Linear Algebra, Notes 2



  Def 3.3    Let A = [aij]  be an nxn matrix. Let Mij  be the (n-1)x(n-1) submatrix of A obtained by deleting the ith row and the jth column of A. The determinant det(Mij) is called the minor of aij.
Def 3.4    Let A = [aij]  be an nxn matrix. The cofactor Aij  of aij  is defined as  Aij = (-1i+j) det(Mij).

Theorem 3.10   Let A = [aij]  be an nxn matrix. Then

Theorem 3.11    Let A = [aij]  be an nxn matrix, then Def 3.5    Let A = [aij]  be an nxn matrix. The nxn matrix adj A, called the adjoint of A, is the matrix whose (i,j)th entry is the cofactor Aji  of aji.

Theorem 3.12    Let A = [aij] be an nxn matrix, then  A(adj A) = (adj A)A = det(A)In.
Corollary 3.4    Let A be an nxn matrix and det(A) ≠ 0, then    A-1 = 1/(det A) * (adj A).
Theorem 3.13    Cramer's Rule     Let  A be an nxn matrix  and Ax = b and det A ≠ 0, then the system has the unique solution
         x1 = (det A1)/(det A),   x2 = (det A2)/(det A),  ... ,   xn = (det An)/(det A),
        where Ai is the matrix obtained from A by replacing the ith column of A  by b.
Def 4.4   A real vector space is a set V of elements on which we have two operations + and * defined with these properties:

(a)    if  u, v are elements in V , then u+v is in V (closed under +):
(i)      u+v = v+u  for all u, v in V
(ii)     u+(v+w) = (u+v)+w  for u, v, w in V
(iii)    there exists an element  0 in V such that  u+0 = 0+u = 0  for u in V.
(iv)    for each u in V there exists an element -u in V such that u+(-u) = (-u)+u = 0.
(b)    If  u is any elemnt in V and  c is a real number, then  c*u (or cu) is in V (V is closed under scalar multiplication).
(i)      c*(u+v) = c*u + c*v   for any u,v in V, c a real number
(ii)     (c+d) * u = c*u + d*u   for any u in V, c, d real numbers
(iii)    c * (d*u)  = (cd) * u   for any u in V, c, d real numbers
(iv)    1*u = u for any u in V

Theorem 4.2   If V is a vector space, then
(a)   0*u = u   for any u in V
(b)   c*0 = 0 for any scalar c
(c)   if  c*u = 0, then either c = 0  or u = 0.
(d)   (-1)*u = -u   for any vector u in V

Def 4.5   Let V be a vector space and  W  a nonempty subset of V. If  W is a vector space with respect to the operations in V, then  W  is called a subspace of  V.

Theorem 4.3   Let V be a vector space and let  W  be a nonempty subset of V. Then  W  is a subspace of V  if and only if the following conditions hold:
(a)    if  u, v  are in W, then  u+v  is in W
(b)   if  c is a real number and u is any vector in  W, then  c*u  is in W.

Definition 4.6   Let  v1, v2, ..., vn  be vectors in vector space  V.  A vector V is a linear combination of  v1, v2, ..., vn, if
                    v = a1v1+ a2v2 + ... + anv 
Definition 4.7   If  S = {v1, v2, ..., vn}  is a set of vectors in a vector space  V, then the set of all vectors in  V that are linear combinations of the vectors in S is denoted by span S or  span {v1, v2, ..., vn}.

Theorem 4.4   Let  S = {v1, v2, ..., vk}  be a set of vectors  in a vector space  V.  Then span S is a subspace of  V.

Definition 4.8    Let S  be a set of vectors in a vector space  V. If every vector in  V  is a linear combination of the vectors in  S, then  S  is said to span V, or  V  is spanned by the set  S; that is,  span S = V.
Definition 4.9   The vectors  v1, v2, ..., vn in vector space V are said to be linearly dependent, if there exist constants  a1, a2, ..., an, not all zero such that 
                    a1v1+ a2v2 + ...+ anvn= 0.
Otherwise  v1, v2, ..., vn  are linearly independent if, whenever  a1v1+ a2v2 + ...+ anvn= 0,
                   a1= a2 = ... = an= 0.

Theorem 4.5   Let S =  {v1, v2, ..., vk}  be a set of  n  vectors in  Rn. Let  A  be a matrix whose columns (rows) are elements of  S. Then  S  is linearly independent if and only if  det(A) ≠ 0.
Theorem 4.6   Let  S1  and  S2  be finite subsets of a vector space and let  S1  be a subset of  S2.  Then the following are true:
    (a)    If  S1  is linearly dependent, so is  S2.
    (b)    If  S2  is linearly independent, so is  S1.
Theorem 4.7  The nonzero vectors  v1, v2, ..., vin a vector space  V  are linearly dependent if and only if  one of the vectors  vj (j ≥ 2)  is a linear combination of the preceding vectors  v1, v2, ..., vj-1.

Definition 4.10   The vectors    in a vector space  V are said to form a basis for  V  if
(a)    v1, v2, ..., vk   span  V  and
(b)    v1, v2, ..., vare linearly independent.
Natural (standard) basis in Rn: {(1 0 ... 0)T, (0 1 0 ... 0)T, ... , (0 ... 0 1)T}.

Theorem 4.8   If  S =  {v1, v2, ..., vn} is a basis for the vector space  V, then every vector in  V  can be written in one and only one way as a linear combination of the vectors in S.
Theorem 4.9   Let S =  {v1, v2, ..., vn} be a set of nonzero vectorsin a vector space V and let W = span S. Then some subset of S is a basis for W.
Theorem 4.10   If  S =  {v1, v2, ..., vn} is a basis for vector space V and T =  {w1, w2, ..., wr}is a linearly independent set of vectors in V, then r ≤ n.
Corollary 4.1   If S =  {v1, v2, ..., vn}  and T =  {w1, w2, ..., wm} are bases for a vector space  V, then n = m.

Definition 4.11    The dimension of a nonzero vector space V  (dim V)  is the number of vectors in a basis for V. The dimension of the trivial vector space {0} is 0.
Definition 4.12    Let S be a set of vectors in a vector space V. A subset  T  of  S is called a maximal independent subset of S if T is a linearly independent set of vectors that is not properly contained in any other linearly independent subset of S.

Corollary 4.2   If the vector space  V  has dimension n, then a maximal independent subset of vectors in  contains  vectors.
Corollary 4.3   If a vector space  V  has dimension n, then a minimal spanning set (if it does not properly contain any other set spanning V) for V  contains  n  vectors.
Corollary 4.4   If a vector space  V  has dimension  n, then any subset of  m>n  vectors must be linearly dependent.
Corollary 4.5   If a vector space  V  has dimension  n, then any subset of  m<n  vectors cannot span  V.
Theorem 4.11   If S is a linearly independent set of vectorsin a finite dimensional vector space  V, then there is a basis for  V  that contains  S.
Theorem 4.12   Let V  be an  n-dimensional vector space.
    (a)   If  S =  {v1, v2, ..., vn}  is a linearly independent set of vectors in  V, then  S  is a basis for  V.
    (b)   If  S =  {v1, v2, ..., vn}  spans V, then  S  is a basis for  V.
Theorem 4.13   Let  S  be a finite subset of the vector space  V  that spans  V.  A maximal independent subset  T  of  S  is a basis for  V.

Definition 4.13    Let  (V, +, *)  and  (W, (+), (*)) be real vector spaces.  A one-to-one function  L mapping  V  onto  W  is called an isomorphism of  V  onto  W  if
    (a)   L(u + v) = L(u) (+) L(v), for u, v in  V;
    (b)   L(c * u) = c (*) L(u)  for u in  V,  c  a real number.

Theorem 4.14   If  V  is an n-dimensional real vector space, then  V  is isomorphic to  Rn
Theorem 4.15   (a)   Every vector space  V  is isomorphic to itself.
                         (b)    If   V  is isomorphic to  W,  then  W  is isomorphic to  V.
                         (c)   If  U  is isomorphic to  V  and V  is isomorphic to  W,  then  U  is siomorphic to  W.
Theorem 4.16   Theo finite dimensional vector spaces are isomorphic if and only if their dimensions are equal.
Corollary 4.6   If  V  is a finite dimensional vector space that is isomorphic to  Rn , then dim V = n.

Definition 4.14   Let  A  be an mxn matrix. The rows of  A, considered as vectors in  Rn,  span a subspace of Rn  called the row space. Similarly, the columns of  A, considered as vectors in  Rm, span a subspace of  Rm  called the column space of A.

Theorem 4.17    If  A  and  B  are two  mxn row(column) equivalent matrices, then the row(column) spaces of  A  and  B  are equal.


Def 4.15    The dimension of of the row(column) space of A is called the row (column) rank.

Theorem 4.18    The row  and column rank of the  m x n matrix A are equal.
Theorem 4.19    If A is an  m x n matrix, then  rank A + nullity A = n.
Theorem 4.20    If A is an  m x n matrix, then rank A = n if and only if  A is row equivalent to In.
Corollary 4.7    A is nonsingular if and only if  rank A = n.
Corollary 4.8    If A is an  m x n matrix, then rank A = n if and only if det(A) &ne 0
Corollary 4.9    The homogeneous system Ax = 0, where A is n x n, has a nontrivial solution if and only if  rank A < n.
Corollary 4.10    Let A be an n x n matrix. The linear system Ax = b  has a unique solution for every  n x 1 matrix b if and only if rank A = n.
Theorem 4.21    The linear system  Ax = b  has a solution if and only if rank A = rank [A|b], that is if and only if the ranks of the coefficient and augmented matrices are equal.


The following are equivalent for an n x n matrix A:

  1. A is nonsingular
  2. Ax = 0  has only the trivial solution.
  3. A is row (column) equivalent to In.
  4. For every vector b in Rn, the system Ax = b has a unique solution.
  5. A is a product of elementary matrices.
  6. det A &ne 0.
  7. The rank of A is n.
  8. The nullity of A is zero.
  9. The rows of A form a linearly independent set of vectors in Rn.
  10. The rows of A form a linearly independent set of vectors in Rn.

Def 5.1    V a real vector space. An inner product on V is a function: V x V â.. R satisfying:
    (i)    (u,u) . 0.
    (ii)    (u,v) = (v,u)  for  u,v  in V
    (iii)    (u+v,w) = (u,w) + (v,w),  for  u,v,w  in  V
    (iv)    (cu,v) = c (u,v),   for  c  in  R,   u,v  in  V

Theorem 5.2       Let  S = {u1, u2, ..., un} be an ordered basis for a finite dimensional vector space  V with an inner product. Let cij = (ui, uj) and C = [cij]. Then
    (a)    C is a symmetric matrix.
    (b)    C determines  (v,w)  for every v and w in V.

Def 5.2    A vector space with an inner product is called an inner product space. If the space is finite dimensional, it is called a Euclidean space.

Theorem 5.3    Cauchy - Schwarz Inequality
    If  u, v  are vectors in an inner product space  V, then     |(u,v)| . ||u|| ||v||.
Corollary 5.1   Triangle Inequality
    If  u, v  are vectors in an inner product space  V, then     ||u+v|| . ||u|| + ||v||.

Def 5.3    If  V  is an inner product space, we define the distance between two vectors  u  and  v  in  V  as  d(u,v) = ||u-v||.
Def 5.4    Let  V  be an inner product space.  Two vectors  u  and  v  in  V are orthogonalif  (u,v) = 0.
Def 5.5    Let  V  be an inner product space. A set  S  of vectors is called orthogonal if any two distinct vectors in  S  are othogonal. If, in addition, each vector in  S  is of unit length, then  S  is called orthonormal.

Theorem 5.4    Let  S = {u1, u2, ..., un} be a finite, orthogonal  set of nonzero vectors in an inner product space  V. Then  S  is linearly independent.
Theorem 5.5    Let  S =  {u1, u2, ..., un} be an ortonormal basis for a Euclidean space  V and let  v be any vector in  V. Then
                        v = c1u1+ c2u2 + ... + cnun ,
                where ci = (v,ui),   i=1, 2, ..., n.
Theorem 5.6    Gram-Schmidt Process
    Let  V  be an inner product space and  W . {0} an  m-dimensional subspace of  V. Then there exists an ortonormalbasis  T = {w1, w2, ..., wm} for W.
Theorem 5.7    Let  V  be an n-dimensional Euclidean space, and let  S = {u1, u2, ..., un} be an orthonormal basis for V.
If   v = a1u1+ a2u2 + ... + anun  and  w = c1u1+ c2u2 + ... + cnun , then
    (v,w) = v = a1b1+ a2b2 + ... + anbn .