Problems due Thursday 10/6-13/2016. No email or web submissions.

You can discuss the homework with other students. You must cite your collaborators. Read <http://www.math.wisc.edu/~waleffe/GFD2011lectures/GFD1.pdf>

1. Drazin # 2.8 (ii) but generalized using $\lambda_1 < 0$ instead of -2ϵ , and $\lambda_2 < 0$ instead of $-\epsilon$. In applications $|\lambda_1| \leq |\lambda_2| \ll 1$ typically. Show that the matrix is defective (only one eigenvector) when $\lambda_1 = \lambda_2 = \lambda$ and find the general solution in that case, showing that it is a combination of $\exp(\lambda t)$ and $t \exp(\lambda t)$ terms. The latter behavior, $t \exp(\lambda t)$ is known as 'transient (algebraic) growth'. For the general case $\lambda_1 \neq \lambda_2$, find an explicit form for the transient growth (aka the 'forced response') $R(t)$, say, the transiently growing component of the system corresponding to initial condition $x_0 = 0$, $y_0 = 1$. Show that $R(t)$ is bracketed by the transient growth in the defective cases with λ_1 as the repeated eigenvalue, and with λ_2 as the repeated eigenvalues:

$$
te^{\lambda_2 t} \le R(t) \le te^{\lambda_1 t}.
$$

2. (Drazin 8.25. Note that Drazin uses x for the main flow direction and z for the shear direction as is common in Atmosphere and Ocean Sciences. The engineering literature typically uses x for the flow direction and y for the shear direction, as below).

Consider the unbounded shear flow $U = S_0y \hat{x} + a$ 'small' perturbation $u(r, 0) =$ $\Omega \hat{x} \times r$ where r is the usual position vector, with $r = x\hat{x} + y\hat{y} + x\hat{z}$ in cartesian form.

- What does 'small' mean in this context where the base flow and the perturbation both go to infinity as $|r| \to \infty$?
- Show that the linearized Navier-Stokes equations for $u(r, t)$ yield

$$
\mathbf{u} = \Omega S_0 \, t \, \hat{\mathbf{x}} + \Omega \, \hat{\mathbf{x}} \times \mathbf{r} \tag{1}
$$

that is growing algebraically for all times and illustrates the 'lift up' effect.

• Show that the full Navier-Stokes equations for $v = U + u$ admit a solution of the form

$$
\mathbf{v} = (S(t)y + A(t)z)\hat{\mathbf{x}} + \Omega\hat{\mathbf{x}} \times \mathbf{r}
$$
 (2)

with Ω constant. Find and solve the equations for $S(t)$ and $A(t)$. Compare and reconcile these results with the linear solution.

3. (Drazin 2.19, Craik and Criminale 1986)

Consider velocity fields of the form $v(r, t) = A(t) \cdot r$ where $A(t)$ is a uniform tensor (matrix), independent of position r. Thus $v_i = A_{ij} x_j$ in index notation with A_{ij} (possibly) time dependent. What are the conditions on $A(t)$ for v to be a solution of the full Navier-Stokes equations (in an unbounded domain)?

4. We found perturbation solutions of the form $u(t)e^{ik(t)\cdot r}$ for the unbounded base shear flow $\mathbf{U} = Sy\hat{\mathbf{x}}$ with $\mathbf{k}(t) = \mathbf{k}(0) - (\hat{\mathbf{x}} \cdot \mathbf{k}(0)) S t \hat{\mathbf{y}}$ and found two distinct types of transient growth: the Orr mechanism (aka 'Venitian blind' effect) and the 'lift up' effect. We also found that the equation for the \hat{y} velocity component decoupled from the \hat{x} component after elimination of the pressure.

Consider 2D perturbations $\boldsymbol{u} = (u(x, y, t), v(x, y, t))$ to the base shear flow $\boldsymbol{U} = Sy\hat{\boldsymbol{x}}$ for incompressible, inviscid flow.

- Derive the linearized equations for u and v .
- Eliminate the pressure and the streamwise velocity u to derive the v equation

$$
(\partial_t + Sy\partial_x)\nabla^2 v = 0\tag{3}
$$

where $\nabla^2 = \partial_x^2 + \partial_y^2$.

• Verify that

$$
v = A \frac{\alpha^2 + \beta^2}{\alpha^2 + (\beta - \alpha St)^2} e^{i(\alpha x + (\beta - \alpha St)y)} + c.c.
$$
 (4)

is a solution of the v equation, for any real α , β and amplitude A, where c.c. means 'complex conjugate'. This solution is a Kelvin mode solution.

• Assume now that there are two parallel walls at $y = \pm h$ with boundary conditions $v = 0$ at those walls. Find a solution of [\(3\)](#page-1-0) that satisfies the boundary conditions $v = 0$ at $y = \pm h$ in the form

$$
v=v_K+v_P
$$

where v_K is [\(4\)](#page-1-1) and v_F is a solution of Laplace's equation $\nabla^2 v_F = 0$. What are the boundary conditions for v_P ?

- Do the walls enhance or reduce the transient growth?
- A few illustrative plots of $v(x, y, t)$ and/or $u(x, y, t)$ or the instantaneous streamfunction $\psi(x, y, t)$ such that $u = \partial_y \psi$, $v = -\partial_x \psi$, would be good.