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A NEW PROPERTY OF A CLASS OF JACOBI POLYNOMIALS

GEORGE CSORDAS, MARIOS CHARALAMBIDES, AND FABIAN WALEFFE

Abstract. Polynomials whose coefficients are successive derivatives of a class

of Jacobi polynomials evaluated at x = 1 are stable. This yields a novel and

short proof of the known result that the Bessel polynomials are stable polyno-

mials. Stability preserving linear operators are discussed. The paper concludes

with three open problems involving the distribution of zeros of polynomials.

1. Introduction

The new property referred to in the title was observed and conjectured (see
Conjecture 1 below) while developing a numerical solution for the Navier-Stokes
equations [23]. It is related to the fundamental problem of constructing discretiza-
tion schemes of continuous problems (involving, for example, boundary value prob-
lems for various systems of partial differential equations) in such a manner that
the associated eigenvalue problems are free of “spurious eigenvalues”; that is, the
eigenvalues are all negative. For the purpose of this paper, it is sufficient to consider
the problem of constructing polynomial approximations to the eigenvalue problem
d2u/dx2 = λu for −1 < x < 1 with u(±1) = 0. It is well-known that the solutions
to this problem consist of negative eigenvalues λ with trigonometric eigenfunctions
u(x). If un(x) is a polynomial approximation of degree n to u(x), then the residual

(1) Rn(x) := λun(x) − d2

dx2
un(x)

is also a polynomial of degree n in x and this relationship can be inverted to obtain

(2) un(x) =

[n/2]
∑

k=0

µk+1 d2k

dx2k
Rn(x)

where µ = 1/λ and [n/2] denotes the greatest integer less than or equal to n/2.
In the Tau method [3, §10.4.2], the polynomial approximation un(x) is determined
from the boundary conditions un(±1) = 0 and the requirement that Rn(x) is or-
thogonal to all polynomials of degree n − 2 with weight function W (x) ≥ 0 in the
interval (−1, 1). Whence for the Jacobi weight function Wα,β(x) = (1−x)α(1+x)β ,
α, β > −1,

(3) Rn(x) = τ0P
(α,β)
n (x) + τ1P

(α,β)
n−1 (x),

for some x-independent coefficients τ0 and τ1, where P
(α,β)
n (x) is the Jacobi polyno-

mial of degree n. The Jacobi polynomials are the suitably standardized orthogonal

Received by the editors September 22, 2004.
1991 Mathematics Subject Classification. Primary 33C47, 26C10; Secondary 30C15, 33C52.

Key words and phrases. Jacobi and Bessel polynomials, stability, real zeros of polynomials.

c©1997 American Mathematical Society

1



2 GEORGE CSORDAS, MARIOS CHARALAMBIDES, AND FABIAN WALEFFE

polynomials on the interval (−1, 1) with the weight function Wα,β(x). They have
the following beautifully symmetric explicit formula ([7, p. 144], [8, vol. 2, p. 169],
[22, p. 68]).

Definition 1. The Jacobi polynomial, P
(α,β)
n (x), of degree n, is defined by

(4) P (α,β)
n (x) :=

1

2n

n
∑

k=0

(

n + α

k

)(

n + β

n − k

)

(x − 1)n−k(x + 1)k, α, β > −1.

The Jacobi polynomials are generalizations of several families of orthogonal poly-
nomials; to wit, the Chebyshev, Legendre and Gegenbauer (ultraspherical) polyno-

mials (cf. Remark 5). Their importance stems, in part, from the fact that P
(α,β)
n (x)

is the only polynomial solution (up to a constant factor, [22, p. 61, Theorem 4.2.2])
of the homogeneous, second-order differential equation

(5) (1 − x2)y′′ + [β − α − (α + β + 2)x]y′ + n(n + α + β + 1)y = 0.

In fact, they are the only polynomial solutions of a singular Sturm-Liouville problem
on the interval −1 < x < 1, i.e. an eigenvalue problem of the form [3, §9.2]

(6) − (p(x)y′)
′
+ q(x)y = λw(x)y,

with y′(±1) bounded, where p(x) > 0, q(x) ≥ and w(x) ≥ 0 are continuously
differentiable functions on the open interval (−1, 1) and p(±1) = 0. This is directly
related to their excellent approximation properties [3, §9.2.2, §9.6.1].

The Jacobi-Tau approximation to the eigenvalue problem u′′ = λu, u(±1) = 0
leads to an eigenvalue problem in terms of µ, τ0 and τ1 (see (2), (3)). These applied
considerations have led to the following remarkable conjecture.

Conjecture 1. For every positive integer n ≥ 2, the polynomial

(7) ϕn(µ) :=

[n/2]
∑

k=0

(

d2k

dx2k
P (α,β)

n (x)

)

x=1

µk, (−1 < α ≤ 1, β > −1),

has only real negative zeros, where P
(α,β)
n (x) denotes the Jacobi polynomial of degree

n.

Remark 1. It follows from (4) that P
(α,β)
n (−x) = (−1)nP

(β,α)
n (x). Thus, by virtue

of this symmetry, in (7) (and in the sequel) the derivatives of the Jacobi polyno-
mials may be evaluated at −1, instead of +1, subject to the proviso that then the
parameters satisfy −1 < β ≤ 1, α > −1.

Remark 2. In order to shed light on Conjecture 1 in a concrete setting, we briefly

consider the special case when α = β = − 1
2 . Then P

(− 1
2
,− 1

2
)

n (x) = (2n)!
22n(n!)2 Tn(x),

where Tn(x) denotes the nth Chebyshev polynomial of the first kind ([22, p. 60]).
In terms of powers of x, Tn(x), can be written explicitly ([17, p. 24], or [21, p. 37])
as

(8) Tn(x) =
n

2

[n/2]
∑

k=0

(−1)k(n − k − 1)!

(n − 2k)!k!
(2x)n−2k,

Now a calculation, together with an induction argument, shows that (cf. [8, vol. 2,
p. 186 (26)], [21, p. 38, Exercises 1.5.5 and 1.5.6]) for 0 ≤ k ≤ [n/2],

(9) T (2k)
n (1) = n

22k(n + 2k − 1)!(2k)!

(n − 2k)!(4k)!
.
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Thus, for the Chebyshev polynomials of the first kind, Conjecture 1 asserts that
the polynomial

(10) ϕn(x) :=

[n/2]
∑

k=0

T (2k)
n (1)xk = n

[n/2]
∑

k=0

22k(n + 2k − 1)!(2k)!

(n − 2k)!(4k)!
xk, n ≥ 2,

has only real negative zeros. In this case, with the aid of, say, Maple or Mathe-
matica, one can confirm the validity of the conjecture for fairly “large” values of
n. However, simple examples show that if in (10) the (2k)th derivative is replaced
by the kth derivative, then the resulting polynomial need not have only real zeros.

Consider, for instance,
∑3

k=0 T
(k)
3 (1)xk = 1 + 9x + 24x2 + 24x3. This polynomial

has two non-real zeros. It is also natural to inquire about the validity of Conjecture
1, when the even derivatives of the Chebyshev polynomials are evaluated at a point
other than 1. But again we find that such a modification of the polynomial, in (10),
need not possess only real zeros. Indeed, set
(11)

ϕ5(x, a) :=

[5/2]
∑

k=0

T
(2k)
5 (a)xk = a

(

5 − 20 a2 + 16 a4 + 40
(

−3 + 8 a2
)

x + 1920x2
)

,

and

r :=
1

2

√

5

2

(

3 −
√

6
)

= 0.586 . . . and R :=
1

2

√

5

2

(

3 +
√

6
)

= 1.845 . . . .

Then an elementary calculation shows that ϕ5(x, a) has two non-real zeros for any
real number a such that |a| < r or |a| > R. This observation is likely related to
the fact that x = ±1 are the singular points of the corresponding Sturm-Liouville
problem (6).

This paper is organized as follows. In Section 2, we use stability analysis (Theo-
rem 1) in conjunction with the Hermite-Biehler Theorem to prove a slightly stronger
version of the conjecture (Theorem 2). While there are restrictions on the Jacobi
parameters, α and β, our stability results are also valid for the Chebyshev polyno-
mials (the first and second kind), Legendre polynomials, and a class of Gegenbauer
polynomials (Corollary 1). The reality, simplicity and non-negativity of the zeros
of certain associated polynomials, is established in Theorem 2. We conclude this
paper with several corollaries, a new proof of the known result that the Bessel poly-
nomials are stable (Corollary 3), a brief discussion of a class of stability preserving
linear operators and three open problems (Section 3).

2. Stability analysis and the proof of Conjecture 1

A real polynomial, p(x), is said to be a stable polynomial (or a Hurwitz polyno-
mial), if all its zeros lie in the open left half-plane, Re z < 0. The importance of
stability in analysis and matrix theory are well known (cf. the references in [13]).
The celebrated Routh-Hurwitz theorem provides a necessary and sufficient condi-
tion for a polynomial to be stable (see, for example, [16, §40], [18, §23]). For an ele-
mentary derivation of the three basic results in the Routh-Hurwitz theory; namely,
the Hermite-Biehler Theorem, the Routh-Hurwitz criterion and the total positivity
of a Hurwitz matrix, we refer to [13]. Another frequently used technique involves a
continued fraction test for the stability of polynomials (cf. [14] and the references
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contained therein). However, it seems that none of these familiar results, with the
notable exception of the Hermite-Biehler Theorem provide a tractable stratagem
for proving Conjecture 1, even in the special case of the Chebyshev polynomials
of the first kind. Our proofs streamline and extend some key ideas introduced by
Gottlieb [10] and Gottlieb and Lustman [11].

In the proof of Theorem 1, we will use the following lemmas.

Lemma 1. If u(x) is real and continuously differentiable on [−1, 1] with u(1) = 0
and Wα,β(x) = (1 − x)α(1 + x)β, then

(12)

∫ 1

−1

du2

dx
Wα,β dx ≤ 0, if − 2 < α ≤ 0, β > 0.

Equality holds only if u(x) = 0 for all x in [−1, 1].

Proof. Integrating by parts,

(13)

∫ 1

−1

du2

dx
Wα,β dx =

[

u2Wα,β

]x=1

x=−1
−

∫ 1

−1

u2 dWα,β

dx
dx.

The first term on the right-hand side vanishes if α > −2 and β > 0. The integral
on the right-hand side is negative if d

dxWα,β = [β −α− (α+β)x]Wα−1,β−1 ≥ 0, for
|x| ≤ 1, which is the case if α ≤ 0 and β > 0. ¤

Lemma 2. If fn(x) is a polynomial of degree n with fn(1) = 0 and P
(α,β)
n (x) is

the Jacobi polynomial of degree n with weight function Wα,β(x) = (1−x)α(1+x)β,
α, β > −1, then

(14)

∫ 1

−1

fnP (α,β)
n Wα−1,β+1dx = −

∫ 1

−1

fnP (α,β)
n Wα,βdx.

Proof. Since fn(x) is a polynomial of degree n with fn(1) = 0, there exist n coeffi-
cients ck ∈ C, k = 0, . . . , n − 1, such that

(15) fn(x) = (1 − x)

n−1
∑

k=0

ckP
(α,β)
k (x).

Now Wα−1,β+1 = 1+x
1−xWα,β , thus, using expansion (15), we obtain

(16)

∫ 1

−1

1 + x

1 − x
fn P (α,β)

n Wα,β dx = cn−1

∫ 1

−1

x P
(α,β)
n−1 P (α,β)

n Wα,β dx,

and

(17)

∫ 1

−1

fn P (α,β)
n Wα,β dx = −cn−1

∫ 1

−1

x P
(α,β)
n−1 P (α,β)

n Wα,β dx,

because P
(α,β)
n (x) is orthogonal to all polynomials of degree less than n with respect

to the weight function Wα,β(x). ¤

Theorem 1. Let P
(α,β)
n (x) denote the Jacobi polynomial of degree n, where n ≥ 2.

If −1 < α ≤ 1 and β > −1, then the zeros of the polynomial

(18) Φn(µ) :=

n
∑

k=0

(

dk

dxk
P (α,β)

n (x)

)

x=1

µk

lie in the left half-plane; that is, Φn(µ) is a stable polynomial.
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Proof. Consider

(19) fn(x) :=

n
∑

k=0

µk dk

dxk
P (α,β)

n (x)

where µ is a root of Φn(µ) so that fn(1) = 0. Note that Φn(0) = P
(α,β)
n (1)

=
(

n+α
n

)

6= 0, hence µ 6= 0. It can be readily checked that

(20)
1

µ

(

fn(x) − P (α,β)
n (x)

)

=
d

dx
fn(x).

Then from (19) or (20) it follows that

(21)

∫ 1

−1

fnP (α,β)
n Wα,β dx =

∫ 1

−1

(

P (α,β)
n

)2

Wα,β dx,

because P
(α,β)
n (x) is orthogonal to all polynomials of degree less than n with respect

to the weight function Wα,β(x).

Multiply (20) by fn(x), the complex conjugate of fn(x), and then add to this its
complex conjugate to obtain

(22)

(

1

µ
+

1

µ

)

|fn(x)|2 −
(

fn(x)

µ
+

fn(x)

µ

)

P (α,β)
n (x) =

d

dx
|fn(x)|2.

Next multiply both sides of (22) by Wα−1,β+1(x) = (1 − x)α−1(1 + x)β+1 and
integrate over (−1, 1). Using (14) and (21), we obtain

(23)

(

1

µ
+

1

µ

) (∫ 1

−1

|fn(x)|2Wα−1,β+1 dx +

∫ 1

−1

(

P (α,β)
n

)2

Wα,β dx

)

=

∫ 1

−1

(

d

dx
|fn(x)|2

)

Wα−1,β+1 dx

Both integrals on the left-hand side are positive and, by Lemma 1, the integral on
the right hand side is negative if −1 < α ≤ 1, β > −1, whence

(24)
1

µ
+

1

µ
=

2Re(µ)

|µ|2 < 0.

¤

Remark 3. An alternative to the use of Lemma 2 in the proof of Theorem 1 is to
employ Gauss quadrature [10] which is exact for polynomials of degree less than
2n ([2, p. 248], [7, p. 33] or [22, p. 47]). After multiplying (22) by Wα−1,β+1 =

(1−x)−1(1+x)Wα,β(x) and since 1+x
1−x

d
dx |fn(x)|2 is a polynomial of degree 2n− 1,

we can use Gauss quadrature with weight function Wα,β(x) and weights wj > 0, to
obtain

(25)

(

1

µ
+

1

µ

)





n
∑

j=1

wj
1 + xj

1 − xj
|fn(xj)|2



 =

∫ 1

−1

(

d

dx
|fn(x)|2

)

1 + x

1 − x
Wα,β dx,

where xj ∈ (−1, 1), j = 1, . . . , n, are the zeros of P
(α,β)
n (x).

Remark 4. Equation (20) is the Tau approximation (see introduction) to the eigen-
value problem u′ = λu in −1 < x < 1 with u(+1) = 0 (which has no solution).
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Remark 5. A glance at Theorem 1 shows that, for appropriate choices of the pa-
rameters α and β, it can be formulated in terms of certain classical orthogonal

polynomials. Indeed, if α = β = −1/2, then P
(− 1

2
,− 1

2
)

n (x) = (2n)!
22n(n!)2 Tn(x), where

Tn(x) denotes the nth Chebyshev polynomial of the first kind ([22, p. 60], [17, Chap-
ter 1], [21, Chapter 1]). The polynomials {Tn(x)}∞n=0 are orthogonal with respect
to the weight function W (x) = (1− x)−1/2 on the interval (−1, 1). If α = β = 1/2,

then P
( 1
2
, 1
2
)

n (x) = (2n+2)!
22n+1((n+1)!)2 Un(x), where Un(x) denotes the nth Chebyshev

polynomial of the second kind ([22, p. 60]). The polynomials {Un(x)}∞n=0 are or-
thogonal with respect to the weight function W (x) = (1 − x)1/2 on the interval

(−1, 1). If α = β = 0, then P
(0,0)
n (x) = Pn(x), where Pn(x) denotes the nth Le-

gendre polynomial ([22, p. 60], [20, Chapter 10]). The polynomials {Pn(x)}∞n=0

are orthogonal with respect to the weight function W (x) ≡ 1 on the interval
(−1, 1). As a last example, we recall that if α = β = ν − 1/2, where ν > − 1

2
and ν 6= 0, (a caveat is in order for the case when ν = 0, see [8, vol. 2, p. 174]), then

P
(ν− 1

2
,ν− 1

2
)

n (x) =
(ν+ 1

2
)n

(2ν)n

Cν
n(x), where Cν

n(x) denotes the nth Gegenbauer (or ultra-

spherical) polynomial ([20, p. 277]). The polynomials {Cν
n(x)}∞n=0 are orthogonal

with respect to the weight function W (x) = (1 − x)ν−1/2 on the interval (−1, 1).
Thus, with the above nomenclature, as an immediate consequence of Theorem 1,
we obtain the following result.

Corollary 1. Let pn(x) be a real polynomial and set Φn(µ) :=
∑n

k=0 p
(k)
n (1)µk.

Then the polynomial Φn(µ) is stable in each of the following cases:

(a) pn(x) := Tn(x) (Chebyshev polynomial of the first kind);

(b) pn(x) := Un(x) (Chebyshev polynomial of the second kind);

(c) pn(x) := Pn(x) (Legendre polynomial);

(d) pn(x) := Cν
n(x), −1/2 < ν ≤ 3/2, ν 6= 0 (Gegenbauer polynomial).

In the proof of Theorem 2, we will appeal to the following classical version of
the Hermite-Biehler Theorem.

The Hermite-Biehler Theorem. ([15, p. 305], [18, p. 13], [13]) Let

(26) f(z) := p(z) + iq(z) =: an

n
∏

k=1

(z − zk), (0 6= an ∈ R),

where p(z) and q(z) are real polynomials of degree ≥ 2. If f(z) has all its zeros in
Im z > 0, then p and q have only real, simple zeros which interlace (separate one
another) and d(x) := q′(x)p(x) − q(x)p′(x) > 0 for all real x.

We are now in position to prove a slightly stronger version of Conjecture 1.

Theorem 2. Let P
(α,β)
n (x) denote the Jacobi polynomial of degree n, where n ≥ 2.

If −1 < α ≤ 1 and β > −1, then the polynomials

(27) ϕn(µ) :=

[n/2]
∑

k=0

(

d2k

dx2k
P (α,β)

n (x)

)

x=1

µk

and

(28) ψn(µ) :=

[n/2]
∑

k=0

(

d2k+1

dx2k+1
P (α,β)

n (x)

)

x=1

µk
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have only real, simple negative zeros. Moreover, the zeros of ϕn(µ) and ψn(µ)
interlace.

Proof. By Theorem 1, the zeros of Φn(µ) (see (18)) lie in the open left-half plane,
Re µ < 0. Hence, via the substitution µ = iz, the zeros of Φn(iz) lie in the open
upper-half plane, Im z > 0. Therefore, setting

Φn(iz) =

[n/2]
∑

k=0

(

d2k

dx2k
P (α,β)

n (x)

)

x=1

(−z2)k

+ iz

[n/2]
∑

k=0

(

d2k+1

dx2k+1
P (α,β)

n (x)

)

x=1

(−z2)k

:=pn(z) + iqn(z),

(29)

it follows from the Hermite-Biehler Theorem that pn(z) and qn(z) have only real,
simple zeros which interlace. Next, set rn(z) := qn(z)/z. Then p

n
(x) = ϕn(−x2)

and r
n
(x) = ψn(−x2) and whence the zeros of the polynomials ϕn(x) and ψn(x)

are real, negative and simple. Finally, we infer from the interlacing property of the
zeros of the polynomials pn(x) and qn(x), that the zeros of ϕn(x) and ψn(x) are
also interlacing. ¤

3. Scholia, stability preserving operators and open problems

In this section our goal is to deduce some consequences of the above results,
provide a new proof that the Bessel polynomials are stable, highlight some lesser
known stability preserving operators, and conclude with three open problems.

We first consider a consequence of Theorem 2. Since the polynomials ϕn(x) and
ψn(x) have real, negative, interlacing zeros and |deg ϕn − deg ψn| ≤ 1, Theorem 2
together with a well-known theorem (see, for example, [15, p. 314], [18, p. 12, Satz
5]) imply the following corollary.

Corollary 2. Let ϕn(x) and ψn(x) be the polynomials defined by (27) and (28),
respectively. Then for any a, b ∈ R, the linear combination aϕn(x) + bψn(x) has
only real zeros.

In order to prove our next result, we first recall that the Bessel polynomial of
degree n ([9, p. 7 and p. 35], [7, p. 181]) is defined as

(30) yn(x) :=2 F0(−n, 1 + n;−;−x

2
) =

n
∑

k=0

(n + k)!

(n − k)!k!

(x

2

)k

.

Now it is known that the zeros of the Bessel polynomials are all simple and lie in
the open left-half plane ([9, Theorem 1, p. 74 and Corollary 2, p. 82], [14]). Here
we offer the following short proof of this result.

Corollary 3. The Bessel polynomials, yn(x), n ≥ 1, are stable polynomials.

Proof. Consider the Legendre polynomial, Pn(x), (see, for example, [20, p. 157]),
where

(31) Pn(x) :=
1

2n

[ n

2
]

∑

k=0

(−1)k

(

n

k

)(

2n − 2k

n

)

(x)n−2k.
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Then using a known relation between derivatives of Legendre polynomials and
Gegenbauer polynomials ([1, Formulae 22.2.3, 22.5.37], [8, vol. 2, p. 180]), a simple
calculation shows that

(32) P (k)
n (1) ≡

(

dkPn(x)

dxk

)

x=1

=
(n + k)!

2k(n − k)! k!
.

Whence the Bessel polynomial (30) can be written

(33) yn(x) ≡
n

∑

k=0

P (k)
n (1)xk,

which is stable by Corollary 1(c). ¤

In stability analysis it is frequently advantageous to consider operations which
preserve stability. Thus, for example, it is known that the Hadamard product of
two stable polynomials is a stable polynomial [12]. Another familiar fact is that
the differentiation operator, D := d/dx, is stability preserving, by virtue of the
Gauss-Lucas Theorem ([16, p. 12]). In order to cite some other, more general, but
useful class of linear operators which preserve stability, we recall the following ter-
minology. A sequence L = {γk}∞k=0 of real numbers is called a multiplier sequence
if, whenever the real polynomial p(x) =

∑n
k=0 akxk has only real zeros the poly-

nomial L[p(x)] :=
∑n

k=0 γkakxk also has only real zeros. (For a survey of results
pertaining to multiplier sequences see [5] and the references contained therein.) For

example, if f(x) :=
∑∞

k=0 γk
xk

k! , γk ≥ 0, is an entire function of order at most one
with only real negative zeros, then the Taylor coefficients {γk}∞k=0 form a multiplier
sequence ([15, Ch. VIII], [19, p. 115]). In addition, if p(x) is a polynomial having
only real negative zeros then the sequence L = {p(k)}∞k=0 is a multiplier sequence
by a theorem of Laguerre (cf. [18, Satz 3.2] or [4]).

Theorem 3. ([6]) Let L = {γk}∞k=0 be a non-negative multiplier sequence. Then
L[p(z)] is a stable polynomial, whenever p(z) is a stable polynomial.

By way of illustration, we note that an immediate consequence of Corollary 1(a),
Theorem 2 and Theorem 3 is the following corollary.

Corollary 4. Suppose that p(x) is a polynomial having only real negative ze-

ros. Then the polynomial
∑n

k=0 T
(k)
n (1)p(k)xk is stable. Also, the polynomial

∑[n/2]
k=0 T

(2k)
n (1)p(k)xk has only real negative zeros, where Tn(x) denotes the nth

Chebyshev polynomial.

Similar results hold, mutatis mutandis, for the Chebyshev polynomials of the
second kind, Legendre polynomials, Gegenbauer polynomials and the Jacobi poly-
nomials (with parameters −1 < α ≤ 1 and β > −1).

We conclude this paper with the following open problems and conjectures. Con-
jecture 2 is directly related to the approximation problem discussed in the intro-
duction.

Conjecture 2. For ϕn(µ) as in Theorem 2 and ∀n ≥ 3, the zeros of the polynomials
ϕn(µ) and ϕn−1(µ) interlace.

Conjecture 3. For ϕn(µ) as in Theorem 2 and ∀n ≥ 4, the zeros of the polynomials
ϕn(µ) and ϕn−2(µ) interlace.
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Problem 1. Characterize the linear operators which preserve stability.

If p(x) is a polynomial of degree n with zeros {αk}n
k=1, where Re αk < 0, k =

1, 2, . . . n, we define the abscissa of stability of p(x) as σ(p) := max
1≤k≤n

Re αk. For

example, for the Bessel polynomials, yn(x), we have σ(yn) ≤ −2/[(2n− 3)(2n− 1)]
([9, p. 90]).

Problem 2. Consider the stable polynomials

(34) Φn(x) :=

n
∑

k=0

(

dk

dxk
P (α,β)

n (x)

)

x=1

xk,

where P
(α,β)
n (x) is the Jacobi polynomial of degree n, n ≥ 2, −1 < α ≤ 1 and

β > −1. Determine the abscissa of stability, σ(Φn), for n = 2, 3, . . . .

Motivated by applied considerations, in this paper we have established the valid-
ity of Conjecture 1 for several classes of orthogonal polynomials. We call attention
here to analogous questions involving families of orthogonal polynomials with re-
spect to distributions (measures) of Stieltjes type dµ(x) (cf. [22, Chapters 1-3]).
Modifications of our techniques, in conjunction with the theory of multiplier se-
quences, may render the following problem tractable.

Problem 3. Characterize the class of all real polynomials, pn(x), of degree n, all
of whose zeros lie in the interval (−1, 1), such that that the associated polynomials

ϕn(x) :=
∑[ n

2
]

k=0 p
(2k)
n (1)xk possess only real negative zeros.

A solution of Problem 3 could have interesting ramifications in the theory of
distribution of zeros of polynomials and transcendental entire functions in the
Laguerre-Pólya class (see, for example, [4] or [5]).
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