Vector Problems

Let
$$\vec{a} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} 0\\-1\\2 \end{pmatrix}$, $\vec{c} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$, and $\vec{d} = \begin{pmatrix} 1\\t\\t^2 \end{pmatrix}$.

1. Compute

- (a) $\vec{a} + 2\vec{b}$
- (b) $||\vec{b} \vec{d}||$
- (c) $\vec{c} \cdot \vec{d}$
- (d) the angle between \vec{a} and \vec{c}
- (e) The line through P(3, 2, 1) and parallel to \vec{b} .
- (f) $\vec{b}x\vec{c}$
- (g) Find a vector perpendicular to both \vec{c}, \vec{d} .
- 2. Find the vertex E in the parallelogram ABCE, where A(1,0,0), B(0,-1,2), C(3,2,1).
- 3. Find real numbers s, t such that $\vec{c} = s\vec{a} + t\vec{b}$.
- 4. (a) Find the equation of the line l through A(1,0,1), B(0,-2,3)
 - (b) Find the equation of the plane through A and perpendicular to l.
- 5. (a) Orthogonally project \vec{b} onto \vec{c} : Find the decomposition $\vec{b} = \vec{b}'' + \vec{b}^{\perp}$

(b) Orthogonally project \vec{c} onto \vec{b} : Find the decomposition $\vec{c} = \vec{c}'' + \vec{c}^{\perp}$

- 6. Find the distance of point D(1, 0, -3) from the plane 2x 3y + z 5 = 0. Does D lie above or below the plane?
- 7. Do problem 6.13 number 5 with A(1,0,0), B(-3,01), C(2,2,2).
- 8. Do the planes 2x 3y + z = 5 = 0 and -x + y + 2z 3 = 0 intersect and if so, find the line of intersection.
- 9. Do problem 6.13 number 8 with A(1,0,0), B(-3,01), D(2,2,2), E(3,1,2).