Linear Algebra, Notes 3



Def 5.1    V a real vector space. An inner product on V is a function: V x V → R satisfying:
    (i)    (u,u) . 0.
    (ii)    (u,v) = (v,u)  for  u,v  in V
    (iii)    (u+v,w) = (u,w) + (v,w),  for  u,v,w  in  V
    (iv)    (cu,v) = c (u,v),   for  c  in  R,   u,v  in  V

Theorem 5.2       Let  S = {u1, u2, ..., un} be an ordered basis for a finite dimensional vector space  V with an inner product. Let cij = (ui, uj) and C = [cij]. Then
    (a)    C is a symmetric matrix.
    (b)    C determines  (v,w)  for every v and w in V.

Def 5.2    A vector space with an inner product is called an inner product space. If the space is finite dimensional, it is called a Euclidean space.

Theorem 5.3    Cauchy - Schwarz Inequality
    If  u, v  are vectors in an inner product space  V, then     |(u,v)| . ||u|| ||v||.
Corollary 5.1   Triangle Inequality
    If  u, v  are vectors in an inner product space  V, then     ||u+v|| . ||u|| + ||v||.

Def 5.3    If  V  is an inner product space, we define the distance between two vectors  u  and  v  in  V  as  d(u,v) = ||u-v||.
Def 5.4    Let  V  be an inner product space.  Two vectors  u  and  v  in  V are orthogonalif  (u,v) = 0.
Def 5.5    Let  V  be an inner product space. A set  S  of vectors is called orthogonal if any two distinct vectors in  S  are othogonal. If, in addition, each vector in  S  is of unit length, then  S  is called orthonormal.

Theorem 5.4    Let  S = {u1, u2, ..., un} be a finite, orthogonal  set of nonzero vectors in an inner product space  V. Then  S  is linearly independent.
Theorem 5.5    Let  S =  {u1, u2, ..., un} be an ortonormal basis for a Euclidean space  V and let  v be any vector in  V. Then
                        v = c1u1+ c2u2 + ... + cnun ,
                where ci = (v,ui),   i=1, 2, ..., n.
Theorem 5.6    Gram-Schmidt Process
    Let  V  be an inner product space and  W . {0} an  m-dimensional subspace of  V. Then there exists an ortonormalbasis  T = {w1, w2, ..., wm} for W.
Theorem 5.7    Let  V  be an n-dimensional Euclidean space, and let  S = {u1, u2, ..., un} be an orthonormal basis for V.
If   v = a1u1+ a2u2 + ... + anun  and  w = c1u1+ c2u2 + ... + cnun , then
    (v,w) = v = a1b1+ a2b2 + ... + anbn .
Theorem 5.8    QR Factorization
    If  A  is an m x m matrix with linearly independent columns, then  A  can be factored as  A = QR, where  Q  is an m x n matrix whose columns form an orthonormal basis for the column space of  A  and  R  is an n x n nonsingular upper triangular matrix.

Theorem 5.9.    Let W be a subspace of an inner product space V. Then:
        (a)
 
Def 5.6    Let W be a subspace of an inner product space V  A vector  u  in V is orthogonal to  W if it is orthogonal to every vector in W. The set of all vectors in V that are orthogonal to all vectors in Wis called the orthogonal complement of W in V (W).

Theorem 5.9.    Let W be a subspace of an inner product space V. Then:
        (a)    W is a subspace of V.
        (b)    W ∩ W = {0}.
Theorem 5.10    Let W be afinite dimensional subspace of an inner product space V. Then
                V = W ⊕ W.
Theorem 5.11    If W is a finite dimensional subspace of an inner product space V, then    (W) = W.
Theorem 5.12    If  A is a given m x n matrix, then
        (a)    The null space of A is the orthogonal complement of the row space of A.
        (b)    The null space of A is the orthogonal complement of the column space of A.

Note:   let   {w1, w2, ..., wn} be a  basis for a subspace W of an inner product space V. Then the orthogonal projection onto W of vector v in V is:
 projwv = [(v, w1)/(w1,w1)] w1 + [(v, w2)/(w2,w2)] w2 + ... + [(v, wn)/(wn,wn)] wn .

Theorem 5.13    Let W be a finite dimensional subspace of the inner product space V. Then, for vector v belonging to V, the vector in W closest to v is projwv. That is,  ||v - w||, for w belonging to W, is minimized by w = projwv.
Theorem 5.14    If  A  is an m x n matrix with rank n, then  ATA  is nonsingular and the linear system  Ax = b  has a unique least squares solution given by
                            x = (ATA)-1 ATb.
 
 
Def 6.1    Let V, W be vector spaces. A function L:V → W is a linear transformation of V into W if for every u, v in V and real number c:
        (a)    L(u+v) = L(u) + L(v),
        (b)    L(cu) = cL(u)
If  V = W then L is also called a linear operator.
examples: reflection, projection, dilation, contraction, rotation.

Theorem 6.1    Let L:V → W be a linear transformation. Then
    (a)    L(0v) = L(0w).
    (b)    L(u-v) = L(u) - L(v), for u, v in V.
Theorem 6.2    Let   L:V → W be a linear transformation of an n-dimensional vector space  V into a vectorspace W. Let  S = {v1,v 2, ..., vn} be a basis for V. If  v is any vector in V, then L(v) is completely determined by {L(v1), L(v2), ..., L(vn)}.
Theorem 6.3    Let  L: Rn → Rm  be a linear transformationand consider the natural basis {e1,e2, ..., en} for  Rn .  Let A be the mxn matrix whose j'th column is L(e2). The matrix  A has the following property: If  x = [x1 x 2  ...  xn]T  is any vector in Rn , then
                                                    L(x) = Ax.                                                                                (1)
Moreover, A is the only matrix satisfying equation (1). It is called the standard matrix representing L.

Definition 6.2    A linear transformation is called one-to-one, if  L(u) = L(v) implies u = v.
Definition 6.3    Let   L:V → W be a linear transformation of a vector space  V into a vectorspace W. The kernel of L, ker L, is the subset of V consisting of all v of V such that L(v) = 0.

Theorem 6.4    Let   L:V → W be a linear transformation of a vector space  V into a vectorspace W. Then
    (a)    ker L is a subspace of V.
    (b)    L is one-to-one if and only if ker L = {0v}.
Corollary 6.1    If  L(x) = b and L(y) = b, then  x - y  belongs to  ker L, i.e. any two solutions to  L(x) = b  differ by an element of the kernel of L.

Def 6.4    Let   L:V → W be a linear transformation of a vector space  V into a vectorspace W, then the range or image of V under L, denoted by  range L, cinsists of those vectors in W that are images under L of some vector in V.
w in  range L iff there exists a vector  v ∈ V such that  L(v) = w.
L is called onto if  im L = W.

Theorem 6.5    Let   L:V → W be a linear transformation of  a vector space  V  into a vectorspace W, then  range L is a subspace of W.
Theorem 6.6    Let   L:V → W be a linear transformation of an n-dimensional vector space  V  into a vectorspace W, then
                     dim  ker L + dim range L = dim V.
Corollary 6.2      Let   L:V → W be a linear transformation of  a vector space  V  into a vectorspace W, and dim V = dim W, then
    (a)    If  L  is one-to-one, then L is onto.
    (b)    If  L  is onto, then  L  is one-to-one.

Def    A linear transformation  L:V → W  if a vector space  V  to a vector space  W  is invertible  if it is an invertible function, i.e. if there a unique function  L : W → V such that  L ⋅ L-1 = Iw and   L-1 ⋅ L = Iv, where  Iv = identity on V and  Iw = identity on W.

Theorem 6.7    A linear transformation  L:V → W  is invertible if and only if  L is one-to-one and onto.  Moreover,  L-1  is a linear transformation  and  (L-1)-1  = L.
Theorem 6.8     A linear transformation  L: V → W  is one-to-one if and only if the image of every linearly in dependent set of vectors is a linearly independent set of vectors.
Theorem 6.9    Let   L: V → W be a linear transformation of an n-dimensional vector space V into an m-dimensional vector space  W (n &ne 0, m &ne 0) and let  S = {v1,v 2, ..., vn} and  T = {w1, w2, ..., wm}  be ordered bases for V and W, respectively. Then the mxn matrix A whose j'th column is the coordinate vector [L(vj)]T  of  L(vj)  with respect to T has the following property:    [L(vj)]T =A[x]S  for every x in V.
Theorem 6.10   Let U be the vector space of all linear transformationsof an n-dimensional vector space  V  into an m-dimensional vector space  W, n &ne 0  and m &ne 0, under the operations + and *.  Then U is isomorphic to the vector space  Mmn of all mxn matrices.
Theorem 6.11 Let  V1  be an n-dimensional vector space, V2 be an m-dimensional vector space, and V3  a p-dimensional vector space with linear transformantions  L1  and  L2  such that
 L1: V1 → V2, L2: V2 → V3. If the ordered bases P, S, and T are chosen for V1, V2, and V3, respectively, then M(L1 ˙  L2) = M(L1) M(L2).


Theorem 6.12     Let  L:V &rarr W be a linear transformationof an n-dimensional vector space V into an m-dimensional vector space W. Let   S = {v1,v 2, ..., vn}, S' = {v'1,v' 2, ..., v'n} be ordered bases for  V, and  T = {w1, w2, ..., wm}and  T' = {w'1, w'2, ..., w'm} be ordered bases for W. Let  PS &larr S' , PT' &larr T  be transition matrices. Let  TAS  be the representation of L with respect to S and T, then the representation  T'AS'  of L with repsect to S'  and T' is
                    T'AS' = PT' &larr T  * TAS * PS &larr S' .
Corollary 6.3     Let  L:V &rarr V be a linear operator of an n-dimensional vector space V. Let   S = {v1,v 2, ..., vn}, S' = {v'1,v' 2, ..., v'n} be ordered bases for  V. Let  PS &larr S'  be the transition matrice. Let  SAS  be the representation of L with respect to S , then the representation  S'AS'  of L with repsect to S'  is
                    S'AS' = PS' &larr S  * SAS * PS &larr S' = P-1 * A * P.
Theorem 6.13      Let   L: V &rarr W be a linear transformation.  Then rank L = dim range L.

Definition 6.6    If  A  and  B  are  nxn matrices, then  B  is similar to  A  if there is a nonsingular  P  such that  B = P-1  A P.

Theorem 6.14     Let V be any  n-dimensional vector space and let  A  and  B  be any  nxn  matrices. Then  A  and  B are similar if and only if  A  and  B  represent the same linear transformation  L:V &rarr V  with respect to two ordered bases for V.
Theorem 6.15      If  A  and  B  are similar nxn matrices, then rank A = rank B.
 
 
-----------------------------------------------------------------------------------------------------------------------------------------------------------
Definition 7.1    Let  L : V &rarr  V be a linear transformation of an  n-dimensional vector space into itself. The  number λ is called an eigenvalue of  L  if there exists a nonzero vector  x  in V such that  L(x) = λ x.
Every nonzero vector  x  satisfying this equation is then called an eigenvector of  L  associated with the eigenvalue  λ.
Definition 7.2    Let A = {aij}be an nxn matrix. Then the determinant of the matrix  λ In - A =
 
λ - a11       -a12      ...      -a1n
     -a21 λ - a22      ...      -a2n
     ...      ...      ...      ...
     -an1      -an2      ... λ - ann

is called the characteristic polynomial  of  A.  The equation p(λ) =  det(λ In - A) = 0
is called the characteristic equation of  A.

Theorem 7.1     Let A be an nxn matrix. The eigenvalues of A are the roots of the characteristic polynomial of A.

Definition 7.3    Let L : V &rarr  V be a linear transformation of an  n-dimensional vector space into itself. We say that  L  is diagonalizable, or can be diagonalized, if there exists a basis  S  for V such that  L  is represented with respect to  S  by a diagonal matrix  D.

Theorem 7.2     Similar matrices have the same eigenvalues.
Theorem 7.3     Let L : V &rarr  V be a linear transformation of an  n-dimensional vector space into itself.. Then  L is diagonalizable if and only if  V  has a basis S  of eigenvectors of V.
Moreover, if  D  is a diagonal matrix representing  L  with respect to  S, then the entries on the main diagonal are the eigenvalues of  L.
Theorem 7.4     An nxn matrix  A  is similar to a diagonal matrix  D  if and only if  A  has n  linearly independent eigenvectors.
Moreover, the elements on the main diagonal of  D  are the eigenvalues of  A.
Theorem 7.5     If the roots of the characteristic polynomial of an nxn matrix  A  are all different from each other (i.e., distinct), then  A  is diagonalizable.
Theorem 7.6     All roots of the characteristic polynomial of a symmetric matrix are real numbers.
Theorem 7.7     If  A  is a symmetric matrix, then the eigenvectors that belong to distinct eigenvalues of  A  are orthogonal.

Definition 7.4    A real square matrix  A  is called orthogonal if  A-1 = A, i.e. if ATA = In.

Theorem 7.8     The  nxn  matrix  A is orthogonal if and only if the columns (rows) of A form an orthonormal set.
Theorem 7.9     If  A  is a symmetric nxn matrix, then there exists an orthogonal matrix  P  such that  P-1AP = PTAP = D. The eigenvalues of  A  lie on the main diagonal of  D.