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Abstract

Exact coherent structures are three-dimensional, nonlinear traveling
wave solutions of the Navier-Stokes equations. These solutions are typi-
cally unstable from onset, yet they capture the basic statistical and struc-
tural features of low Reynolds number turbulent shear flows remarkably
well. These exact coherent structures have now been found in all canoni-
cal shear flows: plane Couette, Poiseuille and pipe flow. They are generic
for shear flows and exist for both no-slip and stress boundary conditions.
Their discovery opens up new avenues for turbulence research and forces
a fundamental rethinking of the true nature of turbulence.

1 Introduction

What is ‘Turbulence’? Is it the random interaction of ‘eddies’? That is indeed
the prevailing view, motivated on the one hand by the kinetic theory of gases
where gases are modeled as the random collisions of point molecules, and on
the other hand by one’s first impression of turbulent flows: they do look very
disordered and ‘random.’ And they do help mixing milk and coffee.

So the basic model of turbulence is that it merely enhances molecular diffu-
sion. The molecular viscosity ν is augmented by an eddy or turbulent viscosity
νT = `T vT which is the product of a characteristic or ‘mixing length’ `T and a
characteristic velocity vT (see e.g. [23]). Various models specify how to prescribe
vT and `T . In that point of view, homogeneous, isotropic turbulence appears
as the fundamental problem and the local turbulent kinetic energy K(x, t) and
energy dissipation rate ε(x, t) as the fundamental quantities of interests. Not
surprisingly these models typically perform poorly, if not catastrophically, in
strongly inhomogeneous flows, and in particular near walls. Other models aban-
don the eddy viscosity concept and seek to model directly the Reynolds stresses.
But the underlying model of turbulence as the random interaction of ‘eddies’ is
unchanged. Indeed the basic model in that class is the ‘return to isotropy’ [23].
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Again, not surprisingly, these models have big troubles near walls and they must
be supplemented with various ad hoc strategies such as ‘wall-functions’.[23, 22]

There is a fundamentally different view of turbulence that may go back to
Hopf, but has been developed in more recent times by Ed Spiegel, Predrag Cvi-
tanovic and co-workers, primarily in the context of low-order dynamical systems.
In this view, turbulence is not the random interaction of ‘eddies’ but rather the
random ‘switching’ from one unstable periodic solution to another. Cvitanovic
and collaborators have developed a quantitative cycle expansion method to cal-
culate average properties of a chaotic system in terms of unstable periodic orbits,
with the short period solutions dominating the expansion [6]. We now have some
evidence that this point of view may also apply to turbulence in fluids.

That evidence has been slowly accumulating over the last 40 years since the
work of Kline et al. on the structure of turbulent boundary layers [16], [21].
In wall-bounded turbulent shear flows, a lot of dynamical activity takes place
near the wall in the ‘buffer region’. This is the region of maximum ‘turbulent
energy production’ and it is also the region where we find organized structures
–primarily wavy streaks and quasi-streamwise vortices. These structures are di-
rectly connected with the increased drag. They appear randomly in space and
time, but statistically they are always there and individual structures are rela-
tively long lived. The desire to understand the physical mechanisms responsible
for these coherent structures has led to the development of a self-sustaining
process theory [26, 28] which in turn led to the discovery of a broad class of
Traveling Wave solutions (TWs) of the Navier-Stokes equations for incompress-
ible flows [29, 30, 12, 32, 8, 35] and suggested the existence of unstable periodic
solutions, some of which have now been calculated explicitly [14, 25]. These
traveling wave solutions are so similar to the observed structures, qualitatively
and quantitatively, that they have been called Exact Coherent Structures [30].

These ideas and recent developments are reviewed below. We emphasize
that the goal of these studies at this time is to elucidate the fundamental nature
of fluid turbulence not to construct ad hoc engineering turbulence models for
complex real-world applications.

2 Mathematical framework

We consider the Navier-Stokes equations for incompressible flow

∂tv + v ·∇v + ∇p =
1
R
∇2v,

∇ · v =0,
(1)

for the fluid velocity v(x, t) at point x in three-dimensional euclidean space
and time t ≥ 0. The kinematic pressure p(x, t) is the mechanical pressure
that enforces the incompressibility constraint and R is the Reynolds number,
a non-dimensional parameter that is essentially an inverse fluid viscosity. We
consider shear flows with x corresponding to the flow direction. The geometry
is planar in this article, with the flow confined between two infinite parallel
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walls perpendicular to the y direction (channels). The velocity components
v = (u, v, w) correspond to the cartesian coordinates (x, y, z). Unit vectors in
the corresponding cartesian directions are denoted x̂, ŷ and ẑ. The flow is driven
by motion of those walls in plane Couette flow, or by an externally imposed
pressure gradient in plane Poiseuille flow. The characteristic length scale is
chosen as the half-channel height in Couette flow, and the quarter channel height
in plane Poiseuille flow (this choice was made for ‘morphing’ reasons, see [29,
32]). However, the wall-unit value Rτ = 44.2 quoted for rigid-free Poiseuille
flow is based on the half channel height, which is the full wall-normal scale of
the quasi-streamwise vortices for the symmetric class of traveling wave solutions
considered in this work. Asymmetric traveling waves are also known to exist [12].
We consider periodic boundary conditions in the wall-parallel directions x and
z with periods Lx = 2π/α and Lz = 2π/γ, respectively. Fourier expansions are
used in the x and z directions, while a well-conditioned Chebyshev integration
approach is used for the wall-normal direction y. The reader is referred to [32]
for further details of the mathematical and numerical formulations.

3 Self-sustaining process

3.1 Inflectional instabilities and streaks

The Self-Sustaining Process is a conceptual idealization of a fundamental fluid
dynamical process in shear flows. This 3D, nonlinear process appears to be the
dominant mechanism to extract energy from a shear flow, whether the shear
flow is wall-bounded as in pipes and channels, or unbounded as in mixing lay-
ers, jets and wakes. This process extracts energy from the mean shear flow u(y),
which is maintained by external forcing and the boundary conditions, by redis-
tributing that energy in the cross-stream directions y and z where instabilities
of inflectional type come into play.

The simplest example of an inflectional instability is the Kelvin-Helmholtz
instability of mixing layers such as the hyperbolic tangent profile UL(y) = tanh y
or the Kolmogorov flow UL(y) = sin y. This is a fundamental and robust in-
stability with growth rates that scale with the shear rate dUL/dy as opposed
to weak and delicate Orr-Sommerfeld instabilities whose growth rates scale like
R−1/3 where R is the Reynolds number. Inflectional instabilities lead to the
roll-up of vortex sheets and the development of vortex arrays similar to von
Karman vortex streets. These vortex sheets can then succomb to 2D pairing
instabilities leading to larger vortices or, perhaps more significant, the vortices
can break up as a result of 3D instabilities of elliptical type [15]. But the
inflectional instability only arises when the vorticity has a local maximum [7,
Rayleigh and Fjortoft’s theorems]. In the wall-bounded context, pressure effects
resulting from wall impermeabillity can reduce or even prevent that instability
even if there is an inflection in the laminar flow. For example, the Kolmorogov
flow UL(y) = sin y with boundary conditions ŷ · v = 0 at y = ±π/2 is linearly
stable although there is a strong inflection at y = 0. This is a well-known ex-
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ample due to Tollmien [7] that ‘inflections are not enough’. Furthermore, the
canonical wall-bounded laminar shear flows such as plane Couette UL(y) = y
and Poiseuille UL(y) = 1− y2 flows do not have inflections.

The self-sustaining process is the 3D process that circumvents those purely
2D limitations and unlocks the potential of inflectional instabilities by redis-
tributing the laminar flow x̂UL(y) into a ‘streaky’ flow x̂U(y, z) to create large
inflections in the wall-parallel, spanwise direction z where wall-blocking does
not occur. However, linear instability of spanwise varying flows U(y, z) is not
enough since the spanwise variations, a.k.a. the streaks U(y, z) − u(y) where
u(y) is the mean shear obtained by averaging the streamwise velocity over x
and z, are not sustained by the external forcing and the boundary conditions.
Hence an inflectional instability of those streaks is likely to simply destroy the
spanwise variation that it is extracting energy from, and therefore accelerate
the return of the flow to the 1D laminar state UL(y), rather than triggering
a transition to turbulence. For the 1D shear → 2D streaks → 3D streak in-
stability process to be physically significant for transition and turbulence there
has to be a feedback process that leads to the regeneration – or recurrence – of
streaks. The Self-Sustaining Process (SSP) is the entire 3D, nonlinear process
that includes direct nonlinear regeneration of rolls that maintain the streaks in
addition to streak generation and streak instability.

From a physical point of view, the SSP can lead to various types of non-trivial
3D shear flows compatible with the forcing and boundary conditions: turbulent
flows, time-periodic flows and traveling wave solutions. There is evidence that
this basic process occurs at multi-scales, from near wall scales of the order of
100 wall units to the scale of the pipe or channel. A 4th-order model of the
SSP has been proposed and derived from the Navier-Stokes equations by a
Galerkin truncation [28]. That model captures some basic characteristics of the
SSP and demonstrate that the SSP can lead to steady states or periodic states.
Refinements of the models in the form of a 9-mode model have been proposed
and such models capture further features of the transition to turbulence [18, 19].
Spatio-temporal models of the SSP have also been developed [17]. But the
basic ingredient of the SSP – the advective redistribution of the mean shear by
streamwise rolls – is fundamentally an advection-diffusion process that is not
well described by low-order sets of ordinary differential equations.

From a mathematical point of view, there is a parallel self-sustaining pro-
cess theory whose objectives are to develop a precise asymptotic theory of the
self-sustaining process for large Reynolds numbers. The theory is weakly non-
linear about a shear flow that has an O(1) spanwise modulation, U(y, z). This
SSP theory is essentially a development of the mean flow-first harmonic theory
sketched by Benney [2]. The physical concept of the ‘self-sustaining process’
was inspired primarily by the cartoons of self-regenerating horseshoe vortices in
[1]. In the rest of this paper, we focus primarily on the SSP theory and traveling
wave solutions of sinusoidal type.
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3.2 SSP theory, Traveling waves

We look for traveling wave solutions v(x, t) = v(x − ctx̂, 0) of the Navier-
Stokes equations, where c is the constant wave velocity to be determined and
x̂ is the unit vector in the x direction. The full velocity field v(x, t) is Fourier
decomposed in the x-direction

v = v0(y, z) +
(
eiαθv1(y, z) + c.c.

)
+ · · · (2)

where θ = x − ct and c.c. or ( )∗ denotes complex conjugate. The Fourier
decomposition is far from the entire story however, because the various velocity
components have very different scalings in the R →∞ limit.

SSP

instability of
u0(y, z)

redistribution
of u(y)

nonlinear interaction
[v1v

∗
1](y, z)

u0(y, z)− ū(y)
O(1) streaks

eiαθv1(y, z)
O(R−1) wave

v0(y, z), w0(y, z)
O(R−1) rolls

Figure 1: Schematic of the Self-Sustaining Process (SSP) and its asymptotic
scaling theory as R → ∞. The mean shear u(y) is maintained by external
forcing and the boundary conditions. The rolls (0, v0(y, z), w0(y, z)), streaks
u0(y, z)− u(y) and streak wave eiαθv1(y, z) maintain each other.

The self-sustaining process theory consists of three main ingredients as illus-
trated in Figure 1:

1. a ‘streaky’ flow u0(y, z)x̂ that consists of O(1) streaks u0(y, z)− u(y) and
a mean shear u(y) which is the z-average of u0(y, z),

2. streamwise rolls v0(y, z)ŷ + w0(y, z)ẑ of amplitude O(1/R) that create
and sustain the streaks against viscous decay by advective redistribution
of the mean u(y),

3. a streak wave, eiαθv1(y, z) + c.c., which results from an inflectional-type
instability of the streaks and whose nonlinear self-interaction v1v

∗
1 extracts

energy from the streaks u0(y, z)− u(y) but sustains the rolls.
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Such a theory had been sketched by Benney [2] and has been developed and
linked to near wall coherent structures by the author and collaborators in a
series of papers [9, 26, 28]. The spanwise modulation of the streamwise velocity
u0(y, z) − u(y) are called streaks after the streaky hydrogen bubble patterns
that revealed them in the original observations [16]. The streak eigenmode
eiαθv1(y, z)+c.c. is the first Fourier harmonic in the x-direction and has zero x-
average. Its quadratic nonlinear interaction, e2iαθv1v1 + v1v

∗
1 + c.c., generates

a 2nd harmonic e2iαθv2(y, z) but, more importantly, it generates the key x-
independent Reynolds stresses that not only extract energy from the streaks but
also feedback on the streamwise rolls. This dual role of the Reynolds stresses,
where the uvx and uwx stresses extract energy from the streaks and the vvx,
vwx and wwx stresses sustain the rolls, requires a 3D perturbation and 3 distinct
ingredients: rolls, streaks and streak eigenmode, in addition to the mean shear
that provides the overall energy. Here ( )

x
denotes an x-average only. Three

ingredients are necessary because the streak instability extracts energy from the
streaks, hence it cannot directly sustain the streaks, but it can sustain the rolls
which in turn sustain the streaks. The entire process is sustained by the mean
shear.

This process has been studied and illustrated through low-order modeling
[28] as well as analysis of the various elements independently [9, 26, 28], but more
recently it has been used as the basis for a method to construct fully-resolved
steady state and traveling wave solutions of the Navier-Stokes equations. The
self-sustaining process can appear as a periodic or an equilibrated process. In
the periodic version, rolls create streaks whose inflectional instability create an
x-dependent mode whose nonlinear development recreates the rolls, and these
three phases of the process occur in succession. In the equilibrated version of
the process, the three elements, rolls, streaks and streak eigenmode, have just
the right structure and amplitude to stay in mutually sustained equilibrium.
The initial DNS-based studies [33, 9] revealed the periodic version. Later, a
controlled bifurcation approach was developed and provided a direct validation
of the self-sustaining process theory in fully resolved calculations of the Navier-
Stokes equations.

In that approach, a weak artificial forcing of O(1/R2) is added to the Navier-
Stokes equations to sustain steady rolls. This weak forcing acts as vortex gener-
ators on an airplane wing. It generates steady rolls of amplitude O(1/R) which
in turn redistribute the streamwise velocity to create steady O(1) streaks. This
part of the process – the formation of streaks from streamwise rolls – is linked to
the many recent studies of non-normal linear amplification and optimum linear
growth which show that streamwise rolls of amplitude ε/R lead to streaks of
amplitude O(ε). However in those linear studies (linearized about the laminar
flow that is) it is necessary to have ε � 1 for self-consistency since ε = O(1) is
accompanied by a modification of the mean shear of O(1) and therefore a strong
departure from the laminar flow and from linear theory about the laminar flow
[27, 28]. The next step in the SSP-based procedure is to detect the parameters
that correspond to a neutrally stable streaky flow, either by increasing the roll
forcing for a fixed streamwise wavenumber α or by varying α for a fixed roll
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forcing. That neutrally stable point corresponds to a bifurcation point. Ac-
cording to the SSP theory that bifurcation should be subcritical in terms of the
roll forcing parametrized by an O(1) parameter Fr. Therefore, tracking the 3D
bifurcating solution to higher amplitudes (the amplitude of the 3D perturbation
now becomes the control parameter) should go to lower roll forcing Fr. If the
bifurcating solution can be tracked all the way to Fr = 0, corresponding to no
artificial roll forcing, then a 3D self-sustained steady state or traveling wave has
been found. This procedure has been used successfully in plane Couette flow
with both free-slip (imposed shear) and no-slip (imposed velocity) boundary
conditions [29, 32], as well as in channel and pipe flows [8, 35]. It is possible
that this approach might also enable the direct construction of some periodic
solutions.

−1 0 1 2 3 4 5
0

0.5

1

1.5

Fr

Wx

Figure 2: Bifurcation from streaky flow in free-slip plane Couette flow with
(α, γ,R) = (0.49, 1.5, 150). Fr is the normalized roll amplitude and Wx is the
normalized x-dependent streak mode amplitude as defined in the text. The 1D
laminar flow is at (0, 0). (Fr 6= 0,Wx = 0) correspond to 2D streaky flows. The
streaky flow is neutrally stable at Fr ≈ 5. A 3D steady state solution bifurcates
from the streaky flow at that point and reaches all the way to Fr = 0, providing
two self-sustained 3D steady states in this free-slip plane Couette flow. The
lower branch solution is indicated by the green dot and the upper branch is
indicated by the red dot.

The procedure is illustrated in figure 2 for ‘free-slip’ plane Couette flow.
The parameter Fr measures the roll forcing, normalized such that the maxi-
mum wall-normal velocity of the resulting rolls is Fr/R. The parameter Wx =
R |η(1, 0)| corresponds to the y-averaged vertical vorticity (η) amplitude of the
(kx, kz) = (1, 0) Fourier mode times the Reynolds number R, where (kx, kz) are
the integer indices of the wavenumbers in the x and z directions respectively.
The fundamental spanwise wavenumber is set at γ = 1.5 and the fundamental
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streamwise wavenumber is fixed at α = 0.49. The laminar flow corresponds to
the origin on the plot (Fr,Wx) = (0, 0). Streaks appear as soon as Fr 6= 0 but
they are not unstable for these values of (α, γ, R) = (0.49, 1.5, 150) until Fr ≈ 5.
The streaky flow is unstable for those parameters in the interval 5 < Fr < 18.4
(approximatively). For Fr < 5 the streaks are too weak to be unstable, and
for Fr > 18.4 the rolls are so strong that they completely wipe out the shear
flow, transporting momentum between the walls much faster than viscosity can
replenish it. The streaks are again very weak, the flow is dominated by the rolls
and there is no instability. Continuation of the upper branch on figure 2 leads
to that 2nd bifurcation point at Fr ≈ 18.4.

The upper and lower branch solutions are connected in the self-sustained
Fr = 0 parameter space, where they appear through a saddle node bifurcation at
a critical Reynolds number R ≈ 142 for those length scales (α = 0.49, γ = 1.5).
Those self-sustained 3D solutions form a two-parameter (α, γ) family of plane
Couette flow steady states. Likewise, there is a two-parameter family of steady
states in rigid-rigid (no-slip) plane Couette flow that first appear through a
saddle node bifurcation at R ≈ 127.7 [32] and there is a two-parameter family of
traveling wave solutions in plane Poiseuille flows that first appear at Rτ ≈ 44.2
[30, 32]. There are also related but distinct families of other solutions. For
instance, there exist asymmetric, ‘one-walled’ traveling waves in plane Poiseuille
flow [12]. The steady state solutions obtained in rigid-rigid plane Couette flow
belong to the same family as the solutions computed by Nagata [20] and Clever
and Busse [4, 5].

This procedure demonstrates the validity of the SSP but also provides a
robust method to calculate these non-trivial 3D solutions. Indeed this approach
has enabled the discovery of a related family of traveling wave solutions in pipe
flow [8, 35, 11]. This construction is necessary because all those solutions are
linearly unstable and cannot be obtained by simple direct numerical simulations.
But if these solutions are unstable, why should we care? The answer to that
question is directly tied to the nature of turbulence. We start by illustrating
these solutions and showing the connections with observed coherent structures.

4 Exact coherent structures

The steady state (in plane Couette) and traveling wave solutions (in channel and
pipe flows) obtained by the SSP-based bifurcation from streaky flow approach
are closely related to one another. Indeed when one of those solutions is obtained
in the plane geometry, say in free-slip plane Couette, it is easy to obtain related
solutions in the plane geometry by ‘morphing’ or ‘homotopy’ from one flow to
another and/or one type of boundary conditions to another as was initially done
in [29, 30, 32]. It is possible, for instance, to morph a free-free plane Couette
steady state to a rigid-free plane Poiseuille traveling wave in 10 or fewer Newton
steps (as in the Rayleigh-Bénard literature, ‘rigid’ refers to no-slip and ‘free’ to
free-slip (imposed stress) boundary conditions, so ‘rigid-free’ means no-slip on
the bottom wall and free-slip on the top wall). All these solutions have the
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same basic structure, they consists of wavy streaks flanked by staggered, quasi-
streamwise vortices. These features correspond exactly to the structures that
have been observed in the near-wall region of turbulent shear flows.

Qualitative similarity would already by quite interesting since these are non-
trivial 3D traveling wave solutions of the Navier-Stokes equations, but there is
also quantitative similarity. Indeed, optimizing the traveling wave solutions over
the streamwise and spanwise periods in order to determine the smallest friction
Reynolds number Rτ at which these solutions exist leads to a minimum value
for Rτ of about 44.2. That value is obtained for the length scales L+

x ≈ 273.7
and L+

z ≈ 105.5. Thus Rτ ≈ 44.2 is the smallest value at which this class
of solution exists. There are solutions of this class for larger Rτ ’s but not for
smaller ones. The friction Reynolds number Rτ = u∗h/ν where h is the half-
channel height and u∗ is the friction velocity defined in terms of the kinematic
viscosity ν and the shear rate at the wall du/dy|w according to u2

∗ = νdu/dy|w.
All three of those length scales, L+

x , Rτ and L+
z , are essentially identical to the

typical length scales for near-wall coherent structures reported in the literature
[24]. That optimum solution is illustrated in figure 3.

Figure 3: Top view and end view of a traveling wave solution in plane Poiseuille
flow (half-channel, the bottom wall is at y = −1 and the channel centerline is
at y = +1) at its minimum friction Reynolds number Rτ = 44.21 obtained for
the optimum parameters α = 0.51 and γ = 1.3 corresponding to L+

x = 273.7
and L+

z = 105.5. The green isosurface of streamwise velocity u illustrates the
wavy streaks, the streamwise vorticity ωx is represented by the red (ωx > 0)
and blue (ωx < 0) isosurfaces, visualizing the staggered, counter-rotating, quasi-
streamwise vortices.

4.1 Upper and Lower branches

The exact coherent structures – steady state or traveling wave solutions of the
Navier-Stokes equations – come in pairs, an upper branch and a lower branch.
The upper branch has the highest drag and its drag grows quickly with R (fig.
4). The structure of the upper branch changes with R and it is expected that
further bifurcations take place to give rise to multiscale features in order to
transport momentum efficiently. We expect that the near wall structures will
look similar to the observations and to optimum solutions such as that shown in
fig. 3. But larger scales features are necessary to transport momentum efficiently
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away from the wall. The complete solutions might have a multiscale structure
reminiscent of the ‘multi-alpha’ optimum transport field calculated by Busse [3].
The upper branch solutions and their suspected multiple bifurcations are more
costly and challenging to compute for higher R. The drag of the lower branch
is higher than the laminar value but asymptotes to a constant small multiple
of the laminar value (the latter corresponds to the drag for the 1D velocity
profile v = (y, 0, 0)). An R vs. Drag plot is presented in figure 4 for two pairs
of fundamental horizontal wavenumbers (α, γ). It illustrates the rapid increase
with R of the drag associated with the upper branch solutions while the lower
branch drag asymptotes to a value about 30 to 40% higher than laminar.

0 500 1000 1500 2000 2500
1

1.5

2

2.5

3

3.5

R

DRAG

Figure 4: Reynolds number R vs. Drag normalized by its laminar value for
rigid-rigid plane Couette flow and (α, γ) = (1.14, 2.505) (solid), (1, 2) (dashed).

An upper branch steady state solution in rigid-rigid plane Couette flow is
illustrated in figure 5. That solution is not optimum, in fact it is close to the
smallest streamwise length scale for which the steady states exist for that value
of the spanwise length scale Lz = 2π/γ with γ = 1.67 and for R = 400. For
smaller values of Lx = 2π/α, the steady states appear to be replaced by periodic
solutions [9, 14, 31, 32]. The nature of that ‘transition’ is not understood at
this time.

4.2 Asymptotic structure of the lower branch solutions

Figure 6 shows a lower branch solution at (α, γ, R) = (1.14, 2.5, 400). Here the
vortical motions are illustrated using the 60% isosurface of 2Q = ∇2p which is
also (twice) the second invariant of the velocity gradient tensor. This visual-
ization technique is not optimum but it successfully separates vortical motions
straddling the streaks from the shear layers at the walls, allowing a perspective
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Figure 5: End view of the upper branch steady state solution in rigid-rigid
plane Couette flow at (α, γ,R) = (0.95, 1.67, 400). The green isosurface is u = 0
illustrating the wavy streaks, streamwise vorticity ωx is represented by the red
(ωx > 0) and blue (ωx < 0) isosurfaces, visualizing the staggered, counter-
rotating, quasi-streamwise vortices. The no-slip boundary condition induces
shear layers near the walls but these do not correspond to vortices.

view in rigid-rigid plane Couette flow. The upper branch solutions vary substan-
tially with the parameters (α, γ,R) but figure 6 is typical of the lower branch
solutions. The latter show O(1) streaks (as illustrated by the warped u = 0
green isosurface) with much weaker streak waviness (undetectable on the plot)
and weak quasi-streamwise vortical motions that can hardly be called vortices.
The main effect of those vortical motions is a vertical updraft of O(1/R) at
z = 0 and a corresponding downdraft at z = ±Lz/2. These up and downdrafts
sustain the O(1) streaks, in perfect agreement with the SSP theory.

A closer look at such a lower branch solution is given in figures 7 and 8
for (α, γ) = (1.14, 2.505) and the much higher R = 6192 in rigid-rigid plane
Couette flow. Figure 7 shows the vertical and spanwise velocity component of
the x-averaged flow, v0(y, z) and w0(y, z), that form the ‘streamwise rolls’ in
the SSP theory. The structure of these streamwise rolls is not as simple as that
of a Stokes modes but they do correspond to an updraft at z = 0 and downdraft
at z = ±Lz/2. The thick black line is the contour u0(y, z) = 0 which is almost
identical to u(x, y, z) = 0 since the flow is dominated by the u0 component.
Indeed u0(y, z) contains an O(1) mean shear and an O(1) spanwise fluctuation
u0(y, z)−u(y), with much weaker rolls (v0(y, z), w0(y, z)) of O(1/R) and a weak
fundamental x-undulation eiαxv1(y, z). The scalings of these components has
been considered in [34] and further studies will be published elsewhere. The
asymptotic scaling of the fundamental undulation eiαxv1(y, z) + c.c. is delicate
because that mode has a critical layer structure about u0(y, z) = 0 as suggested
by fig. 8 which shows the real parts of v1(y, z) and w1(y, z) closely hugging

11



Figure 6: The lower branch solution in rigid-rigid plane Couette flow for (α, γ, R)
= (1.14, 2.5, 400). The red isosurfaces are the 60 % level set of 2Q = ∇2p. The
surface on the right side corresponds to clockwise vortical motion and that on
the left to counter-clockwise vortical motion. Those vortical motions and the
waviness of the streaks (undetectable on this plot) are of low amplitudes but
the streaks are O(1). This lower branch structure is characteristic of other
parameters, including much higher Reynolds number.
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Figure 7: Structure of the streamwise rolls v0(y, z)ŷ + w0(y, z)ẑ for the
lower branch steady state in rigid-rigid plane Couette flow at (α, γ, R) =
(1.14, 2.505, 6196). Thick line is the critical layer velocity u0(y, z) = 0. Left:
contours of v0(y, z), right: contours of w0(y, z). Red is positive, blue is negative.

the u0(y, z) = 0 surface. Our latest studies (asymptotics + numerics up to
about R ≈ 60, 000) indicate that the critical layer is a classical R−1/3 layer,
however this mode which becomes singular in the limit R → ∞, is nonlinearly
coupled to the rolls that sustain the streaks, so the asymptotic analysis is non-
trivial. These asymptotic results are important because they give solid evidence
that these steady states exist for all Reynolds numbers – they are not just a
low Reynolds number curiosity, and since solutions occur in pairs, existence of
the lower branch implies existence of at least one upper branch. The relative
simplicity of the lower branch states suggests that a rigorous mathematical proof
of their existence might be achievable. The asymptotic results also indicate that
these solutions do not bifurcate from the laminar flow, not even at R = ∞,
since these states tend to a flow that retains streaks of O(1) as R → ∞. The
relatively smooth large scale (shear layer size) structure of these lower branch
states, except for a critical layer detached from the walls, also suggests that
these solutions will be robust to boundary conditions. They may even exist in
the presence of rough boundaries.

5 Coherence within turbulence

We have already seen how the exact coherent structures capture some key char-
acteristics of the coherent structures observed in the near-wall region of tur-
bulent shear flows. They consist of wavy streaks flanked with staggered quasi-
streamwise vortices, and their optimum scaling, in the sense of smallest Rτ at
which they exist, is very close to the experimentally reported values. In par-
ticular, the minimum wall-unit thickness is about 44.2+ obtained for a streak
spacing of about 105.5+ and a streamwise period of about 273.7+. But there are
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Figure 8: Structure of the streak wave eiα(x−ct)v1(y, z) for the lower branch
steady state (c = 0) in rigid-rigid plane Couette flow at (α, γ,R) =
(1.14, 2.505, 6196). Thick line is the critical layer velocity u0 = 0. Left:
<v1(y, z), right: <w1(y, z).

further connections with turbulence as illustrated in figure 9 which shows the
total energy input rate I in rigid-rigid plane Couette flow versus the total energy
dissipation rate D, both normalized to their laminar value so that I = D = 1
corresponds to the laminar state. The total energy input and dissipation rates
are basic quantities of interest in turbulence theory and this two-dimensional
picture of the dynamics was first introduced by Kawahara and Kida in this
context [14].

5.1 Upper branches and Turbulence

Figure 9, suggests that the upper branch solution, shown by the red marker,
forms the ‘backbone’ or ‘organizing center’ in phase space for the turbulent ‘at-
tractor,’ assuming that the latter exists in this domain at this low R. The orbit
shown in figure 9 was computed for over 2000 convective time units, starting
from near the unstable upper branch solutions at numerical resolution 32 x 49 x
32 (x, y z, Fourier in x, z, Chebyshev in y). A higher resolution calculation using
48 x 65 x 48 from the same initial conditions ‘patched’ to that higher resolution
(i.e. with the extra modes set to zero initially) was sustained for over 1000 time
units but eventually decayed. Thus the existence of a turbulent attractor in this
domain at this R = 400 is not assured but there are certainly very long-lived
turbulent-like states, in the ‘neighborhood’ of the upper branch solution. The
mean and RMS velocity profiles of the ‘turbulent’ solution calculated at 32 x 49
x 32 are remarkably well captured by the upper branch fixed point as shown in
figure 10.
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Figure 9: Energy Input vs. Dissipation rate in rigid-rigid plane Couette for
(α, γ,R) = (0.95, 1.67, 400). The blue orbit is a ‘turbulent’ trajectory at this
relatively low R. The blue dot is the laminar point, the green dot is a lower
branch 3D steady state and the red dot is the corresponding upper branch steady
state.

5.2 Lower branches, transition and control

The presumed phase space importance of the lower branch solutions is that they
form the backbone of the separatrix – the phase space boundary between the
basin of attraction of the laminar flow and that of the turbulent ‘attractor’.
The separatrix would consists of the stable manifold of that lower branch state.
This simplistic picture is illustrated in figure 11. Similar views were discussed
in [12, 32] and supported by the data analyses in [13].

Cartoon 11 is probably too simplistic. It is likely that there is more than one
lower branch state and there are also lower branch periodic states. Nonetheless,
our studies do lend some validity to that simple picture. The lower branch
states in rigid-rigid plane Couette flow typically have only one unstable mode,
so their unstable manifold is one dimensional. We have verified using Direct
Numerical Simulations at the higher R = 1000 that starting on the ‘laminar
side’ of the stable manifold leads uneventfully back to the laminar flow. The
structure remains similar to the lower branch state (fig. 6) but decays slowly.
The x-structure disappears first, most likely because it has a viscous critical
layer structure, and the flow tends to straight rolls and streaks which then slowly
(on a viscous time scale) decay together back to the laminar flow. In contrast,
starting ‘on the other side’ of the stable manifold, that is in the other direction
on the 1D unstable manifold, rapidly (on a convective time scale) leads to a
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Figure 10: Left: Mean velocity profile in rigid-rigid plane Couette flow at
(α, γ,R) = (0.95, 1.67, 400). Right: RMS velocity fluctuation profiles, urms

in blue, vrms in red and wrms in green. Turbulent averages (over 2000 times
units) is solid, upper branch fixed point is dashed.

turbulent state. This confirms that the transition threshold question – what
is the smallest perturbation of the laminar flow that can trigger turbulence
– is a question about the shortest distance from the laminar fixed point to
the stable manifold of the lower branch. The SSP theory, which is closely
connected to the lower branch, suggests that a good way to trigger turbulence
is to start with weak streamwise rolls of O(1/R), which will lead to O(1) streaks,
together with some small x-perturbation to trigger the streak instability that
will feedback on the rolls thereby approaching the lower branch state. As long
as the initial perturbation is slightly on the turbulent side of the separatrix, the
flow will approach the lower branch state then ‘burst’ toward turbulence along
the unstable manifold of the lower branch. We emphasize that this ‘bursting’
is not the linear streak instability, it is the linear instability of the nonlinear
3D lower branch state. This O(1/R) scaling as well as the general form of the
perturbation is in good agreement with the experimental results of Hof, Juel
and Mullin in pipe flow [10].

The low dimensionality (1 even at R = 1000) of the unstable manifold of
the lower branch suggests that these lower branch states could be good targets
for control. Most control strategies aim at either maintaining the linearly stable
laminar flow or relaminarizing the fully turbulent flow. The idea here would be
to trigger the 3D lower branch state and stabilize it. These states are relatively
smooth and have the scale of the shear layer. They have few and clear modes of
linear instability, so the controller knows what instability to control in contrast
to the cases of the linearly stable but nonlinearly unstable laminar flow, and of
the multiscale turbulent flow. There is a small drag penalty for being on the
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Figure 11: Phase space cartoon of the role of exact coherent states. Blue marker
is the laminar fixed point. Black orbit is a turbulent trajectory, red marker is an
upper branch solution, green is the lower branch solution. The red dash is the
stable manifold of the lower branch, it is the separatrix between the laminar and
turbulent basins of attraction. The red orbit is an unstable periodic solution.

lower branch states, but it is only about 30 to 40% higher than laminar.

6 Not So Final remarks

Turbulence in shear flows is arguably the most fundamental kind of hydrody-
namic turbulence. This is the turbulence that we find when a fluid flows by
a wall, in a channel or in a pipe. The recent findings briefly reviewed in this
paper are that such flows admit 3D traveling wave solutions that capture and
tightly link the primary coherent structures observed in the near wall region of
wall bounded turbulent shear flows for over 40 years. These structures consists
of wavy streaks flanked by staggered quasi-streamwise vortices and this is ex-
actly the structure of the traveling wave solutions. The agreement is not only
qualitative but also quantitative since the smallest scales at which these trav-
eling waves exist matches the experimentally observed dimensions of coherent
structures: a streak spacing of about 100 wall units, a wall-normal vortex size
of about 50 wall units and a streamwise streak undulation of about 300 wall
units. The traveling waves also capture the mean velocity profiles and the RMS
fluctuation profiles. But all those traveling wave solutions are unstable. That of
course is where ‘turbulence’ comes in. Since the solutions are unstable, the flow
can never settle onto any one of those solutions. However their unstable mani-
folds are typically quite low-dimensional and there are many similar solutions.
Statistically, the flow spends most of its time near one or another equivalent
solution, explaining why a single solution upper branch solution can be so good
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at capturing the statistics of turbulent flows. The solutions come in pairs, an
upper branch and a lower branch. While the upper branches are the organizing
centers for the turbulent attractor, the lower branches are the organizing cen-
ters for the boundary separating the basin of attraction of the laminar flow from
that of the turbulent attractor. Hence the lower branch solutions are directly
related to the questions of transition and prevention of turbulence. This is a
view of turbulence that is quite different from the ‘random collision of eddies’.
In addition to the traveling wave solutions, relative periodic orbits are being
extracted from the Navier-Stokes equations [25]. So this is far from the end, the
story is just beginning.
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