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39, Let T = {v1,va,...,vim}, m > n be a set of vectors in V. Since m > n, Theor‘em 4.10 implies that T
is linearly dependent.

42. Let &imV = dim W = n. Let S = {v1,Va,...,Vn} be a basis for W. Then § is also a basis for V, by
Theorem 4.13. Hence, V = W. '

45. (a) Ifspan S # V, then there exists a vector v in V' that is not in S. Vector v cannot be the zero vector

) since the zero vector is in every subspace and hence in span S. Hence S; = {vi,va,...,vp, v}
is a linearly independent set. This follows since v, 4 = 1,...,n are linearly independent and v
is not a linear combination of the v;. But this contradicts Corollary 4.4. Hence our assumption
that span S # V is incorrect. Thus span S = V. Since § is linearly independent and spans V it
is a basis for V. ' _

(b) We want to show that S is linearly independent. Suppose § is linearly dependent. Then there
is a subset of S consisting of at most n — 1 vectors which is a basis for V. (This follows from

Theorem 4.9) But this contradicts dim V = n. Hence our assumption is false and § is linearly
independent. Since S spans V' and is linearly independent it is a basis for V.

FH1,

26. Since the reduced row echelon forms of matrices A and B are the same it follows that the solutions to
the linear systems Ax = 0 and Bx = 0 are the same set of vectors. Hence the null spaces of A and B
are the same. ‘ '
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