Section 6.2, p. 387

- 4. (a) $\{[0 \ 0]\}.$
- (b) Yes.
- (c) No.
- 6. (a) A possible basis for ker L is $\{1\}$ and dim ker L=1.
 - (b) A possible basis for range L is $\{2t^3, t^2\}$ and dim range L=2.
- 8. (a) $\{-t^2+t+1\}$.
 - (b) $\{t,1\}$.
- 10. (a) $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ \frac{1}{2} & 0 \end{bmatrix} \right\}$. (b) $\left\{ \begin{bmatrix} 0 & -2 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$.

- (9). dim(kerL)=1, dim(range L)=2.
- (b) dim (kerl) = 1, dim (range L) = 2.
- (O din (kerL) = 0, din (rage L) = 4
 - 18. Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis for V. If L is invertible then L is one-to-one: from Theorem 6.7 it follows that $T = \{L(\mathbf{v}_1), L(\mathbf{v}_2), \dots, L(\mathbf{v}_n)\}$ is linearly independent. Since $\dim W = \dim V = n$, Tis a basis for W. Conversely, let the image of a basis for V under L be a basis for W. Let $\mathbf{v} \neq \mathbf{0}_V$ be any vector in V. Then there exists a basis for V including ${\bf v}$ (Theorem 4.11). From the hypothesis we conclude that $L(\mathbf{v}) \neq \mathbf{0}_W$. Hence, $\ker L = \{\mathbf{0}_V\}$ and L is one-to-one. From Corollary 6.2 it follows that L is onto. Hence, L is invertible.
 - 24. If L is one-to-one, then $\dim V = \dim \ker L + \dim \operatorname{range} L = \dim \operatorname{range} L$. Conversely, if $\dim \operatorname{range} L = \dim \operatorname{range} L$ $\dim V$, then $\dim \ker L = 0$.
 - 29. Suppose that x_1 and x_2 are solutions to L(x) = b. We show that $x_1 x_2$ is in ker L:

$$L(\mathbf{x}_1 - \mathbf{x}_2) = L(\mathbf{x}_1) - L(\mathbf{x}_2) = \mathbf{b} - \mathbf{b} = \mathbf{0}.$$

- 31. From Theorem 6.6, we have dim $\ker L + \dim \operatorname{range} L = \dim V$.
 - (a) If L is one-to-one, then $\ker L = \{0\}$, so $\dim \ker L = 0$. Hence $\dim \operatorname{range} L = \dim V = \dim W$ so L
 - (b) If L is onto, then range L=W, so dim range $L=\dim W=\dim V$. Hence dim $\ker L=0$ and L is one-to-one.

Section 6.3, p. 397

2. (a)
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
. (b) $\begin{bmatrix} 0 & -1 & 1 & -1 \\ 0 & 1 & 0 & 3 \\ 1 & 1 & 0 & 1 \end{bmatrix}$. (c) $\begin{bmatrix} 2 & 0 & 2 \end{bmatrix}$.

$$8. (a) \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 3 & 0 & 4 & 0 \\ 0 & 3 & 0 & 4 \end{bmatrix}. (b) \begin{bmatrix} 4 & 3 & 0 & 3 \\ -6 & -5 & -4 & -3 \\ 3 & 3 & 7 & 0 \\ 8 & 6 & 4 & 4 \end{bmatrix}. (c) \begin{bmatrix} 0 & 3 & 0 & 4 \\ -2 & -3 & -2 & -4 \\ 3 & 0 & 4 & 0 \\ 2 & 4 & 2 & 6 \end{bmatrix}. (d) \begin{bmatrix} 1 & 1 & 3 & 0 \\ 2 & 1 & 0 & 1 \\ 3 & 3 & 7 & 0 \\ 4 & 3 & 0 & 3 \end{bmatrix}.$$

12. Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ be an ordered basis for U and $T = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m, \mathbf{v}_{m+1}, \dots, \mathbf{v}_n\}$ an ordered \vee basis for V (Theorem 4.11). Now $L(\mathbf{v}_j)$ for $j = 1, 2, \dots, m$ is a vector in U, so $L(\mathbf{v}_j)$ is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$. Thus $L(\mathbf{v}_j) = a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_m\mathbf{v}_m + 0\mathbf{v}_{m+1} + \dots + 0\mathbf{v}_n$. Hence,

$$egin{bmatrix} \left[L(\mathbf{v}_j)
ight]_T = egin{bmatrix} a_1 \ a_2 \ dots \ a_m \ 0 \ dots \ 0 \end{bmatrix}.$$

20. (a)
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
. (b) $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. (c) $\begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$. (d) $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$.

23. Let $I: V \to V$ be the identity operator defined by $I(\mathbf{v}) = \mathbf{v}$ for \mathbf{v} in V. The matrix A of I with respect to S and T is obtained as follows. The jth column of A is $\left[I(\mathbf{v}_j)\right]_T = \left[\mathbf{v}_j\right]_T$, so as defined in Section 3.7, A is the transition matrix $P_{T \leftarrow S}$ from the S-basis to the T-basis.

$$\begin{pmatrix}
\frac{13}{2} & \frac{1}{2} & -\frac{3}{2} \\
-\frac{1}{2} & \frac{1}{2} & -\frac{1}{3}
\end{pmatrix}$$

6. If
$$B = P^{-1}AP$$
, then $B^2 = (P^{-1}AP)(P^{-1}AP) = P^{-1}A^2P$. Thus, A^2 and B^2 are similar, etc.

7. If
$$B = P^{-1}AP$$
, then $B^T = P^TA^T(P^{-1})^T$. Let $Q = (P^{-1})^T$, so $B^T = Q^{-1}A^TQ$.

8. If
$$B = P^{-1}AP$$
, then $\text{Tr}(B) = \text{Tr}(P^{-1}AP) = \text{Tr}(APP^{-1}) = \text{Tr}(AI_n) = \text{Tr}(A)$.

10. Possible answer:
$$\left\{ \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix} \right\}$$
.

11. (a) If
$$B = P^{-1}AP$$
 and A is nonsingular then B is nonsingular.
(b) If $B = P^{-1}AP$ then $B^{-1} = P^{-1}A^{-1}P$.

(b) If
$$B = P^{-1}AP$$
 then $B^{-1} = P^{-1}A^{-1}P$.

12.
$$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$
.

14.
$$P = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}, Q^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$B = Q^{-1}AP = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 0 \\ -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{3}{2} \end{bmatrix}.$$

16. A and O are similar if and only if
$$A = P^{-1}OP = O$$
 for a nonsingular matrix P.

17. Let
$$B = P^{-1}AP$$
. Then $\det(B) = \det(P^{-1}AP) = \det(P)^{-1}\det(A)\det(P) = \det(A)$.