Section 6.2, p. 387
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(a) {{0 0]} (b) Yes. _(Z;ﬁ;

(a) A possible basis for ker L is {1} and dimker L = 1.
(b) A possible basis for range L is {23,¢2} and dimrange L = 2.

(@) {2 +t+1}.  (b) {t,1}.
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18. Let S = {v3,vy,...,v,} be a basis for V. If L is invertible then L is one-to-one: from Theorem 6.7
V' it follows that T = {L(v1), L(v3), ..., L(v,)} is linearly independent. Since dimW =dimV =n, T
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is a basis for W. Conversely, let the image of a basis for V under L be a basis for W. Let v £ 0y
be any vector in V. Then there exists a basis for V including v (Theorem 4.11). From the hypothesis

we conclude that L(v) # Ow. Hence, ker L = {Ov} and L is one-to-one. From Corollary 6.2 it follows
that L is onto. Hence, L is invertible.

If L is one-to-one, then dim V' = dim ker L + dimrange L = dimrange L. Conversely, if dimrange I, =
dim V, then dimker L = 0. : :

2?/., Suppose that x; and x, are 'solutions to L(x) = b. We show that X3 — Xz is in ker L:

) L(x1 - Xz) = L(Xl) — L(Xz) =b-b=0.

3& From Theorem 6.6, we have dim ker I + dim range L = dim V.

(a) If L is one-to-one, then ker L = {0}, so dimker L = 0. Hence dimrange L = dim V =dim W so. L
is onto. .

(b) If L is onto, then range L = W, so dim range L = dimW = dim V. Hence dimker L = 0 and L is
one-to-one. .
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12. Let S = {v1,V2,...,Vm} be an ordered basis for U and T’ = {vi, V2o, Vi, Vi 1, - - - »Va} an or(%ered
v basis for V (Theorem 4.11). Now L(v;) for j = 1,2,...,m is a vector in U, so L(v;) is a linear
combination of v, Vs, ..., Vm. Thus L(v;) = a1vi +aava + -+ +amVm + 0Vipyr + - + Ov,. Hence,
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20. (a) [(1) _(1)]~ (b) [(1) _(1)]- (c) [_
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\3/. Let I: V — V be the identity operator defined by I(v) = v for v in V. The matrix A of I with respect -

:to 5 and T is obtained as follows. The jth column of A is [I (v1)] = i) o 50 as defined in Section
3.7, A is the transition matrix Pr._g from the S-basis to the T-basis. '
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6, If B = P~'AP, then B? = (P~1AP)(P~1AP) = P-1A2P. Thus, A? and B? are similar, etc.
7. I B=P'AP, then BT = PTAT(P~1)T. Let Q = (P~1)T, 50 BT = Q1ATQ.

8. If B = P~1AP, then Tr(B) = Tr(P~1AP) = Tr(APP-1) = Tr(AIL,) = Tr(A).
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10. Possible answer: 14,101, 11] 5.
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11, (a) If B= P~1AP and A is nonsingular then B is nonsingular.
(b) If B=P~1AP then B~! = p-14-1p,
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16. A and O are similar if and only if A = P~'OP = O for a nonsingular matrix P.

1\5.‘ Let B = P~'AP. Then det(B) = det(P~1AP) = det(P)~! det(A) det(P) = det(4).
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