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The differential equation y′ = y and the function exp(x)

Motivation: Compound Interest [TF 6-11]
Suppose you deposit an amount A0 in a bank account paying an interest r (e.g. r = 6% per
year) with a compounding period of T , then the amount after one period will have grown to
A(T ) = (1 + rT )A0. After the next compounding period it will be A(2T ) = (1 + rT )A(T ) =
(1 + rT )2A0 and so on. After n periods it will be

A(nT ) = (1 + rT )nA0. (1)

The amount in deposit increases by a factor (1 + rT ) after each period: A(t + T ) = (1 +
rT )A(t). We can write this in the form of a difference equation:

A(t+ T )− A(t)

T
= rA(t). (2)

The solution of this difference equation is (1), check it! It should be clear that the com-
pounding period is as important as the interest rate itself. Banks usually quote the interest
rate (in units of yr−1) and the Annual Percentage Yield (APY) instead of the compounding
period. What is the connection between r, T and the APY? If the interest rate is 6% and T
is one month, what is the APY? If r = 6% and T = 1 week, what is the APY?

• Continuous compounding: T → 0
Continuous compounding corresponds to the limit T → 0, then the solution (1) becomes
A(0) = A0. This is just the initial amount, what about A(t > 0)?! The difference equation
(2) does not become so useless in the limit T → 0. The difference quotient becomes a
derivative and the equation becomes the differential equation

dA

dt
= rA. (3)

We need to find the solution of this equation to determine A(t) and the proper limit of (1).

• Non-dimensionalization
Before trying to find the solution of (3) it is useful to reduce it to its bare essentials by using
non-dimensional variables. This is an important step in mathematical modeling of scientific
and engineering problems. The variables entering the problem are: A measured in dollars or
cents, r an inverse time and t time. The units of r and t must be compatible, if r is taken
per year, then t should be measured in years.
Let x = rt and y(x) = A(t)/A0 (assuming the original amount A0 is not zero) then x and y
are non-dimensional. By the chain rule and equation (3):

dy

dx
=
dy

dt

dt

dx
=

1

rA0

dA

dt
= y.

So the differential equation that we would like to solve is

y′ = y (4)

with the initial condition y(0) = 1. This is the equation for which separation of variables
[TF 4-2] y′ = y ⇔ y−1dy = dx breaks down as

∫
yndy = yn+1/(n+ 1) but here n = −1.

1



• Solution
Sketch solution using piecewise linear approximation over intervals of size ∆x (i.e. Euler’s
method). Algebraically, Euler’s method gives y(n∆x) ≈ (1 + ∆x)ny(0) (cf. (1) and Fig. 1).
Solution by polynomial approximation (i.e. power series, i.e. Taylor’s formula [TF 3-10]):

y(x) ≈ y(0) + y′(0) x+
1

2
y′′(0) x2 +

1

3!
y′′′(0) x3 + · · · (5)

The differential equation y′ = y implies y = y′ = y′′ = · · ·, and y(0) = 1 thus y(0) = y′(0) =
y′′(0) = y′′′(0) = · · · = 1 and

y(x) ≈ 1 + x+ x2/2 + x3/6 + x4/4! + x5/5! + · · · (6)

See Fig. 2. You can check using term-by-term differentiation that this is indeed the solution
of y′ = y, if the sum does not end!. One can make sense of these infinite sums using limits
[TF 16].
The solution (6) is not a simple power law or polynomial (the sum does not end). It is a
new function defined by the differential equation y′ = y with y(0) = 1.
But is the solution to that equation unique? After all y′ =

√
y with y(0) = 0 has two

solutions y(x) = 0 and y(x) = x2/4 (check it).

• Uniqueness:
(1) by variation of parameters. Let y1(x) be a solution of y′ = y with y(0) = 1. Let
y(x) = u(x)y1(x) be another solution then u′y1 = 0 and u = 1, so y(x) is identical to y1(x).
[Tricky point: what if y1(x) = 0?]
(2) another proof: Assume u(x) and v(x) are two different solutions. Consider w(x) =
u(x)v(a − x) where a is any constant. Then by the product and chain rules w′ = 0 ∀a, x
hence u(x)v(a − x) = v(a). Of course v(x)v(a − x) = v(a) by the same reasoning. Hence
u(x)v(a− x) = v(x)v(a− x) for all a, x and u(x) = v(x).
Either way, the solution of y′ = y with y(0) = 1 is indeed unique, let’s call it y = exp(x).

• Main property of exp(x):
Note that exp(αx) is the unique solution of y′ = αy with y(0) = 1, however

d

dx
[exp(x)]α = α[exp(x)]α−1[exp(x)]′ = α[exp(x)]α

so [exp(x)]α also satisfies y′ = αy with y(0) = 1, hence, by uniqueness,

exp(αx) = [exp(x)]α.

Nice application of the uniqueness proof. In particular, exp(x) = [exp(1)]x ≡ ex where

e = 1 + 1 + 1/2 + 1/3! + 1/4! + 1/5! + 1/6! + . . . = 2.718...

Note that Euler’s method gives y(t) ≈ (1 + t/n)n and this suggests limn→∞(1 + t/n)n = et.

The differential equation y′′ + y = 0 can be treated similarly as well as in 4-4 (see 18-12 for
a physical introduction). One could even go on to eix...
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Piecewise linear approximations to y’=y with y(0)=1
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Figure 1: Piecewise linear approximations (Euler’s method)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

1+x+x2/2+x3/6 (dash)

1+x+x2/2

1+x

1+x+x2/2+x3/6+x4/24

x

y

Power series approximations to y’=y with y(0)=1

Figure 2: Polynomial approximations (Taylor series)
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