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Abstract. In this paper we relate the geometric Poisson brackets on the 2-

Grassmannian in R4 and on the (2, 2) Möbius sphere. We show that, when

written in terms of local moving frames, the geometric Poisson bracket on
the Möbius sphere does not restrict to the space of differential invariants of

Schwarzian type. But when the concept of conformal natural frame is trans-
ported from the conformal sphere into the Grassmannian, and the Poisson

bracket is written in terms of the Grassmannian natural frame, it restricts

and results into either a decoupled system or a complexly coupled system of
KdV equations, depending on the character of the invariants. We also show

that the biHamiltonian Grassmannian geometric brackets are equivalent to the

non-commutative KdV biHamiltonian structure. Both integrable systems and
Hamiltonian structure can be brought back to the conformal sphere.

1. Introduction

Given a flat homogeneous space, one can define a Hamiltonian structure on the
space of differential invariants (curvatures) of parametrized curves ([12]). These
structures are often linked to completely integrable PDEs and to their geometric
realizations (invariant curve flows on the homogeneous space inducing the integrable
system on its invariants). There has recently been a flurry of literature studying
the existence of these integrable systems and their associated geometric flows, for
example see [1], [3], [8], [9], [10], [17], [19], [20] and references within.

We will say a differential invariant I is of Schwarzian type whenever φ∗I =
((φ′)2I) ◦ φ−1 + S(φ) ◦ φ−1, where φ∗I represents the the pull-back of I by a
diffeomorphism φ and where S(φ) indicates the Schwarzian derivative of φ (the
Schwarzian derivative itself behaves this way under reparametrization). In [14] the
author conjectured that the nature of the geometry (and its invariants) was linked
to the type of integrable systems they could realize. In particular, she conjectured
that the existence of differential invariants of projective (or Schwarzian) type would
result in geometric realizations of equations of KdV type (as it appeared in [14] and
[15], for example), while the existence of invariants of Riemannian type would result
in geometric realizations of nonlinear Schrödinger equations (NLS), modified KdV
(mKdV) and Sine Gordon (as in [1], [17] and [20], for example). In particular,
one can obtain a geometric realization of the KdV equation by flows in RP1, of
generalized KdV equations by flows on RPn, of a system of complexly coupled KdV
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equations by conformal flows and of a decoupled system of KdV equations by a
flow in the Lagrangian Grassmannian. Eastwood conjectured that this dichotomy
might be related to the existence of preferred parametrizations, projective versus
affine, as in [4]. Many of these geometric realizations are given by flows for which all
non-Schwarzian invariants vanish or are constant (i.e. initial curves are restricted).
That is, they are in fact completely integrable level sets of associated curve flows
which are not completely integrable themselves. More interestingly, the existence
of these integrable level sets is always linked to the reduction of a bi-Hamiltonian
Poisson structure to the submanifold of vanishing non-Schwarzian invariants (as in
[14] and [15]).

Most of the above examples are particular cases of flat parabolic geometries, that
is, homogenous spaces of the form G/P , G semisimple and P a parabolic subgroup.
(In fact, they are instances of parabolic geometries associated to |1|-gradings of
the algebra.) One such case does not seem to behave the way the other cases do,
namely the spinor case G = O(2n, 2n). The author showed in [14] that, even though
spinor curves do possess differential invariants of Schwarzian type, the geometric
Poisson structure associated to flows of spinors does not reduce to the submanifold
of vanishing non-Schwarzian invariants. Furthermore, the somehow expected flow
possessing a decoupled system of KdV equations as level set does not preserve this
submanifold so that one cannot find a geometric realization of a system of decoupled
KdV by flows of spinors.

In this paper we study the flat Grassmannian case of 2 dimensional planes in
R4. This homogeneous space can be identified with the homogeneous manifold
SL(2+2,R)/P , for a properly chosen parabolic subgroup P . The notation SL(2+2)
refers to the action of SL(4) on the manifold, as shown in Section 3. Since the
manifold is flat, the Cartan connection of the manifold will be given by the Maurer-
Cartan form (our results are local). As we will see, the group SL(2 + 2,R) is a
double cover if O(3, 3) and the cover induces an equivalency of parabolic geometries.
Indeed, the oriented conformal sphere SO(3, 3)/P can also be viewed as the spin
manifold Spin(3, 3)/P , itself isomorphic to SL(2 + 2)/P . At the infinitesimal level
the isomorphism is given by an isomorphism of the Lie algebras and their associated
gradations. Our original intention was to translate our knowledge of the conformal
case into the Grassmannian. As it turned out, we also ended up learning more
about the conformal case from the Grassmannian situation.

Moving frames and differential invariants for curves in Grassmannian manifolds
Gr(p, q) = SL(p + q)/P where P is a suitable chosen parabolic subgroup, are not
well-known in general. For the case Gr(nr, r), a special type of non-local invariants
were found in [18]. These invariants correspond to a Laguerre-Forsyth canonical
form for the Serret-Frenet equations, and we will use them at the end of the paper.
In section 3 we will find a local moving frame along curves in Gr(2, 2) and we will
find the differential invariants they generate. We will show that two of the four
generating invariants are invariants of Schwarzian type. In Theorem 4 we will find
explicitly the most general form of an invariant Grassmannian flow and we will show
that even those who have normalized coefficients do not preserve the submanifold
of vanishing non-Schwarzian invariants; when these invariants vanish, the invariant
flow blows up. This will imply that the geometric Poisson bracket does not restrict
to the space where the non-Schwarzian invariants vanish, much like the situation
in the spinor case [14]. This seems to be somehow counterintuitive, integrable level
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sets do exist in the conformal sphere of signature (n, 0) for which we can find a
complexly coupled system of KdV equations.

We show that the Grasmannian problem lies in the choice of moving frame. For
this we notice that a local (i.e. depending on the curves and its derivatives) choice
of moving frame in the conformal sphere results in the same type of problem the
Grassmannian case had. On the other hand, if we choose a natural moving frame,
a generalization of the non-local natural Euclidean frame, then the level set is pre-
served and both Hamiltonian structures can be reduced. In section 5 we define
natural frames for both the conformal sphere of signature (2, 2) and for Grassman-
nian curves. We then prove that we can find a Grassmannian geometric realization
inducing a complexly coupled system of KdV equations on the Grassmannian cur-
vatures of projective type. Furthermore, we show that there is also a geometric
realization of a decoupled system of two KdV equations.

Finally, we show that, when written in terms of the moving frame generating the
non-local invariants appearing in [18], the biHamiltonian geometric structure on the
complete Grassmannian is equal to the non-commutative KdV biHamiltonian struc-
ture. We also show that the noncommutative KdV equation has a Grassmannian
geometric realization. The noncommutative KdV equation and its biHamiltonian
structures were defined in [16]. Given the relation to the conformal sphere, these
produce also conformal biHamiltonian structures and a geometric realization for this
system. The only conformal realizations that were previously known were those of
the coupled KdV system. Using the isomorphism, we also prove that the Poisson
brackets on the conformal (2, 2) sphere are the noncommutative KdV structures.

2. Grassmannian-Conformal parabolic equivalence

2.1. Description of the manifolds. Let us first realize Gr2(R4) as the homoge-
neous space SL(4,R)/PG where PG is the parabolic subgroup of SL(4,R) defined
by matrices of the form (

A 0
C B

)
where A,B,C,0 ∈ M2×2 and where detAdetB = 1. The subindex G in PG
indicates its association to the Grassmannian. Its Lie algebra pG is defined by
similarly shaped matrices with vanishing trace. This quotient corresponds to a
gradation of the algebra g = g1 ⊕ g0 ⊕ g−1, where pG = g1 ⊕ g0, and g−1 is defined
by the upper right block (the dual to g1).

We now describe the conformal sphere with signature (2, 2). Let J ∈ M6×6 be
the matrix

(2.1) J =


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 .

We can realize the group SO(3, 3) as the identity component of the group O(3, 3)
defined as

O(3, 3) = {A ∈ GL(6,R), such thatAtJA = J}.



4 G. MARÍ BEFFA AND M. EASTWOOD

With this realization the Lie algebra will be given by matrices which are skew
symmetric with respect to the secondary diagonal, that is, X ∈ so(3, 3) whenever
XtJ + JX = 0

(2.2) X =


x11 x12 x13 x14 x15 0
x21 x22 x23 x24 0 −x15

x31 x32 x33 0 −x24 −x14

x41 x42 0 −x33 −x23 −x13

x51 0 −x42 −x32 −x22 −x12

0 −x51 −x41 −x31 −x21 −x11

 .

Next, define PC (the subindex C indicates its association with the conformal sphere)
to be the parabolic subgroup of SO(3, 3) given by the stabilizer of the line

0
0
0
0
0
∗

 ∈ R6

under the linear action of SO(3, 3); that is, the stabilizer of the basepoint in RP5

under the projective action. Its orbit is the non-singular quadric

Q ≡ {[v] ∈ RP5, such that vtJv = 0} = SO(3, 3)/PC .

The parabolic Lie algebra pC is given by those elements in so(3, 3), as in (2.2), for
which x1i = 0, i = 2, 3, 4, 5. As before, the quotient is related to a gradation of the
algebra g = g1 ⊕ g0 ⊕ g−1 with g−1 dual to g1 and pC = g1 ⊕ g0.

2.2. Isomorphism between the homogeneous manifolds. It is well-known
that there exists an isomorphism of homogeneous spaces

Gr2(R4) ∼= Q.

The isomorphism is induced by a homomorphism at the Lie group level. Specifically,
for A ∈ SL(4,R), define Φ(A) ∈ Hom(Λ2R4,Λ2R4) by the usual induced action on
simple vectors v ∧ w. That is

Φ(A)(v ∧ w) = Av ∧Aw.

We can identify Λ2R4 with R6 through the choice of basis

{e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e4 ∧ e2, e3 ∧ e4}.

Under this representation, Φ(A) is defined by an SO(3, 3) matrix. Through straight-
forward calculations we see that, if A,D ∈M2×2, B,C ∈M2×2 with detB detC =
1, then

(2.3) Φ(
(
I A
0 I

)
) =


1 a21 a22 −a11 a12 detA
0 1 0 0 0 −a12

0 0 1 0 0 a11

0 0 0 1 0 −a22

0 0 0 0 1 −a21

0 0 0 0 0 1

 ,
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(2.4) Φ(
(
I 0
D I

)
=


1 0 0 0 0 0
d12 1 0 0 0 0
d22 0 1 0 0 0
−d11 0 0 1 0 0
d21 0 0 0 1 0

detD −d21 d11 −d22 −d12 1



(2.5) Φ(
(
B 0
0 C

)
) =


detB 0 0 0 0 0

0 b11c11 b11c12 b12c11 −b12c12 0
0 b11c21 b11c22 b12c21 −b12c22 0
0 b21c11 b21c12 b22c11 −b22c12 0
0 −b21c21 −b21c22 −b22c21 b22c22 0
0 0 0 0 0 detC

 .

The map Φ is a double cover of SO(3, 3) by SL(4,R), which also maps PG into PC .
Notice that Φ is a double cover on the parabolic subgroups, while it is one-to-one
between the sections of SL(4,R)/PG and SO(3, 3)/PC defined by (2.3). Therefore,
the map induces the desired isomorphism between homogeneous spaces. Clearly Φ
induces a graded map at the Lie algebra level.

3. The local geometry of Grassmannian curves

Let SL(p+p) ⊂ GL(p+p) be the simple linear group acting on gl(p) according to
the action of SL(2p) on the homogeneous space M = SL(2p)/H, where H ⊂ SL(2p)
are matrices of the form (

E 0
C D

)
with E,C,D ∈Mp×p. Assume we are in a neighborhood of the identity and so we
can locally factor an element g ∈ SL(2p) into the product

g =
(
I 0
Z I

)(
A 0
0 B

)(
I Y
0 I

)
.

Then, a representation for the homogeneous manifold M is given by the section
defined by matrices of the form (

I u
0 I

)
.

Using this section we can write the SL(p+ p) action on gl(p) as determined by the
relation

g

(
I u
0 I

)
=
(
I g · u
0 I

)
h

where h ∈ H. This relation determines the action uniquely to be

(3.1) g · u = A(u+ Y ) (B + ZA(u+ Y ))−1
.

3.1. Group-based moving frames for Grassmannian generic curves. In this
section we will use the normalization method described in [5] to find a group-based
moving frame along generic parametrized curves in the manifold Gr2(R4). Let
J (k)(R,Gr2(R4)) be the k-jet space of curves in Gr2(R4), i.e., the set of equivalence
classes of curves in Gr2(R4) up to k-contact order. An m-order left (resp. right)
group-based moving frame is a map

ρ : J (m)(R,Gr2(R4))→ SL(2p)
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equivariant with respect to the prolonged action of SL(2p) on J (k)(R,Gr2(R4)) and
the left (resp. right) action of SL(2p) on itself. Let ur = dru

dxr , where x is the
parameter. In the case at hand, the prolonged action is defined by the relation

g · ur = (g · u)r

where the right hand side represents the formula given by differentiating r times
the action g · u, and writing it in terms of x, u, u1, . . . , ur, the coordinates in
J (k)(R,Gr2(R4)), r ≤ k.

In order to find a left moving frame ρ along a generic curve u(x), we will normalize
the prolonged action of SL(2p) on J (m)(R,Gr2(R4)), up to a certain order m. The
choice of normalization (which defines a cross-section on the prolonged orbits of the
group) is not unique and can be arbitrary as far as we retain full rank. If ρ is a left
(resp. right) moving frame, we call K = ρ−1ρx (resp. K = ρxρ

−1) its associated
Maurer-Cartan matrix. A theorem by Hubert ([7]) states that, if ρ is found via a
normalization process, the entries of K and their derivatives functionally generate
all other differential invariants of the curve. Different choices of normalization
will give rise to different Maurer-Cartan matrices and different invariants. Our
particular choices are made seeking both simplicity and a direct relation between
the invariants (to this end the normalization constants are coordinated in both
examples). Simplicity is important, a complicated Maurer-Cartan matrix will result
in a difficult Hamiltonian study.

At each step we will normalize fully, i.e., we will normalize as many terms as
permitted by the rank of the action. The terms that cannot be normalized will
be differential invariants of the action. This process will determine an element g
completely in terms of u and its derivatives. It is known (see [5]) that ρ−1 = g
found through this process is a right moving frame. A left moving frame is given
by its inverse ρ.

We proceed to determine the (right) frame for the case at hand.
Zeroth normalization equation. For first normalization constant we will choose

i0 = 0. The first normalization equations will be equations of zero differential order

g · u = A(u+ Y ) (B + ZA(u+ Y ))−1 = i0 = 0

which is satisfied by the choice Y = −u. We have no zero order differential invari-
ants.

First normalization equation. The next equations are the first order normaliza-
tion equations g · u1 = i1. We will make the normalization choice i1 = I. After
substituting the previous normalization choice (u+ Y = 0), the equation becomes

(3.2) g · u1 = Au1 (B + ZA(u+ Y ))−1

−A(u+ Y ) (B + ZA(u+ Y ))−1
Z (B + ZA(u+ Y ))−1 = Au1B

−1 = i1 = I.

This equation is satisfied with the choice

A = Bu−1
1 .

Since g ∈ SL(2p), we also have detAdetB = 1 and so

detB = (detu1)1/2.

As expected, we have no first order differential invariants. Let us call F = (B + ZA(u+ Y )).
Second normalization equation. After differentiating again, the second order

normalizations are found by substituting previous normalization values (in this
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case u + Y = 0 and A = Bu−1
1 ) and making the result equal to a constant i2. In

this case we choose i2 = 0. That is

(3.3) g · u2 = Au2F
−1 − 2Au1F

−1ZAu1F
−1

−A(u+ Y )F−1Z
(
Au2F

−1 − 2Au1F
−1ZAu1F

−1
)

= Bu−1
1 u2B

−1 − 2Z = i2 = 0.
This is solved with the choice

Z =
1
2
Bu−1

1 u2B
−1

and we have no second order invariants. At this point we only have left the deter-
mination of B (although not its determinant).

Third normalization equation. The third order normalization equations are, after
some simplification, given by

g · u3 = B

(
u−1

1 u3 −
3
2
u−1

1 u2u
−1
1 u2

)
B−1 = i3.(3.4)

Definition 1. We call

S(u) = u−1
1 u3 −

3
2
u−1

1 u2u
−1
1 u2

the Schwarzian derivative of the Grassmannian curve u.

Equation BS(u)B−1 = i3 does not have full rank on B for any choice of i3, we can
at most reduce S(u) to a certain normal form under conjugation. Let us assume now
that p = 2. The action U → BUB−1 has two invariants, namely, the determinant
and trace of U . That means that the rank of this action is two and we will be able
to use at most two third order normalization equations. Therefore, there will be
two third order differential invariants given by the entries that cannot be further
normalized. Notice that these are Grassmannian invariants of Schwarzian-type.

The following result is a consequence of theorems that can be found, for example,
in [6].

Proposition 1. Two generating and (functionally) independent third order differ-
ential invariants for a Grassmanian curve u in M are given by the determinant and
the trace of its Schwarzian derivative. That is, any other third order differential
invariant of u must be a function of these two.

There are many possible choices for i3. Our choice will be to normalize i3
depending on the nature of its eigenvalues (real or complex) . Let us write

S(u) =
(
s1 s2

s3 s4

)
, B =

(
a b
c d

)
in that case i3 is given by

i3 = BS(u)B−1

= (detu1)−1/2

(
d(as1 + bs3)− c(as2 + bs4) −b(as1 + bs3) + a(as2 + bs4)
d(cs1 + ds3)− c(cs2 + ds4) −b(cs1 + ds3) + a(cs2 + ds4)

)
.

If we call a/b = α and c/d = β.
In the generic case of real eigenvalues, diagonalizing i3 is equivalent to solving

the same equation for both α and β, namely

(3.5) P (α) = α2s2 + α(s4 − s1)− s3 = 0, P (β) = β2s2 + β(s4 − s1)− s3 = 0.
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Since detB 6= 0 we need this equation to have two different solutions and we need
α and β to be those two different solutions (the discriminant condition on this
equation is the same as the one for the characteristic equation for S(u)). Therefore

i3 =
(
k1 0
0 k2

)
.

In the generic case of complex eigenvalues, the normal form will be

(3.6)
(
k1 −k2

k2 k1

)
and the corresponding conditions to achieve it are

(3.7) 2αβs2 + (β + α)(s4 − s1)− 2s3 = 0, b2P (α) = d2P (β),

where P (α) and P (β) are given as in (3.5).
In both cases, the condition

(3.8) (α− β)bd = detB = (detu1)1/2

together with the two equations solve for a, c and d in terms of b, in the real case,
or for α, b and d in terms of β in the complex case. The real case is straightforward,
the complex case might require a little more explanation. From (3.7) we obtain

(3.9) α =
β(s4 − s1)− 2s3

s1 − s4 − 2βs2

and

(3.10) b4 =
1
4

(2βs2 + s4 − s1)2 detu1

P (α)P (β)
.

Using (3.9) one can see that

(3.11) P (α) = − P (β)
(2βs2 + s4 − s1)2

∆

where ∆ = (s4 − s1)2 + 4s3s2 is the discriminant of the characteristic polynomial
of S(u), and hence negative in our case. Therefore

b4 =
1
4
−∆(2βs2 + s4 − s1)4 detu1

P (β)2
.

From (3.7) and (3.11), we also get

(3.12) d4 = −1
4

∆3 detu1

P (β)2
.

Thus, the only condition we need to be able to solve for b and d is detu1 > 0, which
has been required early on, in view of (3.8).

Fourth normalization equation. Finally, if we write the fourth order normaliza-
tion equations and we use previous normalization we will obtain an equation also
of the form

(3.13) BR(u)B−1 = i4,

for some fourth order matrix R(u) involving derivatives of u, but not B. We do not
really need here its explicit expression, but we need to choose the last normalization
equation carefully so as to simplify later calculations.

Real case.
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Assume first we are in the real case. If we denote R(u) by

R(u) =
(
r1 r2

r3 r4

)
then normalizing its (1, 2) entry, for example, will give us the remaining miss-
ing equation. Although one usually chooses constants to normalize, we can also
choose expressions that depend on invariants as we simply need a section of the
prolonged orbit (see [5]). The resulting generation of invariants will remain un-
changed, although the generators will be different. Assume we have diagonalized
the Schwarzian derivative and it is given by(

k1 0
0 k2

)
.

Generically k1 6= k2 and we can assume that k1 − k2 will not vanish near the
basepoint. Let us choose as last normalization equation to be the (1, 2) entry equal
k2 − k1

(3.14) (detu1)−1/2b2
(
α2r2 + α(r4 − r1)− r3

)
= k2 − k1.

(Notice that zero is a singular value for the normalization.) Recall that k2 − k1 =
±(∆)1/2, depending on the choice. We can exchange k1 and k2 if locally this
equation cannot be solved. (In fact, we can also choose any multiple of k2 − k1

instead of k2 − k1 and obtain similar results.) Thus, with a proper choice, this
equation can be generically solved.

Complex case.
Assume now that we are in the complex case. In order to find β we can choose

several different normalizations. The one we will choose here is to make the (1, 1)
entry of the equation equal to the (2, 2) entry. The corresponding equation is

αβr2 +
1
2

(α+ β)(r4 − r1) + r3 = 0.

After substituting the value of α and simplifying, we obtain a quadratic equation
for β, which can be locally solved in generic cases. As before, k1 = 1

2 (s1 + s4) and
k2 = ± 1

2 (−∆)1/2, depending on the choice. Different normalizations will be needed
for those generic cases for which the equation cannot be solved. Later on we will
need to change this frame into a more convenient one.

This completes the calculation of the moving frame and we can now find its
associated Maurer-Cartan matrix. Unlike the classical case, the entries of the
Maurer-Cartan matrix will produce a complete set of independent and generat-
ing differential invariants (see [7]). But before, we will write a final description of
the generating invariants that can be obtained directly from this normalization.

Theorem 1. A generic curve in Gr2(R4) has a system of four functionally inde-
pendent and generating differential invariants, two of order three and one of each
order 4 and 5.

Proof. Standard arguments that can be found in [5] tell us that, in the case of real
Schwarzian eigenvalues, the diagonal of i4 in (3.13) equals the derivative of the
diagonalization of S(u). In the complex case, the same arguments show that, if

i3 =
(
k1 −k2

k2 k1

)
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then i4 in (3.13) will be of the form(
α1 β1

β1 −α1

)
+
(

(k1)x −(k2)x
(k2)x (k1)x

)
.

In the real case, (3.13) adds one independent fourth order invariant to our group of
third order ones, namely the (2, 1) entry of (3.13) (which has not been normalized).
In the complex case, our normalization implies α1 = 0. Hence, β1 will be the
additional functionally independent fourth order invariant.

One more fifth order invariant exists, one that is not a function of the previous
three invariants and their derivatives. The description of this generator can be found
following the normalization process in [5]. If we write the fifth order normalization
equations as above, there is one entry that corresponds to a previously normalized
entry in i4, namely (1, 2) in the real case and (2, 1) in the complex one. That entry
is an independent fifth order differential invariant. �

The explicit expression is not relevant now. Indeed we will make use of a different,
but more convenient, choice.

3.2. Grassmannian Maurer-Cartan matrix associated to the left moving
frame.

Definition 2. Let ρ be a left moving frame. The matrix

K = ρ−1ρx

is called the (left) Maurer-Cartan matrix associated to ρ (it is the horizontal com-
ponent of the pull-back by ρ of the Maurer-Cartan form of the group G) . The
entries of K are clearly differential invariants; a Theorem in [7] states that they
generate all other differential invariants for the curve. Since the right moving frame
associated to a left one is its inverse, the right Maurer-Cartan matrix is the negative
of the left one.

Some of the work in [5] provides what are normally called horizontal recurrence
formulas. These formulas can be used to recurrently calculate the entries of K.
The following Proposition is a reformulation of these recurrence formulas for the
case at hand.

Proposition 2. Let K be the left Maurer-Cartan matrix associated to a moving
frame ρ. Assume that ρ · us = is, s = 0, 1, 2 . . . . Then

(3.15) K · is = is+1 − (is)x

s = 0, 1, 2, . . . , where the dot in K · is represents the sth infinitesimal prolonged
action of the Lie algebra on the element of the jet space is.

We will use this recurrence relation to find the left Maurer-Cartan matrix asso-
ciated to the left moving frame ρ = g−1, where g was found in our previous section.
Denote the Maurer-Cartan matrix by

K =
(
K11 K12

K21 K22

)
.

If

V =
(
V11 V12

V21 V22

)
∈ g
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we can calculate the infinitesimal version of (3.1) to be

V · u = V11u− uV22 − uV21u+ V12.

Given that i0 = 0 and i1 = I (see (3.2)), for s = 0 (3.15) becomes

K · 0 = K12 = I.

The infinitesimal version of the action in (3.2) is given by

V · u(1) = V11u1 − u1V22 − u1V21u− uV21u1.

Now, i2 = 0, so for s = 1 formula (3.15) becomes

K · i1 = K11 −K22 = i2 − (i1)x = 0, K11 = K22

Again, the infinitesimal version of the action in (3.3) is given by

V · u(2) = V11u2 − u2V22 − 2u1V21u1 +R2

where R2 are terms that vanish whenever u = 0. From here, when s = 2, formula
(3.15) becomes

K · i2 = −2K21 = i3, K21 = −1
2
i3.

Finally, the infinitesimal version of the action in (3.4) is given by

V · u(3) = V11u3 − u3V22 − 3(u2V21u1 + u1V21u2) +R3

where R3 vanishes whenever u = 0. Therefore, for s = 3, equation (3.15) becomes

(3.16) K11i3 − i3K11 = i4 − (i3)x.

Real case.
In the case of real Schwarzian eigenvalues, both sides of (3.16) have a vanishing

diagonal, and so, the off-diagonal entries of K11 are determined by the entries of
i4. That is, if

K21 = −1
2
i3 =

(
κ1 0
0 κ2

)
then, straightforward calculations show that the off-diagonal entries of K11 are
given by (

0 1
κ3 0

)
where κ3 is an independent fourth order differential invariant determined by the
one appearing in i4 through (3.16). One can find explicitly κ3, but we do not really
need its expression here and we will change frames soon. Notice that the choice of
k2−k1 in the normalization of (3.14) implies that the (1, 2) entry of K11 is constant
and equal to 1. Recall that zero was a singular value.

We do not need to go to the fourth order. Indeed, since K11 = K22, we do
know that the traces of both matrices vanish. Therefore, only one unknown entry
of K remains, namely the one entry determining its trace. On the other hand, we
do know that the entries of K generate all differential invariants, and there is one
fifth order invariant that is unaccounted for. Therefore, we can conclude that the
missing entry, κ4, is such a generator without actually calculating it explicitly. If
we were to need its explicit formula, we could use the recurrence formulas further
to find them. Thus, in the real case

K11 =
(
κ4 1
κ3 −κ4

)
.
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Complex case.
In the case of complex Schwarzian eigenvalues

i3 =
(
k1 −k2

k2 k1

)
, K21 = −1

2
i3 =

(
κ1 −κ2

κ2 κ1

)
.

As we pointed out before, i4 can be split into

i4 =
(
α1 + (k1)x −(k2)x

(k2)x −α1 + (k1)x

)
since, with our normalization, β1 = 0. If K11 = (kij), then (3.16) becomes(

k2(k12 + k21) −2k11k2

−2k2k11 −k2(k12 + k21)

)
=
(

0 β1

β1 0

)
and so

K11 =
(
κ3 −c
c −κ3

)
where c is still to be found and κ3 is a fourth order invariant obtained from α1.
As before, c needs to be the missing fifth order generator κ4, since it is the only
undetermined entry. Finally

K11 =
(
κ3 −κ4

κ4 −κ3

)
.

We have finally proved the following theorem.

Theorem 2. Let ρ be the left moving frame determined in the previous section. Its
Maurer-Cartan matrix is given by

(3.17) K = ρ−1ρx =


κ4 1 1 0
κ3 −κ4 0 1
κ1 0 κ4 1
0 κ2 κ3 −κ4


in the generic case of real eigenvalues, and by

(3.18) K =


κ3 −κ4 1 0
κ4 −κ3 0 1
κ1 −κ2 κ3 −κ4

κ2 κ1 κ4 −κ3


in the generic case of complex eigenvalues. In both cases κ1 and κ2 are third order
differential invariants, κ3 is fourth order and κ4 is fifth order. The invariants κi,
i = 1, . . . , 4 form a generating system of independent differential invariants for
generic curves of Grassmannians.

3.3. Invariant evolutions of Grassmannian curves. Once a group-based mov-
ing frame has been found, a theorem in [12] provides us with a classical moving
frame (an invariant curve in the frame bundle over the curve). This classical frame
can be used to write the most general form of an invariant evolution of curves in
M , i.e., an evolution for which the group takes solutions to solutions. The follow-
ing theorem explains what that evolution is in our case. The theorem is a direct
consequence of the results in [12].
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Theorem 3. Let ρ = g−1 be the left moving frame obtained in section 3.1, and
let B be the matrix defining g. Then, the most general form of an evolution of
Grassmannian curves, invariant under the action (3.1), is given by

(3.19) ut = u1B
−1rB

where r is any 2× 2 matrix depending on κi, i = 1, . . . , 4, and their derivatives.

This expression is the particular form in our example of the more general formula
for |1|-graded Lie algebras ρ−1

−1 (ρ−1)t = Ad(ρ0)(r), where r ∈ g−1 is an element
of g−1 depending on differential invariants of the curve, and where ρ = ρ−1ρ0ρ1

is a left moving frame factored out following the gradation, with ρ−1 defining our
section (for more details see [12]). In our case

ρ−1 =
(
I u
0 I

)
, ρ0 =

(
u1B

−1 0
0 B−1

)
, ρ1 =

(
I 0
−Z I

)
.

The matrix r has a Hamiltonian interpretation that will be explained in our next
section. Because of the Hamiltonian interpretation, the following Theorems are
of interest to us. They describe the behavior of evolutions as non-Schwarzian
invariants κ3, κ4 vanish, with r having the same normal form as S(u). Since
BS(u)B−1 = i3 = −2K12, the particular choice r = K12 corresponds to the flow

ut = u1B
−1K12B = −1

2
u1S(u)

which is a generalization of the well-known KdV-Schwarzian evolution to Grass-
mannian flows.

Theorem 4. Assume S(u) has real eigenvalues and assume r is a diagonal matrix.
Then, the level set κ3 = 0 is invariant under evolution (3.19).

For general diagonal r, and in particular when r = K12, the level set κ4 = 0 is
not invariant under evolution (3.19).

Assume S(u) has complex eigenvalues, and assume r =
(
a −b
b a

)
is in normal

form. Then, for general r (and in particular if r = K12), the flow blows up as
κ3 → 0. The level set κ4 = κ3 = 0 is, therefore, not preserved.

The relevance of the second part of this proposition will be better understood
in our next section. The situation described in this theorem is very similar to the
one for spinor curves ([14]) for which it was proved that any choice of local moving
frame would induce this situation.

Proof. Let u(t, x) be a flow solution of (3.19) with r diagonal. A theorem in [12]
(or a straightforward calculation) shows that N = ρ−1ρt is of the form

N =
(
N11 r
N21 N22

)
.

Furthermore, since d
dx and d

dt commute, compatibility of ρx = ρK and ρt = ρN
imply

Kt = Nx + [K,N ].
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This breaks up into a number of individual equations (according to the gradation
of the algebra), namely

0 = rx +N22 −N11 + [K11, r](3.20)
0 = (N11 −N22)x + [K11, N11 −N22]− rK21 −K21r + 2N21(3.21)

(K11)t = (N11)x + [K11, N11]− rK21 +N21(3.22)
(K21)t = (N21)x +K21N11 −N22K21 + [K11, N21] .(3.23)

Real case.

Assume now that S(u) has real eigenvalues and that r =
(
r1 0
0 r2

)
is diagonal.

Let us call

N11 =
(
a1 b1
c1 d1

)
, N22 =

(
a2 b2
c2 d2

)
.

Then, using (3.20) we obtain

(3.24) N11 −N22 =
(
a1 − a2 b1 − b2
c1 − c2 d1 − d2

)
=
(

(r1)x r2 − r1

κ3(r1 − r2) (r2)x

)
.

Using (3.21) we have
(3.25)

N21 =
(

− 1
2r
′′
1 + κ1r1 (r1 − r2)′ + κ4(r1 − r2)

( 1
2 (κ3)′ − κ4κ3)(r1 − r2) + κ3(r1 − r2)′ − 1

2r
′′
2 + r2κ2

)
.

From here, (3.23) becomes
(3.26)(

(κ1)t 0
0 (κ2)t

)
=

− 1
2r
′′′
1 + (r1κ1)′ + κ1r

′
1 κ1b1 − κ2b2 + 3

2 (r1 − r2)′′ + κ2r2 − κ1r1

κ2c1 − κ1c2 − 1
2r
′′′
2 + (r2κ2)′ + κ2r

′
2

+X1

where X1 is a matrix whose explicit expression can be directly found, and whose
relevant property is that it is well-defined for κ3 and κ4 sufficiently small, X1

becomes strictly upper triangular as κ3 → 0, and X1 → 0 as κ3, κ4 → 0.
Therefore, (3.26) determines completely the evolution of κ1 and κ2. Notice that

the choice ri = κi produces a decoupled system of KdV equations in κ1 and κ2 in
the limit. From (3.24) we have that, as κ3 → 0, c1 = c2, which together with (3.26)
gives us, as κ3 → 0, (and as long as κ1 − κ2 6= 0)

c1 = c2 = 0.

Equations (3.24) and (3.26) also provide the explicit expression for b1 and b2, these
are

b1 = −3
2

(r1 − r2)′′

κ1 − κ2
+
κ1 + κ2

κ1 − κ2
r1 − 2

κ2

κ1 − κ2
r2 + Y1(3.27)

b2 = −3
2

(r1 − r2)′′

κ1 − κ2
+ 2

κ1

κ1 − κ2
r1 −

κ1 + κ2

κ1 − κ2
r2 + Y2(3.28)

where Yi → 0 as κ4 → 0. With these values, equation (3.22) proves the proposition.
The entry (2, 1) of (3.22) shows (κ3)t = 0 as κ3 → 0 (independently of κ4), and
hence κ3 = 0 is preserved by the evolution. Finally, the (1, 2) entry of (3.22) will
determined the value of d1− a1, and we know that a1− a2 = (r1)x, d1− d2 = (r2)x
and a1 + a2 + d1 + d2 = 0 (from the algebra condition). These relations completely
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determine all values of N . If we further assume that κ4 → 0, after straightforward
calculations the remaining values show that

(κ4)t =
1
2
b′′1 +

1
4

(r′′1 − r′′2 )

and so κ4 = 0 is not, in general, preserved, even in the case ri = κi.
Complex case.
Assume now that S(u) has complex eigenvalues, and assume that

r =
(
r1 −r2

r2 r1

)
.

Using the same equations as in the real case, we obtained the values

N11 −N22 =
(

r′1 + r2 −r′2 − 2κ3r2

r′2 − 2κ3r2 r′1 − r2

)

N21 =
(
− 1

2r
′′
1 − r′2 + r1κ1 − r2κ2

1
2r
′′
2 − (r1κ2 + r2κ1)

− 1
2r
′′
2 + r2κ1 + r1κ2 − 1

2r
′′
1 + r′2 + r1κ1 − r2κ2

)
+ Z1

where

Z1 =
(

−2κ3κ4r2 + κ3r2 −r2κ4 + κ3(r′2 + 2κ3r2) + (r2κ3)′

−r2κ4 + κ3(r′2 − 2κ3r2) + (κ3r2)′ 2κ3κ4r2 − κ3xr2

)
.

The t-evolution of K12 in (3.20) imposes some conditions on the entries of LHS,
namely the (1, 1) and (2, 2) entries must be equal, and the (1, 2) and (2, 1) entries
must be the negative of each other. This leads to solving for c1 + b1 and for a1−d1,
which are determined by

κ2(c1 + b1) = z1, κ2(a1 − d1) = z2

where z1 and z2 are well defined as κ3 and κ4 vanish, and they both vanish in
the limit. Recall that the trace of N is zero. Therefore a1 + d1 + a + 2 + d2 =
2(a1 + d1) − 2r′1 = 0. From here a1 + d1 = r′1 and, in the limit, a1 = 1

2r
′
1. From

here we obtain the evolutions for κ1 and κ2, namely

(3.29)
(
κ1

κ2

)
t

=
(
− 1

2D
3 +Dκ1 + κ1D −Dκ2 − κ2D
Dκ2 + κ2D − 1

2D
3 +Dκ1 + κ1D

)(
r1

r2

)
+
(
y1

y2

)
where, again, y1 and y2 are well defined and vanish as κ3, κ4 vanish. In the limit,
the evolution becomes a complexly coupled system of KdV equations, evolution
that also appears in the conformal case. Still, such a limit creates a singularity in
the flow. A final condition is imposed by the evolution of K11 in (3.22), where the
sum of the (1, 2) and (2, 1) entries vanish. The condition gives us an equation that
allows us to finally solve for c1 and b1 (we can solve for all the other ones with the
data we have up to this point). The equation is

(c1 + b1)′ + 2κ3(b1 − c1)− 2(d1 − a1)κ4 − 2κ4r2 + 2κ3r
′
2 + 2(κ3r2)′ = 0.

The expressions for d1 − a1 and c1 + b1 tells us that b1 and c1 are not well-defined
in the limit. Therefore, the t-evolution of κ4 also blows up as κ3 → 0. Finally, one
can check that the level set κ3 = 0 is preserved and (κ3)t = 0 as κ4 → 0. We leave
the rest of the details to the reader. �



16 G. MARÍ BEFFA AND M. EASTWOOD

4. Geometric Hamiltonian structures

There are two well-known Poisson structures defined on the space of Loops on
the dual of a semisimple Lie algebra. If H,F : Lg∗ → R are two operators, their
Poisson brackets are given by new operators on Lg∗ defined as

(4.1) {H,F}(L) =
∫
S1
〈B
(
δH
δL

)
x

+ ad∗(
δH
δL

)(L),
δF
δL
〉dx

(4.2) {H,F}0(L) =
∫
S1
〈ad∗

(
δH
δL

)
(L0),

δF
δL
〉dx

where B is any bilinear identification of g with its dual and where L0 ∈ g is any
constant element. The elements δH

δL ,
δF
δL ∈ g are the variational derivatives at L

and 〈, 〉 is the invariant pairing of g with g∗. The usual choice is to identify g
with its dual g∗ using the Killing form, or, for example the trace of the product
if g ⊂ gl(n,R). With these standard choices, if g ⊂ gl(n,R), then the dual to the
entry (i, j) is given by the entry (j, i) (or a multiple of it).

For a given choice of normalization equations, let’s denote the space of Maurer-
Cartan matrices by K. The author of [12] showed that, locally around a generic
curve u(x) ∈ G/H with G semisimple, the space K can be written as a quotient
U/LH where U ⊂ Lg∗ is open. She also showed that the Poisson bracket (4.1) could
then be reduced to the quotient to produce what she called a Geometric Poisson
structure, a Hamiltonian structure on the space of differential invariant of curves.
The Poisson bracket (4.2) cannot always be reduced, but its reduction usually
indicates the existence of a curve evolution inducing a completely integrable system
on its invariants. In this case, the integrable system is biHamiltonian with respect
to both reduced brackets. The paper [12] also showed how given any evolution
Hamiltonian with respect to the geometric Poisson bracket, one could always find a
geometric realization as invariant flows in G/H. The coefficients of the realization
were explicitly related to the Hamiltonian functional.

Both the reduction of (4.1) and the geometric realizations of Hamiltonian evo-
lutions can be found explicitly in most cases, under some minimal conditions. For
example, the reduction process can be described in the following terms: given
h, f : K → R, we extend them to functionals H,F : Lg∗ → R so that the extensions
are constant on the LH-leaves along K. This condition is infinitesimally described
by stating

(4.3)
(
δH
δL

)
x

+ ad(K)
(
δH
δL

)
∈ h0,

with K ∈ K. If two such extensions can be found, then the reduced Poisson bracket
is given by {h, f}R(k) = {H,F}(K), where K is the Maurer-Cartan matrix defining
the generating invariants k. The infinitesimal condition usually allows us to solve
explicitly for δH

δL .
Perhaps the most interesting part is the direct relation between invariant evo-

lutions and evolutions that are Hamiltonian with respect to the reduction of (4.1).
The following theorem can be found in [12].

Theorem 5. Assume an evolution

(4.4) kt = F (k,kx,kxx, . . . )
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is Hamiltonian with respect to the geometric Poisson bracket obtained when reducing
(4.1) to K. Assume f is its Hamiltonian functional and F is an extension constant
on the  LH-leaves along K. Assume ρ = ρ−1ρ0ρ1 according to a |1|-grading of the
algebra and assume we can identify ρ−1 with a nondegenerate curve u in G/H. Let
r =

(
δF
δL (K)

)
−1

. Then

(4.5) ρ−1
−1 (ρ−1)t = Ad(ρ0)r

is a geometric realization for (4.4).

This direct relation, together with Theorem 4, tells us that the reduction of
(4.1) cannot be further restricted to the level set κ3 = κ4 = 0. On the other hand,
such a reduction was possible for the conformal sphere of signature (n, 0), and,
when reduced, one would obtain BiHamiltonian structures for a complexly coupled
system of KdV equations on κ1 and κ2 (see [14]). The level set κ3 = κ4 = 0
was also preserved by invariant evolutions whenever r was in the same normal
form as S(u). To achieve this restriction in the conformal case, one needed to use
natural conformal moving frames. In our next section we study the local geometry
of conformal curves on the sphere of signature (2, 2), followed by the definition of
natural frames. Natural moving frames are easier to understand geometrically in
the conformal picture than in the Grassmannian one, although they correspond
algebraically, so our strategy is to shift the geometric knowledge we have in the
conformal case to the Grassmannian one.

5. The local geometry of conformal curves

In this section we will describe the analogous information presented in the previ-
ous section for the case of the conformal Möbius sphere of signature (2, 2). Although
the case of the conformal Möbius sphere of signature (n, 0) was studied in [13], the
change of signature and the need to relate it to the Grassmannian case urge us to
use normalization equations, a different approach from that in the original paper.
The normalization constants will be matched to the ones used for the Grassman-
nian case, while trying to reproduce the results in [14] for the general conformal
case. Although the isomorphism Φ in section 2 guarantees our process, we need to
have explicit descriptions to relate it to the natural frame.

Following the gradation of so(3, 3) we described in our second section, an element
g ∈ SO(3, 3) can be locally factored as

g =

 1 0 0
z I 0

− 1
2 ||z||

2 −ztJ 1

α 0 0
0 Θ 0
0 0 α−1

1 −ytJ − 1
2 ||y||

2

0 I y
0 0 1


where α ∈ R, Θ ∈ O(2, 2), O(2, 2) is represented as the group that preserves

J =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,

and where ||v||2 = vtJv (the notation is deceiving since it can be negative). We will
also denote 〈v, w〉 = vtJw. If we identify SO(3, 3)/PC with the section α = 1, z =
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0,Θ = I, that is, with

gu =

1 −utJ − 1
2 ||u||

2

0 I u
0 0 1


then g · u is completely determined by the relation

ggu = gg·uh

with h ∈ PC . The relation uniquely determines

(5.1) g · u =
Θ(u+ y)− α

2 ||u+ y||2z
α−1 − ztJΘ(u+ y) + α

4 ||z||2||u+ y||2
.

5.1. Group-based moving frame for conformal generic curves. Let us de-
note denominator and numerator by g · u = F

M . The normalization process below
uses normalization constants that are coordinated with those of the Grassman-
nian. Consider the vectors e1 = (1, 0, 0, 1)t, e2 = (0, 1, 1, 0)t, e3 = (0, 1,−1, 0)t,
e4 = (1, 0, 0,−1)t so that ||e1||2 = ||e2||2 = −||e3||2 = −||e4||2 = 2.

Zeroth normalization equation. This equation is given by

g · u = i0 = 0

which can be readily solved with the choice u+ y = 0 or y = −u.
First normalization equation. Since g · u1 = F1

M −
F
M

M1
M . when substituting

g · u = F
M = 0 we get that the first normalization equation is

g · u1 =
F1

M
= αΘu1 = i1 = e3.

This determines α2||u1||2 = −2 and imposes conditions on Θ. If ||u1||2 > 0 (notice
the abuse of notation since ||||2 can be negative), then this choice is not possible
and both Grassmannian and conformal cases will need to be renormalized to adjust

to the situation (by, for example, choosing e2 = i1 and i1 =
(
−1 0
0 1

)
in the

Grassmannian case). There is no problem doing so and we obtain an analogous
result.

Second normalization equation. Since

g · u2 =
F2

M
− 2

F1

M

M1

M
− F

M

(
M2

M
− 2

M2
1

M2

)
after substituting previous normalizations we obtain

g · u2 = αΘu2 + 2z + 2(ztJe3)e3 = i2 = 0.

This choice of i2 allows us to solve for z in terms of Θ (if z = (z1, z2, z3, z4)t, then
(z1, z3, z2, z4)t = − 1

2αΘu2). With this value for z, one can check directly that
||z||2 = 1

4 ||u2||2 − α2

4 〈u1, u2〉2 and ztJe3 = α
2 〈u1, u2〉.

Third normalization equation. Given that

g · u3 =
F3

M
− 3

M1

M

(
F2

M
− 2

F1M1

M2

)
− 3

M2

M

F1

M
− F

M

(
M3

M
− 6

M2M1

M2
+ 6

M3
1

M3

)
substituting previous normalizations yields the equation

αΘu3 − 3α2〈u1, u2〉z − 6(ztJe3)2e3 − 3||z||2e3 = i3.
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If we write z and e3 in terms of Θ using previous normalization equations, we arrive
to the third normalization equation

(5.2) αΘ
(
u3 − 3

〈u1, u2〉
||u1||2

u2 +
3
2
||u2||2

||u1||2
u1

)
= αΘG3 = i3

where the vector G3 is defined uniquely by the equation.
As expected, this equation has rank 2. In fact,

(5.3) 〈i3, i1〉 = −2
(
〈u1, u3〉
||u1||2

− 3
〈u1, u2〉2

||u1||4
+

3
2
||u2||2

||u1||2

)
= −2I1

(we define I1 through this equation) and ||i3||2 = −2(I2 + I2
1 ) where

(5.4)

I2 =
〈u3, u3〉
||u1||2

−6
〈u1, u2〉〈u2, u3〉

||u1||4
−〈u1, u3〉2

||u1||4
+6
〈u1, u2〉2〈u1, u3〉

||u1||6
+9
〈u1, u2〉2〈u2, u2〉

||u1||6
−9
〈u1, u2〉4

||u1||8
.

Both I1 and I2 appeared in [13] for the case of signature (n + 1, 1) and they were
called in [14] differential invariants of Schwarzian or projective type. If φ is a change
of parameter, one can check that

φ∗I1 = (φ′)2I1 ◦ φ+ S(φ), φ∗I2 = (φ′)4I2 ◦ φ

where S(φ) denotes the Schwarzian derivative of φ. The invariant I1/4
2 is used to

define the conformal arc-length.
Now we need to make a choice for i3. The value of i3 in the Grassmannian case

depends on whether the Schwarzian derivative of u has real or complex eigenvalues.
Here we will make two different choices to match the Grassmannian choices. We will
also call them the real and complex cases, although this relation is only apparent
through its connection to the Grassmannian.

Real case. In this case we will choose

(5.5) i3 =


0
∗
∗
0

 .

That is, we will ask αΘG3 to lie on the plane generated by e2 and e3. Assume
i3 = k̂1e2 + k̂2e3. Given that αΘu1 = e3, this will determine the value of Θ−1e3

and that of Θ−1e2 (with Θ ∈ O(2, 2) being guarantee by the entries that are not
normalized). We need to find one more piece of information about Θ−1e1 or e4

to completely determine Θ. We can accomplish that in the fourth normalization
equation, where only one more equation needs to be normalized.

Complex case. In the complex case we will choose

i3 = k̂1e3 + k̂2e4

so that we will have determined Θ−1e3 and Θ−1e4. Again, one more normalization
in the fourth order equation will completely determine Θ.

Fourth normalization equation. As done with the third equation, we will need
to differentiate once more and substitute the previous normalizations. Details are
dull and do not add information, so we will leave them up to the interested reader.
After substituting the values for z and e3 in terms of αΘ, once more the fourth
normalization equation will look like

αΘG4 = i4
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where G4 is a vector depending exclusively on derivatives of u.
Real case. In this case we will ask i4 to belong to the subspace generated by e2,

e3 and e4; this forces the coefficient of e1 to vanish, which is the last normalization
equation we need to use to complete the determination of the moving frame ρ.
Notice that these choices can be accomplished generically (to be sure, we would
need to find G4, which is straightforward but long and space consuming so we will
not include it in the paper).

Complex case. In this case we will ask for the same condition on i4, which will
also imply that the e1 coefficient of ΘG4 will vanish. This normalization deter-
mines Θ−1e2 additionally to Θ−1e3 and Θ−1e4, so the frame is now completely
determined.

5.2. Grassmannian Maurer-Cartan matrix associated to the moving frame.
In this section we will use Proposition 2 to find the explicit form of the Maurer-
Cartan matrix K associated to the moving frame ρ that we just found. Let
v ∈ so(3, 3) and assume we split it as

(5.6) v =

vα −vt−1J 0
v1 v0 v−1

0 −vt1J −vα

 .

Then, the prolonged zero, first, second and third order infinitesimal action of the
algebra on the manifold are given by

v · u = v0 · u−
1
2
v1||u||2 + v−1,

v · u1 = v0u1 + vαu1 +R1,

v · u2 = vαu2 + v0u2 − ||u1||2v1 + 2u1v
t
1Ju1 +R2,

v · u3 = vαu3 + v0u3 − 3〈u1, u2〉v1 + 3(vt1Ju1)u2 + 3(vt1Ju2)u1 +R3,

where Ri all contain terms that vanish as u vanishes. Let K be the Maurer-
Cartan matrix in the conformal case and assume we split K as done in (5.6). Using
these equations for the infinitesimal action in Proposition 2 we get the following
information on K

K · i0 = K−1 = i1 = e3,

K · i1 = K0i1 +Kαi1 = (K0 +Kα)e3 = 0,
K · i2 = 2K1 − 2(Kt

1Je3)e3 = i3,

K · i3 = K0i3 +Kαi3 = i4 − (i3)x.

The first equation determines K−1 and the second tells us that Kα = 0 and

(5.7) K0 =


a b b 0
c 0 0 −b
c 0 0 −b
0 −c −c −a


where the entries still need to be determined. The last equation will determine the
value of K1, depending on whether we are in a real or a complex case, as expected.
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In the real case, if i3 = k̂1e2 + k̂2e3, then

K1 =


0
k1

k2

0


where k1 = 1

2 (k̂1 − k̂2) and k2 = 1
2 (k̂1 + k̂2).

In the complex case, if i3 = k̂1e3 + k̂2e4, then

K1 =


−k2

k1

−k1

k2


where ki = − 1

2 k̂i. These are combinations of the classical invariants I1, I2.
Our last recurrence relation completely determines K0. Indeed, in the real case

K0i3 = i4 − (i3)x implies that K0i3 has vanishing e1 component. If K0 is given
as in (5.7), this condition implies c = b = k4 and a = k3. In the complex case,
K0i3 = i4 − (i3)x implies also that the e1 component of K0e3 vanishes, which in
this case implies a = 0. Notice that one can go back in our calculations and obtain
an explicit formula for these invariants, if needed. We just proved the following
theorem.

Theorem 6. Let ρ be the left conformal moving frame found in the previous sub-
section. Then ρ−1ρx = K where K is of the form

K =


0 0 1 −1 0 0
0 k3 k4 k4 0 0
k1 k4 0 0 −k4 1
k2 k4 0 0 −k4 −1
0 0 −k4 −k4 −k3 0
0 0 −k2 −k1 0 0


in the real case, and

K =


0 0 1 −1 0 0
−k2 0 k3 k3 0 0
k1 k4 0 0 −k3 1
−k1 k4 0 0 −k3 −1
k2 0 −k4 −k4 0 0
0 −k2 k1 −k1 k2 0


in the complex case. The invariants k1 and k2 generate all differential invariants
of third order, while k3 and k4 generate independent invariants of higher order.
Explicit algebraic formulas can be found for each one of the invariants in terms of
derivatives of u.

6. Natural frames for conformal and Grassmannian curves

The concept of a natural frame appeared in [2]. The idea of the author was
that, although widely used, classical Serret-Frenet frames in Riemannian geometry
were, by no means, the only way to frame Riemannian curves, and often not the
most convenient one. The author of the article showed that one could, for example,
find a classical moving frame (which he called natural moving frame) for which the
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derivative of any of the vectors in the frame, other than the unit tangent, will be
in the tangential direction (thus, it is often called the parallel frame). Physically,
the moving frame does not record any rotational movement on the normal plane.
That is, if ν = (T, T1, . . . Tn−1) is a classical Serret-Frenet moving frame, T the unit
tangent, then

νx = ν


0 −κ1 0 . . . 0
κ1 0 −κ2 . . . 0
...

. . . . . . . . .
...

0 . . . κn−2 0 −κn−1

0 . . . 0 κn−1 0



while if η = (T,N1, . . . Nn−1) is the natural frame, then

ηx = η


0 −k1 −k2 . . . −kn1

k1 0 0 . . . 0
...

...
...

...
...

kn−1 0 0 . . . 0



A main characteristic of this natural frame is that their vectors are non-local, that
is, they cannot be written as an algebraic expression of derivatives of the curve. In
fact, one needs to solve a linear differential equation to find the natural frame.

The concept of Riemannian natural moving frame was translated into the confor-
mal picture in [13]. In the case of the Möbius sphere of signature (n+1, 1) one could
find a classical moving frame (T, T1, . . . , Tn−1) using a normalizing Riemannian-
type process (see [14]). In this process, and unlike the Riemannian case, T had
no role and the role of generating the rest of the frame though differentiation was
carried out by T1 instead of the tangent (T1 is a vector of differential order 3 related
to G3 in (5.2)). In the conformal case the author of [14] defined the classical con-
formal natural moving frame to be the frame for which the derivatives of all vectors
other than T and T1 are conformally in the direction of T1. In terms of the group-
based Maurer-Cartan matrix, if ρC is the moving frame associated to the classical
Serret-Frenet frame (T, T1, . . . , Tn−1) as in [14] and ρN is the one associated to
(T,N1, . . . , Nn−1), the natural frame, then

(ρC)x = ρC



0 1 0 0 0 . . . 0
k1 0 0 0 . . . 0 1
k2 0 0 −k3 0 . . . 0
0 0 k3 0 −k4 . . . 0
...

...
. . . . . . . . .

...
...

0 0 . . . . . . 0 −kn 0
0 0 . . . 0 kn 0 0
0 k1 k2 0 . . . 0 0


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while

(6.1) (ρN )x = ρN



0 1 0 0 0 . . . 0
k1 0 0 0 . . . 0 1
k2 0 0 −κ3 . . . −κn 0
0 0 κ3 0 0 . . . 0
...

...
...

...
...

...
...

0 0 κn 0 . . . 0 0
0 k1 k2 0 . . . 0 0


.

As in the Riemannian case, the conformal natural frame is non-local and one needs
to solve a linear differential equation to find it. More interestingly, the author of
[14] showed that if the geometric Poisson bracket is to be written using a classical
Serret-Frenet equation, the Poisson structure does not restrict to the submanifold
ki = 0, i = 3, . . . , while when written in terms of natural ones the restriction to
κi = 0, i = 3, . . . , can be carried out to obtain a complexly coupled system of KdV
structures. The restriction is biHamiltonian and one indeed obtains a geometric
realization of a complexly coupled system of KdV equations for k1 and k2 associated
to this restriction. Our hope is that, once we find the equivalent definition of natural
frame for our conformal and Grassmannian manifolds, we will also be able to obtain
restrictions and realizations for both cases.

The definition of natural frames is not well-suited to our algebraic approach
of describing moving frames. Therefore, we will try to describe natural frames
algebraically in a way that can be readily applied to our situation. Notice that, if
one has a left group-based moving frame, the factor of the frame that acts linearly
on the manifold (in our case ρ0) represents a classical frame (see [12]). The map
M →M taking u to ρ0 · u is linear and so represented by an element of GL(n,R).
That element has in its columns a classical moving frame. As shown in [13], the
way these elements behave under differentiation will be reflected in K0, according
to the gradation.

Let’s first have a good look at the conformal (n + 1, 1) case, the normalization
constants for the frame ρN in (6.1) are i1 = (1, . . . , 0)t and i3 = (k1, k2, 0, . . . , 0)t

(they correspond to the K−1 and K1 components of K, respectively). If Θ is the
analogous to ours for the (n + 1, 1) signature, this choice of constant implies that
Θu1 = ||u1||2e1 and ΘG3 = k1e1 + k2e2; that is, the first column of the classical
moving frame α−1Θ−1 will be the unit tangent and the second a combination of
the tangent with G3. The fact that all other derivatives are in the direction of the
second vector is reflected in the form of K0, namely

K0 =


0 0 0 . . . 0
0 0 −κ3 . . . −κn
0 κ3 0 . . . 0
...

...
... . . .

...
0 κn 0 . . . 0

 .

Algebraically, K0ei is a multiple of e2 for any i = 3, . . . .
In our signature (2, 2) conformal sphere i1 = e3 and, for the real case i3 =

k̂1e3 + k̂2e2 and for the complex case i3 = k̂1e3 + k̂2e4. Therefore, in the real case
we will say a moving frame is natural if its associated matrix K0 satisfies K0e3 = 0
and K0ei is a multiple of e2 for i = 1, 4. In the complex case, we substitute e2 with
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e4. Condition K0e3 = 0 implies

K0 =


a b b 0
c 0 0 −b
c 0 0 −b
0 −c −c −a


while

K0e1 =


a

c− b
c− b
−a

 , K0e2 =


2b
0
0
−2c

 , K0e4 =


a

c+ b
c+ b
a

 .

From here, in the real case we need a = 0, while in the complex case we need b = c.

Theorem 7. In the real case, there exists a conformal moving frame ρN , one we
will call natural moving frame, such that

KN = ρ−1
N (ρN )x =


0 0 1 −1 0 0
0 0 κ3 κ3 0 0
k1 κ4 0 0 −κ3 1
κ2 κ4 0 0 −κ3 −1
0 0 −κ4 −κ4 0 0
0 0 −k2 −k1 0 0

 .

In the complex case, the natural moving frame also exists and it is given by a matrix
of the form

KN = ρ−1
N (ρN )x =


0 0 1 −1 0 0
0 κ3 κ4 κ4 0 0
k1 κ4 0 0 −κ4 1
κ2 κ4 0 0 −κ4 −1
0 0 −κ4 −κ4 −κ3 0
0 0 −k2 −k1 0 0

 .

Proof. Given any two left moving frames ρ1 and ρ2, ρ1 = ρ2g with g depending
on differential invariants (g = ρ−1

2 ρ1). If K1 and K2 are their two Maurer-Cartan
matrices, then they are related by the gauge

g−1gx + g−1K2g = K1.

Therefore, we need to find an invariant g gauging K as in Theorem 6 to KN above.
One can directly check that, in the real case, ρN = ρg, where

g =


γ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 γ−1


and where γ is the solution to the differential equation γx = −k3γ, that is, γ =
e−

R
k3 . The invariants k3 and k4 change accordingly into κ3 and κ4.

In the complex case it is only slightly more complicated:

g =


γ η η γ − 1
−η γ γ − 1 −η
−η γ − 1 γ −η
γ − 1 η η γ


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with 1 + γ
η
γ−1
η = 0 and γ

η = − tan
(

1
2

∫
(k3 + k4)

)
. Again, the invariants k4 and k3

transform accordingly. �

These two transformations k3, k4 → κ3, κ4 are generalizations of the well-known
Hasimoto transformation for Euclidean geometry to the conformal case. The Hasi-
moto transformation was proven to be a map from classical Frenet to natural moving
frames (see [11]).

These moving frames can be translated into the Grassmannian picture using the
isomorphism. For completeness we will describe natural frames and how to find
them in the Grassmannian picture also. Notice that, even though in the conformal
case one can think of geometric ways to define natural frames, this is far less intuitive
and not at all obvious in the Grassmannian manifold. It is an interesting question
whether or not this can be done for any plat parabolic manifold.

Theorem 8. In the real case, there exists a left Grassmannian moving frame (the
natural frame) such its Maurer-Cartan matrix is given by

KN = ρ−1
N (ρN )x =


0 κ3 1 0
κ4 0 0 1
k1 0 0 κ3

0 k2 κ4 0

 .

In the complex case, the natural moving frame also exists and it satisfies

KN = ρ−1
N (ρN )x =


κ3 κ4 1 0
κ4 −κ3 0 1
k1 −k2 κ3 κ4

k2 k1 κ4 −κ3

 .

We do not need to prove this theorem, it is true due to the existence of the
isomorphism. Still, we can explicitly find the relation to the moving frame we
previously found. In the real case, ρN = ρg where

g =


γ 0 0 0
0 γ−1 0 0
0 0 γ 0
0 0 0 γ−1


with γ = e−

R
k4 . In the complex case

g =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cos θ − sin θ
0 0 sin θ cos θ


where θ = −

∫
k4.

7. Invariant evolutions and biHamiltonian equations in terms of
natural frames: coupled and decoupled systems of KdV equations

Finally, in this section we will show that both Hamiltonian structures (4.1) and
(4.2) reduce to the submanifold of K defined by κ3 = κ4 = 0 to produce a bi-
Hamiltonian decoupled system of two KdV structures in the real case, and a bi-
Hamiltonian complexly coupled system of KdV equations in the complex case. This



26 G. MARÍ BEFFA AND M. EASTWOOD

result also implies the existence of geometric realizations for these completely inte-
grable systems. These geometric realizations are best understood as a limit case:
as κ3, κ4 → 0, the evolution of k1 and k2 become completely integrable. Indeed,
κ3, κ4, in principle, cannot geometrically vanish, as seen in the previous definition
of natural frame (in the real case, k3 will need to blow up for κ3 to vanish). This is
a surprising geometric realization of KdV systems in the Grassmannian case, but
it also shows an unexpected result, namely the existence of geometric realizations
of decoupled systems of KdV equations in the conformal case. Only the one for
complexly coupled systems of KdV was previously known. This realization can be
readily found in a general conformal sphere. For this, we merely need to choose the
appropriate normalization i3 as in (5.5) in the work found in [14]. That leads to
the appropriate K1-form for the matrix.

From now on we will assume that we are working with the natural Maurer-Cartan
matrices. To describe the reduction and the reduced brackets we will follow section
4. We will also assume that we are identifying the dual to the Lie algebra with the
Lie algebra itself using the trace. That means that the dual to the entry aij is the
entry aji. In this section both the reduction of the structures, and their relation
to geometric realization are explained. Assume we have a Hamiltonian functional
f : K → R defined on the space of Grassmannian differential invariants, i.e., in the
space C∞(S1)×C∞(S1)×C∞(S1)×C∞(S1). Assume F is an extension which is
constant on the leaves of the subgroup N , and assume

(7.1)
∂F
∂L

(K) =
(
F2 F−1

F1 F3

)
, K =

(
K2 I
K1 K2

)

Real case. In this case K1 =
(
k1 0
0 k2

)
and K2 =

(
0 κ3

κ4 0

)
. If we denote

fi = ∂f
∂ki

(k), then,
(7.2)

F−1 =
(
f1 α
β f2

)
, F2 =

(
a 1

2f4 + f
1
2f3 + e b

)
, F3 =

(
c 1

2f4 − f
1
2f3 − e −a− b− c

)
and F1 is arbritary. In this case, the parabolic subgroup PG is formed by matrices

of the block form
(
∗ 0
∗ ∗

)
. Therefore, n0 = p0

G can be identified with matrices with

block-form (
0 0
∗ 0

)
.

Substituting (7.1) in (4.3) we get

F ′−1 + F3 − F2 + [K2, F−1] = 0,(7.3)

F ′2 + [K2, F2]− F−1K1 + F1 = 0(7.4)
F ′3 + [K3, F3] +K1F−1 − F1 = 0(7.5)

We can readily solve for F2−F3 using (7.3) and for F1 using (7.4) minus (7.5). The
rest of the entries are uniquely determined by the entries in which f ′i are located
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in the equations. Solving we get

α =
1

k2 − k1

(
f ′4 − 2κ3D

−1(κ4f4 − κ3f3)
)

β =
1

k2 − k1

(
f ′3 + 2κ4D

−1(κ4f4 − κ3f3)
)

2a = f ′1 + κ3β − ακ4 +D−1(κ4f4 − κ3f3)
2c = −f ′1 − κ3β + ακ4 +D−1(κ4f4 − κ3f3)
2b = f ′2 − κ3β + ακ4 −D−1(κ4f4 − κ3f3)
2f = α′ + κ3(f2 − f1)
2e = β′ + κ4(h1 − h2)

Using this results we can calculate the reduction of (4.1) to the space of differential
invariants. If f and h are two such functionals, then the Geometric Hamiltonian
structure is defined as

{f, h}(k) =
∫
S1

trace

((
δF
δL

(K)
)′

+
[
K,

δF
δL

(K)
])

δH
δL

(K)dx

where δH
δL (K) is calculated similarly to the variational derivative of F . The author

of [12] proved that this bracket is always a Poisson bracket. To show that the
bracket can be further restricted to the submanifold κ3 = κ4 = 0 we will check
that, if f depends only on k1 and k2 (that is, f3 = f4 = 0), while h depends only
on κ3 and κ4 (that is, h2 = h1 = 0), then {f, h}(k) = 0 along the submanifold
κ3 = κ4 = 0. After this step, we can calculate the bracket of two functionals that
depend only on k1 and k2.

First of all, notice that condition (4.3) implies that

{f, h}(k) =
∫
S1

trace ((F ′1 +K1F2 − F3K1)H−1) dx.

If a functional f satisfies f3 = f4 = 0, then we have α = β = e = f = 0 and
a = 1

2f
′
1 +C, b = 1

2f
′
2 −C, c = − 1

2f
′
1 +C, where C is a possible constant that will

end up canceling out in the calculation of the bracket. These values imply that,
whenever κ3 = κ4 = 0, the matrix F ′1 + K1F2 − F3K1 will be diagonal. On the
other hand, if h1 = h2 = 0, then H−1 will have a vanishing diagonal and, therefore,
{f, h}(k) = 0.

Finally, if both f and h depend on k1, k2 only, then, when κ3 = κ4 = 0

F ′1 +K1F2 − F3K1 =
(
− 1

2f
′′
1 + k1f1 0

0 − 1
2f
′′
2 + k2f2

)
x

+
(
k1f
′
1 0

0 k2f
′
2

)
,

and therefore

{f, h}(k) =
∫
S1

trace (F ′1 +K1F2 − F3K1)H−1dx =
∫
S1

(
δf
δk1

δf
δk2

)
P
( δh
δk1
δh
δk2

)
dx

where

P =
(
− 1

2D
3 + k1D +Dk1 0

0 − 1
2D

3 + k2D +Dk2

)
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which defines a decoupled Hamiltonian structure for KdV. One can also check
directly that, if we substitute the values of (7.1) in (4.2) for the choice

L0 =
(

0 0
I 0

)
the resulting bracket is given by

{f, h}0(k1, k2) =
1
2

∫
S1

(
δf
δk1

δf
δk2

)
P0

( δh
δk1
δh
δk2

)
dx

where P0 is the second Hamiltonian structure for a decoupled system of KdV equa-
tions, that is

P0 =
(
D 0
0 D

)
.

One can also check that the bracket of two Hamiltonians depending on (k1, k2) only
and (κ3, κ4) only vanishes when κ3 and κ4 do.

Complex case. In the complex case the same procedure is followed but with
different matrices K1, K2, F1, F−1, F2 and F3. In this case

K1 =
(
k1 −k2

k2 k1

)
, K2 =

(
κ3 κ4

−κ3 κ4

)
and

F−1 =
(

1
2f1 + α 1

2f2 + β
− 1

2f2 + β 1
2f1 − α

)
F2 =

(
1
4f3 + a 1

4f4 + f
1
4f4 + b − 1

4f3 + c

)
, F3 =

(
1
4f3 − a 1

4f4 + e
1
4f4 + d − 1

4f3 − c

)
.

In this case, condition (4.3) has the same equations as the real case, but this result
in different values for our unknowns

α = − 1
4k2

f ′4 +
κ3

k2
D−1(κ3f4 − κ4f3)

β =
1

4k2
f ′3 +

κ4

k2
D−1(κ3f4 − κ4f3)

2a = α′ +
1
2
f ′1 − κ4f2

2c = −α′ + 1
2
f ′1 + κ4f2

b+ d = D−1(κ3f4 − κ4f3)

b− d = β′ − 1
2
f ′2 + κ3(f2 − 2β) + 2κ4α

f + e = −D−1(κ3f4 − κ4f3)

f − e = β′ +
1
2
f ′2 + κ3(f2 + 2β)− 2κ4α.

As before, if f3 = f4 = 0 and h1 = h2 = 0, one can check straightforward that
{f, h}(k1, k2) = 0. The calculations are only slightly longer than the ones for the
real case. Also, if both f and h satisfy f3 = f4 = h3 = h4 = 0, then

H ′1 +K1H2 −H3K1

=
1
2

(
− 1

2f
′′′
1 + (k1f1)′ + k1f

′
1 + (k2f2)′ + k2f

′
2 − 1

2f
′′′
2 + (k1f2)′ + k1f

′
2 − (k2f1)′ − k2f

′
1

1
2f
′′′
2 − (k1f2)′ − k1f

′
2 + (k2f1)′ + k2f

′
1 − 1

2f
′′′
1 + (k1f1)′ + k1f

′
1 + (k2f2)′ + k2f

′
2

)
.
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Putting all of these values together in (4.1) we obtain the restricted bracket to be

{f, h}(k1, k2) =
∫
S1

(
δf
δk1

δf
δk2

)
P
( δh
δk1
δh
δk2

)
dx

where

P =
1
2

(
− 1

2D
3 +Dk1 + k1D Dk2 + k2D
Dk2 + k2D

1
2D

3 −Dk1 − k1D

)
the well-known Hamiltonian structure for a complexly coupled system of KdV equa-
tions. This structure had been already obtained in ??. Accordingly, we can guess
that the choice of third normalization in [14] is in a different prolonged orbit that
the real case we found here, and that a choice in the same orbit will result in a
decoupled system of KdV equations. Once more, if we substitute our values in (4.2)
for the same choice of L0 as in the real case, we obtain a second Poisson structure
P0, namely

P0 =
(
D 0
0 −D

)
.

This is known to be the second Hamiltonian structure for a complexly coupled KdV
system. As before, one can also check that the bracket of Hamiltonians depending
on (k1, k2) only and (κ3, κ4) only vanishes when κ3 and κ4 do.

The interest of these different structures is that (4.1) reduces always to a Geo-
metric Poisson bracket that is directly linked to a geometric realization of the
Hamiltonian evolution. The relation is given as in (4.5). Therefore, we have almost
finished the proof of the following Theorem.

Theorem 9. Assume u(t, x) describes an evolution of a curve of Grassmannian
planes in R4 solution of the equation

(7.6) ut = u1S(u) = u3 −
3
2
u2u
−1
1 u2.

Then, if S(u) has real eigenvalues k1 and k2, as κ3, κ4 → 0, the curvatures k1 and
k2 satisfy a decoupled system of KdV equations. If S(u) has complex eigenvalues,
k1 ± k2i, then k1 and k2 satisfy a complexly coupled system of KdV equations. In
both cases, the Poisson structures (4.1) and (4.2) reduce to the space κ3 = κ4 = 0
to produce a biHamiltonian pencil for decoupled KdVs or complexly coupled KdVs,
depending on the case.

Proof. Assume
(
δH
δL (K)

)
−1

= gr, with gr =
(

0 r
0 0

)
, r a matrix of differential

invariants, and where H is the appropriate extension of a Hamiltonian functional
h, and where by ()−1 we indicate the projection on the tangent to the manifold
G/P , as represented by the subspace g−1 of the Lie algebra g. Then, from [12], the
evolution

ρ−1
−1(ρ−1)t = Ad(ρ0)gr

induces the h-hamiltonian evolution on the differential invariants. If we choose

h(k1, k2) = 1
2

∫
S1(k2

1 + k2
2)dx, then h1 = k1 and h2 = k2 and H−1 = r =

(
k1 0
0 k2

)
.

Calculating (4.5) with the natural moving frame we obtain(
I −u
0 I

)(
0 ut
0 0

)
=
(
u1B

−1 0
0 B−1

)(
0 r
0 0

)(
Bu−1

1 0
0 B

)
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which results in
ut = u1B

−1rB.

If we now look at the third normalization equations, notice that i3 is either
(
k1 0
0 k2

)
in the real case, or

(
k1 −k2

k2 k1

)
in the complex case. In either situation, if we choose

r = i3, then we get B−1i3B = S(u), since the third normalization equation in both
cases read BS(u)B−1 = i3.

The choice of h clearly results in the completely integrable systems the Theorem
states. �

Notice that this immediately implies that equation (7.6) preserves the level set
κ3 = κ4 = 0, a fact that can also be found directly using the techniques we used in
section 3.3.

The last results in this paper are proven choosing a different, but also non-local,
moving frame. This moving frame corresponds to the Laguerre-Forsyth’s canonical
form of the Serret-Frenet equations for ρ, and it was linked to Grassmannians in [18].
The invariants generated by this last Grassmannian moving frame evolve following
a noncommutative KdV equation. When reduced to these invariants, both brackets
(4.1) and (4.2) become the biHamiltonian structure for noncommutative KdV.

Theorem 10. There exists a (non-local) Grassmannian moving frame such that
its associated Maurer-Cartan matrix is given by(

0 I

K̂ 0

)
where the entries of K̂ are independent and generating differential invariants. Both

structures (4.1) and (4.2) (with the choice L0 =
(

0 0
I 0

)
) reduce to K as represented

by these invariants to produce a biHamiltonian structure for the noncommutative
KdV equation. Furthermore, the evolution

ut = u1K̂

induces a noncommutative KdV equation on K̂.

Proof. Since the technique is identical to the previous cases, we will describe the
first part of the calculations without too many explanations. If we gauge (3.17) or
(3.18) by an element of the form

g =
(

Θ 0
0 Θ

)
the result is (

Θ−1Θx + Θ−1K0Θ I
Θ−1K1Θ Θ−1Θx + Θ−1K0Θ

)
.

Therefore, choosing Θ to be the solution of Θx = −K0Θ results on the choice
K̂ = Θ−1K1Θ. Notice that the invariants k1 and k2 are generated by the trace and
determinant of K̂.

We now calculate the reduction of the Poisson brackets. Assume
δH
δL

=
(
A h
C B

)
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is the derivative of an appropriate extension of h with h = δh
δκ . Then, equation

(4.3) results in the values

A =
1
2
hx −

1
2
D−1(K̂h− hK̂)

B = −1
2
hx −

1
2
D−1(K̂h− hK̂)

C = −1
2
hxx +

1
2

(K̂h + hK̂).

Using this extension, the reduction of (4.1) is given by

{h, f}R(κ) =
∫

tr
(

(Cx + K̂A−BK̂)
δf

δκ

)
dx =

∫
hTPfdx

where

2Ph = −hxxx+(hK̂+K̂h)x+K̂hx+hxK̂−K̂D−1(K̂h−hK̂)+D−1(K̂h−hK̂)K̂.

Choosing L0 =
(

0 0
I 0

)
in (4.2) and using the expression for the extension δH

δL , we

have that the reduction of (4.2) is given by

{h, f}0(κ) =
∫

hTDfdx.

These two structure are the ones appearing in [16] as biHamiltonian structures for
noncommutative KdV. The calculation of the geometric realization is identical to
the previous cases.

There is one last point that need to be checked. An arbitrary gauge by a matrix
of invariants of a moving frame it does result in a new moving frame, but the
entries of its Maurer-Cartan matrix do not necessarily generate all other invariants.
Indeed, the proof in [7] shows that if a moving frame is found using normalization
constants (as in the first frame we found), then they do indeed generate. But,
although perhaps true, a general theorem for any moving frame has not been proved
yet. Therefore, we need to check that such is the case here.

We know that k1 and k2 are generated by the entries of K̂. Lengthy but straight-

forward calculations show that, if Θ =
(
a b
c d

)
and K̂ =

(
κ̂1 κ̂2

κ̂3 κ̂4

)
, then

a′a

bb′
= − κ̂3

κ̂2
,

a′b

ab′
=

k2
2 − k2

1

κ̂1k1 − κ̂4k2
+ 1.

This implies that n1 = a′

b′ and n2 = a
b are functionally generated by κ̂i, i = 1, 2, 3, 4.

Further calculations show that κ3κ4 = −n′1n′2 and

κ′3
κ3
n′2 − 2

n′2
n1 − n2

= n′′2

concluding that both κ3 and κ4 are also formally functionally generated by the
entries of K̂.

�

Our final corollaries state the existence of a conformal level set for a decoupled
system of KdV equations. It also shows that the signature (2, 2) conformal Poisson
brackets are equivalent to the bi-Hamiltonian structure for non-commutative KdV
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2 × 2 equations. Although this is immediate under the isomorphism, it was not
previously obvious.

Corollary 1. There exists a conformally invariant evolution of curves (written in
terms of a natural classical moving frame) such that it preserves κ3 = κ4 = 0. As
κ3, κ4 → 0, the evolution induces a decoupled system of KdV equations on k1 and
k2.

Corollary 2. Both brackets (4.1) and (4.2) reduce to the space of conformal dif-
ferential invariants to produce a biHamiltonian structure equivalent to that of the
non-commutative KdV equation that appears in [16].

The interested reader can find the exact equations for these geometric realizations
using the isomorphism with the corresponding Grassmannian evolution.
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