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Abstract. [Cha02] has proposed scaling estimates for the magnitude of the smallest perturbations that

could trigger turbulence in channel flows. Those estimates are plausible scalings for streak instability but

cannot be considered as transition thresholds since feedback is not included. Chapman’s analysis also

overlooks the modification of the mean shear which can be order one. Here, a Kelvin mode analysis is

used to clarify the asymptotics of linear transient growth and the nonlinear generation of streamwise rolls

by oblique perturbations is studied explicitly. Implications of the scalings and connections with the self-

sustaining process theory are discussed.

1. Introduction

Two transition scenarios related to transient growth have been considered in the literature: (i) the streamwise
rolls scenario (SRS) where streamwise rolls create streaks whose possible instability may lead to transition,
(ii) the oblique rolls scenario (ORS) where a pair of oblique rolls generate oblique streaks whose nonlinear
interaction generate streamwise rolls that may trigger the SRS. A key question has been to estimate the
Reynolds number scaling of the smallest perturbation that leads to transition. [TTRD93] conjectured that
the scaling was Ra with a < 1, strictly, thanks to linear transient growth. An R−1 scaling would suggest a
nonlinear transition where linear transient amplification does not play a role, since the quadratic nonlinear
interaction of an R−1 perturbation could directly balance an R−1 linear viscous damping.
The numerical simulations of [RSBH98] suggested SRS threshold exponents of a = −1 and −7/4, and ORS
exponents of a = −5/4 and −7/4, for plane Couette and Poiseuille flow, respectively. However, [Cha02]
argues that the true asymptotic exponents are a = −1 and −3/2 for the SRS and a = −1 and −5/4 for the
ORS.
The ORS, especially the complete model version with ‘bootstrapping’ necessary for transition ([Cha02,
eqns. (2.6-9), fig. 3]), is identical with the scenario studied in [WKH93, Sect. 3]. That scenario was itself a
modification of a similar scenario proposed in [BG81] and studied in [JGB86]. The latter references dealt with
‘direct resonances’, an earlier, and incomplete, version of linear transient growth but went much deeper in
their study of nonlinear effects. Surprisingly, most of the later publications studying linear transient growth
have limited themselves to calculating maximum linear amplification of perturbation energy, suggesting that
this could trigger nonlinear effects, but without actually studying the latter.
[WKH93, Wal95a, Wal95b, Wal97] dismissed scenarios based on linearization about the laminar flow and pro-
posed instead a self-sustaining process (SSP) theory in which R−1 streamwise rolls create O(1) streaks whose
instability feeds back on the rolls. That theory is now supported by substantial evidence (e.g. [HKW95]) and
has led to the discovery of traveling wave solutions in plane Couette and Poiseuille flow [Wal98, Wal01, Wal03]
and pipe flow [FE03, WK04] as well as time-periodic solutions in plane Couette flow [KK01]. The pipe flow
traveling waves appear to be directly connected with ‘puffs’ [HvDW+04], while the plane flow traveling waves
have a structure and preferred scalings (e.g. the 100+ streak spacing) that are very similar to those of the
coherent structures observed in the near-wall region of turbulent shear flows. Since these solutions come in
pairs, an upper branch and a lower branch, the current thinking mentioned in those references is that the
upper branch solutions are ‘organizing centers’ for turbulent shear flows, a view that is supported by the
work of [JKSN05], while the lower branches and their stable manifolds form the boundary separating the
basin of attraction of the laminar state from that of the turbulent state ([IT01, WW05]).
The farther-reaching work on transient growth ([RSBH98], [Cha02]) has moved closer to the SSP theory.
Those works focus on perturbations that lead to unstable streaks, rather than on perturbations that lead to
maximum linear growth of energy. However, Chapman’s analysis consists only of scaling estimates for streak
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instability and does not include feedback. The only certain consequence of the streak instability, a priori, is
that a nonlinear ‘Reynolds stress’ will develop to extract energy from the streaks. Thus, the nonlinear effects
triggered by the streak instability could simply destroy the streaks and accelerate the return to the laminar
flow, rather than trigger transition to a turbulent flow. Of course, work on the SSP has demonstrated that
it is possible to have key roll-producing nonlinear interactions in addition to the streak-destroying nonlinear
effects, but this is well beyond Chapman’s work. His analysis thus provide plausible estimates for streak
instability but those cannot be considered as estimates for transition since they do not include feedback.
Chapman’s neoclassical analysis involves WKB and matched asymptotics of the linear effects together with
scaling arguments for the nonlinear interactions. Here, the linear asymptotics of transient growth are illus-
trated using a revealing analysis in terms of Kelvin modes and the nonlinear generation of streamwise rolls
is studied explictly. The implications of the scaling results for both scenarios are discussed.

2. Governing equations

The Navier-Stokes equations for incompressible flow read

(1)

(

∂t −
1

R
∇2

)

v = −∇p − ∇ · (v ⊗ v),

where v(x, t) is the divergence-free velocity field at position x ∈ R
3 and time t > 0, p(x, t) is the kinematic

pressure and R is the Reynolds number. The equations have been written in conservative form where v ⊗ v

denotes tensor product and ∇ · (v ⊗ v) = (v ·∇)v since ∇ · v = 0. Consider plane shear flows and cartesian
coordinates with x streamwise, y shearwise and z spanwise and corresponding velocity components u, v, w.
A convenient reduction is to project the equations with the operators Pη(·) = ŷ · (∇× (·)) ≡ [∂z, 0,−∂x] and
Pv(·) = ŷ · (∇ × (∇ × (·))) ≡ [∂x∂y,−(∂2

x + ∂2
z ), ∂y∂z], where ŷ is the unit vector in the y-direction and the

expressions [·, ·, ·] should be understood as ‘row’ operators to be dotted with ‘column’ vectors. This yields
two coupled equations for Pv(v) = −∇2v and Pη(v) = η,

(2)

(

∂t −
1

R
∇2

)

∇2v = Pv (∇ · (v ⊗ v)) ,

(3)

(

∂t −
1

R
∇2

)

η = −Pη (∇ · (v ⊗ v)) .

The u and w velocity components follow from η = ∂zu−∂xw and v since by solenoidality ∂xu+∂zw = −∂yv
yielding

(∂2
x + ∂2

z ) u = ∂zη − ∂x∂yv,(4)

(∂2
x + ∂2

z ) w = −∂xη − ∂y∂zv.(5)

These equations are easily inverted for periodic boundary conditions in the x and z directions. However,
this representation is singular for the mean flow components u(y, t) and w(y, t), where the overbar denotes
an x and z average. For plane shear flow in the x direction we take w(y, t) = 0. The equation for the mean
flow u(y, t) follows from averaging the NSE over x and z

(6)

(

∂

∂t
−

1

R

∂2

∂y2

)

u = −∂xp − ∂yuv,

where the average pressure gradient ∂xp is prescribed. In plane Poiseuille flow, ∂xp = −2/R with v = 0 at
y = ±1 yielding the steady laminar solution v = (1−y2)x̂, while in plane Couette flow ∂xp = 0 with v = ±x̂

at y = ±1 and the laminar solution v = yx̂.
Linearizing equations (2) and (3) about the laminar parallel shear flow v = U(y)x̂ yields the Orr-Sommerfeld
and Squire equations

(7)

(

∂t + U∂x −
1

R
∇2

)

∇2v − U ′′∂xv = 0,

(8)

(

∂t + U∂x −
1

R
∇2

)

η = −U ′∂zv.
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The streamwise rolls equation is key to this discussion. It is the x-average of (2)

(9)

(

∂t −
1

R
∇2

)

∇2vx = ∂z

(

∂2
y − ∂2

z

)

vwx + ∂y∂2
z (wwx − vvx) ,

where (·)
x

denotes an x-average.
Since the problem is homogeneous in the x and z directions, it is convenient to Fourier transform in x and
z, i.e. consider Fourier mode solutions1 v = v̂(y, t)ei(αx+γz) and η = η̂(y, t)ei(αx+γz). This yields the familiar
form of the Orr-Sommerfeld and Squire equations

(10)

(

∂t + iαU −
1

R
(∂2

y − k2)

)

(∂2
y − k2)v̂ − iαU ′′v̂ = 0,

(11)

(

∂t + iαU −
1

R
(∂2

y − k2)

)

η̂ = −iγU ′v̂,

where k2 = α2 + γ2. It is well-known that these linear equations can produce transient algebraic growth.
Physically, this arises from the “Orr mechanism” in the v equation. The Orr mechanism is a direct conse-
quence of Kelvin’s circulation theorem. Differential advection by the shear flow U(y)x̂ leads to the transient
skrinking of material contours initially inclined against the shear and consequent amplification of well-chosen
initial velocity to conserve circulation (see e.g. [Wal95a, Fig. 1]). Transient growth in the η equation re-
sults from the v forcing on the RHS. That forcing is the linearized approximation of the redistribution of
streamwise velocity by the perturbation velocity v.

3. WKB analysis of linear transient growth

[Cha02] provides a WKB analysis of the linear transient growth processes. To do so he considers the WKB
ansatz2 [Cha02, Sect. 4.2.2]

(12) v̂ = Aeφ/ε, η̂ =
B

ε
eφ/ε,

where ε = (αR)−1/3 ¿ 1, and A = A(y, t̃), B = B(y, t̃) and φ = φ(y, t̃) are functions of y and the slow time

t̃ = εαt. At leading order, this yields the geometrical optics approximation (eikonal equation) for the phase

(13) φ = φ0(y) − iU t̃,

and the physical optics approximation for the amplitudes (writing φy for ∂yφ, etc.)

φyAt̃ =2iU ′A + (φy)
3
A,(14)

Bt̃ =(φy)
2
B − i

γ

α
U ′A.(15)

Since these are purely temporal evolution equations for A and B and φy = φ′
0(y) − iU ′t̃ is linearly related

to t̃, it is convenient to make the change of variable τ = U ′t̃ + iφ′
0(y) = iφy. Then

(16) A = A0(y)
τ2
0

τ2
exp

(

τ3
0 − τ3

3U ′

)

,

(17) B =

[

iγA0(y)

α

(

τ2
0

τ
− τ0

)

+ B0(y)

]

exp

(

τ3
0 − τ3

3U ′

)

,

which are equivalent to Chapman’s (4.28) and (4.29). These solutions blow-up as τ → 0, but the asymptotics
break down for τ = O(ε). Chapman argues that the growth in A is capped at ε−2 and in B at ε−1. However,
B is scaled by a factor ε−1 in the WKB ansatz (12), so the net amplification in both A and B would be
of the same order, namely O(ε−2). Chapman also argues that the largest transient growth occurs when
φ0(y) = iU t̃0, so that φ is pure imaginary and the ‘blow-up’ time is the same for every y. Note that t̃0 = εt0
must be O(1) to achieve maximum transient growth at a time t = t0 = O(ε−1).

1The z-wavenumber, γ, is usually denoted β in the literature.
2Chapman picks v̂ = αεA exp(φ/ε), η̂ = B exp(φ/ε) but (12) is equivalent and more convenient for discussion of nonlinear

effects and comparison with the Kelvin mode analysis.
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4. Kelvin mode analysis of transient growth

Equations (10) and (11) for U(y) = Sy with S constant, admit Kelvin mode solutions of the form

(18) v̂(y, t) = v(t)eiβ(t)y, η̂(y, t) = η(t)eiβ(t)y.

Substituting these expressions into (10), (11) yields3

(19) β = β0 − αSt,

(20) v̇ +

(

β2 + k2

R
+

2ββ̇

β2 + k2

)

v = 0

(21) η̇ +
β2 + k2

R
η = −iγSv.

Equations (19), (20) and (21) correspond to the leading order WKB equations (13) , (14) and (15), respec-

tively, with β ≡ −iφy/ε. For the benefit of comparison, let β̃ = εβ and τ = ε(αSt − β0) = −β̃, then the
solutions of (20) and (21) read

(22) v = v0
τ2
0 + ε2k2

τ2 + ε2k2
exp

(

τ3
0 − τ3

3S
+ ε2k2 τ0 − τ

S

)

,

(23) η =

[

iγv0

α

τ2
0 + ε2k2

ε2k

(

arctan
τ0

εk
− arctan

τ

εk

)

+ η0

]

exp

(

τ3
0 − τ3

3S
+ ε2k2 τ0 − τ

S

)

,

which tend to the WKB solutions (16), (17) (if we define εη = B as in (12)) as ε → 0.4 The WKB analysis
is somewhat more general since it is formulated for an arbitrary U(y), however the asymptotics require
U ′ = O(1). On the other hand, the Kelvin mode analysis does not break down for small τ , indeed it is valid
for any ε and for all τ .
Equations (19), (20) indicate that v̇ = 0 when (β2+k2)2 = 2αRβ. A graphical analysis of that equation for β
shows that it has two positive roots β1 ≥ β2 > 0 if R is large enough, with β1 ∼ (2αSR)1/3 = ε−1(2S)1/3 and
β2 ∼ k4/(2αSR) = ε3k4/(2S), asymptotically as R → ∞ (ε → 0). The root β1 corresponds to a minimum

of v(t) and β2 to a maximum. The optimum amplification in (22) therefore occurs at τ = −β̃ = −εβ2 ∼

−ε4k4/(2S) for τ0 = −β̃0 = −εβ1 ∼ −(2S)1/3. The maximum amplification in both v(t) and η(t) is indeed
O(ε−2) in agreement with Chapman’s matched asympotic expansions. Plotting (22), (23) provides curves
very similar to the numerical channel results shown in fig. 1.

5. Nonlinear generation of streamwise rolls

Consider initial conditions in the form of a pair of oblique modes such that v = v+(y, t)eiαxeiγz+v−(y, t)e−iαxeiγz+
c.c. with vertical vorticity perturbations η = η+(y, t)eiαxeiγz + η−(y, t)e−iαxeiγz + c.c. where c.c. denotes
complex conjugate, as in [BG81], [WKH93] and [Cha02]. Our main interest is the generation of streamwise
rolls V (y, t)ei2γz + c.c. from the nonlinear interaction between the (α, γ) and (−α, γ) modes. From the
streamwise roll equation (9), we obtain

(24)

(

∂t −
1

R
(∂2

y − 4γ2)

)

(∂2
y − 4γ2)V =

2iγ
(

∂2
y + 4γ2

)

(v+w− + w+v−) + 8γ2∂y

(

v+v− − w+w−
)

,

3Another approach is to Fourier transform in the y-direction, then yf(y, t) → i∂f̂(β, t)/∂β and equations (10), (11) become

first order PDEs in β, t space whose characteristics are (19).
4The exponential factor shows ‘shear-induced diffusion’, the enhanced viscous decay on a (αR)1/3 time scale arising from

the linear increase with time of the wavenumber β as a result of the shear.
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where w± = ik−2 (±αη± + γ∂yv±) , from (5), hence the right-hand side of (24) can be written as the sum
of three forcing terms, Fvv + Fvη + Fηη, where

Fvv =
8α2γ2

k2
∂y(v+v−) +

8γ4

k4
∂y

(

∂yv+∂yv−
)

−
2γ2

k2
∂3

y(v+v−),(25)

Fvη =
2αγ

k2

(

∂2
y + 4γ2

)

(v+η− − v−η+) +
8αγ3

k4
∂y

(

η+∂yv− − η−∂yv+
)

,(26)

Fηη = −
8α2γ2

k4
∂y

(

η+η−
)

.(27)

Equation (24) and the decomposition (25-27) are identical to [WKH93, eqn. (7)] modulo a difference in the
definition of the oblique modes.
Maximum nonlinear interaction requires picking two oblique modes that reach their maximum at the same
time. Therefore, from (19), if β0 ∼ (2αSR)1/3 is the optimum initial β for the (α, γ) mode then −β0 should
be the initial β for the (−α, γ) mode and β+(t) = −β−(t), for all t. The two optimum Kelvin modes then
have the form

(28) v±(y, t) = v(t)e±iβ(t)y, η±(y, t) = η(t)e±iβ(t)y,

but one verifies easily that the nonlinear forcings of streamwise rolls (25), (26), (27) vanish identically for
such oblique modes. So the nonlinear interaction of two optimally growing Kelvin modes does not generate
streamwise vortices.
The WKB analysis suggests the consideration of modulated Kelvin waves of the form

(29) v±(y, t) = A±

0 (y)a(t)e±iβ(t)y, η±(y, t) = A±

0 (y)b(t)e±iβ(t)y,

where a(t) and b(t) are the right-hand sides of (22) and (23), respectively, with v0 = 1 and η0 = 0. Indeed,
for plane Couette flow U(y) = Sy, Chapman’s WKB analysis leads to φ/ε = iSy(t̃0 − t̃)/ε = iαS(t0 −
t)y = i(β0 − αSt)y with β0 = αSt0 = O(ε−1). The A0(y) amplitude modulation implies that the oblique
perturbations now consist of a pair of near-optimum wavepackets of Kelvin modes. For optimum oblique
perturbations of the form (29), one verifies that

Fηη = −b2(t)
8α2γ2

k4

d

dy

(

A+
0 A−

0

)

.(30)

is the dominant nonlinear term as expected in [BG81], [JGB86], [Cha02], since limt→∞ |a(t)|/|b(t)| = 0,
and it appears possible to generate whatever large scale streamwise vortices by choosing the modulating
amplitudes A+

0 (y) and A−

0 (y) judiciously. The natural envelopes A+
0 (y) = A−

0 (y) = exp(−y2), for which
dA2

0/dy = −4y exp(−2y2), would generate a pair of counter-rotating vortices, antisymmetric about y = 0.
These conclusions are essentially correct, although the WKB expressions (29) are not valid for all times. In
particular, for incompressible flow in a channel, the v = 0 boundary condition is instantly propagated by the
pressure and this leads to O(1) changes in the form of the solution. Indeed, the inviscid (R−1 = 0) solutions
to (10), with v = 0 at y = ±1, that correspond to Kelvin modes are

(31) v̂(y, t) = v(t)

[

eiβ(t)y − cos β(t)
cosh ky

cosh k
− i sin β(t)

sinh ky

sinh k

]

,

where β(t) = β0−αSt and v(t) is (22) without the viscous exponential factor (τ = −εβ so ε cancels out from
the remainder). Clearly, the modulated Kelvin mode structure (29) is not preserved. The viscous channel
problem is studied numerically in the next section.

6. Nonlinear generation of streamwise rolls in a channel

Consider plane Couette flow with S = 1 and modulated Kelvin mode initial conditions of the form v̂(y, 0) =
A0(y) exp(iβ0y), η̂(y, 0) = 0 and select A0(y) = cos5 πy/2. The envelope A0(y) = cos4(πy/2) exp(y2/(y2−1))
that vanishes exponentially as y → ±1 has also been considered with little difference in the results. This
v̂(y, 0) is illustrated in fig. 2 for β0 = (αSR)1/3 and has a phase (αSR)−1/3=(log(v)) = y. The time evolution
for such initial conditions is shown by the solid curves in fig. 1. These results are virtually identical to those
obtained for the numerically determined ‘optimum’ initial conditions in [Cha02, Figs. 4,5,7,8] (note that some
of those figures are for R = 104 and others for R = 105). Similar initial conditions with β0 = (2αSR)1/3,
the optimum value for a single Kelvin mode, lead to larger amplitudes (dashed curves in fig. 1). It has
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Figure 1. Time evolution of maximum over y of |v̂(y, t)| (top) and |η̂(y, t)| (bottom) for
plane Couette flow with α = γ = S = 1, R = 105 and β0 = R1/3 (solid), β0 = (2R)1/3

(dash).

been verified that β0 = (4αSR)1/3 leads to less amplification, so β0 = (2αSR)1/3 appears to be optimum
for the channel as well. Thus β0 = (αSR)1/3 and the numerically determined initial conditions in [Cha02]
do not lead to the largest amplitudes. This is probably because the latter correspond to maximum energy
amplification, not to maximum amplitude. Maximum amplitude, not maximum energy, is of course more
relevant for nonlinear effects.
Figure 3 illustrates the structure of η̂(y, t) at three different times. Figure 4 shows the structure of Fηη(y, t)
at the times of maximum ‖η̂‖∞ for both R = 104 and R = 105. That Fηη is the (real) streamwise roll forcing
corresponding to the nonlinear interaction of a pair of oblique modes with v±(y, 0) = A0(y) exp(±iβ0y),
η±(y, 0) = 0 and A0(y) real, so v−(y, t) = (v+)

∗
(y, t) and η−(y, t) = − (η+)

∗
(y, t), where ()∗ denotes

complex conjugate. These forcings were computed for A0 = cos5(πy/2), β0 = (αSR)1/3 and have maximum
amplitudes of 1.8 106 and 5.1 107 for R = 104 and 105, respectively. The nonlinear forcing for β0 = (2αSR)1/3

with the same A0 have a nearly identical structure but a larger maximum amplitude of 6.6 107 for R = 105,
as expected.

7. Concluding remarks
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and t = 80 (dash, oscillating) for plane Couette flow with α = γ = S = 1, R = 105,
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