- 1. Derive conservation of mass for a gas flowing down a tube of cross-sectional area A(x) where x is the direction along the axis of the tube. Do this in two ways (1) from first principles assuming that the variables (mass density and gas velocity) are uniform over a given cross-section and (2) by integration of the general two-dimensional equation $\rho_t + \nabla \cdot (\rho v) = 0$ over the cross-sectional area (height) A(x). Compare the results.
- **2.** Find a bounded self-similar solution to the equation $u_t = u_{xxx}$.
- **3.** What is the Green's function for the heat equation in \mathbb{R}^3 ?
- **4.** Consider the heat equation $u_t = u_{xx}$ in x > 0, t > 0, with boundary conditions $u_x = -|h|u$ at x = 0, u bounded as $x \to \infty$ and initial condition $u(x, 0) = \cos kx$, k real. Is this problem well-posed? What can you find out about its solution?
- **5.** Show that $[H(x+t) H(x-t)] \delta'(t) = -2\delta(x)\delta(t)$.
- **6.** What is the polar coordinate representation of $\delta(x)\delta(y)$? (x, y in \mathbb{R}).
- 7. Solve the equation xu'' + u' = f(x) for 0 < x < 1 with u(1) = 0 and $\lim_{x\to 0^+} u$ bounded using a Green's function.
- **8.** Find the general solution to $(\partial_t + a\partial_x)(\partial_t + b\partial_x)u = 0$ with x in \mathbb{R} and u(x,0) = f(x), $u_t(x,0) = g(x)$.