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Abstract. In this paper we find a discrete moving frame and their associated

invariants along projective polygons in RPn, and we use them to describe in-
variant evolutions of projective N -gons. We then apply a reduction process to

obtain a natural Hamiltonian structure on the space of projective invariants

for polygons, establishing a close relationship between the projective N -gon
invariant evolutions and the Hamiltonian evolutions on the invariants of the

flow. We prove that any Hamiltonian evolution is induced on invariants by an

invariant evolution of N -gons - what we call a projective realization - and both
evolutions are connected explicitly in a very simple way. Finally, we provide

a completely integrable evolution (the Boussinesq lattice related to the lattice

W3-algebra), its projective realization in RP2 and its Hamiltonian pencil. We
generalize both structures to n-dimensions and we prove that they are Poisson,

defining explicitly the n-dimensional generalization of the planar evolution (a
discretization of the Wn-algebra). We prove that the generalization is com-

pletely integrable, and we also give its projective realization, which turns out

to be very simple.

1. Introduction

Studies have shown a close relationship between evolution of curves invariant
under a group action on the one hand, and completely integrable systems on the
other. The best known such relation was established by Hasimoto in [11] where
he showed that the Vortex-Filament flow (VF) - a curve flow in Euclidean space,
invariant under the Euclidean group - induces the nonlinear Shrödinger evolution
(NLS) on the curvature and torsion of the curve flow. One can state this fact
by describing VF as an Euclidean realization of NLS. Many such examples fol-
lowed in [19, 20, 21, 23, 28, 29, 30, 33, 34] and others, showing realizations in
all classical geometries - both affine and non-affine, in the space of pure Spinors,
Lagragian Grassmannians, and more. The systems realized include KdV, mKdV,
Adler-Gel’fand-Dikii (AGD) flows (defined in fact by Lax), Sowada-Koterra sys-
tems, NLS, both Camassa-Holm and modified Camassa-Holm equations, and more,
with one equation sometimes realized in several different geometries.

All of these systems are biHamiltonian and at the heart of many of the studies
one finds natural Hamiltonian structures defined on the curvatures of the flow.
One such structure was described for invariants of curves on any homogeneous
manifold, and proved to be linked directly to invariant curve evolutions in [17] and
[18], ensuring that any of its Hamiltonian evolutions had a geometric realization.
The reduction of a second, compatible structure usually indicated the existence of
an associated integrable system. Establishing the relation between Hamiltonian
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structures on curvatures and invariant curve flows was facilitated by the definition
of group-based moving frames and the theoretical framework around this concept
(see [8]).

In a recent paper ([15]) the authors developed the discrete version of group-
based moving frames and used it to study induced completely integrable systems
on discrete curvatures (or invariants) by invariant evolutions of polygons in dif-
ferent geometric settings. In particular they found projective and centro-affine
discrete realizations of the modified Volterra and Toda lattices, and a realization
of a Volterra-type equation in the Euclidean 2-sphere. They also associated Hamil-
tonian structures to these systems, although it was not at all clear how they could
be obtained in general.

In this paper we study the case of twisted gons in RPn (they are twisted to ensure
that invariants are periodic). The space of polygons, as related to integrable sys-
tems, has gained in relevance lately because of its connection to the pentagram map
(see [27]). Indeed, the study of generalizations of the pentagram map was originally
the motivation for GMB in the pursue of the discrete interpretation of a moving
frame. In [27] the authors proved that the pentagram map (a very simple map
taking a polygon to the polygon obtained by intersecting the segments that join ev-
ery other vertex) was a completely integrable discretization of Boussinesq equation
(the second AGD flow). Later work ([14]) showed that some generalizations defined
in [22] discretizing higher order AGD flows were also completely integrable. Also
inspired by the pentagram map, the author of [16] defined completely integrable
systems on invariants of planar projective polygons, obtained by reduction from
a centro- affine case. In this paper we do not work on maps but on differential-
difference systems, but it is our hope that the resulting Poisson structures might
also be relevant to this area.

In the first part of the paper we describe background information on discrete
moving frames and Poisson-Lie groups. The paper is aimed at two different audi-
ences, the math-physics/geometry audience and the nonlinear-sciences/integrable
systems one. Accordingly we have tried to include enough background for both
and we have worked out the case of RP2 in detail throughout the paper. In sec-
tion 3 we proceed to describe a projective discrete moving frame along projective
N -gons, choosing a particular frame that will produce invariants fitting our pur-
poses. Section 4 describes how we can find explicitly, algorithmically and without
any previous knowledge of the moving frame, the evolution induced on the N -gon
invariants by an invariant evolution of N -gons. The case of the projective plane
already hints clearly at a direct connection to Hamiltonian systems even at this
stage.

In section 5 we prove that in the discrete case there also exists a naturally
defined Hamiltonian structure on the moduli space of twisted N -gons. We obtain
this structure by describing the moduli space of twisted N -gons as a quotient. We
then used a well-known R-matrix on sl(n,R) and the twisted quotient structure in
[31] to induce a Poisson bracket on the quotient. We also conclude that this reduced
bracket can be obtained by simply evaluating the Sklyanin bracket associated to a
simple parabolic tensor (which is not an R-matrix) on extended gradients.

We then connect the reduced Hamiltonian evolutions directly to invariant evo-
lutions of projective N -gons; this is proved in section 6, where we show that any
evolution that is Hamiltonian with respect to the reduced Poisson bracket has a
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geometric realization as invariant evolution of projective N -gons. We also establish
a direct and simple relation between them, namely the gradient of the Hamiltonian
needs to be equal to the vector formed by the coefficients on the discrete mov-
ing frame defining the evolution of the polygons. This last section also describes
completely integrable systems in the planar and higher dimensional cases. We first
show that the integrable equation induced by a well-chosen invariant evolution of
N -gons is the Boussinesq lattice related to the lattice W3-algebra under a Miura
transformation. This system appeared previously in [13]. In a final unexpected
twist, we prove that the group right bracket evaluated on extended gradients is a
Poisson bracket in any dimension even though it is not Poisson prior to the evalua-
tion. We conjecture that both brackets form a Hamiltonian pencil for the integrable
discretizations of the Wn-algebras and we prove this puzzling fact for the projective
plane. To end the paper we define a generalization of our planar Boussinesq lattice
to any dimension n - a lattice discretization of the Wn-algebra - and we prove that it
is completely integrable by explicitly constructing its local master symmetry [10].
We also describe its exceedingly simple realization as a flow of projective polygons.
To conclude the paper, we describe the relation between our reduction process and
the discrete Drinfel’d–Sokolov reduction in [9] and [32].

There are clear indications that a similar study should be possible in the more
general setting of homogeneous manifolds of the form G/H and (Gn Rn)/G with
G semisimple. These cases include all well-known flat geometries (Euclidean, con-
formal, Grassmannian, etc). It is remarkable to us that in all the examples we
have studied discretizing the geometry produces integrable systems that are dis-
cretizations of known continuous integrable systems. This follows a main principle
in discrete differential geometry to not discretize equations, but rather the entire
geometric context. Given that many continuous integrable systems can be realized
as geometric flows, this geometric process of discretization seems to give a path to
finding integrable discretizations for flows that can be realized as geometric contin-
uous flows. Work in these and other directions is currently underway. The authors
would like to express their gratitude to Professor Semenov-Tian-Shansky for e-mail
exchanges and assistance.

2. Background and definitions

This section has two different, seemingly unrelated, parts. The first part deals
with discrete group-based moving frames, the second with Poisson Lie-groups, clas-
sical R-matrices and the twisted quotient Poisson bracket. The two will come
together in the choice of a reduction process that will describe a Poisson structure
on the moduli space of projective twisted N -gons.

2.1. Discrete moving frames. In this section we will describe basic definitions
and facts needed along this paper on the subject of discrete group-based moving
frames. They are taken from [15] and occasionally slightly modified to fit our needs.

Let M be a manifold and let G ×M → M be the action of a group G on M .
Although it is not needed, for simplicity we will assume from now on that G is a
subgroup of the general linear group.

Definition 2.1 (Twisted N -gon). A twisted N -gon in M is a map φ : Z → M
such that for some fixed g ∈ G we have φ(p + N) = g · φ(p) for all p ∈ Z. (The
notation · represents the action of G on M .) The element g ∈ G is called the
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monodromy of the polygon. We will denote a twisted N -gon by its image x = (xs)
where xs = φ(s).

The main reason to work with twisted polygons is our desire to have periodic
invariants. We will denote by PN the space of twisted N -gons in M . If G acts
on M , it also has a natural induced action on PN given by the diagonal action
g · (xs) = (g · xs).

Definition 2.2 (Discrete moving frame). Let GN denote the Cartesian product of
N copies of the group G. Elements of GN will be denoted by (gs). Allow G to act
on the right on GN using the inverse diagonal action g · (gs) = (gsg

−1) (resp. left,
using the diagonal action g · (gs) = (ggs)). We say a map

ρ : PN → GN

is a right (resp. left) discrete moving frame if ρ is equivariant with respect to the
action of G on PN and the right inverse (resp. left) diagonal action of G on GN .
Since ρ(x) ∈ GN , we will denote by ρs its sth component; that is ρ = (ρs), where
ρs(x) ∈ G for all s, x = (xs). Clearly, if ρ = (ρs) is a right moving frame, then
ρ−1 = (ρ−1

s ) is a left moving frame, and vice versa.

In short, ρ assigns an element of the group to each vertex of the polygon in
an equivariant fashion. The concept of a group-based moving frame might seem
foreign to some, but it is a classical idea in the continuous case: if γ(t) is a curve
in the Euclidean plane, we can translate it to take γ(t) to the origin, and rotate
it so that its graph is tangent to the t-axis at γ(t). The curvature at t appears
in the second order term of the Taylor expansion of the transformed curve. The
element of the Euclidean group performing the translation and rotation defines
a map from the jet space of the curve to G; it is indeed a right moving frame
and our definition above is a discrete analogue. As in this continuous example,
moving frames are determined by the normalization imposed through a choice of
local section transverse to the action of the group (in the continuous Euclidean
curve example the section is transverse to the orbit of the Euclidean group on the
jet space of the curve and it is defined by γ = (0, 0), γ′ = (1, 0)). This is also true
for its discrete version.

Proposition 2.3. ([15]) Let C be a collection C1, . . . CN of local cross-sections to
the orbit of G through x1, . . . , xN . Let ρ = (ρs) ∈ G be uniquely determined by the
condition

(1) ρs · (xr) ∈ Cs,

for any s. Then ρ = (ρs((xr))) ∈ GN is a right moving frame along the N -gon
(xr).

These group elements carry the invariant information of the polygon, as we see
next.

Definition 2.4 (Discrete invariant). Let I : PN → R be a function defined on
N -gons. We say that I is a scalar discrete invariant if

(2) I((g · xs)) = I((xs))

for any g ∈ G and any x = (xs) ∈ PN .
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We will naturally refer to vector discrete invariants when considering vectors
whose components are discrete scalar invariants.

Definition 2.5 (Maurer–Cartan matrix). Let ρ be a right (resp. left) discrete
moving frame evaluated along a twisted N -gon. The element of the group

Ks = ρs+1ρ
−1
s (resp. ρ−1

s ρs+1)

is called the right (resp. left) discrete s-Maurer–Cartan matrix for ρ. We will call
the equation ρs+1 = Ksρs the right discrete s-Serret–Frenet equation. The element
K = (Ks) ∈ GN is called the right (resp. left) discrete Maurer–Cartan matrix for
ρ.

One can directly check that if K = (Ks) is a discrete Maurer–Cartan matrix
for the right frame ρ, then (K−1

s ) is a left one for the left frame ρ−1 = (ρ−1
s ), and

vice versa. The entries of a Maurer–Cartan matrix are functional generators of
all discrete invariants of polygons, as it was shown in [15]. From now on we will
assume, for simplicity, that M = G/H is homogeneous and that G acts on M via
left multiplication on representatives of the class. Let us denote by o ∈M the class
of H.

Given a discrete right moving frame ρ, and assuming for simplicity that ρs ·xs = o
for all s, one can describe the most general formula for an invariant evolution of
polygons of the form

(3) (xs)t = Fs(x)

in terms of the moving frame. This is reflected in the following theorem, which can
be found in [15]. Denote by Φg : G/H → G/H the map defined by the action of
g ∈ G on G/H, that is Φg(x) = g · x.

Theorem 2.6. Let ρ be a right moving frame with ρs · xs = o for all s. Any
G-invariant evolution of the form (3) can be written as

(4) (xs)t = dΦρ−1
s

(o)(vs)

where o = [H], and vs(x) ∈ TxsM is an invariant vector.

If a family of polygons x(t) is evolving according to (4), there is a simple process
to describe the evolution induced on the Maurer–Cartan matrices, and hence on
a generating set of invariants. It is described in the following theorem, which can
also be found in [15], slightly modified.

Theorem 2.7. Assume x(t) is a flow of polygons solution of (4) and let ς : G/H →
G be a section of G/H such that ς(o) = e ∈ G. Let ρ be a right moving frame with
ρs · xs = o so that ρs = ρHs ς(xs)

−1, for some ρHs ∈ H. Then

(5) (Ks)t = Ns+1Ks −KsNs

where Ks is the right Maurer–Cartan matrix and Ns = (ρs)tρ
−1
s ∈ g. Furthermore,

assume g = m ⊕ h, where g is the algebra of G, h is the algebra of H and m is
a linear complement (which can be identified with the tangent to the image of the
section ς). Then, if Ns = Nh

s +Nm
s splits accordingly,

(6) Nm
s = −dς(o)vs.
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As we will see in our next section, in the projective case, and in most other
examples, equation (5) and condition (6) completely determine the element N =
(Ns) and the evolution of K, even if we do not know the moving frame explicitly.
Notice also that (5) is very similar to equations used in Lax representations of
completely integrable systems - a key point when one tries to link integrable systems
to invariant evolutions of polygons, with Serret–Frenet equations and t-evolutions
providing λ-independent AKNS representations. Examples of how to effectively
apply these theorems to compute induced evolutions on invariants can be found in
[15], but we will also use them in our running example - the projective plane - in
our next chapter.

2.2. Poisson-Lie groups and the twisted quotient structure. In this section
we will assume that G is semisimple and that there exists a nondegenerate invariant
inner product 〈, 〉 in g that allows us to identify g and g∗. In the case ofG = SL(n+1)
the inner product is given by the trace of the product of matrices (with a factor of
1/2 in the diagonal entries) so that E∗i,j = Ej,i, if i 6= j and (Ei,i − En+1,n+1)∗ =
Ei,i −En+1,n+1. The matrix Ei,j has zeroes everywhere except for the (i, j) entry,
where it has a 1. The following definitions and descriptions are taken from [31] and
[9], but they were given originally by Drinfel’d in [6].

Definition 2.8 (Poisson-Lie group). A Poisson-Lie group is a Lie group equipped
with a Poisson bracket such that the multiplication map G × G → G is a Poisson
map, where we consider the manifold G×G with the product Poisson bracket.

Definition 2.9 (Lie bialgebra). Let g be a Lie algebra such that g∗ also has a Lie
algebra structure given by a bracket [, ]∗. Let δ : g → Λ2g be the dual map to the
dual Lie bracket, that is

〈δ(v), (ξ ∧ η)〉 = 〈[ξ, η]∗, v〉

for all ξ, η ∈ g∗, v ∈ g. Assume that δ is a one-cocycle, that is

δ([v, w]) = [v ⊗ 1 + 1⊗ v, δ(w)]− [w ⊗ 1 + 1⊗ w, δ(v)]

for all v, w ∈ g. Then (g, g∗) is called a Lie bialgebra.

If G is a Lie-Poisson group, the linearization of the Poisson bracket at the identity
defines a Lie bracket in g∗ and δ is called the cobracket. The inverse result (any Lie
bialgebra corresponds to a Lie-Poisson group) is also true for connected and simply
connected Lie groups, a result due to Drinfel’d ([6]).

The following definitions will be used to prove our reduction theorem.

Definition 2.10 (Admissible subgroup). LetM be a Poisson manifold, G a Poisson-
Lie group and G×M →M a Poisson action. A subgroup H ⊂ G is called admis-
sible if the space C∞(M)H of H-invariant functions on M is a Poisson subalgebra
of C∞(M).

The following proposition describes admissible subgroups.

Proposition 2.11. ([31]) Let (g, g∗) be the tangent Lie bialgebra of a Poisson Lie
group G. A Lie subgroup H ⊂ G with Lie algebra h ⊂ g is admissible if h0 ⊂ g∗ is
a Lie subalgebra, where h0 is the annihilator of h.

We will now describe the Poisson brackets that will be central to our study.
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Definition 2.12 (Factorizable Lie bialgebras and R-matrices). A Lie bialgebra
(g, g∗) is called factorizable if the following two conditions hold:

(a) g is equipped with an invariant bilinear form 〈, 〉 so that g∗ can be identified
with g via ξ ∈ g∗ → vξ ∈ g with ξ(·) = 〈vξ, ·〉;

(b) the Lie bracket on g∗ ∼= g is given by

(7) [ξ, η]∗ =
1

2
([R(ξ), η] + [ξ,R(η)]) ,

where R ∈ End(g) is a skew-symmetric operator satisfying the modified
classical Yang-Baxter equation

[R(ξ), R(η)] = R ([R(ξ), η] + [ξ,R(η)])− [ξ, η].

R is called a classical R-matrix. Let r be the 2-tensor image of R under the
identification g ⊗ g ∼= g ⊗ g∗ ∼= End(g). The tensor r is often referred to as the
R-matrix also.

The simplest example of R-matrix is as follows: assume that g has a gradation
of the form g = g+ ⊕ g0 ⊕ g−, where g+ and g− are dual of each other and where
g0 is commutative (for example, when g0 is the Cartan subalgebra). Then it is
well-known that the map R : g→ g

(8) R(ξ+ + ξ0 + ξ−) = ξ+ − ξ−
defines a classical R-matrix.

Given a Poisson Lie group and its associated Lie bialgebra, we can define a similar

structure on GN (this was explained in [31]). Indeed, we equipped gN =
⊕
N

g with

a nondegenerate inner product given by

〈X,Y 〉 =

N∑
k=1

〈Xk, Yk〉

and we extend R ∈ End(g) to R ∈ End(gN ) using R((Xs)) = (R(Xs)). Then
GN is a Poisson Lie-group (with the product Poisson structure) and (gN , gNR ) is its
tangent Lie bialgebra, where gR denotes g with Lie bracket (7). Remark that we
are abusing the notation, using 〈, 〉 and R to denote both the inner product and the
R-matrix in g and gN . We will point out the difference only when it is not clear by
the context.

The Poisson structure in GN is called the Sklyanin bracket, but that is not the
bracket we are interested in to start with, although we will come back to it later.
Indeed, given a factorizable Lie bialgebra, the author of [31] defined what is called
a twisted Poisson structure on GN . In what follows we will give the definition of
this structure and we refer the reader to [31] for explanations on how to obtain it,
and to [9] (Theorem 1) for the explicit formula. (We will also show that a reduction
of the twisted quotient Poisson structure with a certain choice of R-matrix is equal
to the evaluation of the Sklyanin bracket on extensions with a different and simpler
tensor - which is not an R-matrix; but this is not clear a-priori.)

Definition 2.13 (Left and right gradients). Let F : GN → R be a differentiable
function. We define the left gradient of F at L = (Ls) ∈ GN as the element of gN

denoted by ∇F(L) = (∇sF(L)) satisfying

d

dε
|ε=0F((exp(εξs)Ls)) = 〈∇sF(L), ξs〉
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for all s and any ξ = (ξs) ∈ gN .
Analogously, we define the right gradient of F at L as the element of gN denoted

by ∇′F(L) = (∇′sF(L)) satisfying

d

dε
|ε=0F((Lsexp(εξs))) = 〈∇′sF(L), ξs〉

for all s and any ξ = (ξs) ∈ gN .

There is a clear relation between left and right gradients. Since

F((Lsexp(εξs))) = F((exp(εLsξsL
−1
s )Ls)),

one sees that 〈∇′sF(L), ξs〉 = 〈∇sF(L), LsξsL
−1
s 〉, and from here we get

(9) ∇′sF(L) = L−1
s ∇sF(L)Ls.

The twisted Poisson structure can be explicitly described as follows. Let F ,G :
GN → R be two Hamiltonian functions. Let T be the shift operator T (Xs) = Xs+1.
We define the T -twisted Poisson bracket as

(10)
{F ,G}(L) =

∑N
s=1 r(∇sF ∧∇sG) +

∑N
s=1 r(∇′sF ∧∇′sG)

−
∑N
s=1(T ⊗ id)(r)(∇′sF ⊗∇sG) +

∑N
s=1(T ⊗ id)(r)(∇′sG ⊗∇sF).

The authors of [9, 31] proved that, not only is this a Poisson bracket, but the gauge
action of GN in itself, that is, the action GN ×GN → GN

(Ls)→ (gs+1Lsg
−1
s ),

is a Poisson map and the gauge orbits are Poisson submanifolds. In section 5 we
will prove that this bracket can be reduced to the space of projective invariants
of twisted N -gons to produce a Hamiltonian structure which is naturally linked to
projective invariant evolutions of twisted gons. Furthermore, we will prove that a
reduction of (10) with a certain choice of R-matrix r coincides with the evaluation
of the Sklyanin bracket

(11) {F ,G}S(L) =

N∑
s=1

r̂(∇sF ∧∇sG)−
N∑
s=1

r̂(∇′sF ∧∇′sG)

along functional extensions, for a different, simpler, choice of tensor r̂. The tensor
r̂ will not be an R-matrix and hence (11) will not be Poisson, but nevertheless its
evaluation will be.

Finally, consider the right bracket given by

(12) {F ,G}′(L) =

N∑
s=1

r̂(∇′sF ∧∇′sG).

This bracket is not a Poisson bracket even when r̂ is an R-matrix. Still, we will
also show that its evaluation along extensions defines a second Poisson bracket,
compatible (at least in the planar case) with the previous reduction.
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3. Projective moving frames and their Maurer–Cartan matrices

The readers familiar with the definition of Wilczynski’s projective invariants of
curves ([36]) will recognize the process below as its discrete analogue. They are
also described in [27].

First of all we will describe the gradation of sl(n+1) that defines RPn as parabolic
manifold. We can write sl(n+ 1) = g1 ⊕ g0 ⊕ g−1, where ξi ∈ gi, i = 1, 0,−1 are of
the form

(13) ξ1 =


0 . . . 0 0
...

...
...

...
0 . . . 0 0
∗ . . . ∗ 0

 , ξ0 =


∗ . . . ∗ 0
...

...
...

...
∗ . . . ∗ 0
0 . . . 0 ∗

 , ξ−1 =


0 . . . 0 ∗
...

...
...

...
0 . . . 0 ∗
0 . . . 0 0


In what follows we will consider RPn as the homogeneous space PSL(n+ 1)/H,

where PSL(n+ 1) = SL(n+ 1)/± I is the projective linear simple group and H is
the subgroup corresponding to the Lie subalgebra g1 ⊕ g0. We will also consider
the local section of the quotient ς : U ⊂ RPn → PSL(n+ 1) given by

(14) ς(x) =

(
In x
0 1

)
where x are the homogeneous affine coordinates in RPn associated to the lift x ∈
RPn → (x, 1) ∈ Rn+1, and where In is the n× n identity matrix.

Assume x = (xs) is a twisted N -gon in RPn and consider the lift to Rn+1 given
by

(15) Vs = ts

(
xs
1

)
,

for some ts 6= 0. We will say a polygon is nondegenerate if Vs, . . . , Vs+n are inde-
pendent for all s. The following is known, and used (without proof) for example in
[14]; but we could not find a simple reference so we include a short proof.

Lemma 3.1. Consider the N ×N matrix

S =



1 . . . 1 0 0 . . . 0
0 1 . . . 1 0 . . . 0
0 0 1 . . . 1 . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
1 . . . 0 . . . 0 1 1
1 . . . 1 0 . . . 0 1


where we have a total of k consecutive 1’s in each row. Then S is invertible if and
only if N and k are coprimes.

Proof. Let E be the matrix

E =


0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
. . .

. . .
...

0 0 . . . 0 1
1 0 . . . 0 0

 .
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Once can easily see that

(16) S = I + E + E2 + . . . Ek−1.

Furthermore, the characteristic polynomial for E is λN − 1 so that its eigenvalues

are ωp, p = 0, . . . , N − 1, where ω = e
2πi
N is an Nth root of unity. Thus, both E

and S can be diagonalized, showing that the eigenvalues of S are given by

αp = 1 + ωp + ω2p · · ·+ ωp(k−1)

p = 0, 1, . . . , N − 1. Assume that αp = 0 for some 0 < p < N . Then ωp is also
solution of λk − 1 = 0 since αp(ω

p − 1) = ωpk − 1 = 0. Therefore, p
N = q

k for some
integer q = 0, 1, . . . , k− 1. This occurs if, and only if N and k are not coprime. �

The following proposition was proved in [27] for the case n = 2, and it is stated
(without proof) in [14]. From now on we will assume that (xs) is nondegenerate.

Proposition 3.2. If N and n+ 1 are coprime, then ts can be found so that

(17) det(Vs+n, . . . , Vs+1, Vs) = 1

for any s.

Proof. Substituting (15) in (17) results in a system of equations of the form

ts+nts+n−1 . . . ts = fs

for s = 1, . . . N , where

f−1
s = det(xs+n − xs+n−1, xs+n−1 − xs+n−2, . . . , xs+1 − xs).

Assume fs > 0 for all s. We need to solve for ti using this system of equations.
Applying logarithms changes the system into

Ts+n + Ts+n−1 + . . . Ts = Fs

where Ti = log ti and Fi = log fi. To prove the proposition we need to prove that
the matrix of coefficients of this linear system is invertible. The coefficient matrix
is the one displayed in lemma 3.1 for k = n + 1, ending the proof. If fs < 0 for
some s, we would adjust the sign of the ts to obtain negative values as solution. �

Once we have defined the appropriate lifts, the definition of the left projective
moving frame is rather simple. Indeed, the map (xs)→ (ρ̃−1

s ), where

(18) ρ̃−1
s = (Vs+n, . . . , Vs+1, Vs) ∈ SL(n+ 1)

defines a left discrete moving frame for x = (xs) since it is equivariant (we are using
the inverse notation since we reserve ρ for right moving frames). Furthermore, it
is straightforward to see that ρ̃−1

s · o = xs since the lift of o ∈ G/H is the vector
en+1 ∈ Rn+1 and ρ̃−1

s en+1 = Vs whose projectivization is xs.
Once we have the left moving frame we can write down its Maurer–Cartan ma-

trix. Indeed, since {Vs+n, . . . , , Vs+1, Vs} generates Rn+1, we have

Vs+n+1 = k̂ns Vs+n + · · ·+ k̂1
sVs+1 + (−1)nVs

where the coefficient of Vs is determined by the condition det(Vs+n, . . . , Vs) = 1 for
all s (and in particular for s + 1). From here, the left Serret–Frenet equation is
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given by

(19) ρ̃−1
s+1 = ρ̃−1

s


k̂ns 1 0 . . . 0

k̂n−1
s 0 1 . . . 0
...

...
. . .

. . .
...

k̂1
s 0 . . . 0 1

(−1)n 0 . . . 0 0

 .

The corresponding right Maurer–Cartan matrix (generated by ρ̃s) is given by the
inverse of the matrix above, namely by

K̃s = ρ̃s+1ρ̃
−1
s =


0 0 . . . 0 (−1)n

1 0 . . . 0 (−1)n−1k̂ns
0 1 . . . 0 (−1)n−1k̂n−1

s
...

. . .
. . .

. . .
...

0 . . . 0 1 (−1)n−1k̂1
s

 =


0 0 . . . 0 (−1)n

1 0 . . . 0 k̃ns
0 1 . . . 0 k̃n−1

s
...

. . .
. . .

. . .
...

0 . . . 0 1 k̃1
s

 ,

with k̃is = (−1)n−1k̂is. For reasons that will become clear later on, this is not yet
our choice of invariants, moving frame or Maurer–Cartan matrix. The final choice
is described in our next proposition.

Proposition 3.3. There exists an invariant map h : RP(n + 1)N → HN , (i.e.,

h(x) = (hs(x)) ∈ HN such that hs(g · x) = hs(x) for all g ∈ SL(n+ 1)) gauging K̃s

to

(20) Ks =


0 0 . . . 0 (−1)n

1 0 . . . 0 0
...

. . .
. . .

. . .
...

0 . . . 1 0 0
k2
s . . . kns 1 k1

s

 .

That is, such that Ks = hs+1K̃sh
−1
s .

Notice that this proposition implies the existence of a right discrete moving
frame ρ such that ρs · xs = o (h ∈ HN , which is the isotropy subgroup of o), with
K = (Ks) as its Maurer–Cartan matrix. Indeed, if (ρ̃s) is the right discrete moving

frame generating (K̃s), then (ρs) = (hsρ̃s), with hs given by the proposition.

Proof. If we choose

hs =


1 0 0 . . . 0

(−1)n−1k̃ns−1 1 0 . . . 0
...

. . .
. . .

...

(−1)n−1k̃2
s−1 0 . . . 1 0

0 0 . . . 0 1


then

hs+1K̃sh
−1
s =


0 0 . . . 0 (−1)n

1 0 . . . 0 0

(−1)nk̃ns−1 1 0 . . . 0
...

. . .
. . .

. . .
...

(−1)nk̃2
s−1 0 . . . 1 k̃1

s
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Furthermore, if a matrix is of the form

Ms =



0 0 0 0 . . . 0 0 0 (−1)n

1 0 0 0 . . . 0 0 0 0
0 1 0 0 . . . 0 0 0 0
...

. . .
. . .

. . . . . . . . .
...

0 . . . 0 1 0
. . . 0 0 0

0 . . . 0 ans 1
. . . 0 0 0

... . . . . . .
...

. . .
. . .

. . .
...

0 . . . 0 ak+1
s 0

. . . 1 0 0
a2
s . . . ak−1

s aks 0 . . . 0 1 a1
s



,

then, after gauging it by the matrix

hs =



1 0 0 . . . 0 0 0 0
0 1 0 . . . 0 0 0 0
...

. . .
. . .

. . .
. . .

. . .
...

...
0 . . . 0 1 0 . . . 0 0
0 . . . 0 −ans−1 1 . . . 0 0
...

. . .
. . .

...
. . .

. . .
...

...

0 . . . 0 −ak+2
s−1 0 . . . 1 0

0 . . . 0 0 0 . . . 0 1


the column shifts once to the right and it transforms into

hs+1Msh
−1
s =



0 0 0 0 . . . 0 0 0 0 (−1)n

1 0 0 0 . . . 0 0 0 0 0
...

. . .
. . .

. . . . . . . . .
. . .

. . .
...

...

0 . . . 0 1 0 0
. . . 0 0 0

0 . . . 0 0 1 0
. . . 0 0 0

0 . . . 0 0 ans−1 1 0
. . . 0 0

... . . .
...

...
. . .

. . .
. . .

. . .
...

...

0 . . . 0 0 ak+2
s−1

. . . 0 1 0 0

a2
s . . . ak−1

s aks ak+1
s−1 . . . 0 0 1 a1

s



.

We can reiterate this process n− 2 times to finish the proof of the theorem. �

Recall the gradation sl(n+1) = g1⊕g0⊕g−1 as in (13), where the Lie subalgebra
of H is h = g1 ⊕ g0 and where g−1 represents the tangent to the section ς(RPn) at
the identity. Then, under this gauge, (Ks)tK

−1
s ∈ g1 for all s. This is indeed the

main advantage of adopting this choice of Maurer–Cartan matrix, as it will readily
allows us to relate the invariant vector vs in (4) to the variational derivative of a
Hamiltonian function. (This will be explained in section 6.) To finish with this
section, we will describe (4) in our new frame ρ and will start working on our
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running example. Since ρ−1
s = ρ̃−1

s h−1
s where hs is of the form

hs =


1 0 0 . . . 0
h21 1 0 . . . 0

...
. . .

. . .
. . .

...
hn1 . . . hnn−1 1 0
0 . . . 0 0 1


the new left moving frame will be given by

(21) ρ−1
s = (Vs+n, . . . , Vs+1, Vs)h

−1
s = (Ws+n, . . . ,Ws+1,Ws)

where Ws+k = Vs+k +
∑k−1
i=1 h

n−i+1,n−k+1Vs+i, k ≥ 1 and Ws = Vs. Therefore, us-
ing (4), in this new frame a general invariant evolution of polygons can be described
as the projectivization of the lifted evolution

(22) (Vs)t =
(
Ws+n . . . Ws+1 Ws

)(vs
v0
s

)
for some invariant vector vs and with v0

s chosen uniquely in terms of v and the
invariants so that the normalization condition (17) is preserved.

Example 3.4.

Our running example will be the projective plane. The RP1 case was studied in
[15]. In the planar case our first left moving frame is given by ρ̃−1

s = (Vs+2, Vs+1, Vs)

with Vs+3 = âsVs+2 + b̂sVs+1 + Vs. The left Maurer–Cartan matrix is

K̂s =

âs 1 0

b̂s 0 1
1 0 0


and the right one is its inverse

K̃s =

0 0 1
1 0 −âs
0 1 −b̂s

 .

(The reader should not be confused with the notation in [27], where â and b̂ are
represented by a and b.) We can gauge this matrix using

hs =

 1 0 0
αs 1 0
0 0 1


as  1 0 0

αs+1 1 0
0 0 1

0 0 1
1 0 −âs
0 1 −b̂s

 1 0 0
−αs 1 0

0 0 1

 =

 0 0 1
1 0 −âs + αs+1

−αs 1 −b̂s


which, after choosing αs = âs−1 becomes

Ks =

 0 0 1
1 0 0
as 1 bs


where as = −âs−1 and bs = −b̂s. The new left moving frame is given by

ρ−1
s = ρ̃−1

s h−1
s = (Vs+1 + asVs+1, Vs+1, Vs)
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and an invariant evolution of polygons in this frame will be given by the projec-
tivization of

(23) (Vs)t = v1
s(Vs+2 + asVs+1) + v2

sVs+1 + v0
sVs

where v1 and v2 are arbitrary functions of ar and br, r = 1, . . . N , and v0 is uniquely
determined by the preservation of the normalization of the lift Vs.

4. An explicit formula for the evolution of the invariants

We now turn to the following question: if we have an invariant evolution of
the form (4), where ρs is the (right) moving frame associated to Ks, how can we
effectively obtain the explicit evolution of the invariants kis? A partial answer is
given by theorem 2.7. If we choose the section ς as in (14), we can write N =
(Ns) ∈ sl(n+ 1)N , with Ns = (ρs)tρ

−1
s , as

(24) Ns =

(
Γs vs
nTs −tr(Γs)

)
where vs is given by (4). The matrix Ns will satisfy the structure equations

(25) (Ks)t = Ns+1Ks −KsNs.

Luckily, these equations also allow us to solve for Γs and ns for all s and we can
write Ns in terms of v and k only. Here we are using bold face for discrete vectors,
with v = (vi), k = (ki) and vi = (vis), k

i = (kis).

Theorem 4.1. Assume the Maurer–Cartan element (Ks) is defined by (20), and
assume Ns is defined as in (24). Assume further than the operator

(26) T + 1 + T −1 + · · ·+ T −(n−1)

is invertible. Then, the structure equations (25) determine uniquely Ns and (kis)t,
s = 1, . . . , N , i = 1, . . . n as functions of v and k.

Proof. Let us write Ks and Ns as(
Λ (−1)ne1

ks
T

+ eTn k1
s

)
, Ns =

(
Γs vs
nTs −tr(Γs)

)
,

where ks
T

= (k2
s , k

3
s , . . . , k

n
s , 0) is the truncated vector,

Λ =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0


and where Γs and ns are still to be found. With this notation the structure equa-
tions can be written as (

0 0

(ks
T

)t (k1
s)t

)
=
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Γs+1Λ− ΛΓs + (−1)n−1e1n

T
s

+vs+1(ks
T

+ eTn )

(−1)n(Γs+1e1 + tr(Γs)e1)
+k1

svs+1 − Λvs

nTs+1Λ− k1
sn

T
s

−(ks
T

+ eTn )(Γs + tr(Γs+1)I)
∗

 .

This equality implies conditions

Γs+1Λ− ΛΓs + vs+1(ks
T

+ eTn ) + (−1)n+1e1n
T
s = 0(27)

(−1)nΓs+1e1 + k1
svs+1 − Λvs + (−1)ntr(Γs)e1 = 0.(28)

and it describes (kis)t in terms of Γs and ns, for all s and i. The first row of equation
(27) gives us

eT1 Γs+1Λ + vTs+1e1(ks
T

+ eTn ) + (−1)n+1nTs = 0

which will solve for ns once Γs has been found. The p column of (27), p 6= n, is
given by

(29) Γs+1ep+1 − ΛΓsep + vs+1k
p+1
s + (−1)n+1e1n

T
s ep = 0.

This will solve for Γsep, except for the last entry, in terms of Γs+1ep+1, for all p 6= n.
Next we notice that the last column of (27) is given by

(30) −ΛΓsen + vs+1 + (−1)n+1nTs en = 0,

which solves for all entries of Γsen with the exception of its last entry. Denote
Γs = (nsi,j). Using (29) and (30) we have solved for nsi,n, i = 1, . . . , n−1, and using
(29) we have solved for ni,j with i < j, and we have found the recursion

(31) nsi,j = ns+1
i+1,j+1 + vTs+1ei+1k

i
s

whenever i ≥ j.
Finally, we use (28), whose entries other than the first one solve for ni,1, i =

2, 3, . . . n. These entries and the recursion above determines nsi,j for all i > j. As a
last step, the first entry of (28) gives us

(32) (−1)nns+1
1,1 + k1

sv
T
s+1e1 + (−1)ntr(Γs) = 0.

But according to the recursion (31), nsi,i = ns−i+1
1,1 +Xs

i , where Xs
i is an expression

depending on v and k. Therefore

tr(Γs) =

n∑
i=1

nsi,i =

n∑
i=1

ns−i+1
1,1 +Xs.

Substituting this relation in equation (32) we finally have

(T + 1 + T −1 + · · ·+ T −(n−1))ns1,1 = Ys

where, again, Ys is a function depending on v and k. Using our last hypothesis,
T + 1 + T −1 + · · ·+ T −(n−1) is invertible so that we can finally solve for ns1,1, and
with it all other entries of Ns. �

Hypothesis (26) is not very restrictive. In fact, the operator T + 1 +T −1 + · · ·+
T −(n−1) is invertible whenever N and n+1 are coprime since, as a linear map, it is
represented by the matrix S in lemma (3.1) - possibly up to some row exchanges.

Although in the general case the explicit expression of the evolution is too in-
volved to be displayed here, working out a particular example can be done alge-
braically in an algorithmic fashion.
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Example 4.2.

When n = 2 the Maurer–Cartan matrix and the matrix Ns are given by

(33) Ks =

 0 0 1
1 0 0
as 1 bs

 , Ns =

ns11 ns12 v1
s

ns21 ns22 v2
s

ns31 ns32 −ns11 − ns22

 ,

where vs =

(
v1
s

v2
s

)
are given by the evolution (23). From now on, and for simplicity’s

sake, we will denote as merely by a and as+p = T pa, for any p. Likewise with other
functions. The structure equations, written as (Ks)tK

−1
s = Ns+1 − KsNsK

−1
s ,

become  0 0 0
0 0 0

(b)t (a)t 0



=


(T + 1)n11 + n22 + bn32 T n12 − n31 + an32 T v1 − n32

T n21 − v1 + bn12 T n22 − n11 + an12 T v2 − n12

T n31 − v2 − av1

+b(n11 + 2n22 + an12 + bn32)
T n32 − n21 − bn31

+a(n22 − n11 + an12 + bn32)
∗

 .

These equations completely determine the entries of Ns to be given by

n32 = T v1 n21 = T −1v1 − T −1bT v2 n11 = (T + 1 + T −1)−1(T −1aT v2 − bT v1)
n12 = T v2 n31 = T 2v2 + aT v1 n22 = −(T + 1 + T −1)−1((T −1 + 1)aT v2 + T −1bT v1).

They also determine the evolution of bs and as. This evolution can be written as

(34)

(
a
b

)
t

= P
(
T v2

T v1

)
where
(35)

P =


T −1b− bT

+a(T − T −1)(T + 1 + T −1)−1a
T − T −2

+a(1− T −1)(T + 1 + T −1)−1b

T 2 − T −1

−b(1− T )(T + 1 + T −1)−1a
T a− aT −1

+b(T − T −1)(T + 1 + T −1)−1b

 .

Later, in section 5, we will show that P is a Poisson tensor for any dimension n.
The tensor (35) also appears in [16].

5. The Projective Hamiltonian structure on the space of invariants

In this section we aim to describe a naturally defined Poisson structure on the
space of Maurer–Cartan matrices, and to give a precise account of how to obtain
such a structure explicitly. The structure will be obtained via a reduction process
from the twisted quotient structure on the Poisson-Lie group SL(n+ 1)N . The first
step in our reduction process is to describe the space of Maurer–Cartan matrices
locally as a quotient of the Poisson-Lie group SL(n + 1)N , and to find explicitly
the gradients of functional extensions that are constant on the leaves defining the
quotient.
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5.1. The space of invariants as a quotient space. Assume we have a nonde-
generate twisted polygon x = (xs) in a manifold M = G/H with associated right
moving frame ρ such that ρs · xs = o for all s.

The subgroup HN acts naturally on GN via the gauge transformation

(gs)→ (hs+1gsh
−1
s )

(assuming hs+N = hs for all s) and it is natural to ask what the quotient GN/HN

represents. The following result is valid for any homogeneous space.

Theorem 5.1. Locally around a nondegenerate polygon, a section of the quotient
GN/HN can be described by the right Maurer–Cartan matrix K associated to the
right moving frame ρ. That is, let x ∈ GN/HN be a nondegenerate twisted polygon,
x ∈ U an open set of GN/HN containing nondegenerate twisted polygons, and let
K be the set of all the Maurer–Cartan matrices in GN associated to right moving
frames along elements in U and determined by a fixed transverse section as in
Proposition 2.3. Then the map

(36) K → GN/HN , (Ks)→ [(Ks)]

is a section of the quotient, a local isomorphism.

Proof. Let U be a neighborhood of a nondegenerate polygon x in GN/HN , small
enough to preserve the non-degeneracy, and let’s fix sections as in Proposition 2.3
uniquely determining right moving frames for x so that, ρs · xs = o. Clearly, the
map (36) is well defined and 1-to-1, so we simply need to show that it is continuous
and its image is an open set.

Let K ∈ GN be a Maurer–Cartan matrix, and assume M ∈ GN is near K. We
will show that M can be gauged to a Maurer–Cartan element K̂ corresponding to
some polygon x̂ nearby x. Define the recurrence relation

ηs+1 = Msηs

for some η0 fixed, and let x̂s be the polygon defined by the vertices η−1
s · o = x̂s. If

M is nearby K, then x̂ will be nearby x. We can use the same transverse sections
defining ρ and K to find the Maurer–Cartan matrix K̂ corresponding to x̂. If Ms is
close enough to Ks the equations can always be solved and we can find K̂s and its
moving frame ρ̂s such that ρ̂s ·x̂s = o. Finally denote by hs the element hs = ρ̂sη

−1
s .

Clearly hs · o = o and so hs ∈ H for all s. Also, ρ̂s = hsηs and so

K̂s = hs+1Msh
−1
s

which implies [(K̂s)] = [(Ms)]. This concludes the proof. �

5.2. Extensions constant on the HN -gauge leaves. Let f : K → R be a
differentiable function on K ⊂ GN , viewed as a section of the quotient GN/HN .
Assume F is an extension of f to GN such that F is constant on the gauge leaves
of HN . That is, assume

F((hs+1Ksh
−1
s )) = f((Ks))

for any s, any h ∈ HN and any K ∈ K as in (20). In this section we aim to
describe explicitly the left and right gradients of F evaluated along K in terms of
the gradient of f and the invariants kis.
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Proposition 5.2. Assume f : K → R is a function on K, seen as a section of
the quotient SL(n + 1)N/HN given by (20). Assume F is an extension of f to
SL(n+ 1)N . Then, the left gradient of F along K is given by

∇sF(K) =

(
Qs

∂f
∂ks

qTs −tr(Qs)

)
where ∂f

∂ks
=
(

(−1)n ∂f
∂k1s

, ∂f∂k2s
, . . . , ∂f∂kns

)T
and where Qs and qs depend on ki.

Proof. Consider the element of H

Zs =

(
In 0
pTs 1

)
= exp(

(
0 0

pTs 0

)
) ∈ H

where ps = (pis). If Ks is given as in (20), then

ZsKs =


0 0 . . . 0 (−1)n

1 0 . . . 0 0
...

. . .
. . .

. . .
...

0 . . . 1 0 0
k2
s + p2

s . . . kns + pns 1 k1
s + (−1)np1

s

 .

Since F is an extension of f , it coincides with f along K and so F((ZsKs)) =
f(k1

s + (−1)np1
s, k

2
s + p2

s, . . . , k
n
s + pns ) . Differentiating we get

N∑
s=1

〈∇sF ,
(

0 0
pTs 0

)
)〉 =

N∑
s=1

(
(−1)n

∂f

∂k1
s

p1
s +

n∑
`=2

∂f

∂k`s
p`s

)
and this is true for any values pis. The proof of the proposition follows. �

The infinitesimal description of the fact that F is constant along the gauge leaves
of H is obtained by differentiating the relation F((hs+1Ksh

−1
s )) = F((Ks)) with

h = (hs) = (exp(tξs)) ∈ HN . This gives

〈∇sF(K), ξs+1〉 − 〈∇′sF(K), ξs〉 = 0

for all ξ ∈ hN . Which is the same as saying

(37) T −1∇sF −∇′sF ∈ ho = g1

along K. This property will uniquely determine q and Q, the remaining entries of
∇sF(K).

Theorem 5.3. Assume the Maurer–Cartan matrix K is defined by (20), and as-
sume F is an extension of f : K → R to SL(n+ 1)N , constant on the gauge leaves
of HN . Assume further than the operator

T + 1 + T −1 + · · ·+ T −(n−1)

is invertible. Then, ∇F(K) = (∇sF(K)) is uniquely determined by (37) as a
function of the gradient of f at k = (ks) and k.

Proof. The proof of this theorem is almost identical to the proof of theorem 4.1.
From (37), along K we have

T ∇′sF −∇sF ∈ ho = g1.
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Notice also that ∂f
∂ks

is in the g−1 position in ∇sF(K), and hence the g−1 entries in

∇′sF(K) are T −1 ∂f
∂ks

. Likewise, vs was the g−1 entry for Ns. Furthermore, since

(Ks)tK
−1
s ∈ g1, the structure equations (25) imply

T Ns −KsNsK
−1
s ∈ ho = g1.

It suffices to choose T ∇′sF in place of Ns in the proof of theorem 4.1 to obtain the
proof for our current theorem for T ∇′sF (and hence for ∇sF). �

Here we see both the advantages of choosing a Maurer–Cartan matrix of the
form (20) and the anticipated relationship between the invariants coefficients vs
and the modified gradient of the Hamiltonian f , ∂f

∂ks
.

To illustrate the process we work out our RP2 example.

Example 5.4.

In the planar case, recall that Ks is given by (33). If we choose

Zs =

 1 0 0
0 1 0
p1
s p2

s 1

 = exp

 0 0 0
0 0 0
p1
s p2

s 0

 ∈ H
we see that

ZsKs =

 0 0 1
1 0 0

as + p2
s 1 bs + p1

s


and, since F is an extension of f , they satisfy

(38) F(ZsKs) = f(as + p2
s, bs + p1

s).

Let us write fsa = ∂f
∂as

and fsb = ∂f
∂bs

. Relationship (38) implies

〈∇sF(K),

 0 0 0
0 0 0
p1
s p2

s 0

〉 = fsap
2
s + fsb p

1
s

and so

(39) ∇sF(K) =

(f11)s (f12)s fsb
(f21)s (f22)s fsa
(f31)s (f32)s −(f11)s − (f22)s)

 ,

where all (fij)s are unknown. As we saw in (9), the right gradient can be obtained
through the relation ∇′sF(K) = K−1

s ∇sF(K)Ks.
If we substitute (39) in (37) we get the following expression. (Notice that, as

before, we have dropped the subindices and denote (f11)s+p = T pf11, etc.)

T −1

f11 f12 fb
f21 f22 fa
f31 f32 −(f11 + f22)



−


f22 + afa fa bfa + f21

f32 − bf12

−a(f11 + 2f22 + bfb + afa)
−f11 − f22

−bfb − f11fa

f31 − af21

−b(2f11 + f22 + bfb + afa)

f12 + afb fb f11 + bfb

 ∈ ho = g1.
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Since g1 is given as in (13), we obtain the following equations for the entries of ∇F
T −1f12 = fa T −1f11 = f22 + afa T −1fa = f31 − af21 − b(2f11 + f22 + bfb + afa)

T −1fb = bfa + f21 −T −1(f11 + f22) = f11 + bfb T −1f21 = f32 − bf12 − a(f11 + 2f22 + bfb + afa).

Assuming that T + 1 + T −1 is invertible (which we know is true as far as N is not
a multiple of 3), and denoting (T + 1 + T −1)−1 by R, these equations determine
the entries of ∇F to be

(40)

f12 = T fa
f31 = T −1fa + aT −1fb

+bR
(
(1− T )afa + (T −1 − T )bfb

)
f21 = T −1fb − bfa

f32 = T −2fb + (bT − T −1b)fa
−aR

(
(T − T −1)afa + (1− T −1)bfb

)
f11 = R(afa − T bfb) f22 = −R ((1 + T )afa + bfb)

We are now ready to move to the investigation of the Hamiltonian picture.

5.3. Projective Hamiltonian structure on K. In this section we finally aim to
prove that the twisted discrete Poisson bracket described in our initial section can
be reduced to K ⊂ SL(n + 1)N/HN , defining a natural Poisson bracket. Consider
the splitting sl(n+ 1) = g+ ⊕ hc ⊕ g−, where g+ are lower triangular matrices, g−
are upper triangular ones, and hc is the Cartan subalgebra. If ξ = ξ+ + ξc + ξ−
according to the gradation above, let R be the R-matrix defined by R(ξ) = ξ−−ξ+,
so that its associated tensor r is given by

(41) r(ξ, η) = 〈ξ−, η+〉, 〈R(ξ), η〉 = r(ξ ∧ η) = 〈ξ− − ξ+, η〉.

Theorem 5.5. The twisted Poisson structure (10) defined on SL(n+1)N with r as
in (41) is locally reducible to the quotient SL(n+ 1)N/HN , and the reduced bracket
coincides with the evaluation of the Sklyanin bracket (11) with tensor

r̂(ξ, η) = 〈ξ−1, η1〉
along extensions, where ξ−1 and η1 correspond to the original parabolic gradation
(13) defining RPn.

Notice that , since g0 is not abelian, r̂ is not an R-matrix.

Proof. To prove this theorem we will apply the classical theorem in [24], reformu-
lated according to our situation and notation. It can be stated as follows.

Poisson reduction theorem: Let M be a Poisson manifold and assume that E ⊂
TM is an integral and regular Hamiltonian subbundle (an integrable subbundle of
the bundle defining the symplectic foliation). Assume M/E is a manifold. Then, if
the Poisson bracket preserves E - that is, if the bracket of two functions constant on
the leaves of E is constant on the leaves of E - the Poisson bracket can be reduced
to the quotient M/E. The reduction is given by the formula

(42) {f, h}M/E([p]) = {F ,H}(p)
where F ,H : M → R are any extensions of f, h : M/E → R constant on the leaves
of E.

In our case M = SL(n+ 1,R)N and the Poisson bracket is the twisted quotient
bracket. The subbundle E is the subbundle tangent to the H-gauge leaves, which
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is a Hamiltonian subbundle since the gauge leaves are Poisson submanifolds and
gauging is a Poisson action ([31]). We know that GN/HN is defined by K, a
manifold, and E is regular when restricted to generic polygons. Therefore, to prove
our theorem we simply need to check that E preserves the twisted Poisson bracket.

On the other hand, since E is defined by the orbits of a Poisson action for the
twisted bracket, according to [31], it preserves the bracket whenever H is admissible
(see definition 2.10). According to proposition 2.11, this is true whenever h0 is a
Lie subalgebra of g∗, which is finally the only condition we need to check to prove
the main part of the theorem.

Recall that the Lie bracket in g∗ is defined by the linearization of the twisted
Poisson bracket at the identity e ∈ G. That is

[deφ, deϕ]∗ = de{φ, ϕ} ∈ g∗.

Since h0 = g1, we will look for functions φis such that deφ
i
s generate g1. Indeed, let

L ∈ GN be close enough to e ∈ GN so that L = (Ls) can be factored as

Ls =

(
In `s
0T 1

)(
Θs 0
0T θs

)(
In 0
qTs 1

)
according to the gradation of the algebra. We define φis(L) = `is, where i marks
the ith entry of `s. Instead of calculating deφ

i
s we will directly calculate the left

gradient at L. Notice that if g ∈ SL(n+ 1),

g

(
In `
0T 1

)
=

(
In g · `
0T 1

)
gH

where g · ` is the projective action of PSL(n+ 1) in Rn and gH ∈ H. Therefore,

φis(e
εξL) = (eεξ · `s)i.

We can now analyze each one of the factors. If ξ ∈ g−1 the action is simply a
translation and so

∇φis(L) =

(
∗ ∗
eTi ∗

)
.

If ξ ∈ g0, the projective action of eεξ is linear. Therefore

∇φis(L) =

(
Ais ∗
eTi −`is

)
for Ari =

(
0 . . . 0 `s 0 . . . 0

)
, with the nonzero column located in the

ith place. If ξ ∈ g1, then the infinitesimal projective action is quadratic and
straightforward calculations show that

∇φis(L) =

(
Ais −`is`s
eTi −`is

)
.

Whenever L = e, we have that `s = 0 and deφ
i
s = En+1,i, generating g1. We

know calculate de{φi, φj} where {, } is the twisted bracket (10) with the r-matrix
given by (41). We want to show that de{φi, φj} ∈ h0 and so we need to show that
d
dε |ε=0{φis, φjs}(eεξ) = 0 whenever ξ ∈ h = g1 ⊕ g0.

Notice that (deφ
i
s)−1 = 0 and (∇φis(L))−1 is quadratic in L. Therefore we also

have d
dε |ε=0

(
∇φis(eεξ)

)
−1

= 0.

Also, ∇′φis(eεξ) = e−εξ∇φis(eεξ)eεξ, and so

d

dε
|ε=0∇′φis(eεξ) = [deφ

i
s, ξs] +

d

dε
|ε=0∇φis(eεξ).
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Since deφ
i
s ∈ g1, whenever ξ ∈ h we have that d

dε |ε=0

(
∇′φis(eεξ)

)
−1

= 0. Further-

more,
(
deφ

i
s

)
0

= 0 also. From here, and given that

〈∇+φ
i
s,∇−φis〉 = 〈∇1φ

i
s,∇−1φ

i
s〉+ 〈∇0

+φ
i
s,∇0

−φ
i
s〉,

where ∇0
+φ

i
s is the portion of ∇+φ

i
s in g0, and similarly with the others, we get

that d
dε |ε=0{φis, φjs}(eεξ) = 0, and hence h0 is a subalgebra of g∗.

Finally, using the fact that T ∇′F −∇F ∈ h0 = g1 so that T (∇′F)− = (∇F)−,
the reduced Poisson bracket can be expressed as

{f, h}(k) =
1

2
(〈(∇F)−, (∇H)+〉 − 〈(∇F)+, (∇H)−〉

+ 〈(∇′F)−, (∇′H)+〉 − 〈(∇′F)+, (∇′H)−〉)− 〈τ(∇′F)−, (∇H)+〉+ 〈τ(∇′H)−, (∇F)+〉

=
1

2
(−〈(∇F)−, (∇H)+〉+ 〈(∇F)+, (∇H)−〉+ 〈(∇′F)−, (∇′H)+〉 − 〈(∇′F)+, (∇′H)−〉)

−1

2
(−〈(∇F)−, (∇H)+〉+ 〈(∇F)+, (∇H)−〉+ 〈(∇′F)−, (∇′H)+〉 − 〈(∇′F)+, (∇′H)−〉)

=
1

2
〈(∇H)−, (∇F)+ − τ(∇′F)+〉 −

1

2
〈(∇F)−, (∇H)+ − τ(∇′H)+〉.

This is equal to

=
1

2
〈(∇H)−1, (∇F)1 − τ(∇′F)1〉 −

1

2
〈(∇F)−1, (∇H)1 − τ(∇′H)1〉.

and from here we can go back to

−1

2
(−〈(∇F)−1, (∇H)1〉+ 〈(∇F)1, (∇H)−1〉+ 〈(∇′F)−1, (∇′H)1〉 − 〈(∇′F)1, (∇′H)−1〉) ,

which coincides with the evaluation of (11). Even more surprising, we will later
show that the right bracket (12) also produces a Poisson bracket when evaluated
on extensions, even though the original bracket is also not Poisson. �

Using (42) we can actually calculate explicitly the reduction of the twisted
bracket to K. We will illustrate it with our running RP2 example.

Example 5.6.

Assume f : K → R is a Hamiltonian function and let F : SL(3)N → R be an
extension of f , constant on the leaves of HN . Recall that we have explicitly found
the left gradient of such a extension along K, it is given by (39). We also know
that the right and left gradients are conjugated and satisfy equation (37), and so
the g1 ⊕ g0 component of ∇′sF(K) equals that of T −1∇sF(K). We have

∇F(K) =

f11 f12 fb
f21 f22 fa
f31 f32 −(f11 + f22)

 , ∇′F(K) =

 T −1f11 T −1f12 T −1fb
T −1f21 T −1f22 T −1fa
f12 + afb fb −T −1(f11 + f22)

 ,

where we have again dropped the subindex to avoid over-cluttering, and where the
values for fij were found in (40). The reduced Poisson bracket can be obtained
by simply substituting both gradients of the extensions in (10). Consider now the
simplified tensor r̂

r̂(ξ ⊗ η) = 〈ξ−1, η1〉.
Denote by ga, gb, gij the entries of ∇G(K) analogous to those of ∇F(K). As before,
we will ignore subindices, and we will write

〈v, w〉 = vTw.



HAMILTONIAN EVOLUTIONS OF TWISTED N-GONS IN RPn 23

Substituting in (10) we obtain that the reduced bracket is given by

{f, g}(k) =
1

2
〈
(
fb
fa

)
,

(
g31

g32

)
〉 − 1

2
〈
(
gb
ga

)
,

(
f31

f32

)
〉

+
1

2
〈
(
T −1fb
T −1fa

)
,

(
g12 + agb

gb

)
〉 − 1

2
〈
(
T −1gb
T −1ga

)
,

(
f12 + afb

fb

)
〉

− 〈
(
fb
fa

)
,

(
g31

g32

)
〉+ 〈

(
gb
ga

)
,

(
f31

f32

)
〉

=
1

2
〈
(
fb
fa

)
,

(
T g12 + T agb − g31

T gb − g32

)
〉 − 1

2
〈
(
gb
ga

)
,

(
T f12 + T afb − f31

T fb − f32

)
〉

= 〈
(
fa
fb

)
,P
(
ga
gb

)
〉

where P is given as in (35).

6. Hamiltonian evolutions of twisted polygons

By now it is clear that there is a very close relationship between the evolution
induced on the invariants by invariant evolutions of polygons, and the Hamiltonian
evolution associated to the reduced bracket obtained from the twisted bracket (10).
Indeed, we have seen in our example that they are equal under some identifica-
tions. In our final section we will prove that if we choose as invariant coefficients
T vs = ∂f

∂ks
, then the evolution of the projective polygons defined by vs induces

a Hamiltonian evolution on ks, with Hamiltonian function f . The result implies
that any n-dimensional reduced Hamiltonian evolution is induced on k by some
invariant evolution of projective polygons in RPn.

Theorem 6.1. Assume an invariant evolution of twisted N -gons in RPn lifts to
an evolution of the form (22). Furthermore, assume that

(43) T vs =
∂f

∂ks

for some function f : K → R, where ∂f
∂ks

= ((−1)n ∂f
∂k1s

, ∂f∂k2s
, . . . , ∂f∂kns

)T . Then,

the evolution induced on the invariants kis is the reduced Hamiltonian evolution
associated to the Hamiltonian function f .

We will refer to (43) as the compatibility condition.

Proof. Assume k evolves by an evolution that is Hamiltonian with respect to the
reduced bracket on K. Let’s denote by ξf the Hamiltonian vector field associated
to a Hamiltonian function f : K → R such that kt = ξf (k).

Now, given that kt appears in the g1 component of KtK
−1 and ∂f

∂k is in the g−1

position of ∇F(K) for any extension of f constant on the leaves of H as in (37),
we have that the reduced bracket of f with any other function g can be written as

{f, g}(k) = ξf (k)(g) = 〈KtK
−1,∇G(K)〉

where F and G are extensions of f, g : K → R as in (37). Now, notice that if F and
G satisfy (37) we have

(44) (∇F)−1 = (T ∇′F)−1, or (T −1∇F)−1 = (∇′F)−1.
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We are assuming that all gradients are evaluated at K. Using this relation in the
Sklyanin bracket we obtain

{f, g}(k) = 〈KtK
−1,∇G(K)〉

=
1

2
〈(∇G)−1, (∇F)1 − T (∇′F)1〉 −

1

2
〈(∇F)−1, (∇G)1 − T (∇′G)1〉.

But these expressions are skew-symmetric. Indeed, notice that (∇G)1−T (∇′G)1 =
∇G − T ∇′G since it belongs to g1 and, therefore,

〈(∇F)−1, (∇G)1−T (∇′G)1〉 = 〈∇F ,∇G−T ∇′G〉 = −〈∇F , T ∇′G〉+〈T ∇′F , T ∇′G〉

where we have used that 〈∇F ,∇G〉 = 〈∇′F ,∇′G〉 since 〈, 〉 is invariant under the
adjoint action. From here, the above equals

〈(T ∇′G)−1, (T ∇′F)1 − (∇F)1〉 = −〈(∇G)−1, (∇F)1 − (T ∇′F)1〉.

Skew-symmetry tells us that

{f, g}(k) = 〈KtK
−1,∇G(K)〉 = 〈(∇F)1 − T (∇′F)1, (∇G)−1〉.

We can now see the relation between T v and ∂f
∂k . Indeed, if N is given as in (25),

〈KtK
−1,∇G(K)〉 = 〈T N −KNK−1,∇G(K)〉

for any extension G as in (37). Recall next that TN −KNK−1 ∈ g1, and both T N
and ∇F are determined by its g−1 component and this condition. Notice also that
∇F = K∇′FK−1. Thus, we can conclude that

N = −∇′F .

Since T N−1 = −(T ∇′F)−1 = −(∇F)−1, the g−1 component of N is −v, and that

of ∇F is ∂f
∂ks

, the theorem follows. �

6.1. Completely integrable evolutions of planar polygons. In this section,
we study in detail the integrable lattice that appears in the case of planar poly-
gons. Although this study and the next seem to separate themselves from invariant
evolutions of polygons, we will return to connect them towards the end.

In Section 5 we have shown that the operator P defined by (35) is Hamiltonian,
which naturally leads to Hamiltonian evolutions for the invariants as stated in the-
orem 6.1. However, to obtain integrable systems we need biHamiltonian structures.
To obtain one or more compatible structures, we shall introduce arbitrary constants
in the operator P and study the conditions on the parameters to ensure that the
operator is still Hamiltonian. That is, we will analyze all possible Hamiltonian
structures, compatible or not, within P.

Theorem 6.2. Consider the antisymmetric operator H given by
λ1(T −1b− bT )

+λ2a(T − T −1)(T + 1 + T −1)−1a
λ4T − λ3T −2

+λ5a(1− T −1)(T + 1 + T −1)−1b

λ3T 2 − λ4T −1

−λ5b(1− T )(T + 1 + T −1)−1a
λ6(T a− aT −1)

+λ7b(T − T −1)(T + 1 + T −1)−1b

 ,

where λi, i = 1, · · · , 7 are constants. Then H is Hamiltonian when one of the
following three cases is satisfied

(1). λ1 = λ2 = λ5 = λ6 = λ7 = 0, λ3 and λ4 are any constants;
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(2). λ1λ6 = λ2λ3, λ3 = λ4, λ2 = λ5 = λ7 and at least one of λ1, λ3, λ6 is
nonzero;

(3). λ1 = λ3 = λ4 = λ6 = 0, λ2, λ5 and λ7 are any constants.

Proof. We investigate the conditions needed for H to be a Hamiltonian operator
using Proposition 7.7 in [26]. Although this theorem is formulated for differential
operators, it is also valid for difference operators ([25]).

For the operator H, we have

H(ξ) = H
(
θ
η

)
=

(
λ1(b−1θ−1 − bθ1) + λ2a(P1 − P−1) + λ4η1 − λ3η−2 + λ5a(Q−Q−1)
λ3θ2 − λ4θ−1 − λ5b(P − P1) + λ6(a1η1 − aη−1) + λ7b(Q1 −Q−1)

)
where we use notations T i(θ) = θi, T i(η) = ηi for i ∈ Z,

(T + 1 + T −1)−1aθ = P and (T + 1 + T −1)−1bη = Q,

that is,

aθ = P1 + P + P−1 and bη = Q1 +Q+Q−1.

(The reader should not confused the notation in this section with our previous one.
P1 is not the g1 component of P but rather P1 = T P . Likewise with the other
expressions.) We now define the following tri-vector

Ψ =
1

2

∫
ξ ∧ PrH(ξ)H ∧ ξ ,

where by
∫

we mean the equivalent class f ≡ g iff f − g ∈ Im(T − 1). We know
that an anti-symmetric operator H is Hamiltonian if and only if the tri-vector Θ
vanishes ([26]). We carry out this computation for H in the statement.

Ψ =

∫
(−λ1θ ∧ b′ ∧ θ1 + λ2θ ∧ a′ ∧ (P1 − P−1) + λ5θ ∧ a′ ∧ (Q−Q−1)

−λ5η ∧ b′ ∧ (P − P1)− λ6η ∧ a′ ∧ η−1 + λ7η ∧ b′ ∧ (Q1 −Q−1)) .

Here a′ takes the value of the first entry of H(ξ) and b′ takes the value of its second
entry. We substitute them into the above expression. Instead of computing the
whole expression of Θ, we compute its independent terms, which should all vanish.
First let us look at 3-forms involving only θ. These terms are∫

(−λ1θ ∧ (λ3θ2 − λ4θ−1 − λ5b(P − P1)) ∧ θ1 + λ2θ ∧ λ1(b−1θ−1 − bθ1) ∧ (P1 − P−1))

=

∫
(λ1λ4θ ∧ θ−1 ∧ θ1 − λ1λ3θ ∧ θ2 ∧ θ1 + λ1λ5bθ ∧ (P − P1) ∧ θ1

+λ2λ1b−1θ ∧ θ−1 ∧ (P1 − P−1)− λ2λ1bθ ∧ θ1 ∧ (P1 − P−1))

=

∫
(−λ1(λ4 − λ3)θ ∧ θ1 ∧ θ−1 + λ1bθ ∧ θ1 ∧ (λ2(P − P1 + P−1 − P2)− λ5(P − P1)))

= λ1

∫
((λ4 − λ3)θ ∧ θ1 ∧ θ−1 + (λ2 − λ5)bθ ∧ θ1 ∧ (P − P1)) .

We have used aθ = P1 +P +P−1 and a1θ1 = P +P1 +P2. This part vanishes when

λ1(λ4 − λ3) = 0, λ1(λ2 − λ5) = 0.(45)
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Next let us look at 3-forms involving only η. These terms are

∫
(−λ6η ∧ (λ4η1 − λ3η−2 + λ5a(Q−Q−1)) ∧ η−1

+λ7η ∧ (λ6(a1η1 − aη−1)) ∧ (Q1 −Q−1))

= λ6

∫
((λ3 − λ4)η ∧ η1 ∧ η−1 − λ5aη ∧ η−1 ∧ (Q−1 −Q)

−λ7aη ∧ η−1 ∧ (Q1 −Q−1 +Q−Q−2))

= λ6

∫
((λ3 − λ4)η ∧ η−1 ∧ η1 + (λ7 − λ5)aη ∧ η−1 ∧ (Q−1 −Q)) .

We used bη = Q1 + Q + Q−1 and b−1η−1 = Q + Q−1 + Q−2. These terms vanish
whenever

λ6(λ4 − λ3) = 0, λ6(λ7 − λ5) = 0.(46)

We then look at the terms involving a 2-form in θ and a one-form in η.

∫
(−λ1θ ∧ (λ6(a1η1 − aη−1) + λ7b(Q1 −Q−1)) ∧ θ1

+λ2θ ∧ (λ4η1 − λ3η−2 + λ5a(Q−Q−1)) ∧ (P1 − P−1)

+λ5θ ∧ (λ1(b−1θ−1 − bθ1) + λ2a(P1 − P−1)) ∧ (Q−Q−1)

−λ5η ∧ (λ3θ2 − λ4θ−1 − λ5b(P − P1)) ∧ (P − P1))

=

∫
(aλ1λ6θ ∧ η ∧ θ−1 − aλ1λ6θ1 ∧ η−1 ∧ θ − b(λ7 − λ5)λ1θ ∧ (Q1 −Q−1) ∧ θ1

+λ2λ3θ1 ∧ η−1 ∧ (P − P2)− λ4λ2θ−1 ∧ η ∧ (P−2 − P )

+λ5λ4η ∧ θ−1 ∧ (P − P1)− λ3λ5η−1 ∧ θ1 ∧ (P−1 − P ))

=

∫
(aλ1λ6θ ∧ η ∧ θ−1 − aλ1λ6θ1 ∧ η−1 ∧ θ − b(λ7 − λ5)λ1θ ∧ (Q1 −Q−1) ∧ θ1

+λ2λ3θ1 ∧ η−1 ∧ (2P + P1 + P−1−P−1)−λ4λ2θ−1 ∧ η ∧ (P1−P1−P−1−2P )

+λ5λ4η ∧ θ−1 ∧ (P − P1)− λ3λ5η−1 ∧ θ1 ∧ (P−1 − P ))

=

∫
(a(λ1λ6 − λ4λ2)θ ∧ η ∧ θ−1 − a(λ1λ6 − λ2λ3)θ1 ∧ η−1 ∧ θ

−b(λ7 − λ5)λ1θ ∧ (Q1 −Q−1) ∧ θ1

+(λ2 − λ5)λ3θ1 ∧ η−1 ∧ (P − P−1)− λ4(λ2 − λ5)θ−1 ∧ η ∧ (P1 − P )) .

These terms vanish if

λ1λ6 − λ2λ3 = 0, λ1λ6 − λ4λ2 = 0, (λ7 − λ5)λ1 = 0,
(λ2 − λ5)λ3 = 0, λ4(λ2 − λ5) = 0.

(47)
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Finally, we look at the terms involving a 2-form in η and a one-form in θ.∫
(λ5θ ∧ (λ4η1 − λ3η−2 + λ5a(Q−Q−1)) ∧ (Q−Q−1)

−λ5η ∧ (λ6(a1η1 − aη−1) + λ7b(Q1 −Q−1)) ∧ (P − P1)

−λ6η ∧ (λ1(b−1θ−1 − bθ1) + λ2a(P1 − P−1)) ∧ η−1

+λ7η ∧ (λ3θ2 − λ4θ−1 − λ5b(P − P1)) ∧ (Q1 −Q−1))

=

∫
(λ1λ6bη ∧ θ1 ∧ η−1−bλ1λ6η1 ∧ θ ∧ η − a(λ2 − λ5)λ6η ∧ (P1 − P−1) ∧ η−1

+λ5λ4θ ∧ η1 ∧ (Q−Q−1)− λ5λ3θ1 ∧ η−1 ∧ (Q1 −Q)

+λ7λ3η−1 ∧ θ1 ∧ (Q−Q−2)− λ4λ7η1 ∧ θ ∧ (Q2 −Q))

=

∫
(b(λ1λ6 − λ3λ7)η ∧ θ1 ∧ η−1 − b(λ1λ6 − λ4λ7)η1 ∧ θ ∧ η

−a(λ2 − λ5)λ6η ∧ (P1 − P−1) ∧ η−1

+(λ5 − λ7)λ4θ ∧ η1 ∧ (Q−Q−1)− (λ5 − λ7)λ3θ1 ∧ η−1 ∧ (Q1 −Q)) .

It vanishes when

λ1λ6 − λ7λ3 = 0, λ1λ6 − λ4λ7 = 0, (λ2 − λ5)λ6 = 0,
(λ5 − λ7)λ3 = 0, (λ7 − λ5)λ4 = 0.

(48)

From here we conclude that the operator H is Hamiltonian if and only if the param-
eters satisfy all the conditions written out in (45), (46), (47) and (48). Using the
Maple package Gröbner to solve this algebraic system, we can sum up the solutions
and obtain the three cases listed in the statement of the theorem. �

Clearly case (1) in theorem 6.2 is not interesting in our search for integrable
systems since the Hamiltonian pair is independent of dependent variables. The
same happens to the Hamiltonian operator in case (3) since we can rewrite it as(
a 0
0 b

)(
λ2(T − T −1)(T + 1 + T −1)−1 λ5(1− T −1)(T + 1 + T −1)−1

−λ5(1− T )(T + 1 + T −1)−1 λ7(T − T −1)(T + 1 + T −1)−1

)(
a 0
0 b

)
.

We now look at case (2). Without losing generality, we can write down two Hamil-
tonian pairs as stated in the following theorem. For convenience, we write a and b
as the dependent variables in one pair and ã and b̃ in another pair.

Theorem 6.3. Let λ be an arbitrary constant. Then, the operators

P1 =

(
0 T − T −2

T 2 − T −1 λ(T a− aT −1)

)
and

P2 =


T −1b− bT

+λa(T − T −1)(T + 1 + T −1)−1a
λa(1− T −1)(T + 1 + T −1)−1b

−λb(1− T )(T + 1 + T −1)−1a λb(T − T −1)(T + 1 + T −1)−1b


form a Hamiltonian pair, and the operators

Q1(ã, b̃) =

(
λ(T −1b̃− b̃T ) T − T −2

T 2 − T −1 0

)
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and

Q2(ã, b̃)=


λã(T −T −1)(T + 1 + T −1)−1ã λã(1−T −1)(T + 1 + T −1)−1b̃

−λb̃(1− T )(T + 1 + T −1)−1ã
T ã− ãT −1

+λb̃(T −T −1)(T + 1 + T −1)−1b̃


form another Hamiltonian pair. Moreover, the Hamiltonian pair P1 and P2 is
related to the Hamiltonian pair Q1 and Q2 by the Miura transformation ã = −b
and b̃ = −a1, that is,

Q1(ã, b̃) = D(ã,b̃)P1D
?
(ã,b̃)

and Q2(ã, b̃) = D(ã,b̃)P2D
?
(ã,b̃)

.

This Miura transformation is induced by projective duality.

Proof. The first part of the proof of this statement is straightforward. They are
two Hamiltonian pairs as a direct result of case (2) in theorem 6.2 and the relation
between them can be checked by a simple calculation. To see that the Miura
transformation is induced by projective duality, we will use the map α defined in

[27]. (Recall that (a, b) in [27] is in fact (â, b̂) here, a difference created by the gauge
transformation we introduced initially and the choice of a right frame, versus de
left one used in [27].) Define α : RP2 → (RP2)∗ as

α(xi) = xixi+1,

where xixi+1 is the line joining xi and xi+1. The authors of [27] showed that

α∗(âi) = −b̂i+1 and α∗(b̂i) = −âi where if (âi, b̂i) are the invariants for xi,

(α∗(âi), α
∗(b̂i)) are the projective invariants associated to the polygon whose ver-

tices are the points dual to α(xi). Given that

âi = −ai+1, b̂i = −bi
we have

α∗(ai) = −bi, α∗(bi) = −ai+1.

�

From here it follows that, to study integrable systems associated to biHamil-
tonian structures included in P, we only need to derive biHamiltonian integrable
systems for the Hamiltonian pair P1 and P2. Based on a difference analogue to the
Adler Residue Theorem ([1, 25]), we conclude that the first Hamiltonian associated
to this pair is ln b. This leads to the following bi-Hamiltonian system{

at = 1
b1
− 1

b−2

bt = λ
(
a1
b1
− a

b−1

)(49)

with (
a
b

)
t

= P1δf = P2δg, where f = ln b and g = − a1

bb1
.(50)

Notice that the constant λ in (49) can be scaled away by a simple scaling trans-
formation a 7→ a

λ1/3 and b 7→ λ1/3b if λ 6= 0. We will keep it instead of taking
λ = 1.

Let us introduce the following transformation ([13])

u =
1

bb1b2
, v = − a1

bb1
.(51)
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Their Fréchet derivatives with respect to a and b are given by

D(u,v) =

(
0 −u(1 + T + T 2) 1

b
vT 1

a −v(1 + T ) 1
b

)
=

(
0 u(1 + T + T 2)
vT v(1 + T )

)(
1
a 0
0 − 1

b

)
.

Therefore, when we change the variable the Hamiltonian operator P1 transforms
into

P̃1 = D(u,v)P1D
?
(u,v)

=

(
0 u(1 + T + T 2)
vT v(1 + T )

)(
0 u−1

v−1
T −T −2 u

v1
u
v1
T 2−T −1 u−1

v−1
λ(T −1v−vT )

)
(

0 T −1v
(1 + T −1+T −2)u (1 + T −1)v

)

=

 0 u(1 + T + T 2)
(
uT − T −2u

)(
uT 2 − T −1u

)
(1 + T −1 + T −2)u

v(1 + T )(uT − T −2u)
+(uT 2 − T −1u)(1 + T −1)v


+λ

(
u(1 + T + T 2) 0

0 v(1 + T )

)
(T −1v−vT )

(
1 1
1 1

)(
(1 + T −1+ T −2)u 0

0 (1 + T −1)v

)
.

Similarly, the Hamiltonian operator P2 changes into

P̃2 =

(
λu(T − T −1)(T + 1 + T −1)u λu(T − 1)(T + 1 + T −1)v
λv(1− T −1)(T + 1 + T −1)u λv(T − T −1)v + T −1u− uT

)
.

Notice that under this transformation both operators are local. This Hamiltonian
pair can be found in [3]. The biHamiltonian system (49) becomes(

u
v

)
t

=

(
λu(v2 − v−1)

u−1 − u+ λv(v1 − v−1)

)
= P̃1δf = P̃2δg,(52)

where f = − 1
3 lnu and g = v. When λ = 1 (as mentioned before, we can scale

λ to 1 when λ 6= 0), this system has appeared in [13], where the authors studied
the integrable systems related the lattice W -algebras. It is the Boussinesq lattice
related to the lattice W3-algebra.

Notice that P1

∣∣
λ=1

+P2

∣∣
λ=1

= P, where the operator P is defined by (35). Notice

also that P2(ln b) = 0. Therefore, for the evolution induced on the invariants by
invariant evolutions of planar polygons, we have the following result:

Theorem 6.4. Let f(a, b) = ln b and let π : R3 → RP2 be the projection associated

to the lift x→
(
x
1

)
. Then, the evolution induced on the invariants a and b by the

invariant evolution of planar polygons

(xs)t = π(
1

bs
Vs+2 +

as
bs
Vs+1 + Vs)

is the biHamiltonian equation(
a
b

)
t

=

(
1
b1
− 1

b−2
a1
b1
− a

b−1

)
= Pδ ln b = P2

∣∣
λ=1

δ

(
− a1

bb1

)
.(53)

Under the Miura transformation (51), it is transformed into the Boussinesq lattice
related to the lattice W3-algebra(

u
v

)
t

=

(
u(v2 − v−1)

u−1 − u+ v(v1 − v−1)

)
.
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Based on this theorem, we can anticipate that integrable discretizations of Wn-
algebras should be induced by invariant evolutions of projective polygons in RPn.
In our last section we describe the RPn generalization and prove it is integrable.
But first we give a further reduction producing yet another integrable system.

Indeed, the next symmetry flow of equation (53) is(
a
b

)
τ

= P1

∣∣
λ=1

δ

(
− a1

bb1

)
=

(
a2
b21b2

+ a1
bb21
− a−1

b2−2b−1
− a−2

b2−2b−3

1
b−1b−2

− 1
b1b2

+ a1
b21

(a2b2 + a1
b )− a

b2−1
(ab + a−1

b−2
)

)
.

Here we use the time variable τ instead of t to avoid confusion. It admits a reduction

bτ =
1

b−1b−2
− 1

b1b2
,

when a = 0. Under the Miura transformation (51), it becomes

uτ = u(u1 + u2 − u−1 − u−2).

This is the Narita-Itoh-Bogoyavlensky lattice [4]

ut = u(

p∑
i=1

ui −
p∑
i=1

u−i)

with p = 2. In general, the Narita-Itoh-Bogoyavlensky lattice is equivalent to the
lattice Wp+1 algebra [13]. Recently, the biHamiltonian structures for the Narita-
Itoh-Bogoyavlensky lattice were constructed using the Lax representation [35]. No-
tice that there is no reduction for the corresponding invariant evolution of planar
polygons since

Pδ
(
− a1

bb1

)
= (P1

∣∣
λ=1

+ P2

∣∣
λ=1

)δ

(
− a1

bb1

)
=

(
a
b

)
τ

+

(
a
b

)
t

.

To finish this part, notice that the Poisson structure used in [27] is not compatible
with the ones found here, a fact that was also pointed out in [16]. Still, here we have
a variety of brackets and one ideally would check the behavior of the pentagram
map with respect to any of them to understand better their relation.

6.2. Hamiltonian pencils and completely integrable systems in RPn. In
our last section we wonder about the origins of the pencil in Theorem 6.3 and we
try to generalize it, together with the planar integrable system. In particular, let
us define the right bracket on GN as in (12)

{F ,G}′(L) = r̂ (∇′F(L) ∧∇′G(L)) .

Even if we were to use an R-matrix r for its definition instead of r̂, this (or the left)
bracket is in general not Poisson, and one can easily check that Jacobi’s identity
is not satisfied if G = SL(2), for example. Still, we will next show that when it is
evaluated on extensions along K, the resulting bracket is Poisson. In the particular
case of RP2, we in fact obtain 1

2P1|λ=1, which forms a Hamiltonian pencil with our
original reduction. We work out this example first.

Example 6.5.

Let f, g : K → R be two functions and let F ,G be extensions satisfying (37).
Then

{f, g}0(a, b) = {F ,G}′(K) =
1

2
〈
(
T −1fb
T −1fa

)
,

(
g12 + agb

gb

)
〉−1

2

(
T −1gb
T −1ga

)
,

(
f12 + afb

fb

)
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=
1

2

(
fa fb

)( 0 T − T −2

T 2 − T −1 T a− aT −1

)(
ga
gb

)
=

1

2
∇fTP1|λ=1∇g.

Indeed, this evaluation produces a Poisson bracket for any dimension.

Proposition 6.6. The evaluation of (12) along K obtained by the formula

{f, g}0(k) = {F ,G}′(K)

is defined explicitly by a n× n operator matrix H whose (i, j) entry is equal to:

(1) zero if i+ j > n+ 1;
(2) T j − T −i if i+ j = n+ 1
(3) T jki+j − ki+jT −i if i+ j < n+ 1.

Proof. This bracket can, in fact, be found explicitly. Assume

(54) ∇sF(K) =

(
Qs

∂f
∂ks

qTs −tr(Qs)

)
and assume Qs = (qsij) and qs = (qsi ). Let us call f = ∂f

∂ks
:= (f i) and $ = −tr(Qs).

As before, we drop the subindex s to avoid cluttering. With this notation, and since

K =

(
In 0
kT 1

)
Λ

where

Λ =


0 0 . . . 0 (−1)n

1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
. . .

. . .
...

0 . . . 0 1 0

 ,

we can write

(55) ∇′F = Λ−1

(
Q+ fkT f

qT − kTQ+ ($ − kT f)kT $ − kT f

)
Λ.

Next we notice that conjugation by Λ shifts rows once up and columns once to
the left (with the first ones moving to last position, after multiplication by (−1)n).
That means the evaluation of (12) is explicitly given by
(56)

{f, g}0(k) =
(−1)n

2
〈T −1f ,


qg12
...
qg1n
g1

+g1


k2

...
kn

0

〉− (−1)n

2
〈T −1g,


qf12
...

qf1n
f1

+f1


k2

...
kn

0

〉
We will know the bracket explicitly once we find q1j , j = 2, . . . n, as we do next.
Equation (37) implies that the first n rows of (37) are zero. In our notation

T −1qfij = qfi+1 j+1 + f i+1kj+1, j = 1, . . . , n− 1,

T −1qfin = f i+1, i = 1, . . . , n− 1,

T −1fi = (−1)n(qi+1 1 + f i+1ki).

From here we have q1n = T f2 and

(57) q1j = T n−j+1fn−j+2 +

n−j+1∑
p=2

T p−1(fpkj−1+p)
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for any j = 2, 3, . . . , n− 1. Substituting these values in (56) we get the expression
in the statement of the proposition. �

Theorem 6.7. The structure defined in proposition 6.6 is a Poisson structure.

Proof. We will prove that if H is the operator defined by the bracket in proposition
6.6, then H is Hamiltonian. To this end we will use a theorem analogous to theorem
7.8 in [26] for difference operators and following a process similar to the proof of
Theorem 6.2. Let θ be a column vector with entry θi. For the operator H, we have
H(θ) to be a column vector with entry

H(θ)
i

= θn+1−i
n+1−i − θ

n+1−i
−i +

n−i∑
j=1

(
(ki+jθj)j − ki+jθj−i

)
.

We now define the bi-vectors

Θ =
1

2

∫
θ ∧H(θ)

=
1

2

n∑
i=1

∫θi ∧ (θn+1−i
n+1−i−θ

n+1−i
−i ) + θi ∧

n−i∑
j=1

(
(ki+jθj)j−ki+jθj−i

)
=

n∑
i=1

∫
θi ∧ θn+1−i

n+1−i +

n−1∑
i=1

n−i∑
j=1

∫
ki+jθi−j ∧ θj .

We know that an anti-symmetric operator H is Hamiltonian if and only if the tri-
vector PrH(θ)Θ vanishes (see [26]). We now show this is the case for the given H.
Indeed, we have

PrH(θ)Θ =

n−1∑
i=1

n−i∑
j=1

∫
H(θ)

i+j
θi−j ∧ θj

=

n−1∑
i=1

n−i∑
j=1

∫ (
θn+1−i−j
n+1−i−j − θ

n+1−i−j
−i−j

)
∧ θi−j ∧ θj

+

n−1∑
i=1

n−i∑
j=1

n−i−j∑
l=1

∫ (
(ki+j+lθl)l − ki+j+lθl−i−j

)
∧ θi−j ∧ θj

=

n−1∑
i=1

n−i∑
j=1

∫ (
θn+1−i−j
n+1−i−j ∧ θ

i
−j ∧ θj − θ

n+1−i−j
−i ∧ θi ∧ θjj

)

+

n−1∑
i=1

n−i∑
j=1

n−i−j∑
l=1

ki+j+l
∫ (

θl ∧ θi−j−l ∧ θ
j
−l − θ

l
−i−j ∧ θi−j ∧ θj

)
= 0

by changing dummy variables. Thus we proved the statement. �

Using the general reduced operator we would like to write down an n-component
integrable system. Notice that we have not proved in general that the two n-
dimensional reduced brackets form a pencil. Nevertheless, we will be able to find
an integrable system induced on k by an invariant evolution of polygons in RPn.
First we notice the following fact.
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Proposition 6.8. The two functionals ln k1 and
k21
k1k11

are in involution with respect

to the Hamiltonian operator defined in proposition 6.6; that is,

{ln k1,
k2

1

k1k1
1

}0 =

∫ (
δ ln k1

)T Hδ k2
1

k1k1
1

= 0.

Proof. This can be proved by direct calculations. First we have

δ ln k1 = (
1

k1
, 0, · · · , 0)T ;

δ
k2

1

k1k1
1

= (− k2
1

(k1)2k1
1

− k2

(k1)2k1
−1

,
1

k1k1
−1

, 0, · · · , 0)T ,

which leads to (
δ
k2

1

k1k1
1

)T
Hδ ln k1 = −(T − 1)

(
k2

k1k1
−1

)2

and thus we obtain the result in the statement. �

From this proposition, we know that the corresponding Hamiltonian vector fields

commute, that is, [Hδ ln k1, Hδ k21
k1k11

] = 0.

Finally, we are going to show that the Hamiltonian system kt = Hδ ln k1 is
integrable. Here we say a system is integrable if it possesses a hierarchy of infinitely
many commuting symmetries. We first write the system explicitly as kit =

ki+1
1

k11
− ki+1

k1−i
, i = 1, 2, · · · , n− 1

knt = 1
k11
− 1

k1−n

(58)

We then introduce the Miura transformation

u1 =
1

k1k1
1 · · · k1

n

, ui =
kii−1

k1k1
1 · · · k1

i−1

, i = 2, 3, · · · , n.

Under this transformation, equation (58) becomes ut = −H̃δ lnu1

n+1 , where H̃ =
DuHD?

u denote the transformed Hamiltonian operator. It is written as
u1
t = −u1(u2

n − u2
−1)

uit = ui+1 − ui+1
−1 − ui(u2

i−1 − u2
−1), i = 2, 3 · · · , n− 1

unt = u1 − u1
−1 − un(u2

n−1 − u2
−1)

(59)

If we introduce the convention that uj = uj−n if j > n, we can put the last two
equations together as

uit = ui+1 − ui+1
−1 − ui(u2

i−1 − u2
−1), i = 2, 3 · · · , n, (un+1 = u1).

Take n = 2, u1 = u and u2 = −v. Then equation (59) becomes the Boussinesq
lattice related to the lattice W3-algebra (see (52)).

We observe that the vector τ = (τ1, · · · , τn)T defined by

τ1 = su1
t − u1

(
(n+ 1)u2

n +
∑n
l=0 u

2
l

)
;

τ i = suit − ui
(
iu2
i−1 +

∑i−1
l=0 u

2
l

)
+ (i+ 1)ui+1, i = 2, 3 · · · , n,

where s is the independent discrete variable and we used the above convention
un+1 = u1, is a master symmetry (see [10] for definition) of the system (59). Indeed,
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we have [ut, τ ] 6= 0 and [ut, [ut, τ ]] = 0. Thus, we can recursively generate the
hierarchy of commuting symmetry flows of system (59) by setting

Q0 = ut and Qi = [τ, Qi−1].(60)

Therefore, the system (59) is integrable.

Proposition 6.9. The master symmetry is a Hamiltonian vector with Hamiltonian
function − 2s+n+2

2(n+1) lnu1. Moreover, all symmetries generated by (60) are Hamilton-

ian vector fields. Their Hamiltonians are given by

f i =< τ, δf i−1 > and f0 = − lnu1

n+ 1
.

Proof. By straightforward calculation, we can check τ = − 1
n+1H̃δ

(
2s+n+2

2 lnu1
)
.

Therefore, the Hamiltonian operator H̃ is conserved along the vector field τ (see

[5]). In a word, the Lie derivative of H̃ along τ vanished, that is, Lτ H̃ = 0. We

know Q0 = H̃f0. Take the Lie derivative along the vector field τ on its both sides.
It follows that

Q1 = LτQ
0 = Lτ

(
H̃δf0

)
= H̃Lτδf0 = H̃ < τ, δf0 >

We denote its Hamiltonian as f1. So Q1 is a Hamiltonian vector field with Hamil-
tonian f1. By induction, we can prove the statement. �

Indeed, we can compute the following Hamiltonians

f1 = −
∫

τ1

(n+ 1)u1
=

1

n+ 1

∫ (
s(u2

n − u2
−1) +

(
(n+ 1)u2

n +

n∑
l=0

u2
l

))
= u2

f2 =

∫
τ2 =

∫ (
su2
t − u2

(
2u2

1 +

1∑
l=0

u2
l

)
+ 3u3

)
= 2u3 − 2u2u2

1 − (u2)2

· · · · · ·

These are the integrals obtained in [12] for the classical lattice Wn+1 algebra. Thus
equation (59) is the integrable lattice related to the lattice Wn+1-algebra, which is
not explicitly written down in [12] for all n.

To finish the paper we will describe the projective realization of the RPn com-
pletely integrable system. First a lemma that facilitates the description.

Lemma 6.10. Let H be the Hamiltonian operator defined in proposition 6.6, and
let P be the one given by our original reduction. Then

H(δ ln k1) = −P(δ ln k1)

Proof. From the reduction process, if we want to find P(∂f∂k ) = P((−1)n 1
k1 e1), we

need to find

(61) ∇F − T ∇′F =

(
0 0

P(f)T 0

)
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where f = (−1)n

k1 e1 and F is a proper extension of f(k) = ln k1. Using (54) and
(55) we can transform this equality into

Λ∇F − T
(

1 0
−kT 1

)
∇F

(
1 0

kT 1

)
Λ =

(
(−1)nP(f) 0

0 0

)
.

Expression (61) can be written in more detail as
(62)(

(−1)nqT (−1)n$

Q f

)
−
(

T Q̃+T (f̃1kT ) T f (−1)n(TQe1+T (k1f))

T q̃T−T (k̃TQ)+T (($−k·f)k̃T ) T ($−k·f) (−1)n(T q1−T kTQe1+T (($−k·f)k1))

)

=

(
(−1)nP(f) 0

0 0

)
where the tilde indicates that the first column has been removed. From here we get

(63) P(f) = q− (−1)n
(
T (QT e1) + T (f1k̄)

T f1

)
,

where the bar indicates that the first row has been removed. Recall from (57) that

if Q = (qij) and f = (−1)n

k1 e1, then q1j = 0 for j 6= 1. This means QT e1 = 0. With

straightforward calculations we can also get that q11 = − 1
n+1 . Using

q1 − kTQe1 + ($ − 1)k1 = 0

(−1)n(T Qe1 + T k1f) =
(−1)n

k1
e1,

we obtain

$ − 1 = − 1

n+ 1
, Qe1 = − 1

n+ 1
e1 + T −1 1

k1
e2, q1 = k2T −1 1

k1
.

A recursive use of the lower left block in (62) produces the values of Qes. They
are given by

Qes = − 1

n+ 1
es + T −1 1

k1
es+1, r = 1, . . . , n− 1, Qen = − 1

n+ 1
en.

The last row of that block gives the value of q. They are given by

qi = ki+1T −i 1

k1
.

Substituting the values in (63) proves the lemma. �

Assume Vs are the original lifts of our projective polygon and k̂i are the invariants

given by the relation Vs+n+1 = k̂ns Vs+n + · · ·+ k̂1
sVs+1 + (−1)nVs.

Theorem 6.11. The projectivization of the evolution

(Vs)t =
−1

k̂1
s

(
Vs+n − k̂ns−1Vs+n−1 − · · · − k̂2

s−1Vs+1

)
+ v0

sVs

induces the completely integrable system (58) on the gauged invariants k.

Proof. Since the P-Hamiltonian for the system is f(k) = ln k1, we know that the
lift of the projective realization is given by

(Vs)t = ρ−1
s vs
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where vs = ∂f
∂k = (−1)n

k1 e1. Since ρs = (Ws+n, . . . ,Ws) as in (22), we have

(Vs)t =
(−1)n

k1
s

Ws+n + v0
sVs.

Checking the gauge carefully we see that k1 = (−1)n−1k̂1 and Wn+r = Vn+r −
k̂ns−1Vn+r−1 − · · · − k̂2

s−1Vs+1, which concludes the proof. �

It is only natural to conjecture that both of our reductions form a Hamiltonian
pencil associated to integrable discretizations of Wn algebras. The fact that they
are not Poisson brackets before reduction seriously complicates the proof of this
conjecture. Nevertheless, it would be very interesting to fully understand the role of
the Sklyanin and right (or left) brackets with parabolic gradations in the generation
of these Hamiltonian structures, especially since R-matrices associated to parabolic
gradations, even though they are classified in [2], are notoriously hard to use in
practice. Further work in this direction is under way.

A final comment on the relationship between our Poisson bracket and the discrete
Drinfel’d and Sokolov (DS) reduction described in [9] and [32]. In these two papers
the authors described a discrete analogue to the original DS reduction published
in [7]. The DS reduced Hamiltonians have been proved ([17]) to have a realization
as invariant evolutions of projective curves, thus, it would be natural to assume
that the bracket in [9] is equal to ours and it is linked to evolutions of projective
polygons. But that is not the case: [9] uses an R-matrix perturbation defined by
the Cartan subalgebra components of the gradients, a perturbation that is needed
for its reduction. The author of [16] states that the perturbation vanishes upon
reduction, but we believe it does not, and it is in fact fundamental for the bracket
in [9]. (This point was also affirmed by Prof. Semenov-Tian-Shansky in an e-
mail exchange.) Thus, we believe that both brackets are different, and, unlike the
continuous case, the bracket in [9] is not naturally related to polygon evolutions.
One needs a unperturbed bracket to have the relation we have shown here.
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[23] G. Maŕı Beffa, J. Sanders, J.P. Wang, Integrable Systems in Three–Dimensional Riemannian

Geometry, J. Nonlinear Science, (2002) pp 143–167.
[24] J.E. Marsden, T. Ratiu. Reduction of Poisson Manifolds, Letters in Mathematical Physics,

11:pp 161–169, (1986).These are the integrals obtained [12] for integrable structure of the
classical lattice WN+1 algebra. Thus equation (59) is the integrable lattice related to the

lattice Wn+1-algebra, which is not explicitly written down in [12] for all N .

[25] Mikhailov, A.V., Wang, J.P. and Xenitidis, P. (2011) Cosymmetries and Nijenhuis recursion
operators for difference equations, Nonlinearity, 24, 2079-2097. arXiv:1009.2403.

[26] P.J. Olver, P.J. (1993) Applications of Lie groups to differential equations, volume 107 of

Graduate Texts in Mathematics. Springer-Verlag, New York, second edition.
[27] Ovsienko, V. Schwartz, R. and Tabachnikov S. (2010) The Pentagram map: a discrete inte-

grable system, Communications in Mathematical Physics, to appear.

[28] Kai-Seng Chou and C. Qu. Integrable equations arising from motions of plane curves, Phys.
D, 162(1-2), (2002) 9-33.

[29] Kai-Seng Chou and C. Qu. Integrable equations arising from motions of plane curves II, J.

Nonlinear Sci., 13(15), (2003) 487-517.
[30] J. Sanders and J.P. Wang, Integrable Systems in n-dimensional Riemannian Geometry,

Moscow Mathematical Journal, 3, (2004).
[31] M.A. Semenov-Tian-Shansky, Dressing transformations and Poisson Group actions. Publ.

RIMS, Kyoto Univ. 21 (1985), 1237–1260.

[32] M. A. Semenov-Tian-Shansky and A.V. Sevostyanov, Drinfeld-Sokolov reduction for differ-
ence operators and deformations of W -algebras, II. The general semisimple case, Commun.

Math. Phys. 192, 631–647 (1998).
[33] C.L. Terng, G. Thorbergsson. Completely integrable flows on adjoint orbits. Result Math. 40

(2001), 286-309.

[34] C.L. Terng, K. Uhlenbeck. Schrödinger flows on Grassmannians, Integrable systems, geom-

etry and topology, AMS/IP Stud. Adv.Math, AMS, Providence (2006), 235-256.
[35] J.P. Wang. Recursion operator of the Narita-Itoh-Bogoyavlensky lattice. arXiv:1111.6874.

Accepted by Stud. Appl. Math..
[36] E.J. Wilczynski. Projective differential geometry of curves and ruled surfaces, B.G. Teubner,

Leipzig, 1906.


