846. (24). (a). din W = 3 (2) (4) (b) (d) one not basis for IR3. (C) is basis for 1R3. (b). di W = 2. (30) a basis for M2.3 = { (100), (010), (00) (4) (b) on not not bases for Pz. (c) is basis for fr. (B) (a) is Not a basis of 1R3 din (M2.3) = 2.3 = 6. (b) ne basis of 1R3. ø Q. (a). à a basis for P2. 5+2-3+ +8 = -3(+2++) + 0+2+8(+2+1) Ub7 is NOT a basis for Pz (1). A possible basis 2 (1,1,0,-1), (0,1,2,1), (1,0,1,-1) din W = 3 (B) a to, ±1 $(20), (4), S = \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$ CI. $S = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -5 \\ 0 \end{pmatrix} \right\}$

- 39. Let $T = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$, m > n be a set of vectors in V. Since m > n, Theorem 4.10 implies that T is linearly dependent.
- 42. Let dim $V = \dim W = n$. Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis for W. Then S is also a basis for V, by Theorem 4.13. Hence, V = W.
- 45. (a) If span $S \neq V$, then there exists a vector \mathbf{v} in V that is not in S. Vector \mathbf{v} cannot be the zero vector since the zero vector is in every subspace and hence in span S. Hence $S_1 = \{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n, \mathbf{v}\}$ is a linearly independent set. This follows since \mathbf{v}_i , $i = 1, \ldots, n$ are linearly independent and \mathbf{v} is not a linear combination of the \mathbf{v}_i . But this contradicts Corollary 4.4. Hence our assumption that span $S \neq V$ is incorrect. Thus span S = V. Since S is linearly independent and spans V it is a basis for V.
 - (b) We want to show that S is linearly independent. Suppose S is linearly dependent. Then there is a subset of S consisting of at most n-1 vectors which is a basis for V. (This follows from Theorem 4.9) But this contradicts $\dim V = n$. Hence our assumption is false and S is linearly independent. Since S spans V and is linearly independent it is a basis for V.

847.

26. Since the reduced row echelon forms of matrices A and B are the same it follows that the solutions to the linear systems $A\mathbf{x} = \mathbf{0}$ and $B\mathbf{x} = \mathbf{0}$ are the same set of vectors. Hence the null spaces of A and B are the same.

84.7.

(2) (a). Solution space =
$$\left\{ \begin{pmatrix} -r + 2s \\ r \\ s \end{pmatrix} = r \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \right\}$$

dimension = 2.

(15) a basis =
$$\left\{ \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \right\}$$
.

(22).
$$\vec{\chi} = \vec{\chi}_{p} + \vec{\chi}_{h} = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} + r \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$$