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Abstract. In this paper we show that the moduli space of twisted polygons in
G/P , where G is semisimple and P parabolic, and where g has two coordinated

gradations, has a natural Poisson bracket that is directly linked to G-invariant

evolutions of polygons. This structure is obtained by reducing the quotient
twisted bracket on GN defined in [23] to the moduli space GN/PN . We

prove that any Hamiltonian evolution with respect to this bracket is induced

on GN/PN by an invariant evolution of polygons. We describe in detail the
Lagrangian Grassmannian case (G = Sp(2n)) and we describe a submanifold of

Lagrangian subspaces where the reduced bracket becomes a decoupled system

of Volterra Hamiltonian structures. We also describe a very simple evolution
of polygons whose invariants evolve following a decoupled system of Volterra

equations.

1. Introduction

The difference geometry of lattices, although a relatively young subject, has been
known to be related to completely integrable systems almost from its conception.
Indeed, parallel to the well-known fact that the sine-Gordon equation describes
surfaces with constant negative Gauss curvature, the work of Bobenko et als [1]
on difference geometry of lattices consistently relates certain types of 2-lattices to
completely integrable lattice systems. While in the continuous case the sine-Gordon
equation appears as the Codazzi-Mainardi equation of the surface in appropriately
chosen coordinates, in the lattice case they are described as the compatibility con-
dition of special types of lattices, with the different properties of lattices playing
the role of specially chosen coordinates (see [1] and references within).

More recently, a flurry of work on the pentagram map, its generalizations and re-
lated subjects (see for example [18], [12], [8], although the bibliography on this sub-
jects is quite vast) has clearly pointed at a relation between dynamics of polygons,
rather than 2-lattices, and completely integrable systems. Indeed the pentagram
map, a map defined on projective planar polygons (both twisted and closed), was
proven to be completely integrable and a discretization of the Boussinesq equation
when written in terms of the discrete projective invariants of the polygons ([18],
[19], [24]). A plethora of work in the continuous case takes us in this same direc-
tion when one works with curves rather than surfaces. Most, if not all, well-known
completely integrable PDEs have been realized as systems induced on differential
invariants by a flow of curves in some homogeneous manifold. For example, the
KdV equation is induced on the Schwarzian derivative of a flow in RP1 solution
of the so-called Schwarzian-KdV equation (this is a classical result that one can
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check by hand). Similarly Adler–Gel’fand–Dikii flows are induced on projective
differential invariants of flows in RPn by some known evolutions (see [16]). Like-
wise the literature shows realizations of mKdV ([25]), NLS ([26]), Sawasa-Koterra
([21]), modified Sawada-Koterra ([22]), vector sine-Gordon ([27]) and most other
well-known systems as flows of curves in several different manifolds. This list is by
no means exhaustive and many equations are realized as a curve flow in more than
one geometry (see, for example, [3], [21], [22]).

Inspired by the recent developments in discrete maps, the authors of [10] studied
the relation between evolutions of twisted polygons in homogeneous manifolds and
completely integrable lattice systems on the geometric invariants of the flow. In
particular they found an evolution of projective planar polygons that when written
in terms of projective curvatures becomes a modified Volterra lattice. They also
found realizations of the Toda lattice as evolution of polygons in the centro-affine
plane; an integrable discretization of the Toda lattice induced by a centro-affine
map; and a realization of a Volterra-type equation as evolution of polygons on the
homogeneous 2-sphere. In subsequent work ([15]) the authors proved that one can
obtain a Hamiltonian structure on the moduli space of twisted polygons in RPn
through the reduction of a twisted Poisson bracket on lattices defined by Semenov-
Tian-Shansky in [23], and they proved that any Hamiltonian with respect to the
reduced bracket was induced on invariants by an evolution of polygons in RPn, with
the gradient of the Hamiltonian defining the evolution in a direct and simple fashion.
The reduced bracket was a Hamiltonian structure for an integrable discretization
of Wn-algebras, and this discretization was induced on projective invariants by a
rather simple polygon evolution. They also found a second structure for the system
via reduction of the right bracket, a structure that was not originally Poisson.

This paper can be viewed as a second part to [15]. Here we consider the case
of polygons in G/P , with G semisimple, P parabolic, and g a |1|-graded algebra
(and Lie algebra with parabolic gradation g = g1 ⊕ g0 ⊕ g−1, p = g1 ⊕ g0). These
include many of the well-known non-affine geometries (conformal n-sphere, RPn,
Grassmanians, Lagrangian Grassmannians, pure spinors and other flag manifolds).
We assume that the parabolic gradation is coordinated with a second gradation
of the form g+ ⊕ h ⊕ g−, with h commutative. We prove that Semenov’s twisted
Poisson bracket defined in [23] and associated to this second gradation can also be
reduced to the moduli space of polygons in G/P resulting on a natural Poisson
structure on the space of polygon invariants. We also prove that there are simple
ways to connect the reduced Hamiltonian structure to evolutions of polygons with
evolutions inducing Hamiltonian systems on the invariants of the flow. In particular,
we prove that any Hamiltonian evolution is induced on invariants by an evolution of
polygons in G/P . This result is valid also in more general settings, and we discuss
this fact in our last section.

We study in detail the example of the Lagrangian Grassmannian, i.e., polygons
of Lagrangian subspaces in R2n, M = Sp(2n)/P , with P a parabolic subgroup. We
find an appropriate discrete moving frame along twisted polygons and we define the
Schwarzian difference of Lagrangian planes (a discrete analogue of the Schwarzian
derivative defined by Ovsienko in [20].) The frame provides us with a complete
description of the invariants and produces a generating set that includes the eigen-
values of the Schwarzian difference. We then apply our general theorem to find a
Hamiltonian structure on the space of invariants associated to our moving frame.
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We show that the reduced Poisson bracket can be reduced once more to the space
of polygons for which the non-Schwarzian invariants are equal to the identity, and
we show that this reduction decouples into a system of n second Hamiltonian struc-
tures for the Volterra chain ([7]). Using this information we define evolutions of
Lagrangian planes inducing the Volterra chain on the eigenvalues of the Schwarzian
difference of the flow. The continuous analogue of this study can be found in [13].

Section 2 includes background definitions and results that will be used in the
paper, both in the subject of discrete moving frames and on Poisson Lie groups
and Semenov-Tian-Shansky’s bracket. Section 3 proves the existence of the Poisson
bracket on the moduli space (as represented by the discrete invariants) and its
relation to the Sklyanin bracket (theorem 3.4). In section 4 we describe in detail the
direct relation between polygon evolutions and reduced Hamiltonians; in particular
we prove that any Hamiltonian is induced on invariants by a polygon evolution
and we give the direct connection between both (theorem 4.2). We study the
Lagrangian Grassmannian in section 5 while section 6 summarizes the paper and
discusses generalizations to other homogeneous manifolds and some open problems.

2. Background and definitions

As a starting point we will give a brief description of discrete moving frames
and their associated invariants. The description is taken from [10] and can also be
found in [15], but we include it here for completion.

2.1. Discrete moving frames. Let G be a Lie group and let g be its Lie algebra
(it can be both real or complex). Let M be a manifold and let G×M →M be the
action of the group G on M .

Definition 2.1 (Twisted N -gon). A twisted N -gon in M is a map φ : Z→M such
that φ(p + N) = g · φ(p) for some fixed g ∈ G and for all p ∈ Z. (The notation ·
represents the action of G on M .) The element g ∈ G is called the monodromy of the
polygon. We will denote a twisted N -gon by its image x = (xs) where xs = φ(s).

The main reason to work with twisted polygons is our desire to work with periodic
invariants (in order to have a finite number of them). One could restrict further to
closed polygons, but since the solution of a periodic discrete equation is, in general,
twisted, restricting to closed polygons creates additional technical problems we
would like to avoid here. We will denote by PN the space of twisted N -gons in M .
Clearly PN ∼= MN and since G acts on M , it also acts on PN with the diagonal
action g · (xs) = (g · xs).

Definition 2.2 (Discrete moving frame). Let GN denote the Cartesian product of
N copies of the group G. Elements of GN will be denoted by (gs). Allow G to act
on the right of GN using the inverse diagonal action g · (gs) = (gsg

−1) (resp. left,
using the diagonal action g · (gs) = (ggs)). We say a map

ρ : PN → GN

is a right (resp. left) discrete moving frame if ρ is equivariant with respect to the
diagonal action of G on PN and the right inverse (resp. left) diagonal action of
G on GN . Whenever ρ(x) ∈ GN , we will denote by ρs its sth component; that
is ρ = (ρs), where ρs(x) ∈ G for all s, x = (xs). Clearly, if ρ = (ρs) is a right
moving frame, then ρ−1 = (ρ−1

s ) is a left moving frame, and vice versa. Thus, a
moving frame associates an element of the group to each vertex of the polygon in
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an equivariant fashion. In our examples the moving frame will be invariant under
the shift τxs = xs+1, but this needs not to be the case in general.

Proposition 2.3. ([10]) Let C be a collection C1, . . . CN of local cross-sections to
the orbit of G through x1, . . . , xN . Let ρ = (ρs) ∈ G be uniquely determined by the
condition

(1) ρs · (xr) ∈ Cs,
for any s. Then ρ = (ρs((xr))) ∈ GN is a right moving frame along the N -gon
(xr).

Discrete moving frames carry the invariant information of the polygon, as we see
next.

Definition 2.4 (Discrete invariant). Let I : PN → R be a function defined on
N -gons. We say that I is a scalar discrete invariant if

(2) I((g · xs)) = I((xs))

for any g ∈ G and any x = (xs) ∈ PN .

We will naturally refer to vector invariants when considering vectors whose com-
ponents are scalar invariants. Although not necessary, for simplicity of notation we
will assume from now on that G ⊂ GL(n,R). Nevertheless, results are also true for
some exceptional Lie algebras, as we will see later.

Definition 2.5 (Maurer–Cartan matrix). Let ρ be a right (resp. left) discrete
moving frame evaluated along a twisted N -gon. The element of the group

Ks = ρs+1ρ
−1
s (resp. ρ−1

s ρs+1)

is called the right (resp. left) s-Maurer–Cartan matrix for ρ. We will call the
equation ρs+1 = Ksρs the right s-Serret–Frenet equation (resp. ρs+1 = ρsKs is the
left one). The element K = (Ks) ∈ GN is called the right (resp. left) Maurer–
Cartan matrix for ρ.

One can directly check that if K = (Ks) is a Maurer–Cartan matrix for the
right frame ρ, then (K−1

s ) is a left one for the left frame ρ−1 = (ρ−1
s ), and vice

versa. The entries of a Maurer–Cartan matrix are functional generators of all
discrete invariants of polygons, as it was shown in [10]. This fact is an immediate
consequence of the following recursion formulas: let’s denote by ρr · xs = Irs the
so-called basic invariants. One can check directly from the definitions that if K is
a right Maurer–Cartan matrix, then

(3) Kr · Irs = Ir+1
s

for any r, s. The basic invariants with r fixed are generate other invariants since,
from (2) if I is an invariants

I((ρr · xs)) = I((xs)) = I(Isr ).

From this and (3), one concludes that the entries of Ks are generators also (see
[10]).

Assume next that M = G/H, with G acting on M via left multiplication on
representatives of the class. Let us denote by o ∈M the class of H.

The following theorem, which can be found in [10], describes how to write a
general invariant polygon evolution in terms of moving frames. Denote by Φg :
G/H → G/H the map defined by the action of g ∈ G on G/H, that is Φg(x) = g ·x.
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Theorem 2.6. Let ρ be a right moving frame, and for simplicity assume that
ρs · xs = o for all s. Any G-invariant evolution can be written as

(4) (xs)t = dΦρ−1
s

(o)(vs)

where vs(x) ∈ TxsM is an invariant vector.

If a family of polygons x(t) is evolving according to (4), there is a simple process
to describe the evolution induced on the Maurer–Cartan matrices, and hence on
a generating set of invariants. It is described in the following theorem, which can
also be found in [10], slightly modified.

Theorem 2.7. Assume x(t) is a flow of polygons solution of (4). Then

(5) (Ks)t = Ns+1Ks −KsNs

where Ks is the right Maurer–Cartan matrix and Ns = (ρs)tρ
−1
s ∈ g. Furthermore,

assume g = m ⊕ h, where m is a linear complement to h and let ς : G/H → G be
a section of G/H such that ς(o) = e ∈ G and m is the tangent to the image of ς.
Let ρ be a right moving frame with ρs · xs = o so that ρs = ρHs ς(xs)

−1, for some
ρHs ∈ H. Then, if Ns = Nh

s +Nm
s splits accordingly,

(6) Nm
s = −dς(o)vs.

In most examples equation (5) and condition (6) completely determine N and
the evolution of K, even if we do not know the moving frame explicitly. This will
be clear later in our Lagrangian example.

Finally, in [15], the authors proved the following theorem, which is true for any
homogeneous manifold. Assume we have a nondegenerate twisted polygon x = (xs)
in a manifold M = G/H with associated right moving frame ρ such that ρs ·xs = o
for all s. By nondegenerate we mean a polygon for which a moving frame can be
constructed, but we can also think of generic cases. (The work in [2] shows that
generically a moving frame always exists for N large enough.) Let us assume that
the subgroup HN acts naturally on GN via the gauge transformation

(gs)→ (hs+1gsh
−1
s )

(assuming hs+N = hs for all s).

Theorem 2.8. In a neighborhood of a nondegenerate polygon, the right Maurer–
Cartan matrices K associated to right moving frames ρ describe a section of the
quotient GN/HN . That is, let x ∈ GN/HN be a nondegenerate twisted polygon,
U with x ∈ U an open set of GN/HN containing nondegenerate twisted polygons,
and let K be the set of all the Maurer–Cartan matrices in GN associated to right
moving frames for elements in U and determined by a fixed transverse section as
in Proposition 2.3. Then the map

(7) K → GN/HN , (Ks)→ [(Ks)]

is a section of the quotient, a local isomorphism.

For more details, see [10].
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2.2. Semenov-Tian-Shansky’s twisted Poisson brackets. In this section we
will assume that g is semisimple and that 〈, 〉 is a nondegenerate inner product
in g that allows us to identify g and g∗ (a multiple of the one generated by the
Killing form). Denote by Ei,j the matrix with zeroes everywhere except for the
(i, j) entry, where it has a 1. Since we are assuming that G ⊂ GL(n,R), we can
assume that, for example, the inner product is the trace of the product of matrices
so that E∗i,j = Ej,i. The following definitions and descriptions are due to Drinfel’d
([4]).

Definition 2.9 (Poisson-Lie group). A Poisson-Lie group is a Lie group equipped
with a Poisson bracket such that the multiplication map G × G → G is a Poisson
map, where we consider the manifold G×G with the product Poisson bracket.

Definition 2.10 (Lie bialgebra). Let g be a Lie algebra such that g∗ also has a
Lie algebra structure given by a bracket [, ]∗. Let δ : g → Λ2g be the dual map to
the dual Lie bracket, that is

〈δ(v), (ξ ∧ η)〉 = 〈[ξ, η]∗, v〉

for all ξ, η ∈ g∗, v ∈ g. Assume that δ is a one-cocycle, that is

δ([v, w]) = [v ⊗ 1 + 1⊗ v, δ(w)]− [w ⊗ 1 + 1⊗ w, δ(v)]

for all v, w ∈ g. Then (g, g∗) is called a Lie bialgebra.

If G is a Lie-Poisson group, the linearization of the Poisson bracket at the identity
defines a Lie bracket in g∗. The map δ is called the cobracket. The inverse result
(any Lie bialgebra corresponds to a Lie-Poisson group) is also true for connected
and simply connected Lie groups, as shown in [4].

Definition 2.11 (Admissible subgroup). LetM be a Poisson manifold, G a Poisson-
Lie group and G×M →M a Poisson action. A subgroup H ⊂ G is called admis-
sible if the space C∞(M)H of H-invariant functions on M is a Poisson subalgebra
of C∞(M).

The following proposition describes admissible subgroups.

Proposition 2.12. ([23]) Let (g, g∗) be the tangent Lie bialgebra of a Poisson Lie
group G. A Lie subgroup H ⊂ G with Lie algebra h ⊂ g is admissible if h0 ⊂ g∗ is
a Lie subalgebra, where h0 is the annihilator of h.

We will now describe the Poisson brackets that will be at the center of our study.

Definition 2.13 (Factorizable Lie bialgebras and R-matrices). A Lie bialgebra
(g, g∗) is called factorizable if the following two conditions hold:

(a) g is equipped with an invariant bilinear form 〈, 〉 so that g∗ can be identified
with g via ξ ∈ g∗ → vξ ∈ g with ξ(·) = 〈vξ, ·〉;

(b) the Lie bracket on g∗ ∼= g is given by

(8) [ξ, η]∗ =
1

2
([R(ξ), η] + [ξ,R(η)]) ,

where R ∈ End(g) is a skew-symmetric operator satisfying the modified
classical Yang-Baxter equation

[R(ξ), R(η)] = R ([R(ξ), η] + [ξ,R(η)])− [ξ, η].
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R is called a classical R-matrix. Let r be the 2-tensor image of R under the
identification g ⊗ g ∼= g ⊗ g∗ ∼= End(g). The tensor r is often referred to as the
R-matrix also.

The simplest example of an R-matrix is as follows: assume that g has a splitting
of the form g = g+ ⊕ h0 ⊕ g−, where g+ and g− are subalgebras dual of each other
and where h0 is commutative (for example, h0 could be the Cartan subalgebra).
Then it is well-known that the map R : g→ g

(9) R(ξ+ + ξ0 + ξ−) = ξ+ − ξ−

defines a classical R-matrix.
Given a Poisson Lie group G and its associated factorizable Lie bialgebra (g, g∗),

we can define an induced Poisson structure on GN , as explained in [23]. Indeed,

we equip gN =
⊕
N

g with a nondegenerate inner product given by

〈X,Y 〉 =

N∑
k=1

〈Xk, Yk〉

and we extend R ∈ End(g) to R ∈ End(gN ) using R((Xs)) = (R(Xs)). Then
GN is a Poisson Lie-group (with the product Poisson structure) and (gN , gNR ) is its
factorizable Lie bialgebra, where gR denotes g with Lie bracket (8). Remark that
we are abusing the notation, using 〈, 〉 and R to denote both the inner product and
the R-matrix in g and gN . We will point out the difference only when it is not clear
by the context and the notation.

Definition 2.14 (Left and right gradients). Let F : GN → R be a differentiable
function. We define the left gradient of F at L = (Ls) ∈ GN as the element of gN

denoted by ∇F(L) = (∇sF(L)), with ∇sF(L) satisfying

d

dε
|ε=0F((exp(εξs)Ls)) = 〈∇sF(L), ξs〉

for all s and any ξ = (ξs) ∈ gN .
Analogously, we define the right gradient of F at L as the element of gN denoted

by ∇′F(L) = (∇′sF(L)), with ∇′sF(L) satisfying

d

dε
|ε=0F((Lsexp(εξs))) = 〈∇′sF(L), ξs〉

for all s and any ξ = (ξs) ∈ gN . Clearly

(10) ∇′sF(L) = L−1
s ∇sF(L)Ls.

The Poisson structure in GN given by the formula

(11) {F ,G}S(L) =

N∑
s=1

r̂(∇sF ∧∇sG)−
N∑
s=1

r̂(∇′sF ∧∇′sG)

is called the Sklyanin bracket. Now, given a factorizable Lie bialgebra, the author
of [23] defined what is called a twisted Poisson structure on GN . Here we will give
the definition of this structure and we refer the reader to [23] for explanations on
how to obtain it, and to [5] (Theorem 1) for the explicit formula.
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Let F ,G : GN → R be two functions. Let τ be the shift operator τ(Xs) = Xs+1.
We define the τ -twisted Poisson bracket as

(12)
{F ,G}(L) =

∑N
s=1 r(∇sF ∧∇sG) +

∑N
s=1 r(∇′sF ∧∇′sG)

−
∑N
s=1(τ ⊗ id)(r)(∇′sF ⊗∇sG) +

∑N
s=1(τ ⊗ id)(r)(∇′sG ⊗∇sF).

The authors of [5, 23] proved that, not only is this a Poisson bracket, but the gauge
action of GN in itself, that is, the action GN ×GN → GN

(13) (Ls)→ (gs+1Lsg
−1
s ),

is a Poisson map and the gauge orbits are Poisson submanifolds. This is the relevant
bracket to our study of polygon evolutions.

3. A Hamiltonian bracket on the moduli space of twisted polygons in
parabolic manifolds

Let G be a semisimple group and g its Lie algebra. Assume g has a gradation of
the form

(14) g = g1 ⊕ g0 ⊕ g−1

where g1 and g−1 are dual to each other with respect to an adjoint invariant inner
product. Let Gi be the subgroup of G with Lie algebra gi, and P ⊂ G the parabolic
subgroup of G with Lie algebra p = g1 ⊕ g0.

Consider the space of polygons in the homogeneous manifold M = G/P . In
this section we will show that under some assumptions, (12), defined in GN , can
be reduced to the quotient GN/PN to define a Poisson structure on the space of
Maurer-Cartan matrices associated to polygons in M , and hence on the space of
invariants as shown in theorem 2.8.

Before we go into our main theorem, we will recall some known facts about the
action of G on G/P when g is a |1|-graded algebra as in (14). The following descrip-
tions can be found, for example, in [17]. Let G1 (resp. G−1) be the connected Lie
subgroup of G corresponding to g1 (resp. g−1). We define G0 to be the normalizer
of g0 in P , that is, G0 = {a ∈ P |Ad(a)(g0) = g0}.

Proposition 3.1. The exponential mapping exp : g1 → G1 and exp : g−1 → G−1

are bijective. Furthermore, G0 is also the normalizer of g−1 in P and P is the
semidirect product of G0 and G1.

The subgroup G0 is called the linear isotropy subgroup of the semisimple homo-
geneous space G/P and it is clearly locally bijective, via the exponential map, to
g0. Perhaps a more important description for this paper is the following well-known
result. It can be obtained from [17], although here they are simplified for a clearer
exposition.

Proposition 3.2. Let G×M →M be the action of G on M = G/P given by left
multiplication in class representatives. Let Gi and gi be given as above, i = 1, 0,−1.
Then the infinitesimal action of g−1 is constant in x, the one of g0 is linear in x,
and the one of g1 is quadratic in x.

Next, assume that g can be endowed with two different splittings: the original
parabolic gradation (14), and a splitting of the form

(15) g = g− ⊕ h⊕ g+
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where h0 is commutative and g− and g+ are dual of each other. Assume also that
this splitting can be chosen so that g1 ⊂ g+, g−1 ⊂ g− and h ⊂ g0, while g0 will
have, in general, intersection with all g+, h and g−.

Remark 3.3. This assumption is not too restrictive. For example, in the complex
case, given a simple Lie algebra (a semisimple one will be the sum of its simple
terms) one can always find two gradations related as above, a pair per root with
weight equal to 1. One way to find the gradations is as follows: 1 Let h be a choice
of Cartan subalgebra and ∆ = {αr}`r=1 a simple root system associated to h . Let
Φ+ be the set of positive roots and Φ− the set of negative roots. Let λ ∈ ∆ have
weight 1 and let Φ1 = {α ∈ Φ+with λ in its linear expansion} and Φ−1 the negative
analogue. Define g1 =

⊕
α∈Φ1

gα and g−1 =
⊕

α∈Φ−1
gα. Let g0 be the sum of the

root spaces associated to the remaining roots (the ones that do not contain λ). We
see that g1 is commutative since λ cannot appear in any linear expansion with a
coefficient higher than one, and if α, β ∈ Φ1, then the coefficient of α+ β would be
2. Likewise with Φ−1. The second gradation is simply given by g+ =

⊕
α∈Φ+ gα,

g− =
⊕

α∈Φ− gα and h, ensuring that g1 ⊂ g+ and g−1 ⊂ g−.
Not all algebras have such roots, the list of the ones that do are: Ar (with r

different choices of roots), Br (one choice), Cr (one choice), Dr (3 choices), E6 (two
choices), E7 (one choice). In the case of a simple real Lie algebra, the work in [9]
describes all semisimple real Lie algebras with gradations (14) as direct sums of
simple ones belonging to the following list:

(1) g = sl(p+ q,R) with g0 = sl(p,R)⊕ sl(q,R)⊕ R;
(2) g = so(n, n) with g0 = gl(n,R);
(3) g = so(p+ 1, q + 1) with g0 = so(p+ q)⊕ R;
(4) g = sp(2n,R) with g0 = gl(n,R);
(5) g = E1

6 with g0 = so(5, 5)⊕ R;
(6) g = E1

7 with g0 = E1
6 ⊕ R.

Using the representations in [9], one can see that the standard finest gradation
inherited from gl(n,R) with n = p+ q, will work as gradation (15) for (1); the case
(2) is very similar to (4), which we will describe in detail in our last section, while
the cases (3-5-6) are not clear to us. As the reader can see, some of the exceptional
cases satisfy our assumptions.

We are now ready for our main theorem.

Theorem 3.4. Assume G and g are as above. The twisted Poisson structure
(12) defined on GN , with r associated to (15) as in (9), is locally reducible to
the quotient GN/PN , and the reduced bracket coincides with the reduction of the
Sklyanin bracket (11) with tensor

r̂(ξ, η) = 〈ξ−1, η1〉
where ξ−1 and η1 correspond to the parabolic gradation (14) defining M . Notice
that r̂ is not an R-matrix and hence the Sklyanin bracket is not Poisson before
reduction.

Proof. The proof is similar to the one for RPn that appeared in [15], with some
differences. From theorem 2.8, the quotient is locally a manifold, and as explained

1The author is very grateful to Prof. Georgia Benkart for the description and discussions on
this matter.
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in [23] the gauge action is a Poisson action for the twisted bracket, whose symplectic
leaves are gauge orbits. Therefore, using the same reasoning as the one used in [15],
Theorem 5.5, we conclude that the bracket can be reduced whenever P is admissible
(see definition 2.11). According to proposition 2.12, this is true whenever p0 = g1

is a Lie subalgebra of g∗, and this is the only condition we need to check to prove
the first part of the theorem.

The Lie bracket in g∗ is defined by the linearization of the twisted Poisson bracket
at the identity e ∈ G. That is

[deφ, deϕ]∗ = de{φ, ϕ} ∈ g∗.

Since p0 = g1, we will look for functions ϕis such that deϕ
i
s generate g1.

First of all, we can locally identify M with the section represented by G−1

through a map x→ `(x) ∈ G−1. Let ϕ : U ⊂M → Rn be local coordinates around
o defined as follows: choose coordinates for G−1 given by the exponential map
composed with linear coordinates in g−1, and define ϕ(`(x)) = ϕ(x). Assume ϕi are
the components of ϕ; that is, if wi are generators of g−1, then `(x) = Πiexp(αiwi)
and ϕi(x) = αi, i = 1 . . . , n (recall that G−1 is commutative). Now, let L ∈ GN be
close enough to e ∈ GN so that L = (Ls) can be factored as Ls = Ls−1L

s
0L

s
1 with

Lsi ∈ Gi, according to the gradation (14). We choose xs ∈ U ⊂M such that Ls−1 =

`(xs) , and define ϕi(L) = (ϕi(Ls)) = (ϕi(Ls−1)) = (ϕi(`(xs))) = (ϕi(xs)). Since

deϕ
i is in the dual of the tangent to M at the identity (which we can identify with

g−1, with dual equal to g1), and ϕ are coordinates, the elements deϕ
i, i = 1, . . . n,

must generate g1 = p0. Now we only need to check that if {, } is the quotient
bracket in (12), then

[deϕ
i, deϕ

j ]∗ = de{ϕi, ϕj} ∈ p0 = g1.

This will imply that P is admissible.
Identify MN with the section represented by GN−1 via the map (xs)→ (`(xs)) ∈

GN−1. Then, the action of GN on MN is uniquely determined by the relation

(16) gs`(xs) = `(gs · xs)ps
for some ps ∈ P . Let ξs ∈ g and Vs = exp(εξs). As before, assume Ls = Ls−1L

s
0L

s
1

with Ls−1 = `(xs) for some xs ∈M .
Let Vs = exp(εξs). Using (16), we obtain

ϕ(VsLs) = ϕ(VsL
s
−1) = ϕ(Vs`(xs)) = ϕ(`(Vs · xs)) = ϕ(Vs · xs).

(1) If ξs ∈ g−1, and given that the infinitesimal action of g−1 on M is constant,
we have that

(17)
d

dε
|ε=0ϕ(VsLs) = 〈∇sϕ(Ls), ξs〉

is constant in Ls. That is to say, if∇sϕ(Ls) splits according to the parabolic
gradation (14), then its g1 component is constant for any Ls and for all s.

(2) If ξ ∈ g0, then ϕ(VsLs) is again ϕ(Vs · xs) as above. The infinitesimal
action is now linear, and hence ∇sϕ(Ls) has a g0-component that is linear
in Ls−1 = `(xs), for all s. This will vanish at xs = 0, or what is the same,
at Ls = e.

(3) If ξ ∈ g1, the infinitesimal action will be quadratic, and hence ∇sϕ(Ls) will
have a g−1 component that is quadratic in Ls−1 = `(xs), for all s. Thus, it
vanishes at xs = 0 or Ls = e.
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We know calculate de{ϕi, ϕj} where {, } is the twisted bracket (12) with the
r-matrix given by (9). We want to show that de{ϕi, ϕj} ∈ p0 and so we need to
show that d

dε |ε=0{ϕis, ϕjs}(eεξ) = 0 whenever ξ ∈ p = g1 ⊕ g0.

Given that that (deϕ
i
s)−1 = 0 and (∇ϕis(L))−1 is quadratic in `(xs) (with `(o) =

e) we can conclude that d
dε |ε=0

(
∇ϕis(eεξ)

)
−1

= 0.

Also, ∇′ϕis(eεξ) = e−εξ∇ϕis(eεξ)eεξ, and therefore

d

dε
|ε=0∇′ϕis(eεξ) = [deϕ

i
s, ξs] +

d

dε
|ε=0∇ϕis(eεξ).

Since deϕ
i
s ∈ g1, whenever ξ ∈ p we have that [deϕ

i
s, ξs] ∈ p and, hence

d

dε
|ε=0

(
∇′ϕis(eεξ)

)
−1

= 0.

Furthermore,
(
deϕ

i
s

)
0

= 0 also. Finally, we split

〈∇+ϕ
i
s,∇−ϕis〉 = 〈∇1ϕ

i
s,∇−1ϕ

i
s〉+ 〈∇0

+ϕ
i
s,∇0

−ϕ
i
s〉,

where ∇0
+ϕ

i
s and ∇0

−ϕ
i
s are the components of ∇+ϕ

i
s and ∇+ϕ

i
s in g0. Substituting

this splitting in the definition of the twisted bracket, and going over each one of
its terms, we get that they all vanish, d

dε |ε=0{ϕis, ϕjs}(eεξ) = 0, and hence p0 is a
subalgebra of g∗.

We now look at the second assertion of the theorem. The reduced bracket is
calculated as follows: let f, h : K → R be two functions on the quotient space K =
UN/PN , where PN is acting on the open set UN ⊂MN by gauge transformations.
Consider two extensions of f, h to UN , call them F and H, constant on the gauge
leaves of P . That means

F(ps+1Ksp
−1
s ) = F(Ks) = f(ks)

for any ps ∈ P , where ks are coordinates for Ks (i.e. a generating system of
invariants defined by Ks). Choosing ps = exp(εξs), ξs ∈ p and differentiating, we
get that

N∑
s=1

〈−∇′sF + τ−1∇sF , ξs〉 = 0.

That is,

(18) −∇′F + τ−1∇F ∈ (p0)N = gN1 .

Likewise for H. The reduced bracket is then defined as

(19) {f, h}inv(k) = {F ,H}(K).

We now use this description to finish the proof. Since τ∇′F−∇F ∈ (p0)N = gN1
and g− ⊂ g−1 ⊕ g0, we have that τ(∇′F)− = (∇F)−, and from this the reduced
Poisson bracket can be expressed as

{f, h}(k) =
1

2
(〈(∇F)−, (∇H)+〉 − 〈(∇F)+, (∇H)−〉

+ 〈(∇′F)−, (∇′H)+〉 − 〈(∇′F)+, (∇′H)−〉)− 〈τ(∇′F)−, (∇H)+〉+ 〈τ(∇′H)−, (∇F)+〉

=
1

2
(−〈(∇F)−, (∇H)+〉+ 〈(∇F)+, (∇H)−〉+ 〈(∇′F)−, (∇′H)+〉 − 〈(∇′F)+, (∇′H)−〉)

−1

2
(−〈(∇F)−, (∇H)+〉+ 〈(∇F)+, (∇H)−〉+ 〈(∇′F)−, (∇′H)+〉 − 〈(∇′F)+, (∇′H)−〉)
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=
1

2
〈(∇H)−, (∇F)+ − τ(∇′F)+〉 −

1

2
〈(∇F)−, (∇H)+ − τ(∇′H)+〉.

Since g1 ⊂ g+, this is equal to

=
1

2
〈(∇H)−1, (∇F)1 − τ(∇′F)1〉 −

1

2
〈(∇F)−1, (∇H)1 − τ(∇′H)1〉.

and from this we can go back to

−1

2
(−〈(∇F)−1, (∇H)1〉+ 〈(∇F)1, (∇H)−1〉+ 〈(∇′F)−1, (∇′H)1〉 − 〈(∇′F)1, (∇′H)−1〉) ,

which coincides with the evaluation of (11) defined by the parabolic gradation (14)
on the extensions F and H. �

4. Polygon evolutions inducing a Hamiltonian evolution on
invariants

In this section we will study which invariant evolutions of polygons induce an
evolution on k which is Hamiltonian with respect to the reduced bracket we de-
scribed in our previous section. In particular, we will link the invariant vector vs
describing the evolution (4), to the gradient of the Hamiltonian f determining the
evolution of the invariants. The relation is simple and straightforward and we will
show that any Hamiltonian flow on the invariants is induced by a polygon evolution.

First of all, recall that if (xs) evolves under (4), then the evolution of the Maurer-
Cartan invariants is given by equation (5), where N = ρtρ

−1 ∈ gN satisfies the
condition

(Ns)−1 = −dς(o)vs
Lemma 4.1. Let h be a function of the invariants k, and let H be an extension of
h constant on the gauge orbits of P . Assume that

N∑
s=1

〈∇sH, (Ks)tK
−1
s 〉 = {f, h}inv(k)

for a fixed function f and any function h. Then KtK
−1 defines a {, }inv-Hamiltonian

evolution on the coordinates k, with Hamiltonian f .

Proof. Let k = (ks) and ks = (kis) be coordinates for K (we write Ks = Ks(k)),
and assume x evolves according to (4). Then, the evolution induced on Ks (through
k) is given by the relation

(Ks)tK
−1
s =

N∑
r=1

n∑
i=1

(kir)t
∂Ks

∂kir
K−1
s .

On the other hand, let h be a function of k and H an extension constant on the
leaves of P . If Zs = Ks(k

i
r(ε))K

−1
s (kir), with kir(0) = kir and d

dε |ε=0k
i
r(0) = vir, we

have

(20)
d

dε
|ε=0H(ZsKs) =

∑
s

〈∇sH(K),
d

dε
|ε=0Zs〉

on the one side, while on the other side

d

dε
|ε=0H(ZsKs) =

d

dε
|ε=0H(Ks(k

i
r(ε))) =

d

dε
|ε=0h(kir(ε)) =

N∑
r=1

n∑
i=1

vir
∂h

∂kir
.
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We further see that

d

dε
|ε=0Zs =

N∑
r=1

n∑
i=1

vir
∂K

∂kir
K−1.

Comparing the two sides of equation (20), which must be equal for any values of
vir, we arrive to

∂h

∂kir
=
∑
s

〈∇sH(K),
∂Ks

∂kir
K−1
s 〉.

Finally, assume that

N∑
s=1

〈∇sH, (Ks)tK
−1
s 〉 = {f, h}inv(k)

for any h. Then

N∑
s=1

N∑
r=1

n∑
i=1

〈(kir)t
∂Ks

∂kir
K−1
s ,∇sH〉 =

∑
s

∑
r,i

(kir)t
∂h

∂kir
= {f, h}inv(k)

for any h, and hence, by definition, k evolves via a Hamiltonian evolution, with
Hamiltonian function f . �

Theorem 4.2. Let (xs) evolve using an evolution of the form (4), for some invari-
ant vector vs, and let ς be a section such that ρs = ρPs ς(xs)

−1, ρPs ∈ P , for any s.
Assume that there exits a function f(k), with extension F constant on the gauge
orbits of P, and such that

(21) dς(o)vs = τ−1(∇sF)−1.

Then, the evolution induced on k by (4) is Hamiltonian with respect to {, }inv, with
Hamiltonian f .

Proof. Using (5) and (19), we have that, on the one hand

(22)

N∑
s=1

〈(Ks)tK
−1
s ,∇sH〉 =

N∑
s=1

〈Ns+1 −KsNsK
−1
s ,∇sH〉,

and on the other hand

{f, h}inv(k) =
1

2

N∑
s=1

〈(∇sH)−1, (∇sF − τ∇′sF)1〉 − 〈(∇sF)−1, (∇sH− τ∇′sH)1〉.

Now, since ∇sF − τ∇′sF ∈ g1, and g−1 is the dual of g1, we have

〈(∇sH)−1, (∇sF − τ∇′sF)1〉 = 〈∇sH,∇sF−τ∇′sF〉 = 〈∇sH,∇sF〉−〈∇sH, τ∇′sF〉.

Also, since 〈, 〉 is invariant under the adjoint action and under the shift operator,∑
s〈∇sH,∇sF〉 =

∑
s〈τ∇′sH, τ∇′sF〉. Substituting this in our calculations we get∑

s

〈(∇sH)−1, (∇sF − τ∇′sF)1〉

=
∑
s

〈τ∇′sH, τ∇′sF〉 − 〈∇sH, τ∇′sF〉 =
∑
s

〈τ∇′sH−∇sH, τ∇′sF〉

=
∑
s

〈(τ∇′sH−∇sH)1 , (τ∇
′
sF)−1〉 =

∑
s

〈(τ∇′sH−∇sH)1 , (∇sF)−1〉,
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where we have used that (∇sF)−1 = (τ∇′sF)−1 since ∇sF−τ∇′sF ∈ g1. Therefore

{f, h}inv(k) = −
N∑
s=1

〈(∇sF)−1, (∇sH− τ∇′sH)1 .

Back to (22); since∑
s

〈KsNsK
−1
s ,∇sH〉 =

∑
s

〈Ns,K−1
s ∇sHKs〉 =

∑
s

〈τNs, τ(K−1
s ∇sHKs)〉,

we have that

N∑
s=1

〈Ns+1 −KsNsK
−1
s ,∇sH〉 =

N∑
s=1

〈τNs,∇sH− τ(K−1
s ∇sHKs)〉

=

N∑
s=1

〈τNs,∇sH− τ∇′sH〉 =

N∑
s=1

(〈τNs)−1, (∇sH− τ∇′sH)1〉.

But, if τς(o)vs = ∇−1F , and given that according to (6) (Ns)−1 = −dς(o)vs, we
get (τNs)−1 = −(∇F)−1, and hence

N∑
s=1

〈(Ks)tK
−1
s ,∇sH〉 = −

N∑
s=1

〈(∇sF)−1, (∇sH− τ∇′sH)1〉 = {f, h}inv(k).

Using our previous lemma, we conclude the proof. �

Remark 4.3. In all examples we can think of the values of (Ns)−1 = −dς(o)vs and
condition (4) determine Ns uniquely. This means that, if xs induces an evolution
on k which is Hamiltonian respect to {, }inv with Hamiltonian f , then necessar-
ily τ(Ns)−1 = −(∇sF)−1, since this choice induces the same evolution and Ns is
unique given those determining values. Hence, assuming that N is uniquely de-
termined by (Ns)−1, s = 1, . . . , N , and (4), the reciprocal of the theorem is also
true.

5. The Lagrangian Grassmaniann example: the Lagrangian
Schwarzian difference and Volterra evolutions

In this section we apply the previous construction to the case of the Lagrangian
Grassmannian. In this example G = Sp(2n) and the parabolic gradation of the
algebra is given by

(23)

(
0 0
Z 0

)
∈ g1,

(
A 0
0 −AT

)
∈ g0,

(
0 Y
0 0

)
∈ g−1

where 0 is the zero n×n block, Z and Y are symmetric matrices, and A is a general
n× n matrix. Here p = g0 ⊕ g1. The associated local factorization of the group is
given by

(24) g =

(
I 0

Ŝ I

)(
Θ 0
0 Θ−T

)(
I S
0 I

)
∈ G1G0G−1

with Θ ∈ GL(n,R) Ŝ and S symmetric. Also, P = G1G0 andG/P is the Lagrangian
Grassmannian. For a more geometric definition, consider n vectors defining a given
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n-dimensional subspace x of R2n. We can find n such vectors so that when placed
as columns in a matrix, the matrix will look like(

u
I

)
.

If the subspace is Lagrangian, u will be symmetric. We identify this subspace with
the matrix

(25) ς(x) =

(
I u
0 I

)
∈ G−1

which defines a section of the quotient G/P .
The second gradation (15) is given by

(26)

(
AL 0
C −ATL

)
∈ g+,

(
d 0
0 −d

)
∈ h,

(
AU B
0 −ATU

)
∈ g−,

where AL is strictly lower triangular, AU is strictly upper triangular, and d is
diagonal. One can readily see that g+, g− and h are all subalgebras of g. Also clearly
h is commutative, g1 ⊂ g+, g−1 ⊂ g− and h ⊂ g0, so that we can apply theorem
3.4 to obtain a Poisson bracket on the moduli space of Lagrangian Grassmannian
polygons. This structure is, in general, very complicated. What we want to do in
this section is to show that some of the invariants of Lagrangian polygons behave
in familiar and interesting ways under selected evolutions. For this we will go into
details, constructing explicitly the invariants and their evolutions. We will then
restrict the reduced bracket further to a submanifold generated by these special
invariants.

5.1. A moving frame along Lagrangian Grassmannian polygons. Let g be
factored as in (24). If we identify M with symmetric matrices u, using the section
(25), and given that the action of Sp(2n) on M is determined by (16), we can write
the action explicitly as

(27) g · u = Θ(u+ S)
(

Θ−T + ŜΘ(u+ S)
)−1

.

Assume we factor our right moving frame ρ = (ρs) ∈ Sp(2n)N according to (24)

ρs =

(
I 0

Ŝs I

)(
Θs 0
0 Θ−Ts

)(
I Ss
0 I

)
.

If we define transverse sections as in (1) through the normalizations

ρs · us = 0, ρs · us−1 = −I, ρs · us+1 = I,

we obtain the equations

us + Ss = 0, Θs(us+1 + Ss) = Θ−Ts + ŜsΘs(us+1 + Ss),

Θs(us−1 + Ss) = −
(

Θ−Ts + ŜsΘs(us−1 + Ss)
)
.

These solve for

Ss = −us, Ŝs = I −Θ−Ts (us+1 − us)−1Θ−1
s

and

(28) ΘT
s Θs =

1

2

(
(us+1 − us)−1 + (us − us−1)−1

)
= U−1

s .
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Equation (28) determines completely Θ up to an orthogonal factor, assuming
that U−1

s = 1
2

(
(us+1 − us)−1 + (us − us−1)−1

)
is positive definite. In fact, Θs =

θsU
−1/2
s , where θs ∈ O(n) and U

−1/2
s is a square root of a symmetric matrix

as defined in [20], unique up to the action of the orthogonal group. That is,

U
−T/2
s U

−1/2
s = U−1

s .
To determine the last factor θs, and with it the rest of the moving frame, we need

to choose one more normalization, thus completing the definition of the transverse
section. Let’s choose ρs · us+2 to be diagonal. After substituting all the values we
have already found we get

ρs · us+2 =
(
I + Θ−T

(
(us+2 − us)−1 − (us+1 − us)−1

)
Θ−1

)−1
.

Definition 5.1 (Lagrangian Schwarzian difference). Given a generic polygon of
Lagrangian planes us, we define S(u) = (Ss(u)) to be

Ss(u) = U−1/2
s

(
U−1
s + (us+2 − us)−1 − (us+1 − us)−1

)−1
U−T/2s

= U−1/2
s

[
(us+2 − us)−1 − 1

2
(us+1 − us)−1 +

1

2
(us − us−1)−1

]−1

U−T/2s

and we call it the Lagrangian Schwarzian difference of u, where Us is given as in
(28).

This definition is the discrete analogue to the Lagrangian Schwarzian derivative
defined in [20] for curves of Lagrangian planes. In fact, if we denote u(s + k) =
γ(x+ kε), a long but standard calculation shows that the continuous limit of Ss(u)
is indeed a multiple of the Lagrangian Schwarzian derivative defined in [20]. Now,
in order to diagonalize ρs · us+2 we need to choose θs to be an element of the
orthogonal group that diagonalizes the symmetric matrix Ss(u). If we call

(29) D̃s = θsSs(u)θTs

then ρs ·us+2 = D̃ will be diagonal. These normalization choices describe transverse
sections as in (1), and they determine the moving frame ρ uniquely. From now on

we will denote Ds = I − D̃−1
s , and hence Iss+2 = (I +Ds)

−1.

5.2. Maurer-Cartan invariants and their evolutions. Once we have deter-
mined a moving frame, we would like to describe the right Maurer-Cartan matrix
associated to it. To do this we will use the recursion equations (3)

Ks · Isk = Is+1
k .

Using the choices Iss = 0, Iss+1 = I, Iss−1 = −I and Iss+2 = (I + Ds)
−1, we select

the equations

(30) Ks · 0 = −I, Ks · I = 0, Ks · Iss+2 = I

as those determining K. Assume that Ks factorizes as

Ks =

(
I 0

Ks,1 I

)(
Ks,0 0

0 (Ks,0)−T

)(
I Ks,−1

0 I

)
.

Straightforward calculations using formula (27) show that the three recursion equa-
tions (30) determine the values

Ks,−1 = −I, KT
s,0Ks,0 = −1

2
D−1
s , Ks,1 = K−Ts,0 K

−1
s,0 − I.
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Assuming that Ds is negative definite, we obtain the solutions

(31) Ks,−1 = −I, Ks,0 = K̂s,0D̂s, Ks,1 = −
(
I + 2K̂s,0DsK̂

T
s,0

)
where

(32) D̂s =
1√
2

(−Ds)
−1/2, K̂s,0 ∈ O(n).

Remark 5.2. the negative definite condition imposed on Ds can be removed by
merely choosing different normalizations. Indeed, if we choose arbitrary values
for Isr , the relation between the different invariants determined by equations (30)
become

KT
s,0((Iss+1)−1 − (Iss−1)−1)Ks,0 = −(Iss+1)−2D−1

s .

Thus, if Ds is positive definite, we could choose Iss+1 = −I and Iss−1 = I instead.
We can also change the sign of the different entries in I, depending on the sign of
the different eigenvalues of S(u). For simplicity we will keep the choices above.

The following theorem summarizes our findings.

Theorem 5.3. There exists a right moving frame along polygons of Lagrangian
subspaces such that its associated Maurer-Cartan matrix is of the form

(33) Ks =

(
I 0

−(I + 2K̂s,0DsK̂
T
s,0) I

)(
K̂s,0D̂s 0

0 K̂T
s,0D̂

−1
s

)(
I −I
0 I

)
where D̂s is given as in (32). The entries of Ds and K̂s,0 functionally generate all
invariants of Lagrangian polygons.

Next we turn to the study of invariant evolutions of Lagrangian polygons (that is,
those for which Sp(2n) takes solutions to solutions) and the equations they induce
on the invariants. Assume (us(t)), with us(t) symmetric, represents a family of
polygons of Lagrangian planes, and assume it is a solution of an invariant evolution.
According to theorem 2.6, the equation can be written in terms of our moving frame.
Since the linearization at o of the action (27) is given by

v → ΘvΘT

and having in mind that the G0 factor of ρ−1
s is U

1/2
s θTs , from (4) we conclude that

any invariant evolution can be written as

(34) (us)t = U1/2
s θTs vsθsU

T/2
s

for symmetric matrices vs depending on the entries of (Dr) and (K̂r,0), and where
θs diagonalizes the Lagrangian Schwarzian difference of the flow. From now on we
will assume that Ds = diag(dsi ), with dsi 6= dsj for all i 6= j.

Theorem 5.4. Let vs be diagonal, and assume the initial condition us(0) satisfies

K̂s,0 = I. Then K̂s,0 = I is preserved by the flow (34) and whenever vs = − 1
2 (1 +

τ−1)Ds∇sf for some Hamiltonian function f , Ds satisfies a Hamiltonian equation
with respect to the Poisson structure
(35)

P =
∑
s

Ds

(
Dsτ

−1 −Dsτ + 2(τ−1 − τ) + τ−1Ds − τDs + τ−1Dsτ
−1 − τDsτ

)
Ds.
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with Hamiltonian f . Assume vs = −I (and hence ∇sf = D−1
s ). Then, as polygons

evolve following

(us)t = 2
(
(us − us+1)−1 − (us − us−1)−1

)−1

the eigenvalues of the Lagrangian Schwarzian difference evolve following a decoupled
system of Volterra equations.

Proof. From now on, and to avoid cluttering, we will drop the subindex s and will
only use it if needed to avoid confusion. Thus, Ns+1 will become τN , Ns will

become N , D̂s will become D̂, and so on.
To prove this theorem we will use theorem 2.7. We consider the section ς : M →

G−1

ς(u) =

(
I u
0 I

)
which satisfies ρ = ρP ς(u)−1 with ρP ∈ P . Theorem 2.7 tells us that N = ρtρ

−1

must be of the form

N =

(
N0 −v
N1 −NT

0

)
for some N0 ∈ gl(n), N1 symmetric and for some symmetric matrix v depending
on the invariants. A straightforward calculation shows that if K is as in (33), and

if K̂0 = I, then

KNK−1 =

(
I 0
K1 I

)(
D̂(N0 −N1)D̂−1 D̂(N0 +NT

0 −N1 − v)D̂

D̂−1N1D̂
−1 D̂−1(N1 −NT

0 )D̂

)(
I 0
−K1 I

)

where K1 = −(I+ 2D). To simplify formulas we will conjugate (4) by

(
I 0
−K1 I

)
.

Direct, although longer calculations show that if K̂0 = I(
I 0
−K1 I

)
KtK

−1

(
I 0
K1 I

)
=

(
(K̂0)t − 1

2D
−1Dt 0

2(−Dt +D(K̂0)t − (K̂0)tD) (K̂0)t + 1
2D
−1Dt

)

where we have used the relationship

D̂−1(D̂)t = −1

2
D−1Dt.

Also (
I 0
−K1 I

)(
τN0 −τv
τN1 −τNT

0

)(
I 0
K1 I

)

=

(
τN0 + τv(I + 2D) −τv

τN1 + τN0 + τNT
0 + 2DτN0 + 2TNT

0 D + (I + 2D)2τv −τNT
0 − (I + 2D)τv

)
.
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Substituting these values in the conjugation of (2.7) by

(
I 0
−K1 I

)
, and equating

the different entries, we arrive to the equations

τv = D̂(v +N1 −N0 −NT
0 )D̂

D−1Dt = D̂(N0 −N1)D̂−1 + D̂−1(NT
0 −N1)D̂

− 2(I + 2D)τv − τN0 − τNT
0

2(K̂0)t = τNT
0 − τN0 + D̂(N0 −N1)D̂−1 + D̂−1(N1 −NT

0 )D̂

2(D(K̂0)t − (K̂0)tD −Dt) = τN1 + τN0 + τNT
0 + 2(DτN0 + τNT

0 D)

+ (I + 2D)2τv − D̂−1N1D̂
−1

The last three equations result in a compatibility condition that can be obtained
as follows: we use the second equation and we multiply once on the left and once
on the right by D, thus obtaining two equations. We substitute the sum of these
two equations in place of 2Dt in the last equation, and use the third equation to

substitute (K̂0)t. After some straightforward work we obtain

τN1 + τN0 + τNT
0 = D̂−1(N0 +NT

0 −N1)D̂−1 − τv(I − 4D2).

We now use the first equation, and we get

(36) τN1 = −(τ(Dτv) + τv +Dv).

From this, if v is diagonal, so is N1. The first equation implies that N0 +NT
0 is also

diagonal. Back to the second equation, we see that D̂N0D̂
−1 + D̂−1NT

0 D̂ is once
more diagonal, which with our assumption di 6= dj implies that N0 is diagonal. If

N0 and N1 are diagonal, the third equation tells us that (K̂0)t = 0, proving the
first assertion of the theorem.

We can now find Dt. Using (36) and the first equation we have

2N0 = (Dτ − τ−1D)v

and, substituting everything into the second equation we get

(37) D−1Dt =
(
D − τDτ + τ−1D −Dτ + 2− 2τ

)
v.

Finally, if we substitute v = 1
2 (1 + τ−1)D∇f , we have

(38)

Dt =
1

2
D
(
Dτ−1 −Dτ + 2(τ−1 − τ) + τ−1D − τD + τ−1Dτ−1 − τDτ

)
D∇f

which is a Hamiltonian equation with respect to the Hamiltonian structure

P = D
(
Dτ−1 −Dτ + 2(τ−1 − τ) + τ−1D − τD + τ−1Dτ−1 − τDτ

)
D.

This is the second Hamiltonian structure for the Volterra equation

Dt = D(τ − τ−1)D

(see [7]) which we obtain whenever v = I and ∇f = D−1. Adopting subindices
again and using (34) and (28), if vs = I, the corresponding evolution for us is given
by

(us)t = U−1/2
s U−T/2s = U−1

s = 2
(
(us+1 − us)−1 + (us − us−1)−1

)−1

concluding the proof of the theorem. �
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Of course, we did not guess the relation

(39) v =
1

2
(1 + τ−1)D∇f

but it was given to us by the general reduction process and the compatibility con-
dition (21). We will describe the reduction next for our particular example and see
how we arrived to relation (39).

5.3. The reduced bracket and the double reduction to D. Before we prove
that the reduced bracket found in the previous section is further reducible to D,
we will describe the reduced bracket itself in a little more detail. Once more we
are dropping the subindex to avoid cluttering. As explained in (19), to calculate
the reduction one considers two functions f and h defined on the invariants (coor-

dinates) generating D and K̂0. Let us denote these invariants by d = (di) and ki,j ,

i < j. Let us also denote by δ1f the diagonal matrix δ1f = diag ∂f
∂di

, and by δ0f a

skew symmetric matrix generated by ∂f
∂ki,j

. (The precise form of δ0f will become

clear along the process, therefore we will postpone the description until relevant.)
Denote

(40) ∇F =

(
F0 F−1

F1 −FT0

)
and let us split F0 as

(41) F0 = Fσ0 + Fσk0 + F d0

where σ indicates the symmetric diagonal free components, σk is the skew-symmetric
component, and d the diagonal. Likewise for F−1 and F1 (clearly Fσk−1 = Fσk1 = 0).

Let us denote by K(D, K̂0) the family of matrices (33), and consider the element
of Sp(2n)N

Z(ε) = K(D + εV, K̂0)K(D, K̂0)−1

where V is an arbitrary diagonal matrix. Let us call v the diagonal of V , written

as a vector. On the one hand, direct calculations show that when K̂0 = I

d

dε
|ε=0Z(ε) =

(
− 1

2D
−1V 0

D−1V 1
2D
−1V

)
.

On the other hand Z(ε)K = K(D + εV, K̂0) and since F is an extension of f

F (Z(ε)K) = F (K(D + εV, K̂0)) = f(d+ εv, ki,j).

Differentiating with respect to ε

〈∇F,
(
− 1

2D
−1V 0

D−1V 1
2D
−1V

)
〉 = 〈D−1(F d−1 − F d0 ), V 〉 = 〈δ1f, V 〉.

This is true for any value of V , and therefore

(42) F d−1 − F d0 = Dδ1f.

Likewise, we can choose Z(ε) such that

F (Z(ε)K) = F (D, K̂0(ε)) = f(d, ki,j(ε))

with ki,j(0) = ki,j and d
dε |ε=0ki,j(ε) = wi,j . Indeed Z(ε) = K(D, K̂0(ε))K−1, with

K̂0(ε) chosen so that K̂0(0) = K̂0 and K̂−1
0

d
dε |ε=0K̂0 = W , W = (wi,j). (One
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can be more specific and create Z(ε) using the exponential function, but any such
family can be used and the precise form is not relevant.)

Differentiating with respect to ε, we have

〈∇F,
(
W 0
0 W

)
〉 = 〈2F0,W 〉 = 〈δ0f,W 〉

and hence F−0 = 1
2δ0f . We can now determine how the matrix δ0f is created: it is

defined as the skew-symmetric matrix such that

d

dε
|ε=0f(d, ki,j(ε)) = 〈δ0f,W 〉

with W = (wi,j) (that is, (δ0f)i,j = ∂f
∂kj,i

). With this in mind, we proceed to our

last theorem.

Theorem 5.5. The reduced Poisson bracket (19) can be further reduced to the

submanifold K̂0 = I. When using the coordinates given by the invariants D, the
resulting bracket is a decoupled system of Hamiltonian structures for the Volterra
equation as in (35).

Proof. More precisely, what we will show is that if f is independent of ki,j and h

is independent of di, at K̂0 = I their reduced bracket vanishes, while the reduced
bracket of two functions that only depend on D is given by the second Volterra
structure. Once again, and as explained in (19), if f and h are two functions

depending on D and K̂0, their reduced bracket is defined as

{f, h}inv =
1

2
〈(∇H)−1, (∇F)1 − τ(∇′F)1〉 −

1

2
〈(∇F)−1, (∇H)1 − τ(∇′H)1〉

where F and H are two extensions satisfying (18). Assume ∇F is given as in
(40) with the splitting (41). After conjugating ∇′F back to ∇F and simplifying,

condition (18) results in two equations at K̂0 = I, namely

τ−1F0 = D̂−1(F0 − F−1K1)D̂ + D̂(F1 +K1F0 + FT0 K1 −K1F−1K1)D̂(43)

τ−1F−1 = D̂(F−1 − FT0 )D̂−1 − τ−1F0.(44)

Case 1: Assume that f depends only on D. Then Fσk0 = 1
2δ0f = 0 and using

(43)

0 = τ−1(F0 − FT0 ) = D̂−1(F0 − F−1K1)D̂ − D̂(FT0 −K1F−1)D̂−1.

Using that K1 = I − D̂−2, we get

0 = D̂−1(F0 − F−1)D̂ − D̂(FT0 − F−1)D̂−1

which, under the condition di 6= dj , implies

Fσ0 = Fσ−1.

Substituting this in (43) we get

2τFσ1 = D̂−1Fσ−1D̂
−1 − D̂−1Fσ−1D̂

−1 = 0

and, therefore,

Fσ−1 = Fσ0 = 0.
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This implies that F1 and F0 are both diagonal. If we now look at (43) we clearly
see that F1 is also diagonal. These diagonals can easily be found from (43-44) and
the relation F d−1 = Dδ1f + F d0 . They are

F d−1 =
1

2
(τ + I)Dδ1f(45)

F d0 =
1

2
(τ − I)Dδ1f(46)

F d1 = (Dτ−1D +D2 − 1

2
τD +

3

2
D)δ1f.(47)

Case 2: Assume that f does not depend on D. Then F d−1 = F d0 + Dδ1f = F d0 ,

and equating the diagonals in (44) we get F d−1 = F d0 = 0. Doing the same with

(43), we have that F d1 = 0 also.
Now, assume that f depends on D, while h doesn’t. Then, both (∇F)−1 and

(∇F − τ∇′F)1, whose only non-constant block is given by

F1 − τ
(
D̂(F1 +K1F0 + FT0 K1 −K1F−1K1)D̂

)
,

are diagonal, while (∇H)−1 and (∇H− τ∇′H)1 are diagonal free. Therefore as one
can readily see from the formula in (19),

{f, h}inv = 0.

If both f and h depend on D only, we can substitute (45-46-47) in (19) to find the
double reduction. It is given by

{f, h}inv(D) =
1

2
〈δ1h,D

[
(τ−1 − τ)D +D(τ−1 − τ) + 2(τ−1 − τ) + τ−1Dτ−1 − τDτ

]
Dδ1f〉

which is a decoupled system of second Hamiltonian structures for the Volterra
lattice, as stated. �

We can now see where the relation vs = 1
2 (I + τ−1)Dsδsf came from: F−1 =

1
2 (τ + 1)Dδ1f and τvs = F−1, according to (21).

6. Conclusion and further study

In this paper we have shown that, if G is semisimple and g is a |1|-graded
Lie algebra with a parabolic gradation compatible with a second grading of the
form (15), then the moduli space of polygons in G/P is endowed with a natural
Poisson bracket that can be linked to invariantizations of polygon evolutions. As
an example we described in detail the case of polygons of Lagrangian subspaces
in R2n. We show that under some nondegeneracy conditions the Poisson bracket
can be restricted further to a certain submanifold of Lagrangian planes, and that
on this submanifold the eigenvalues of the Lagrangian Schwarzian difference evolve
following a Hamiltonian evolution, one that becomes a decoupled system of Volterra
equations when a proper Hamiltonian is chosen.

In the continuous case, the existence of a Poisson structure on the moduli space
of curves is guaranteed not only for the case of |1|-graded Lie algebras, but also for
general homogeneous manifolds of the form G/H with G semisimple ([11]) and for
semidirect products ([12]). It is well possible that the same is true for the discrete
counterpart, but the discrete case is more difficult to study. The main obstacle is
the need to rely on R-matrices to define the Poisson Lie group at the beginning of
our construction. If we consider a general case G/H, with ĥ being the Lie algebra
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of H, then to be able to use these Poisson structures we will need to coordinate
ĥ with a gradation of the form (15), with ĥ0 ⊂ g+: on the one hand (15) is used

to define the R-matrix, and on the other hand ĥ is used for the reduction itself,
so both need to be coordinated throughout calculations. Not only that, if m is a
linear complement for ĥ, so g = ĥ⊕ m, in order for the proof of theorem 3.4 to go
through, one can check that we would need the condition m∗∩m = 0. At first sight,
this seems to not be always possible since choosing ĥ = g1 (instead of ĥ = g1 ⊕ g0)
provides a simple counterexample. Furthermore, in the general case, the action of
G on G/H will also determine whether or not the bracket reduces. Indeed, the fact
that the infinitesimal action was either constant, linear or quadratic, depending on
which subgroup of G we were using, was fundamental to the admissibility of p (we
need the action to vanish at zero, and the derivative of the infinitesimal action of
ĥ0 to also vanish at zero). Hence, one will have to decide which actions qualify
and which ones don’t. Thus, although a more general theorem is true for those
other cases that satisfy these three conditions, it would not be as general as the
theorem for curve evolutions. Surprisingly, the case of the homogeneous 2-sphere
SO(3)/SO(2) does not satisfy these three conditions (one can check that if m is
a linear complement m∗ ∩ m 6= 0), but nevertheless in [10], the authors described
polygon evolutions on the 2-sphere SO(3)/SO(2) inducing an equation of Volterra
type on the discrete curvature of the polygon. Thus, perhaps a somehow different
approach is needed to increase the generality. Work in that direction is under way.

A different and very interesting question is how one can get a second Hamiltonian
structure, a companion for the reduction, to be used for integrability of difference
evolutions. This point is not at all clear: in the continuous case it is know that it
comes from a reduction of a second Hamiltonian structure (see [11]), but it is also
known that this second structure is not always reducible (a counterexample can
be found in [13]). No such natural second structure seems to exist in the discrete
case and the situation becomes more murky. In [15] the authors showed that in
the case of RPn, even though the right bracket (the portion of the Sklyanin bracket
involving right gradients only) is not Poisson, when reduced to GN/PN the result
is Poisson and a second Hamiltonian structure for integrable discretizations of Wn-
algebras. It seems to be a similar situation as having the Sklyanin bracket reduce
to a Poisson bracket, even though it is not a Poisson bracket with our choice of
parabolic gradation. Thus, perhaps there is an underlying bracket that coordinates
with the right bracket to give the same result, but what bracket this might be is
unkown to us.
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