% CLOSING ON TOP OR BOTTOM? for e^(iz)/z. Integral of Sinc(x), JORDAN's Lemma. % This Matlab file plots [i e^(i z)] over z=R e^(i t) % This occurs in integral of sin(x)/x from -infinity to infinity by contour % integration. z=R e^(i t) is the circular path closing the contour. Here % we consider closing on top (t=0 --> pi) and bottom (t=0 --> -pi) % % For z=R e^(it), dz = iR e^(it) dt, % so e^(iz)/z dz = exp(iR e^(it)) i dt = exp(i R cos t) exp(-R sin t) i dt % = -sin(R cos t) exp(-R sin t) dt + i cos(R cos t) exp(-R sin t) dt % % You can CUT-and-PASTE into Matlab. Output is plotted below % F. Waleffe, for Math 321 5/5/2010 % R=input('R=? (not too big, say 8 to start) '); % R is going to infinity, but we have to be able to see things! R=8; % Closing on top: t = 0 -> pi t=[0:1/2^6:1]*pi; repart=-sin(R*cos(t)).*exp(-R*sin(t)); % real( i e^(i z) ) impart= cos(R*cos(t)).*exp(-R*sin(t)); % imag( i e^(i z) ) figure(1) plot(t/pi,repart,t/pi,impart) grid, xlabel('\theta/\pi') Rs=num2str(R); T=strcat('real and imag of i exp(i R e^{i \theta}), R=',Rs,', \theta=0 --> \pi'); title(T) % Closing on bottom: t = 0 --> - pi figure(2) t=-[0:1/2^7:1]*pi; repart=-sin(R*cos(t)).*exp(-R*sin(t)); impart=cos(R*cos(t)).*exp(-R*sin(t)); plot(t/pi,repart,t/pi,impart) grid, xlabel('\theta/\pi') Rs=num2str(R); T=strcat('real and imag of i exp(i R e^{i \theta}), R=',Rs,', \theta=0 --> -\pi'); title(T) disp('NOTE the difference in SCALE on the figures!') disp('NOW, TRY BIGGER R values')
NOTE the difference in SCALE on the figures! NOW, TRY BIGGER R values

