonal. The element θ is
unique up to an element of Sp(2m) commuting with D.

Theorem 14. The differential invariants of a generic curve in O(2m, 2m)/H have
all order three or higher. Let θ be chosen as in the previous theorem for S = S(u)
as in (5.7). Then, the entries of the matrix D generate all differential invariants
of third order for u.

We call the entries of D the differential invariants of projective type for curves
in O(2m, 2m)/H.

Let’s now return to the remaining part of the moving frame that needs to be
determined. The symplectic group is itself semisimple and has a local factorization
of the form (

I z
0 I

) (
g 0
0 g−T

) (
I 0
y I

)
where z and y are symmetric matrices, and where g ∈ GL(m). It is trivial to check
that elements commuting with D correspond to those with a factorization of the
form

d =
(

I D1

0 I

) (
D2 0
0 D−T

2

) (
I 0

D3 I

)
where the three matrices Di, i = 1, 2, 3 are diagonal. They are the part of the
moving frame still to be determined. This time we need to move to the fourth
order normalization equations. They can be written as

(5.8) g · u(4)|N = dθµ
(
u4 − 2(u3u

−1
1 u2 + u2u

−1
1 u3) + 3u2u

−1
1 u2u

−1
1 u2

)
µT θT dT .

We will show how, if m > 3, d can be determined from 3m normalization equations
chosen from the entries of the matrix above. If m ≤ 3 further normalizations are
needed. Let’s call

(5.9)
(

N1 N3

−N3 N2

)
= θµ

(
u4 − 2(u3u

−1
1 u2 + u2u

−1
1 u3) + 3u2u

−1
1 u2u

−1
1 u2

)
µT θT ,

Where N1 and N2 are skew-symmetric and N3 ∈ gl(m). From Fels and Olver’s
recurrence formulas ([FO2]) we know that the diagonal of N3 is given by Dx.
Hence, we can only normalize outside the diagonals.

It is not hard to see that, if m > 3, a total of 3m normalizations can be performed
in (5.9). That means we will have 3m fifth order differential invariants appearing in
the positions of ρ ·u(5) corresponding to the normalized positions chosen in ρ ·u(4).
This is, we obtain m third order invariants, 2m(m− 2) fourth order invariants and
3m fifth order invariants.

If m ≤ 3 one needs to go higher to normalize entries in the fifth order normaliza-
tion equations. In those cases we also obtain sixth order invariants corresponding
to the normalized fifth order entries in ρ · u(5) as located in ρ · u(6). For m = 1
we are in the IRP1 case. For m = 2 one can check that we have two differential
invariants of projective type, two of fifth order and two of sixth order. For m = 3
one has three third order differential invariants, four fourth order ones, seven fifth
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order and one sixth order. This is not obvious, in fact one can show that the rank
of the twelve equations for the nine unknown is eight. The author used MAPLE to
check this.

We don’t need more details for the calculations that follow in this section, but
there are many important points regarding the fourth normalization that are es-
sential for our next section. Indeed, the choice of fourth normalization constants
(and hence fourth and fifth order invariants) are key to the study of integrable
level sets of some geometric realizations. Therefore, we will return to exactly this
point shortly. The next theorem describes the Serre-Frenet frame associated to this
moving frame.

Theorem 15. Let u be a generic curve in O(2m, 2m)/H. Let ρ be a moving frame
determined as above. Then, the (left-invariant) Serret-Frenet equations associated
to ρ are given by ρ(ρ−1)x = −ρxρ−1 = K, with K equals

(5.10)
K =

(
J J
−J −J

)
+ 1

8

(
D −D
D −D

)
+ 1

2

(
R−RT R + RT

R + RT R−RT

)
= V−1(J) + 1

8V1(D) + V0(R).

where R is of the form

(5.11) R =
(

R1 R2

R3 −RT
1

)
∈ Sp(2m)

with R2 and R3 symmetric. The matrix R contains in the entries off the diagonals of
Ri, i = 1, 2, 3, a generating set of independent fourth order differential invariants.
The diagonals of Ri, i = 1, 2, 3 contain a set of 3m independent and generating
differential invariants of order 5 for m > 3 and of order 5 and higher if m ≤ 3.

Proof. As in the previous chapter we need to calculate the Serre-Frenet equations.
We will skip all straightforward calculations and just give the result. If ρ is as
above, one can check that ρ1ρ0ρ−1

(
ρ−1
−1

)
x

ρ−1
0 ρ−1

1 is given by

(5.12)

(
J J
−J −J

)
+ 2

(
ZJ − JZ ZJ + JZ
ZJ + JZ ZJ − JZ

)
+ 4

(
−ZJZ ZJZ
−ZJZ ZJZ

)
= V−1(J) + 4V0(ZJ)− 4V1(ZJZ).

Similarly, if Γ = ΘxΘ−1, then ρ1ρ0

(
ρ−1
0

)
x

ρ−1
1 is given by

(5.13) V0(ΓT ) + V1(−ZΓ + (ZΓ)T ).

and ρ1

(
ρ−1
1

)
x

is given by

(5.14) −V1(Zx).

Clearly, if K = K−1 + K0 + K1, Ki ∈ gi, then K−1 is as in the statement of the
Theorem. Also, differentiating the first and second order normalization equations
one can show that

(5.15) Zx + 4ZJZ + ZΓ− (ZΓ)T =
1
8
JdθS(u)θT dT J =

1
8
JDJ = −1

8
D.

This gives the value of K1 that the statement of the Theorem shows. Finally, let
R = 1

2 (ΓT + JΓJ) (that is, R is the symplectic part of ΓT ). Since RT = JRJ , this
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matrix will be of the form

R =
(

R1 R2

R3 −RT
1

)
∈ Sp(2m)

with R2 and R3 symmetric. Assume the fourth order normalization equation, after
being normalized, is given by

ρ · u(4) = I4 =
(

M1 M3

−MT
3 M2

)
with M1 and M2 skew-symmetric. Then, differentiating the third order normaliza-
tion equations and using the fourth order one we get the relation

(5.16) Dx − I4 = RTD +DR.

Notice that this is equivalent to

[R, JD] = J(I4 −Dx).

This results in [D, R2] = −2M1, [R3,D] = −2M2 and [R1,D] = 2(Dx − M3).
We know from Fels and Olver’s recurrence formulas that M3 has in its diagonal
Dx. Therefore, the matrix R has off its diagonals all the entries of I4, the fourth
order independent and generating differential invariants. Finally, there are only 3m
entries in K that have not been determined to be a differential invariant of order
less or equal to four (constant or otherwise). These are the diagonal entries of Ri,
i = 1, 2, 3 (we will call these the block diagonals) . The study in [H] shows that
the Frenet-Serre equations contain in its entries a generating and independent set
of differential invariants. Hence, generators of the 3m higher order invariants need
to be placed along those three diagonals. This concludes the proof of the theorem.
♣

Our next subsection will study the evolution of D. It is well known that the
KdV-Schwarzian evolution for u(t, x) : IR2 → IRP1 given by

ut = u3 −
3
2

u2
2

u1
= u1S(u)

is invariant under the projective action of PSL(2.IR). The induced evolution on
the generating projective invariant, the Schwarzian derivative S(u) = u3

u1
− 3

2
u2

2
u2

1
, is

a KdV evolution. That is

S(u)t = S(u)3 + 3S(u)2S(u)1.

Because the projective-type invariants of KdV-type are eigenvalues of the Schwarzian
derivative, one would expect to have an evolution of decoupled KdV equations
as a level set of the evolution induced on the differential invariants by the skew-
symmetric equivalent of the KdV-Schwarzian evolution for the flow u(t, x). Such
was the case for the Lagrangian Grassmannian. Indeed, in that case, the Lagrangian
KdV-Schwarzian evolution was given by (the minus comes from using right invariant
frames here)

−(ρ−1)xρ−1
−1 = Ad(ρ−1

0 )(D̂)

where D̂ is the equivalent to D here, namely the eigenvalues of the Lagrangian
Schwarzian derivative of the flow (a symmetric functional matrix). In [M4] the
author showed that the corresponding evolution of the differential invariants of
the flow has as a level set the submanifold of curves for which the fourth order
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differential invariants vanish (there were no higher order invariants in this case).
Furthermore, the induced evolution on D when initial conditions are chosen in that
level set is a decoupled system of KdV equations. Indeed, the geometric Poisson
brackets reduced to the level set to produce a decoupled system of biHamiltonian
structures for KdV, even though only one of them reduced to the complete manifold
of differential invariants.

Our next subsection will show that the appearance of fifth order differential in-
variants changes considerably the picture. We will show how no choice of constant
(or even zeroth order on D) fourth order cross section will result in a completely
integrable level set of this type. In fact, none of these choices of cross sections will
result on a reduced biHamiltonian structure to the set of projective-type differen-
tial invariants. On the other hand, as fourth order differential invariants vanish,
some conditions on a constant cross section guarantee that third and fifth order
differential invariants decouple and D evolve following a decoupled system of KdV
equations. This is the first example for which this happens. It is unclear whether or
not a choice of section depending on derivatives of D will allow us to prove the exis-
tence of a level set for vanishing fourth and fifth order. The method presented here
makes the calculations of that study too complicated. It is perhaps best to learn
how the geometry of |1|-graded parabolic manifolds generates these completely in-
tegrable level sets. Once that is well understood we will be able to understand why,
and to what extent, this case is different from the Lagrangian Grassmannian.

5.2. Decoupled KdV equations associated to O(2m, 2m)/H. Let us assume
that

ut = F (k,k1,k2, . . . )

is an evolution of curves in G/H, invariant under the action of the group G where
G = O(2m, 2m), and where k represents the vector of differential invariants, that is,
of independent entries in D and R. It was shown in [M1] that the induced evolution
on k could be written, in terms of a right invariant moving frame, as

(5.17) ρ−1(ρ−1
−1)t = Ad(ρ−1

0 )β

whenever ρ−1 could be identified with −u the way we did here, and for any
β(k,k1, . . . ) ∈ g−1 with differential invariant entries. This is true for any |1|-
graded parabolic manifold. Again, the slightly different formulation is merely due
to ρ being a right invariant moving frame while the one in [M1] is a left invariant
moving frame. Let Θ be determined by our moving frame ρ.

Theorem 16. Let us have a flow of curves in G/H, G = O(2m, 2m), evolve
following any given invariant evolution. Then the evolution can be written as

(5.18) ut = Θ−1vΘ−T

where v = v(k,kxx, . . . ) is any invariant skew-symmetric matrix.

This Theorem is a direct consequence of the relation (5.17) when applied to our
moving frame.

In the Lagrangian Grassmanian case, evolutions defined by a diagonal matrix
v preserved the level set where fourth order differential invariants vanish. That
is, if the initial condition was chosen to be a curve with vanishing fourth order
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differential invariants, then the entire flow will have vanishing differential invariants.
Furthermore, if v = D̂, then the evolution of curves was

ût = û3 −
3
2
û2û

−1
1 û2

and this was called the Lagrangian Schwarzian KdV evolution. This evolution
induced a decoupled system of KdV equations on D̂. Here û is a flow of Lagrangian
planes in IRP2n, represented as a flow of symmetric matrices (see [M4]). It is thus
natural to ask whether or not the corresponding skew symmetric evolution

(5.19) ut = Θ−1DΘ−T = u3 −
3
2
u2u

−1
1 u2

where u(t, x) is a flow of skew symmetric matrices, preserves the manifold of vanish-
ing differential invariants not of projective type. The answer is that, regardless of
the choice of constant cross section, the manifold of vanishing fifth order differential
invariants is never preserved. The manifold of vanishing fourth order differential
invariants is preserved only under some conditions of the cross section, conditions
that are easily satisfied in high dimensions. In this case the evolutions of third and
fifth order invariants decouple, and the third order invariants evolve following a
decoupled system of KdV equations.

Before stating any Theorem we will do some calculations and obtain some formu-
las. Recall that given any matrix we can split it into symplectic and non-symplectic
components as

A =
1
2
(A + JAT J) +

1
2
(A− JAT J) = AS + Am.

We call m the algebra of all non-symplectic components, i.e., matrices A such that
AJ − JAT = 0. Clearly m is a complement to sp(2m) in gl(2m). We will also split
any matrix A as

A = Ad + And

where Ad has non-zero entries only along block diagonals, and And has zero entries
in its block diagonals.

Lemma 2. Let ρ be the moving frame given in the previous subsection along u(t, x),
a flow solution of (5.19). Let N = −ρtρ

−1 = ρ(ρ−1)t and let N = N−1 + N0 + N1

according to the gradation, with Ni = Vi(ni), i = −1, 0, 1. Then

n−1 = D
8n1J = (n−1)xxJ + [R,n−1J ]x + [R, (n−1)xJ ] + [R, [R,n−1J ]] +Dn−1

and n0 = nS
0 + nm

0 splits into symplectic and non-symplectic parts, with

nm
0 =

1
2
(n−1)xJ +

1
2
[R,n−1J ]

[nS
0 ,DJ ] = [Rxx, (n−1)] + 3[Rx, (n−1)xJ ] + 3[R, (n−1)xxJ ] + [n−1J, [R,Rx]]

+ 3[R, [R,n−1J ]x]nd + [R, [R, [R,n−1J ]]]nd +
3
2
[R,Dn−1].

Proof. The proof of this lemma is rather simple and has calculations very similar
to those in the proof of section 4.2. Hence we will avoid unnecessary details. If
we apply the structure equation for the (left invariant) Maurer-Cartan form of
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O(2m, 2m) to the vector fields defined by ρx and ρt along ρ we get the relationship
(see [M1])

(5.20) Kt = Nx + [K, N ]

where K = ρ(ρ−1)x and N = ρ(ρ−1)t. In [M1] it was shown that, if N = N1 +
N0 + N−1 according to the gradation, then N−1 = V−1(v), where v is given by the
curve evolution (5.18). That is, in our case v = D = n−1

Using calculations similar to those in the proof of the previous section, we can
obtain the equations above. In fact, we get

0 = N−1 + [K−1, N0] + [K0, N−1]
(K0)t = (N0)x + [K0, N0] + [K−1, N1] + [K1, N−1]
(K1)t = (N1)x + [K1, N0] + [K0, N1].

After we substitute the representatives of each graded component, apply the com-
mutation relations of the Lie algebra and split symplectic and non-symplectic com-
ponents in g0, these equations become

0 = (n−1)x + 2Jnm
0 − J [R,n−1J ]

Rt = (nS
0 )x + [R,nS

0 ]

0 = (nm
0 )x + [R,nm

0 ]− 4n1J +
1
2
Dn−1

Dt = 8(n1)x − (n0D +DnT
0 )− [R,n1J ]J.

The first equation solves for nm
0 in terms of n−1 = D. The third equation solves for

n1 in terms of nm
0 and n−1. When we substitute these values in the last equation,

and apply Jacobi’s identity, we can obtain the formula shown for [nS
0 ,DJ ] in the

statement of the lemma. Notice that [n−1J, [R,Rx]] has zero block diagonal entries.
♣

This lemma additionally tells us what the evolution for D is. We have, after
some rewriting

DtJ = (n−1)xxxJ + (Dn−1)x +D(n−1)x

+ 3[R, [R,n−1J ]x]d + [R, [R, [R,n−1J ]]]d.

One can easily recognize the portion of the evolution involving no R as a decoupled
system of KdV equations. This system is, in general, perturbed by terms depending
on higher order invariants.

Notice also that the lemma determines only the entries of nS
0 outside its block

diagonals. Indeed, [nS
0 ,DJ ] has always zero diagonals in its four blocks (it is quite

clear that, for a generic curve, the map ad(DJ) is one to one when we omit block
diagonals from its domain). Therefore, we still have to determine the diagonals of
nS

0 . Because these diagonals determine the evolution of the higher order differential
invariants and this is the crucial difference with the Lagrangian Grassmannian case
we will write it out in a separate lemma. Let us denote by π : Sp(2m) → IR3m

the map projecting a matrix on its 3m normalization entries. That is, the entries
that were normalized in the fourth order normalization equations when we apply
ad(̄D) to the symplectic matrix and multiply the relation (5.16) by J on the left.
Notice that, if S is symmetric, then both SJ and JS are symplectic, if M is skew
symmetric, then JM and MJ are in m, where m is the complement of the symplectic
algebra in gl(2m) (that is, the set of non-symplectic components), and that if R
is symplectic then ad(̄D)(R) ∈ m. That implies that, if I4 is skew-symmetric and
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has a number of normalized entries, then JI4 is in m and it has the corresponding
normalized entries assigned in a one-to-one fashion since they are off-diagonals.
Since ad(DJ)(R) is also in m, a number of its off-diagonal entries are normalized,
exactly 3m of them. Since ad(DJ) is one-to-one off the diagonals this determine 3m
normalized entries in R. Those are the ones defining π. For simplicity we will also
denote by π the projection of normalized entries found in skew-symmetric matrices,
that is, the map projecting on those entries that were normalized in I4.

Lemma 3. The equation

(5.21) π(Rt) = π
(
(nS

0 )x + [R,nS
0 ]

)
determines the block diagonals of nS

0 .

Notice that π(R) will depend on third order differential invariants.

Proof. The proof is based on the fourth normalization equations. Let Ĩ4 be defined
by d̃Ĩ4d̃

T = I4, where d̃ is the component of the moving frame that was determined
last using the fourth normalization equations. Notice that the set of matrices d form
a subgroup of Sp(2m), let us call it Gd and its Lie-algebra d is given by matrices
of the form (

a b
c −a

)
where all a, b, c are diagonal matrices. Since the map Gd → IR3m given by d →
π(dĨ4d

T ) has full rank equal 3m (the entries and normalization constants where
chosen so we could solve for d̃), its differential at d̃ ∈ Gd will also have full rank.
The differential is given by

A → π(Ad̃Ĩ4d̃
T + d̃Ĩ4d̃

T AT ) = π(AI4 + I4A
T )

for any A ∈ d. Using relation (5.16) we can rewrite this as

A → π(AJ [DJ,R] + J [DJ,R]AT )

since π(ADx +DxAT ) = 0. The above can be rewritten as

A → −J [AT , [JD, R]]

which proves the Lemma since the normalized entries are not in block diagonal
positions. ♣

Let us call nd
0 the block diagonal components of nS

0 . Here we can immediately
see one of the main differences with the Lagrangian case. One can make normalized
entries in R vanish when fourth oder differential invariants vanish (that was the
case for the Lagrangian Grassmannian). This can be achieved in the normalization
process by choosing a cross section for which entries in dĨ4d

T are made equal to
each other in order to solve for d. Thus, all entries depend on fourth and higher
order differential invariants and will vanish when they vanish. But in that case, as
we approach the set of vanishing higher order invariants nd

0 will blow up, and with
it the time evolution of the higher order differential invariants. This is the essence
of the proof of the following Theorem.

Theorem 17. Let R be defined using any fourth order cross section which is con-
stant or zeroth order in D. That is, π(c4) are either constant or functions of D.
Then, the set of vanishing fifth or higher order differential invariants is not pre-
served by the skew-symmetric Schwarzian KdV evolution.
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Proof. The evolution of fifth and higher differential invariants is defined by the
block diagonal components of the equation

Rt = (nS
0 )x + [R,nS

0 ]

where nS
0 is determined outside its block diagonals by Lemma 2 and nd

0 is determined
by Lemma 3. If π(c4) is either constant or zeroth order, then, according to both
lemmas, the highest order, non vanishing terms in D found outside the diagonals
of nS

0 are order 2 and the higher order term in the block diagonals is order three
(normalized entries in R are functions of D and Dt is third order).

The highest order term in D in the block diagonals of Rt is given by the highest
order term in (nd

0)x since this term has third and fourth order terms, while the
block diagonals of [R,nS

0 ] have order two only. The third and fourth order terms
in (nd

0)x are found using the relation (5.21) in Lemma 3. Indeed, if we denote by 4

the fourth order term, we get that

π(Rxt)4 = π((nS
0 )xx + [R, (nd

0)x])4.

If we apply now ad(DJ), which is one-to-one outside block diagonals, we get that

π([Rxt,DJ ] + [Rx,DtJ ] + [Rt,DxJ ] + [R,Dxt]) = π([R,DJ ])

which is either zero or first order in D. Therefore, the fourth order term in [Rxt,DJ ]
is given by −π[R,DxxxxJ ].

From the formula for nS
0 in Lemma 2 we see that

π[(nS
0 )xx,DJ ]4 = 2[[R, (n−1)xxxxJ ] = 2[R,DxxxxJ ].

Therefore, the highest order term in π[[R, (nd
0)x],DJ ] is −3π[R, (n−1)xxxxJ ]. This

will generically vanish only if π(R) = 0. This is not possible since in this case nd
0

will blow up (besides, the fourth order normalization equations would not be full
rank in this submanifold). ♣

Finally, we will show that, under some conditions on π(R), the submanifold
of vanishing fourth order invariants is preserved by the skew symmetric KdV
Schwarzian evolutions, and that the evolution of third order invariants decouple
from the fifth order, with D evolving following a decoupled system of KdV equa-
tions. We are assuming below that m > 3, so we have only fifth order invariants.

Theorem 18. Let π([R,DJ ]) = c4 be constant and assume that, as the fourth order

invariants vanish, [R, R̂] = ̂̂
R + block diagonals where R, R̂ and ̂̂

R have non-zero
entries in the same position (in the nonzero normalized positions). Assume also
that [R, [R, R̂]]d = 0 for R̂ as above.

Then, if we choose initial conditions with vanishing fourth order invariants, these
remain zero, Dt and (Rd)t decouple, and

DtJ = DxxxJ + (D2)x +DDx

a decoupled system of KdV equations.

Proof. Again we use here the two lemmas in this section. Since

Rt = (nS
0 )x + [R,nS

0 ]

we have that, if π̂(R) denotes the projection on non-diagonal and non-normalized
entries, then the evolution of fourth order invariants is given by π̂(Rt). From Lemma
2, if we have vanishing fourth order invariants, then π̂([nS

0 ,DJ ]) = [π̂(nS
0 ),DJ ] = 0
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and hence π̂(nS
0 ) = π̂(nS

0 )x = 0. Similarly we see that, away from diagonals nS
0 has

only non-vanishing entries in the normalized directions, and hence π̂([R,nS
0 ]) = 0.

From here we see that if initial conditions are chosen such that their fourth order
invariants vanish, the same condition will hold true for the entire flow.

Finally,

DtJ = (n−1)xxxJ + (Dn−1)x +D(n−1)x

+ 3[R, [R,n−1J ]x]d + [R, [R, [R,n−1J ]]]d.

and, if c4 is constant, [R,n−1J ]x = 0. Furthermore, under our assumptions
[R, [R, [R,n−1J ]]]d = 0 and so the Theorem is proved. ♣

Conditions [R, R̂] = ̂̂
R + diagonals and [R, [R, R̂]]d = 0 are easily accomplished

as the dimension grows. Indeed, as the fourth order differential invariants vanish,
the number of nonzero entries in R is always less or equal to 3m, while the number
of available equations is m(2m − 1). Thus, if m is large enough (greater than 4)
accomplishing the conditions get easier and easier. It is not clear if they hold for
m = 4. Some more details need further study: can we choose a first order transverse
section in D to make the submanifold of fifth order vanishing invariants a level set
of the evolution? What exactly happens in the Hamiltonian picture? Are fifth
order invariants also of projective type in some sense? A better path is to study
how the geometry of these manifolds generate the invariants and the evolutions.
Research in that direction is underway.
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