$\blacktriangleright w = z^2$

In cartesian forms w = u + iv, z = x + iy so $u = x^2 - y^2$ and v = 2xy, with x, y, u and v all real. First view: what do the u(x, y) and v(x, y) isocurves look like?

 $u = x^2 - y^2 = u_0$, fixed, is a (blue) vertical line in the (u, v) plane and a (blue) hyperbola in the (x, y) plane. Likewise $v = 2xy = v_0$, fixed, is a (red) horizontal line in the (u, v) plane and a (red) hyperbola in the (x, y) plane. The blue and red curves intersect at 90 degrees in *both* planes. The dotted line intersects blue and red curves at 45 deg in *both* planes. All angles are preserved *except* at z = 0 where they are *doubled* in the w-plane.

Second view: what happens to (x, y) grid lines? *i.e.* x(u, v) and y(u, v) isocurves. $u = x_0^2 - y^2$, $v = 2x_0y$, x_0 fixed, is a (magenta) vertical line in (x, y) space and a (magenta) parabola in (u, v) plane. Likewise $u = x^2 - y_0^2$, $v = 2xy_0$, y_0 fixed, is a (green) horizontal line in the (x, y)plane and a (green) parabola in the (u, v) plane. The green and magenta curves intersect at 90 degrees in *both* planes. Angles between the dotted line and the green and magenta curves are the

 $\boxed{w = e^z} = e^x e^{iy}$ Maps the $strip - \infty < x < \infty, -\pi < y \le \pi$ to the *entire* w-plane. $z = x_0 + iy \to w = e^{x_0} e^{iy} \equiv$ circles of radius e^{x_0} in the w-plane (magenta). $z = x + iy_0 \to w = e^x e^{iy_0} \equiv$ radial lines with polar angle $\arg(w) = y_0$ in w-plane (green). $z = x + iax \to w = e^x e^{iax} \equiv$ radial lines out of the origin in z-plane mapped to *logarithmic spirals* in w-plane since z = x + iax with a fixed (and real) becomes $w = e^x e^{iax} \equiv re^{i\theta}$ so $r = e^x$, $\theta = ax$ and $r = e^{\theta/a}$ in the w-plane (blue).

Notes: $z = 0 \rightarrow w = 1$. $e^{z+2i\pi} = e^z$, periodic of complex period $2i\pi$, so e^z maps an infinite number of z's to the same w. The inverse function $z = \ln w = \ln |w| + i \arg(w)$ showed in this picture corresponds to the definition $-\pi < \arg(w) \le \pi$. All angles are preserved e.g. the angles between green and magenta curves, as well as between blue and colored curves, except at w = 0. What z's correspond to w = 0?

 $\boxed{w = \cosh(z)} = (e^z + e^{-z})/2 = (e^x e^{iy} + e^{-x} e^{-iy})/2 = \cosh x \cos y + i \sinh x \sin y \equiv u + iv.$ Maps the *semi-infinite strip* $0 \le x < \infty, -\pi < y \le \pi$ to the *entire* w-plane. $\cosh(z) = \cosh(-z)$ and $\cosh(z + 2i\pi) = \cosh(z)$, even in z and periodic of period $2i\pi$. $x = x_0 \ge 0 \rightarrow u = \cosh x_0 \cos y, v = \sinh x_0 \sin y, \equiv ellipses$ in the w-plane (magenta). $y = y_0 \ge 0 \rightarrow u = \cosh x \cos y_0, v = \sinh x \sin y_0, \equiv hyperbolas$ in the w-plane (green). This mapping gives orthogonal, confocal elliptic coordinates.

What happens to angles at $z = 0, \pm i\pi$? Show that the inverse map is $z = \ln(w + \sqrt{w^2 - 1})$, but for what definition of $\sqrt{w^2 - 1}$? (not Matlab's!) The line from $w = -\infty$ to w = 1 is a branch cut, our definition for $\ln(w + \sqrt{w^2 - 1})$ is discontinuous across that line.