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Abstract. We construct integrable hierarchies of flows for curves in centroaffine R3 through
a natural symplectic structure on the space of closed unparametrized starlike curves. We
show that the induced evolution equations for the differential invariants are closely connected
with the Boussinesq hierarchy, and prove that the restricted hierarchy of flows on curves
that project to conics in RP2 induces the Kaup-Kuperschmidt hierarchy at the curvature
level.

1. Introduction

1.1. Integrable evolutions of space curves. Much of the work on integrable curve evolu-
tion equations has been guided by the fundamental role played by the differential invariants
of the curve (e.g., curvature and torsion in the Euclidean setting) in helping identify the
curve evolution as an integrable one. Perhaps the most important example in the case of
space curves is that of the Localized Induction Equation (LIE)

γ
t = γ

x × γxx, (1)

describing the evolution of a curve with position vector γ(x, t), and arclength parameter x.
The complete integrability of equation (1) was uncovered by the realization, due to Hasimoto
[8], that the function ψ = κ exp(i

∫
τ dx), of the curvature κ and torsion τ of γ, is a solution

of the cubic focusing nonlinear Schrödinger equation

iψt + ψxx + 1
2
|ψ|2ψ = 0, (2)

one of the two best-known integrable nonlinear wave equations (the other being the KdV
equation).

In this paper, we also use as a guiding principle the observation that many (but not
all) integrable curve evolutions have the property of local preservation of arclength, i.e.,
the associated vector fields satisfy a non-stretching condition. For example, the LIE vector
field W = γ

x × γ
xx satisfies the condition δW‖γx‖ = 0, where δW denotes the variation

in the direction of W . Thus the local arclength parameter x is independent of t, and the
compatibility conditions γxt = γ

tx, γxxt = γ
txx, γxxxt = γ

txxx (more commonly written as
compatibility conditions of the Frenet equations and the evolution equations for the Frenet
frame) turn out to be equivalent to the Lax pair of the NLS equation for ψ.

Indeed, many integrable curve evolutions in various geometries have been found by looking
for non-stretching vector fields (in a given geometry) that produce compatible equations for
the moving frame of the evolving curve; in the case of space curves, the geometries explored
include Euclidean [10], spherical [5], Minkowski [19], affine and centroaffine [4]. (Moreover,
integrable curve evolutions without preservation of arclength have been found in projective
([15]), conformal ([16]) and other parabolic manifolds). The approach in these investigations
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involves finding suitable choices for the coefficients of the non-stretching vector fields (relative
to a Frenet-type frame) and often assuming special relations among the differential invariants;
thus it can be challenging to identify integrable hierarchies.

Another approach to investigating the relation between a non-stretching curve evolution
and integrable PDE system for the differential invariants is to seek a natural Hamiltonian
setting for the curve flow. The LIE was shown by Marsden and Weinstein [17] to be a
Hamiltonian flow on a suitable phase space endowed with a symplectic form of hydrodynamic
origin (see also [1, 2]). In a fundamental paper [12] Langer and Perline used this framework
to explore in depth the correspondence between the LIE and NLS equations and, along the
way, derived a geometric recursion operator at the curve level that made it easy to obtain
the integrable hierarchies of both curve and curvature flows, as well as meaningful reductions
thereof [13, 11].

In this article we study integrable evolution equations for closed curves in centroaffine R3

beginning, as in [12], with a natural symplectic form on an appropriate infinite-dimensional
phase space. The Hamiltonian setting allows us to construct integrable hierarchies of curve
flows and the associated families of integrable evolution equations for the centroaffine dif-
ferential invariants (which turn out to be equivalent to the Boussinesq hierarchies). The
motivation for addressing the centroaffine case comes from an interesting article by Pinkall
[23], who derived a Hamiltonian evolution equation on the space of closed non-degenerate
curves in the centroaffine plane. The simple definition of the symplectic form in the planar
case (related to the SL(2)-invariant area form) suggested that an analogous description may
be possible in the 3-dimensional case, where a parallel could be drawn with the more familiar
Euclidean case treated by [12].

Before describing the organization of the paper, we briefly discuss Pinkall’s original setting
and some results of ours for the planar case.

1.2. Pinkall’s Flow in R2. Centroaffine differential geometry in Rn refers to the study of
submanifolds and their properties that are invariant under the action of SL(n), not including
translations. For example, a parametrized curve γ : I → Rn (where I is an interval on the
real line) is nondegenerate if

det(γ(x), γ′(x), . . . , γ(n−1)(x)) 6= 0

for all x ∈ I, and this property is clearly invariant under the action of SL(n). Thus, for
these curves the integral ∫

|γ, γ′, . . . , γ(n−1)|1/n dx (3)

is SL(n)-invariant, and represents the centroaffine arclength, where for the sake of conve-
nience we use the notation

|X1, . . . , Xn| := det(X1, . . . , Xn)

for n-tuples of vectors Xi ∈ Rn. (The nth root in (3) is necessary to make the integral
invariant under reparametrization.)

In the case where n = 2, Pinkall [23] defined a geometrically natural flow for nondegenerate
curves in R2, which he referred to as star-shaped curves, as follows. Suppose that γ is
parametrized by centroaffine arclength s, so that |γ, γ′| = 1 identically. It follows that
γ
ss = −p(s)γ where p is defined as the centroaffine curvature. Along a closed curve γ, one
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defines the skew-symmetric form

ω(X, Y ) =

∮
γ

|X, Y | ds, (4)

where X and Y are vector fields along γ. This pairing is nondegenerate on the space of
vector fields that locally preserve arclength. Then the symplectic dual with respect to (4) of
the functional

∮
γ
p(s) ds is the vector field

X = 1
2
p′γ − pγs.

Pinkall’s flow γ
t = 1

2
p′γ − pγs induces an evolution equation for curvature that coincides

with the KdV equation, up to rescaling. In an earlier paper [3], we showed how to use
solutions of the (scalar) Lax pair for KdV to generate solutions of Pinkall’s flow. In particular,
we showed that varying the spectral parameter in the Lax pair for a fixed KdV potential q
corresponds to constructing a solution to the flow with curvature given by a Galileian KdV
symmetry applied to q. We also derived conditions under which periodic KdV solutions
corresponded to smoothly closed loops (for appropriate values of the spectral parameter)
and illustrated this using finite-gap KdV solutions.

1.3. Organization of the paper. In §2 we introduce basic notions concerning the differen-
tial geometry of curves in centroaffine R3 (starlike curves), including centroaffine arclength,
differential invariants, and non-stretching curve variations. This section also contains a
discussion of the relation between starlike curves and parametrized maps into RP2. In §3
we generalize Pinkall’s setting and introduce a symplectic form on the space of closed un-
parametrized starlike curves; we also compute the Hamiltonian vector fields associated with
the total length and total curvature functionals. These Hamiltonian curve flows induce evo-
lution equations for the differential invariants; we discuss these equations in §4, including
their bi-Hamiltonian formulation, Lax representation, and the connection with the Boussi-
nesq equation. In §5 we show that the Poisson operators introduced in §4 give rise to the
Boussinesq recursion operator, generating a (double) hierarchy of commuting evolution equa-
tions for the differential invariants. In Theorem 5.4, we relate the Hamiltonian structure for
starlike curves and the Poisson structure for the differential invariants, and obtain a double
hierarchy of centroaffine geometric evolution equations. We conclude §5, and the paper, by
considering which of these flows preserve the property that γ corresponds to a conic under
the usual projectivization map π : R3 → RP2. We show that the sub-hierarchy of conicity-
preserving curve evolutions induces the Kaup-Kuperschmidt hierarchy at the curvature level.

2. Centroaffine Curve Flows in R3

2.1. Centroaffine Invariants. Let γ : I → R3 be nondegenerate. We parameterize γ by
centroaffine arclength, so that

|γ, γ′, γ′′| = 1. (5)

We assume for the rest of this subsection that x is an arclength parameter.
It follows by differentiating (5) with respect to x that

γ′′′ = p0γ + p1γ
′ (6)

for some functions p0(x) and p1(x). As explained below, these constitute a complete set of
differential invariants for nondegenerate curves.
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Remark 2.1. Some insight into the meaning of the centroaffine curve invariants can be
gained by considering the relationship between γ and the corresponding parametrized curve
Υ = π ◦ γ in RP2, where π : R3 → RP2 is projectivization. The nondegeneracy condition
on γ corresponds to Υ being regular and free of inflection points. Conversely, any such
parametrized curve Υ : R → RP2 has a unique lift to γ : R → R3 which is centroaffine
arclength-parametrized; we refer to γ as the canonical lift of Υ. When written in terms of Υ
instead of γ, the invariants p0 and p1 are (up to sign) the well-known Wilczynski invariants
[27]. Since these invariants define a differential equation whose solution determines the
curve uniquely up to the action of the group SL(3), any other differential invariant must be
functionally dependent on p0, p1 and their x-derivatives.

According to Ovseinko and Tabachnikov [22], the cubic differential (p0− 1
2
p′1)(dx)3 has the

interesting property that it is invariant under reparametrizations of Υ. In fact, those curves
in RP2 for which this differential vanishes identically are conics. For curves for which the
coefficient p0 − 1

2
p′1 is nowhere vanishing, one can define the projective arclength differential

(p0 − 1
2
p′1)

1/3dx. Those parametrized curves in RP2 for which p0 − 1
2
p′1 = C, where C is

a nonzero constant, are parametrized proportional to projective arclength, and we use the
same terminology for their canonical lifts in R3. (Note that, in this case, the projective
arclength differential is C1/3 times the centroaffine arclength differential.)

Remark 2.2. Huang and Singer [9] refer to nondegenerate curves in centroaffine R3 as star-
like. They define invariants κ and τ which correspond to −p1 and p0 respectively. Labeling p0
as torsion is appropriate, since nondegenerate curves that lie in a plane in R3 (not containing
the origin) are exactly those for which p0 is identically zero.

Along a nondegenerate curve, an analogue of the Frenet frame is provided by vectors
γ, γ′, γ′′. In fact, if we combine them as columns in an SL(3)-valued matrix W = (γ, γ′, γ′′),
then the analogue of the Frenet equations is

Wx = W

0 0 p0
1 0 p1
0 1 0

 . (7)

However, for later use it will be convenient to define a different SL(3)-valued frame F (x) =
(γ, γ′, γ′′ − p1γ) which satisfies the Frenet-type equation

Fx = FK, K =

0 k1 k2
1 0 0
0 1 0

 (8)

where

k1 = p1, k2 = p0 − p′1. (9)

Of course, k1, k2 also constitute a complete set of differential invariants, and we will come to
use these in place of the Wilczynski invariants from §4 onwards.

2.2. Nonstretching Variations. Suppose that Γ : I × (−ε, ε)→ R3 is a smooth mapping
such that, for fixed t, Γ(x, t) is a nondegenerate curve parametrized by x. Without loss of
generality, we will assume that γ(x) = Γ(x, 0) is parametrized by centroaffine arclength. Let
X denote the variation of γ in the t-direction, and expand

X =
∂

∂t

∣∣∣∣
t=0

Γ = aγ + bγ′ + cγ′′. (10)
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(We will use primes to denote derivatives with respect to x; note that x is not necessarily
an arclength parameter along the curves in the family for t 6= 0.)

To compute the variation of the arclength differential |γ, γ′, γ′′|1/3 dx, we introduce the
notation δ for the variation in the t-direction. Using the relation (6), we compute

δγ′ = X ′ =(a′ + p0c)γ + (a+ b′ + p1c)γ
′ + (b+ c′)γ′′,

δγ′′ = X ′′ =(a′′ + 2p0c
′ + p′0c+ p0b)γ + (2a′ + p0c+ b′′ + 2p1c

′ + p′1c+ p1b)γ
′

+ (a+ 2b′ + p1c+ c′′)γ′′.

Then

δ|γ, γ′, γ′′| = |δγ, γ′, γ′′|+ |γ, δγ′, γ′′|+ |γ, γ′, δγ′′| = 3a+ 3b′ + c′′ + 2p1c.

In particular, the variation X preserves the centroaffine arclength differential if and only if

b′ = −a− 1
3
(c′′ + 2p1c), (11)

i.e.,

X = aγ −
(∫ (

a+ 1
3
c′′ + 2

3
p1c
)

dx

)
γ′ + cγ′′. (12)

We refer to vector fields of this form as non-stretching, since not only do such variations
preserve the overall arclength of, say, a closed loop, but also no small portion of the curve is
stretched or compressed.

3. Hamiltonian Curve Flows

3.1. Symplectic Structure on Starlike Loops. Generalizing Pinkall’s setting [23] for
planar star-shaped loops to the three-dimensional case, we introduce the infinite-dimensional
space

M̂ = {γ : S1 → R3 : |γ, γ′, γ′′| = 1},
as a subset of the vector space V = Map(S1,R3) of C∞ maps from S1 to R3. Assume that
γ ∈ M̂ , i.e., γ is a starlike curve parametrized by centroaffine arclength; then a vector field

X = aγ + bγ′ + cγ′′ is in the tangent space TγM̂ if and only if X is of the form (12).
On V define the skew-symmetric form

ωγ(X, Y ) =

∮
γ

|X, γ′, Y | dx, X, Y ∈ TγV. (13)

Note that ω is automatically closed (that is, dω = 0) since the integrand in (13) is a volume
form on R3 [1, 2].

Letting X = aγ + bγ′ + cγ′′, Y = ãγ + b̃γ′ + c̃γ′′, we compute

ωγ(X, Y ) =

∮
γ

(ac̃− ãc) dx. (14)

Thus, ωγ(X, Y ) = 0 for every Y if and only if a = c = 0. By setting a = c = 0 in (12), we see

that the kernel of the restriction of ω to M̂ consists of constant multiples of γ′. Therefore,

we define the quotient space M = M̂/R, where the action of R takes γ(x) to γ(x + d).
By construction, M is the space of unparametrized starlike loops, and ω descends to give a
well-defined symplectic form on M .
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3.2. Examples. Recall that the correspondence between vector fields XH and (differentials
of) Hamiltonians H on a symplectic manifold M is defined using the symplectic form by the
relation

dH[X] = ωγ(X,XH), ∀X ∈ TγM. (15)

We will use this to compute the Hamiltonian vector fields for a few interesting functionals;
note that these vector fields are unique only up to adding a constant times γ′.

We first consider the arclength functional

L(γ) =

∮
γ
|γ, γ′, γ′′|1/3dx. (16)

Given an arbitrary vector field X = aγ + bγ′ + cγ′′ (not necessarily arclength preserving),
the variation of the determinant in (16) along X is given by

δ|γ, γ′, γ′′| = |X, γ′, γ′′|+ |γ,X ′, γ′′|+ |γ, γ′, X ′′| = (3a+ 3b′ + c′′ + 2p1c)|γ, γ′, γ′′|.
Assuming that |γ, γ′, γ′′|=1 and setting all constants of integration to zero, we obtain

dL[X] =

∮
γ

(a+ 2
3
p1c) dx.

Suppose that XL = ãγ + b̃γ′ + c̃γ′′. Then setting dL[X] = ωγ(X,XL) =
∮

(ac̃ − ãc)dx, and
using the non-stretching condition (11), we obtain the following Hamiltonian vector field on
M :

XL = γ′′ − 2
3
p1γ. (17)

In §4.4 we will see that the associated curve flow γ
t = XL leads to the Boussinesq equation

for the curvatures k1, k2.
Next, we introduce the total curvature functional

P (γ) =

∮
p1 dx. (18)

From γ′′′ = p0γ+p1γ
′ and (5), it follows that p1 = |γ, γ′′′, γ′′|. Then the variation of p1 along

an arbitrary vector field X = aγ + bγ′ + cγ′′ is given by

δp1 =|X, γ′′′, γ′′|+ |γ,X ′′′, γ′′|+ |γ, γ′′′, X ′′|
=|X, p0γ + p1γ

′, γ′′|+ |γ,X ′′′, γ′′|+ |γ, p0γ + p1γ
′, X ′′|

=3p1a+ 3c′p0 + 2cp′0 + 3a′′ + b′′′ + 4c′′p1 + 3c′p′1 + cp′′1 + 5b′p1 + bp′1 + 2cp21.

(19)

Then, up to perfect derivatives,

dP [X] =

∮
δp1 dx =

∮
3p1a+ 3c′p0 + 2cp′0 + 4c′′p1 + 3c′p′1 + cp′′1 + 4b′p1 + 2cp21 dx.

Assuming X is an arclength-preserving vector field, we set b′ = −a − 1
3
(c′′ + 2p1c) and

compute ∮
δp1 dx =

∮
−ap1 + 3c′p0 + 2cp0 + 8

3
c′′p1 + 3c′p′1 + cp′′1 − 2

3
cp21 dx.

Integrating by parts, we arrive at

dP (X) =

∮
−p1a+ (−p′0 + 2

3
p′′1 − 2

3
p21)c dx. (20)

Suppose that XP = ãγ+ b̃γ′+ c̃γ′′. Setting the right-hand side of (20) equal to ωγ(X,XP ) =∮
(ac̃ − ãc) dx, we get ã = p′0 − 2

3
p′′1 + 2

3
p21 and c̃ = −p1. Using equation (11) we compute
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b̃′ = −(p′0− 2
3
p′′1 + 2

3
p21)− 1

3
(−p′′1−2p21) = (p′1−p0)′, a perfect derivative. Thus the Hamiltonian

vector field corresponding to (18) is

XP =
(
2
3
(p21 − p′′1) + p′0

)
γ + (p′1 − p0)γ′ − p1γ′′.

Again, we will see that the associated curve flow γ
t = XP is also directly related to one of

the flows in the Boussinesq hierarchy of equations for the curvatures of γ.

4. Integrable Centroaffine Curve Flows

In this section we will examine the evolution of centroaffine curvatures induced by the
Hamiltonian curve flows defined in §3.2. We begin by computing the evolution of invariants
under more general curve flows.

4.1. Evolution of Invariants. First, we consider how the centroaffine invariants of a star-
like curve evolve under a general nonstretching evolution equation

γ
t = r0γ + r1γ

′ + r2γ
′′ (21)

with r0 = −r′1 − 1
3
(r′′2 + 2p1r2). From now on, we assume that γ is parametrized by affine

arclength x at each time. Of course, in order for (21) to represent a geometric evolution
equation, r1 and r2 should be functions of the invariants p0, p1 and their arclength derivatives.

Proposition 4.1. The evolution equations induced by (21) for the Wilzcynski invariants are

(p0)t =− r′′′′1 + p1r
′′
1 + 3p0r

′
1 + p′0r1 (22)

− 1
3
(r′′′′′2 + p1r

′′′
2 ) + ((3p0 − 2p′1)r

′
2)
′ + 2

3
(p21r

′
2 + (p1p

′
1 − p′′′1 )r2) + p′′0r2

(p1)t =− 2r′′′1 + 2p1r
′
1 + p′1r1 − r′′′′2 + p1r

′′
2 + (3p0 − p′1)r′2 + (2p′0 − p′′1)r2 (23)

Proof. The second equation (23) follows by substituting a = −r′1 − 1
3
(r′′2 + 2p1r2), c = r2 in

the last line of (19). Similarly, using p0 = |γ′′′, γ′, γ′′|, we compute

(p0)t = |(γt)′′′, γ′, γ′′|+ |p0γ + p1γ
′, (γt)

′, γ′′|+ p0|γ, γ′, (γt)′′|

and obtain (22). �

From now on, we will take k1 = p1 and k2 = p0− p′1 as fundamental invariants; one reason
for doing this is that the evolution equations for these invariants induced by (21) take the
form (

k1
k2

)
t

= P
(
r1
r2

)
, (24)

where P is the skew-adjoint matrix differential operator

P =

(
−2D3 +Dk1 + k1D −D4 +D2k1 + 2Dk2 + k2D

D4 − k1D2 + 2k2D +Dk2
2
3
(D5 + k1Dk1 − k1D3 −D3k1) + [k2, D

2]

)
(25)

and D stands for the derivative with respect to x and [·, ·] denotes the commutator on pairs
of operators.1 This operator P , which arises naturally when using k1, k2 instead of p0, p1,
will play a significant role in the integrable structure of the flows we study.

1Note that expressions like Dk1 and Dk2 denote composition of D with multiplication by k1 and k2,
respectively.
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4.2. Two Integrable Flows. The Hamiltonian vector field XL induces a nonstretching
evolution equation

γ
t = γ′′ − 2

3
k1γ. (26)

(This will be the first non-trivial curve evolution in the hierarchy discussed in §5, where
the right-hand side is labeled as Z1.) By setting r1 = 0, r2 = 1 in (24), we obtain the
corresponding curvature evolution(

k1
k2

)
t

= P
(

0
1

)
=

(
k′′1 + 2k′2

2
3
(k1k

′
1 − k′′′1 ) + k′′2

)
. (27)

This PDE system for curvatures is itself Hamiltonian, since it can be written in the form(
k1
k2

)
t

= PEk2,

where E denotes the vector-valued Euler operator

Ef =

(∑
j≥0

(−D)j
∂f

∂k
(j)
1

,
∑
j≥0

(−D)j
∂f

∂k
(j)
2

)T

(28)

on scalar functions f of k1, k2 and their higher x-derivatives k
(j)
1 , k

(j)
2 . (Technically, the Pois-

son bracket defined using the Hamiltonian operator P on the appropriate function space—see
§5.2 below—must satisfy the usual requirements of skew-symmetry and the Jacobi identity.)

Moreover, (27) can also be written in Hamiltonian form as(
k1
k2

)
t

= QEρ3, (29)

for a different Hamiltonian operator and density

Q =

(
0 D
D 0

)
, ρ3 := 1

3
(k′1)

2 + k2k
′
1 + k22 − 1

9
k31. (30)

(The notation ρ3 is explained below.) Since the curvature evolution can be written in Hamil-
tonian form in two ways (27) and (29), the integrals

∫
k2 dx and

∫
ρ3 dx are conserved by

the flow (for appropriate boundary conditions).

Remark 4.2. In fact, the curvature evolution here is a bi-Hamiltonian system, because P
and Q are a Hamiltonian pair, i.e., their linear combinations form a pencil of Hamiltonian
operators, and a pencil of compatible Poisson structures. This assertion can be verified
mechanically (see, e.g., section 7.1 in [20] for details), but it also follows from the fact that,
at least in the periodic case, the Poisson structures are reductions of a well-known compatible
pencil of Poisson brackets on the space of loops in sl(3). (Indeed, when γ is periodic, the
matrix K in (8) provides a lift into this loop space.) The proof of the reduction of these
brackets to the space of differential invariants can be found in [14], where it is shown that
P is associated to the reduction of the Adler-Gel’fand-Dikii bracket for SL(3) and Q is
associated to its companion; see [14] for more details.

The (negative of the) Hamiltonian vector field XP of §3.2 induces the nonstretching evo-
lution

γ
t = k1γ

′′ + k2γ
′ + r0γ, (31)

where

r0 = −(k′2 + 1
3
((k′′1 + 2k21)). (32)
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(The right-hand side of (31) is labeled as Z2 in the hierarchy discussed in §5.) We similarly
obtain the curvature evolution equations induced by this flow by setting r1 = k2, r2 = k1 in
(24). We remark that the resulting system is also bi-Hamiltonian, since it can be written as(

k1
k2

)
t

= P Eρ2 = QEρ4 (33)

for
ρ2 = k1k2, ρ4 = 1

3
(k′′1)2 + k′′1(k′2 − k21)− k1(k′1)2.

Thus,
∫
ρ2 dx and

∫
ρ4 dx are conserved integrals for (31). (Because XP corresponds sym-

plectically to the Hamiltonian
∫
k1 dx, it is automatic that this integral is also conserved.)

Remark 4.3. The arclength normalization (5) is preserved by the simultaneous rescaling
x 7→ λx, γ 7→ λ−1γ. Under this rescaling, k1 and k2 scale by λ2 and λ3 respectively. Thus, we
may assign scaling weights 2 and 3 respectively to these curvatures, with weight increasing
by one for every x-derivative.

It will turn out (see §5.1 below) that the conserved densities for evolution equations
(26) and (31) are all of homogeneous weight, with one density for each positive weight
not congruent to 1 modulo 3. We will number the densities in order of increasing weight,
letting ρ0 = k1, ρ1 = k2 and so on; the density in (29) is denoted by ρ3, since its weight falls
between those of ρ2 and ρ4.

The curve flows (26) and (31) turn out to share the same conservation laws; for example,∫
k1 dx is conserved by (26) because (27) implies that

(k1)t = D(k′1 + 2k2).

Similarly, (31) conserves
∫
k2 dx because (33) implies that

(k2)t = D
(

2
3
k
(4)
1 + k′′′2 − 2k1k

′′
1 − (k′1)

2 − 2k1k
′
2 + 4

9
k31 + 2k22

)
.

In §5 we will show that these flows share an infinite sequence of conservation laws.

4.3. Lax Representation. In this subsection we use geometric considerations to derive Lax
pairs for curvature evolution equations induced by (26) and (31).

In [3], we found that the components of the solution γ(x, t) of Pinkall’s flow satisfied the
scalar Lax pair for the KdV equation. In the same spirit, we seek a system of the form

Ly = 0, yt =My, (34)

satisfied by each component of γ, where L and M are differential operators in x with
coefficients involving k1, k2. Using (6), we see that every component of γ satisfies the scalar
ODE y′′′ = (k1y)′ + k2y, and so we will let

L := D3 −Dk1 − k2
and seek operators M1 for (26) and M2 for (31).

In the case of (26), the components of γ also satisfy yt = y′′ − 2
3
k1y, so we choose

M1 := D2 − 2
3
k1.

One can then verify that (27) implies that

Lt = [M1,L]. (35)

In the case of (31), the components of γ satisfy yt = k1y
′′ + k2y

′ + r0y, with r0 as given
by (31). So, we might set M2 = k1D

2 + k2D + r0. However, (34) would also be satisfied
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if we modify M2 by adding NL, where N is an arbitrary differential operator. In fact, the
system (33) actually implies that Lt = [M2,L] for

M2 := (k1D
2 + k2D + r0)− 3DL.

Writing these systems in Lax form enables us to interpolate a spectral parameter into the
linear equations satisfied by the components. Thus, consider solutions of the compatible
system

Ly = λy, yt =Mjy, (36)

where j = 1 or j = 2. Of course, the components of the evolving curve satisfy (36) only
when λ = 0. When λ 6= 0, we can construct solutions of the curve flow using solutions of
(34):

Proposition 4.4. Let k1, k2 satisfy the evolution equation (27) for j = 1 or (33) for j = 2.
For fixed λ ∈ R, let y1, y2, y3 be linearly independent solutions of (36), with Wronskian W .

Then W is constant in x and t, and γ = W−1/3(y1, y2, y3)
T is arclength-parametrized at each

time t, with centroaffine invariants k1 and k̃2 = k2+λ. Furthermore, γ satisfies the evolution
equation

γ
t =

{
γ′′ − 2

3
k1γ, j = 1,

k1γ
′′ + (k̃2 − 4λ)γ′ + r0γ, j = 2.

Proof. If we let y = (y1, y2, y3)
T and form the matrix F = (y, y′, y′′), then F satisfies differ-

ential equations of the form

F−1Fx =

0 0 k2 + k′1 + λ
1 0 k1
0 1 0

 , F−1Ft = Nj,

where both right-hand side matrices have trace zero. For example, when j = 1 one can
directly calculate, by differentiating yt =M1y, that

N1 =

−
2
3
k1 k2 + 1

3
k′1 + λ k′2 + 1

3
k′′1

0 1
3
k1 k2 + 2

3
k′1 + λ

1 0 1
3
k1

 .

Thus, the Wronskian W is constant in x and t.
Because γ′′′ = (k1γ)′ + (k2 + λ)γ, the centroaffine invariants of γ are k1 and k̃2. It is

straightforward to compute γt in the j = 1 case, using yt = M1y. In the j = 2 case, we
compute

yt =M2 y = k1y
′′ + (k̃2 − λ)y′ + r0y − 3DLy = k1y

′′ + (k̃2 − 4λ)y′ + r0y.

�

4.4. Connection with Boussinesq Equations. In [4], Chou and Qu note that, under
the centroaffine curve flow (26), the curvatures k1, k2 satisfy a two-component system of
evolution equations that is equivalent to the Boussinesq equation. This suggests that the
other integrable flow (31) under discussion may be related to the Boussinesq hierarchy.

Dickson et al [7] write the (first) Boussinesq equation as a system

(q0)t +
1

6
q′′′1 +

2

3
q1q
′
1 = 0

(q1)t − 2q′0 = 0
(37)
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They embed this in a hierarchy of integrable equations, each of which is written in Lax form
as

Lt = [Pm, L], L := D3 + q1D + 1
2
q′1 + q0, (38)

where Pm is a differential operator of order m 6≡ 0 mod 3, with coefficients depending
on q0, q1 and their x-derivatives. Note that Pm must be chosen so that [Pm, L] has order
one. For example, while P1 = D yields the trivial evolution (q1)t = q′1, (q0)t = q′0, setting
P2 = D2 + 2

3
q1 gives the Boussinesq equation (37).

Given the resemblance between (35) and (38), it is tempting to find substitutions to
connect the Boussinesq equation with (27). In fact, we can make L and L coincide by
setting

k1 = −q1, k2 = 1
2
q′1 − q0. (39)

With this substitution,M1 coincides with P2, so it follows that (27) and (37) are equivalent.
In [7] it is shown how the coefficients of the operators Pm can be obtained solving a

recursive system of differential equations, and thus these depend on a number of constants
of integration. For example, the expression for P4 is

P4 =
[
f1D

2 + (g1 − 1
2
f1x)D + (1

6
f ′′1 − g′1 + 2

3
q1f1)

]
+

+
[
f0D

2 + (g0 − 1
2
f ′0)D + (1

6
f ′′0 − g′0 + 2

3
q1f0)

]
L3 + k4,0 + k4,1L,

where f0 = 0, g0 = 1, f1 = 1
3

+ c1, g1 = 1
3
q0 + d1, and k4,0, k4,1, c1, d1 are arbitrary constants.

For convenience, we will set all these arbitrary constant to zero, so that

P4 = D4 + 4
3
q1D

2 + 4
3
(q′1 + q0)D + 5

9
q′′1 + 2

3
q′0 + 2

9
q21. (40)

Again, if we use the substitutions (39), we find that the operator M2 coincides with −3P4.
Thus, (33) is equivalent to the second nontrivial flow in the Boussinesq hierarchy, provided
we also rescale time by t→ −3t.

5. Hierarchies

In [20] the Boussinesq hierarchy is discussed as an example of a biHamiltonian system, in
which two sequences of commuting flows (and conservation laws) are generated by applying
recursion operators. Thus, given the equivalences established in §4.4, it is not surprising
that the Poisson operators of §4 can be combined to give a recursion operator that generates
a double hierarchy of commuting evolution equations for k1, k2. In fact, we will show that
our recursion operator is equivalent to the recursion operator given in [20] (see Example
7.28). The new information we add is that each of these evolution equations is induced by a
centroaffine geometric evolution equation for curves, which is itself Hamiltonian relative to
the symplectic structure defined in §3.1 (see Theorem 5.4 below).

5.1. Recursion Operators. We define a sequence of evolution equations for k1, k2

∂

∂tj

(
k1
k2

)
= Fj[k1, k2], (41)

via the recursion

Fj+2 = PQ−1Fj, (42)

with initial data given by

F0 =

(
k′1
k′2

)
, F1 =

(
k′′1 + 2k′2

2
3
(k1k

′
1 − k′′′1 ) + k′′2

)
. (43)
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(Note that F1 is the right-hand side of (27), while for j = 0 (41) gives a simple transport
equation for k1, k2, corresponding to flow in the direction of the tangent vector γ′.)

In order to assert that the Fj defined by (42) are local functions of k1, k2 and their
derivatives—i.e., in calculating each Fj, the operatorD−1 is only applied to exact x-derivatives
of local functions—we cite well-known results on the Boussinesq hierarchy. For example, the
version of the first Boussinesq equation used by Olver [20] is

uτ = v′, vτ = 1
3
u′′′ + 8

3
uu′, (44)

where τ is the time variable. If one considers linear transformations on the variables, it is
necessary to use some imaginary coefficients to make our version (27) of the first Boussinesq
equation for k1, k2 equivalent to (44):

x = x, τ = it, k1 = −2u, k2 = u′ − iv. (45)

Proposition 5.1. Under the above change of variables, the recursion operator PQ−1 is
equivalent to the Boussinesq recursion operator in [20].

Proof. The transformation between k1, k2 and u, v can be written as(
k1
k2

)
= G

(
u
v

)
, G :=

(
−2 0
D −i

)
.

Thus, if ∂/∂t (u, v)T = F [u, v] is an evolution equation for u, v, the right-hand side of the
corresponding evolution for k1, k2 is G ◦ F . Thus, our recursion operator PQ−1 for flows on
the k1, k2 variables corresponds to a recursion operator

G−1PQ−1G (46)

on flows in the u, v variables. In fact, when one calculates (46) and substitutes for k1, k2
in terms of u, v using (45), the result is exactly −i times the Boussinesq recursion operator
given in [20]. �

Since in [24] (see section 5.4) it is proven that the Boussinesq recursion operator from [20]
always produces local flows when applied to the ‘seed’ evolution equations (i.e., the tangent
flow and first Boussinesq), it follows that the same is true for our recursion operator.

Remark 5.2. Once one checks that the evolution equations (41) for j = 0 and j = 1
commute, it is automatic from the bi-Hamiltonian structure that all evolution equations in
the sequence (41) commute in pairs (see, e.g., Theorem 7.24 in [20]).

It is easy to check that the ‘seeds’ F0, F1 for the recursion are related to the initial conserved
densities by

F0 = PEρ0 = QEρ2, F1 = PEρ1 = QEρ3. (47)

(The second set of equations was derived in §4.2.) While PQ−1 is the recursion operator
for commuting flows, it is evident from (47) that Q−1P should be the recursion operator
for conservation law characteristics (i.e., the result of applying the Euler operator E to a
density). In fact, we may define an infinite sequence of conserved densities by

Eρj+2 = Q−1PEρj, j ≥ 0. (48)

The first few densities calculated using this recursion appear in Figure 1.
We now use these densities to define a sequence of flows for centroaffine curves, and relate

each of them to a curvature evolution equation in the sequence (41). Namely, if f is any
local function of k1, k2 and their derivatives, we define

Xf := (Ef)1γ
′ + (Ef)2γ

′′ + r0γ, (49)
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where the subscripts indicate the components given by (28) and r0 is determined by the
non-stretching condition. Then for the sequence of densities defined recursively by (48) we
define the vector fields

Zj := Xρj (50)

and the corresponding sequence of curve flows

γt = Zj. (51)

Proposition 5.3. For each j ≥ 0 the curve flow (51) induces the evolution
∂

∂t
(k1, k2)

T = Fj

for curvature.

Proof. From (47) and the recursion relations, it follows by induction that

Fj = PEρj, j ≥ 0. (52)

Then the result follows immediately from (24). �

5.2. Hamiltonian structure at the curve level. We now consider the question of how
the Hamiltonian operator P is related to the Hamiltonian structure defined at the curve
level in §3.1. Recall from §3.2 that XH denotes the Hamiltonian vector field associated to
the functional H by the requirement that

dH[Y ] = ωγ(Y,XH)

for any non-stretching vector field Y .

Theorem 5.4. Let H(γ) =

∮
γ

ρ dx and assume that

Eρ̂ = Q−1PEρ, (53)

i.e., ρ̂ is next after ρ in the sequence of densities generated by the recursion operator Q−1P.
Then

XH = −X ρ̂.

Proof. Based on the definition (13) of ω, we need to show that

dH[Y ] =

∮
γ

|X ρ̂, γ′, Y | dx ∀Y ∈ TγM.

If X = aγ + bγ′ + cγ′′ and Y = ãγ + b̃γ′ + c̃γ′′, then from (14),∮
γ

|X, γ′, Y | dx =

∮
γ

(ac̃− ãc) dx.

However, using (11) to eliminate a and ã, we obtain∮
γ

|X, γ′, Y | dx =

∮ (
−b′c̃+ cb̃′ + 1

3
(cc̃′′ − c′′c̃)

)
dx = −

∮
(b′c̃+ c′b̃) dx,

where the last equation follows by integration by parts. Thus,∮
γ

|X ρ̂, γ′, Y |dx = −
∮
γ

(b̃, c̃)
TQEρ̂ dx = −

∮
γ

(b̃, c̃)
TPEρ dx,

using (53) in the last step. Then, because P is skew-adjoint,∮
γ

|X ρ̂, γ′, Y | dx =

∮
γ

Eρ · P
(
b̃
c̃

)
dx.
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On the other hand, using the properties of the Euler operator we have

dH[Y ] =

∮
γ

(Eρ)1δY k1 + (Eρ)2δY k2 dx,

where δY denotes the first variation in the direction of Y . Now using (24) we have

dH[Y ] =

∮
γ

Eρ ·
(
δY k1
δY k2

)
=

∮
γ

Eρ · P
(
b̃
c̃

)
dx.

This concludes the proof. �

The following corollaries are immediate consequences of the theorem.

Corollary 5.5. Define the Poisson bracket

{H,G} =

∮
γ

Eh · PEg dx,

where G(γ) =
∮
γ
g dx and H(γ) =

∮
γ
h dx are functionals on M , and g, h are functions of

k1, k2 and their derivatives. Then

dH[Xg] = −ω(XH , X
g) = {H,G}

and ω(XH , X
g) = 0 if and only if {H,G} = 0.

Corollary 5.6. All the vector fields Zj, defined by (50) are Hamiltonian for j ≥ 1.

Corollary 5.7. A closed curve γ is critical for the functional H(γ) =

∮
γ

ρj dx with respect

to non-stretching variations if and only if γ is stationary for a constant-coefficient linear
combination of Zj+2 and Z0.

Proof. A curve γ is critical for H if and only if dHj[Y ] = ω(Y,XH) = 0 for any non-stretching
vector field Y . Since XH = Zj+2 (by Theorem 5.4), this condition is satisfied if and only
if Zj+2 is in the kernel of ω, i.e., Zj+2 is a constant multiple of the tangent vector Z0.
Equivalently Zj+2 + cZ0 = 0 along γ for some constant c, expressing the fact that γ must be
stationary for such linear combination of vector fields.

�

5.3. Projective Properties. As stated in Remark 2.1, a centroaffine curve γ projects to
give a conic in RP2 if and only if the Wilczynski invariants satisfy p0 − 1

2
p′1 = 0. (The

corresponding condition in terms of k1, k2 is k2 + 1
2
k′1 = 0.) In this subsection we will

investigate which flows in the hierarchy have the property that, if γ projects to a conic at
time zero, then it continues to have a conical projection at subsequent times. We will show
later that the equation of the conic in homogeneous coordinates is fixed in time. We will also
discuss flows that preserve a parametrization that is proportional to projective arclength; in
that case, the corresponding condition in terms of curvatures is that k2 + 1

2
k′1 is a nonzero

constant along the curve.
These investigations are much easier if, instead of k2, we use an invariant that vanishes

precisely when the condition we are investigating holds. Accordingly, we fix a constant C,
and define an alternative pair of invariants

u = k1, v = k2 + 1
2
k′1 − C. (54)

Thus, the curve is a conic if v = 0 when C = 0, and the curve has a constant-speed
parametrization (relative to projective arclength) if v = 0 when C 6= 0.
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Nonstretching vector field Conserved density
Z0 = γ′ ρ0 = k1
Z1 = γ′′ − 2

3
k1γ ρ1 = k2

Z2 = k1γ
′′ + k2γ

′ + . . . ρ2 = k1k2
Z3 = (k′1 + 2k2)γ

′′ +
(
1
3
k21 − 2

3
k′′1 − k′2

)
γ′ + . . . ρ3 = 1

3
(k′1)

2 + k′1k2 + 1
9
k31 + k22

Z4 = (−k′′′1 − 2k′′2 + 2k1k
′
1 + 4k1k2)γ

′′ ρ4 = 1
3
(k′′1)2 + k′′1(k′2 − k21)− k1(k′1)2

+(−1
3
(k

(5)
1 + k

(4)
2 ) + 2(k1k

′′′
1 + k′1k

′′
1 + k1k

′′
2) +(k′2)

2 − k21k′2 + 1
9
k41 + 2k1k

2
2

−4
3
k2k

′′
1 − 2

3
k′1k

′
2 − 8

3
k21(k′1 + k2)− 4k2k

′
2)γ
′ + . . .

(The coefficient of γ in the vector fields can be determined by the nonstretching condition.)

Figure 1

• The γ′ and γ′′ coefficients of Zj match the components of Eρj.
• Densities satisfy the recursion relation Eρj+2 = Q−1PEρj

• Zj induces curvature evolution

(
k1
k2

)
t

= PEρj = QEρj+2.

• For j ≥ 1, Zj is the Hamiltonian vector field for -
∫
ρj−2 dx (with ρ−1 = −1).

We will convert the evolution equations in the hierarchy (at the level of the invariants) to
these variables. Suppose that a curve flow causes the invariants to evolve by(

k1
k2

)
t

= F [k1, k2],

where F is a vector-valued function of k1, k2 and their derivatives. Then the corresponding
evolution equation for the alternative invariants is(

u
v

)
t

= G ◦ F [u, v − 1
2
u′ + C], G :=

(
1 0

1
2
D 1

)
.

Similarly, if R is the recursion operator generating the hierarchy of evolution equations
for k1, k2, then the recursion operator for the corresponding flows on u, v differs by a gauge
transformation:

R̃ = GRG−1, where G−1 =

(
1 0
−1

2
D 1

)
.

(It is understood that, in R on the right-hand side, k1, k2 are substituted for in terms of
u, v.) Specifically, using R = PQ−1 as defined by (25), (30), we compute

R̃ = R̃0 + F̃0D
−1 (0 1

)
+ F̃1D

−1 (1 0
)
, (55)

where

R̃0 =

(
3(v + C) 2(u− 2D2)
N 3(v + C)

)
, F̃0 =

(
u′

v′

)
, F̃1 =

(
2v′

2
3
uu′ − 1

6
u′′′

)
,

and N is the scalar differential operator 1
6
D4 − 5

6
uD2 − 5

4
u′D + 2

3
u2 − 3

4
u′′. One can check

that the vectors F̃0, F̃1 are the time derivatives of u, v corresponding to the ‘seeds’ Z0 and
Z1 for the hierarchy of curve flows.

By applying R̃ to the seeds F̃0, F̃1, one can generate the right-hand sides of the evolution
equations in the hierarchy in terms of u and v. Letting F̃j denote these vectors, we compute
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(for example) that

F̃2 = R̃F̃0 =

(
−2v′′′ + 4(uv)′ + 3Cu′

1
6
u(5) − uu′′′ − 2u′u′′ + 4

3
u2u′ + (4v + 3C)v′

)
,

F̃3 = R̃F̃1 =

(
1
3
u(5) + 5

3
(u2u′ − uu′′′)− 25

6
u′u′′ + (10v + 6C)v′

1
3
v(5) − (5

6
v + 1

2
C)u′′′ + 5

3
((u2v)′ − uv′′′ − u′′v′)− 5

2
u′v′′ + 2Cuu′

)
.

Here, when applying D−1 to differential polynomials in u, v the constant of integration is
zero.

Notice in particular that if v ≡ 0, then the bottom component of F̃3 − 3CF̃1 vanishes.
Thus, the flow Z3 − 3CZ1 preserves the condition that v is identically zero. In fact, we
can calculate two infinite sequences of evolution equations that preserve this condition; the
right-hand sides of these are

Gk =



k∑
j=0

(
k

j

)
(−3C)jF̃2(k−j) k even

k∑
j=0

(
k

j

)
(−3C)jF̃2(k−j)+1 k odd.

(56)

While it is routine to verify that any individual curvature evolution equation in these se-
quences preserves v ≡ 0, it is easier to observe that the members of these sequences satisfy
the recursion relation

Gk+2 = (R̃ − 3C)2Gk.

Then the fact that they all preserve v ≡ 0 is a consequence of the following:

Proposition 5.8. If a curvature evolution (ut, vt)
T = Gk[u, v] in this sequence preserves

v ≡ 0, then so does the evolution (ut, vt)
T = Gk+2[u, v].

Proof. We assume that G = (D`1, D`2)
T for local functions `1, `2 of u, v and their derivatives.

(This form for G is necessary if we are able to apply operator R̃ to it and produce local
functions.)

Within the ring of polynomials in u, v and their derivatives, let V denote the ideal generated
by v, v′, v′′, etc. By hypothesis, D`2 ∈ V, and the same is true for `2.

We compute

(R̃ − 3C)G = `1F̃1 + `2F̃0 +

(
3vD`1 + 2(u−D2)D`2
ND`1 + 3vD`2

)
. (57)

Thus, the bottom component of R̃2G is given by

(N + F̃12D
−1)
(
`1F̃11 + `2F̃01 + 3vD`1 + 2(u−D2)D`2

)
+ (3v + F̃02D

−1)
(
`1F̃12 + `2F̃02 +ND`1 + 3vD`2

)
(Here, F̃j1 and F̃j2 denote the top and bottom entries in the vector F̃j.) The expression in

large parentheses on the top line is the top entry of (R̃ − 3C)G. This polynomial lies in V,
and the same is true if we apply N or D−1 to it. On the other hand, because F̃02 = v′ ∈ V,
the coefficient in front on the second line also vanishes when v ≡ 0. �
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In the special case when C = 0, we see that the following curve flows (as defined by (50))
preserve conicity:

Z0, Z3, Z4, Z7, Z8, Z11, Z12, . . . (58)

However, when C 6= 0, some care needs to be taken in matching the evolution equations for
u, v that preserve v ≡ 0 with the corresponding linear combinations of the curve flows Zj.

In the proof of Prop. 5.8, we used the fact that if an exact derivative D` lies in V, then
by choosing the constant of integration equal to zero, the antiderivative ` also lies in V.
However, if we express D` in terms of k1, k2 instead of u, v, and then take an antiderivative,
a particular constant of integration must be chosen in order to belong in V. Thus, when
we compute the kth evolution equation for u, v by using the recursion operator R̃ (which
involves applying D−1), then convert this to an evolution equation for k1, k2, and finally try
to match it with a curve flow in the hierarchy (51), we get a linear combination of Zk with
lower-order flows of the same parity. For example, if we substitute (54) into F̃2, and then
apply the operator G−1, we get

G−1F̃2[k1, k2 + 1
2
k′1 − C] =

(
−k′′′′1 − 2k′′′2 + 2k1k

′′
1 + 4(k1k2)

′ + 2(k′1)
2 − Ck′1

2
3
k′′′′′1 + k′′′′2 − 2k1k

′′′
1 − 4k′1k

′′
1 + 4k2k

′
2 − 2(k1k

′
2)
′ + 4

3
(k1)

2k′1 − Ck′2

)
= F2 − CF0.

Thus, F̃2 is induced by the curve flow Z2−CZ0; similarly, F̃3 is induced by Z3− 2CZ1, and
so on.

Similarly, when we apply the recursion operator (R̃ − 3C)2 to generate higher-order flows
that preserve v ≡ 0, these constants of integration accumulate and change the relatively nice
pattern of the coefficients exhibited by (56). Here is what we get when we compute the first
few curve evolutions corresponding to the evolutions Gk:

u, v evolution centroaffine curve flow
G0 Z0

G1 Z3 − 5CZ1

G2 Z4 − 7CZ2 + 14C2Z0

G3 Z7 − 11CZ5 + 44C2Z3 − 220
3
C3Z1

G4 Z8 − 13CZ6 + 65C2Z4 − 455
3
C3Z2 + 455

3
C4Z0

5.4. Conical Evolutions and the Kaup-Kuperschmidt Hierarchy. In this section we
examine special properties of the conicity-preserving flows (58) which enable us to connect
our hierarchy of centroaffine curve flows in R3 with the Kaup-Kuperschmidt hierarchy and
with curve flows in centroaffine R2. We begin with the observation that, when restricted to
conical curves, the coefficient of γ′′ vanishes for as many of the vector fields in (58) as one
cares to check. In other words, this coefficient belongs to V, the ideal within the ring of
differential polynomials in k1, k2 generated by k2 + 1

2
k′1 and its derivatives. In fact, this true

in general, as shown in the following:

Proposition 5.9. If j ≡ 0 or j ≡ −1 modulo 4, then the bottom component of Eρj belongs
in V; hence, the γ′′ coefficient of Xj vanishes on conical curves.

Proof. The statement can be verified directly for j = 0 and j = 3. For higher values, we use
the recursion relation between the characteristics, which implies that Eρj+4 = (Q−1P)2Eρj.

From Prop. 5.8 we know that the bottom component of F̃j = GPEρj lies in V. By inserting
powers of G and G−1 into the recursion relation, we get

Eρj+4 = Q−1PQ−1G−1GPEρj = Q−1RG−1F̃j.
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As in the proof of Prop. 5.8, we can assume that F̃j = (D`1, D`2)
T where `2 ∈ V. Taking

C = 0 in equation (57), we see that the top entry of RG−1F̃j = GR̃F̃j is

`1F̃11 + `2F̃01 + 3vD`1 + (u−D2)D`2, (59)

which clearly is in V. (Note that v = k2 + 1
2
k′1 here.) Noting the form of Q, we see that the

bottom entry of Eρj+4 is D−1 applied to (59), so it must also belong to V. �

Next, we make a connection with curve flows in centroaffine R2 to show that, for the flows
in (58), the cone that the curve lies on is preserved by the time evolution.

Proposition 5.10. If γ(x, t) evolves by any of the vector fields in (58), and γ(x, 0) lies on
a cone through the origin in R3, then γ(x, t) lies on the same cone at later times.

Proof. Using the action of SL(3) we can, without loss of generality, assume that the equation
of the cone is y1y3 − y22 = 0. We fix a map V from R2 onto this cone:

V

(
x1
x2

)
= 2−1/3

 x21
x1x2
x22

 .

Of course, when we projectivize on each end this gives the Veronese embedding of RP1 as a
quadric in RP2. The scale factor of 2−1/3 is chosen so that if X(x) is a parametrized curve
in R2 satisfying the centroaffine normalization |X,X ′| = 1, then Γ = V ◦ X satisfies the
normalization |Γ,Γ′,Γ′′| = 1. Moreover, if p(x) is the curvature of X, then the invariants of
Γ are k1 = −4p and k2 = 2p′. Finally, if X evolves by the non-stretching flow

Xt = rX ′ − 1
2
r′X, (60)

then Γ(x, t) = V ◦X(x, t) satisfies

Γt = rΓ′ − r′Γ.
By Prop. 5.9 all the flows in (58), when restricted to conical curves, are of this form, for

some choice of differential polynomial r in k1. For any initial data γ(x, 0), we can define a
curve X(x, 0) in R2 such that γ(x, 0) = V◦X(x, 0) and make X(x, t) evolve by (60). Because
Γ(x, t) = V ◦ X(x, t) satisfies the same initial value problem, then γ(x, t) = Γ(x, t) at all
times, and γ(x, t) lies on the cone defined by y1y3 − y22 = 0 at all times. �

In [4], Chou and Qu discovered a non-stretching flow for curves in centroaffine R3 which
preserves the conicity condition k2 + 1

2
k′1 = 0 and which causes the curvature k1 to evolve by

the Kaup-Kuperschmidt equation:

ut = u′′′′′ − 5uu′′′ − 25
2
u′u′′ + 5u2u′.

(see Case 3 in §3 of their paper, taking λ = 0). In fact, up to a multiplicative factor of 1/3,
Chou and Qu’s flow is the same as the restriction of Z3 to conical curves.

Not only does flow Z3 give a geometric realization of the Kaup-Kuperschmidt equation, but
the entire sequence (58) of flows realize the Kaup-Kuperschmidt hierarchy, when restricted
to conical curves. To see this, note that the square of the recursion operator R̃ relates the
evolution of k1 = u under Zj to its evolution under Zj+4. (Here, we use the notation of §5.3
but with C = 0 and v = 0 because of conicity.) The resulting recursion operator is

− 1
3
D6+2uD5+6u′D3+

(
49
6
u′′ − 3u2

)
D2+

(
35
6
u′′′ − 10uu′′

)
D+ 13

6
u′′′′− 41

6
uu′′− 23

4
(u′)2+ 4

3
u3

+ u′D−1 ◦ (1
3
u2 − 1

6
u′′) + 1

3

(
u′′′′′ − 5uu′′′ − 5

6
u′u′′ + 5u2u′

)
D−1.
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This agrees with the known recursion operator for symmetries of the Kaup-Kuperschmidt
hierarchy. (See, e.g., Example 2.20 in [26], where the operator differs by changing u to
−u and rescaling time by a factor of 1/3.) Using this, one can check that the curvature
flows induced by (58) for conical curves coincide with the commuting flows of the Kaup-
Kuperschmidt hierarchy.

Remark 5.11. The curve flow discovered by Chou and Qu is in fact also defined for
centroaffine curves parametrized proportional to projective arclength (i.e., those for which
k2 + 1

2
k′1 is a constant), and nevertheless still induces Kaup-Kuperschmidt evolution for k1.

Recently, Musso [18] has extended this to a hierarchy of flows for arclength-parametrized
curves in RP2 which induce the Kaup-Kuperschmidt hierarchy for curvature evolution. We
suspect that these flows coincide with the restrictions of the flows studied in §5.3 (for C 6= 0)
to the centroaffine lifts of such curves in RP2.

Remark 5.12. Schwartz and Tabachnikov [25] showed that certain maps defined on the
space of convex polygons preserve the subset of polygons that are inscribed (or circumscribed)
on a conic: that is, if the vertices of the polygon (or those of its projective dual) lie on a
conic, then the same is true for its image under the map. The building blocks for these maps
are elementary maps Tr that associate to a given polygon another polygon obtained from
the intersections of diagonals joining each vertex to the vertex located r positions to left or
right of it. In fact, the maps preserving conicity are precise combinations of Tr for certain
values of r.

The map corresponding to r = 2 is called the pentagram map and it is known to be a
discretization (in both time and space) of the Boussinesq equation [21]. It is natural to
wonder if the maps in [25] are somehow associated to flows in the Boussinesq hierarchy. We
are currently investigating this.
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