©F. Waleffe Math 221 supplementary notes, Aug. 2000

The differential equation 3y’ = y and the function exp(z)

Motivation: Compound Interest [TF 6-11]

Suppose you deposit an amount Ay in a bank account paying an interest r (e.g. r = 6% per
year) with a compounding period of T', then the amount after one period will have grown to
A(T) = (1+7rT)Ap. After the next compounding period it will be A(2T) = (1+rT)A(T) =
(1+7T)?Ap and so on. After n periods it will be

A(nT) = (1+ rT)"Ao. (1)

The amount in deposit increases by a factor (1 4 r7") after each period: A(t+7T) = (1 +
rT)A(t). We can write this in the form of a difference equation:

Alt+1T) — A(t)
T
The solution of this difference equation is (1), check it! It should be clear that the com-
pounding period is as important as the interest rate itself. Banks usually quote the interest
rate (in units of yr~!) and the Annual Percentage Yield (APY) instead of the compounding
period. What is the connection between r, T and the APY? If the interest rate is 6% and T'
is one month, what is the APY? If r = 6% and T' = 1 week, what is the APY?

= rA(t). (2)

e Continuous compounding: T — 0

Continuous compounding corresponds to the limit 77 — 0, then the solution (1) becomes
A(0) = Ap. This is just the initial amount, what about A(¢ > 0)?! The difference equation
(2) does not become so useless in the limit 77 — 0. The difference quotient becomes a
derivative and the equation becomes the differential equation

dA
dt
We need to find the solution of this equation to determine A(t) and the proper limit of (1).

=rA. (3)

e Non-dimensionalization

Before trying to find the solution of (3) it is useful to reduce it to its bare essentials by using
non-dimensional variables. This is an important step in mathematical modeling of scientific
and engineering problems. The variables entering the problem are: A measured in dollars or
cents, r an inverse time and ¢ time. The units of » and ¢ must be compatible, if r is taken
per year, then ¢ should be measured in years.

Let x = rt and y(z) = A(t)/Ao (assuming the original amount A is not zero) then x and y
are non-dimensional. By the chain rule and equation (3):

dy _dydt 1 dA _
de  dtdr  rA,dt 7

So the differential equation that we would like to solve is
y =y (4)

with the initial condition y(0) = 1. This is the equation for which separation of variables
[TF 4-2] v/ = y & y~'dy = dz breaks down as [y"dy = y"™'/(n + 1) but here n = —1.
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e Solution

Sketch solution using piecewise linear approximation over intervals of size Ax (i.e. Euler’s
method). Algebraically, Euler’s method gives y(nAx) ~ (1 + Az)"y(0) (¢f. (1) and Fig. 1).
Solution by polynomial approximation (i.e. power series, i.e. Taylor’s formula [TF 3-10]):

1 1
y(x) = y(0) +¢'(0) = + iy”(O) z® + yy’”(O) 4 (5)
The differential equation y' =y implies y = y' = y” = -+, and y(0) = 1 thus y(0) = ¢'(0) =
y"(0) =¢"(0) =---=1and
y(x) 1+ z+2%/24 2%/6 + 2t /Al + 27 /5 + - .- (6)

See Fig. 2. You can check using term-by-term differentiation that this is indeed the solution
of 4 =y, if the sum does not end!. One can make sense of these infinite sums using limits
ITF 16).

The solution (6) is not a simple power law or polynomial (the sum does not end). It is a
new function defined by the differential equation 3y’ = y with y(0) = 1.

But is the solution to that equation unique? After all 3 = /y with y(0) = 0 has two
solutions y(z) = 0 and y(x) = z*/4 (check it).

e Uniqueness:

(1) by variation of parameters. Let y;(z) be a solution of ¢ = y with y(0) = 1. Let
y(x) = u(z)yi(z) be another solution then w'y; = 0 and u = 1, so y(z) is identical to y;(z).
[Tricky point: what if y;(z) = 07]

(2) another proof: Assume u(z) and v(z) are two different solutions. Consider w(z) =
u(z)v(a — x) where a is any constant. Then by the product and chain rules w’ = 0 Va,z
hence u(x)v(a — z) = v(a). Of course v(x)v(a — z) = v(a) by the same reasoning. Hence
u(z)v(a — ) = v(z)v(a — z) for all a,z and u(x) = v(z).

Either way, the solution of 3y’ = y with y(0) = 1 is indeed unique, let’s call it y = exp(x).

e Main property of exp(x):
Note that exp(ax) is the unique solution of ' = ay with y(0) = 1, however

d

@[exp(rc)]“ = afexp(z)]

*exp(z)]" = afexp(x)]”

so [exp(x)]* also satisfies ¥ = ay with y(0) = 1, hence, by uniqueness,
exp(ar) = [exp(x)]".
Nice application of the uniqueness proof. In particular, exp(x) = [exp(1)]* = e” where
e=1+1+1/2+41/31+1/41+1/51 +1/6! + ... = 2.718...

Note that Euler’s method gives y(t) ~ (1 +¢/n)" and this suggests lim,,_.(1 +t/n)" = €’

The differential equation y” 4+ y = 0 can be treated similarly as well as in 4-4 (see 18-12 for
a physical introduction). One could even go on to e™...



Piecewise linear approximations to y'=y with y(0)=1
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Figure 1: Piecewise linear approximations (Euler’s method)

Power series approximations to y’=y with y(0)=1
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Figure 2: Polynomial approximations (Taylor series)



