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2.2+ Gradient extras

Geometric definition of gradient: Given a (sufficiently nice) scalar field f(~r), e.g. temperature

as a function of position, its gradient ~∇f at point ~r is a vector pointing in the direction of
greatest increase of f . The magnitude of ~∇f is the rate of change of f with distance in that
direction. It follows that the gradient at a point is perpendicular to the isosurface of f that
passes through that point.

Fundamental examples:

(1) If f = f(r) where r = |~r|, the scalar field depends only on distance to the origin, then f

is constant if r is constant, so the isosurfaces are spheres, ~∇f(r) is in the radial direction r̂
and its magnitude is the rate of change in the radial direction df/dr so

~∇f(r) =
df

dr
r̂.

(2) If f = f(|~r − ~rc|) so the scalar field depends only on distance to point ~rc, then f is
constant if |~r − ~rc| is constant, so the isosurfaces are spheres centered at ~rc and, letting
~r − ~rc = s ŝ with s = |~r − ~rc|

~∇f(s) =
df

ds
ŝ =

df

ds

~r − ~rc

|~r − ~rc|
.

(3) If f = f(~r · ~c) where ~c is a fixed vector, then f is constant if ~r · ~c is constant, so the
isosurfaces are planes perpendicular to ~c. Let s = ~r · ~c = |~c|` where ` is distance in the ~c
direction so

~∇f(~r · ~c) =
df

d`

~c

|~c|
=

df

ds
~c.

In particular if ~c = x̂ then ~r · x̂ = x and ~∇f(x) = x̂ df/dx.

It also follows from the geometric definition that the differential change df in the value of f
when ~r changes by an arbitrary differential d~r is

d`

f

f + df

~∇f

d~r
df = d~r · ~∇f (1)

That is because, locally, the isosurfaces are planes perpendicular to the gradient, so a dis-
placement d~r leads to a change in f in proportion to the component of the displacement in
the direction of the gradient d` = d~r·(~∇f)/|~∇f |. The change in f is df = d` |~∇f | = d~r·~∇f .

That general relationship (1) between df and d~r allows us to obtain the expression for the
~∇f in various sets of coordinates, including non-cartesian coordinates.
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Gradient in cartesian coordinates

The position vector reads ~r = xx̂ + yŷ + zẑ. Picking d~r = x̂ dx, d~r = ŷ dy and d~r = ẑ dz
in (1), respectively, gives

∂f

∂x
=

∂~r

∂x
· ~∇f = x̂ · ~∇f, (2)

∂f

∂y
=

∂~r

∂y
· ~∇f = ŷ · ~∇f, (3)

∂f

∂z
=

∂~r

∂z
· ~∇f = ẑ · ~∇f. (4)

These three relationships imply

~∇f = x̂
∂f

∂x
+ ŷ

∂f

∂y
+ ẑ

∂f

∂z
. (5)

Gradient in spherical coordinates

Here x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ, so

~r = rr̂ = r (x̂ sin θ cos φ + ŷ sin θ sin φ + ẑ cos θ), (6)

where r is the distance to the origin, θ is the polar angle (co-latitude) and φ is the azimuthal
angle (longitude).
In earlier sections on spherical coordinates and volume parametrizations, we discussed/derived

∂~r

∂r
= r̂,

∂~r

∂θ
= r θ̂,

∂~r

∂φ
= r sin θ φ̂. (7)

These results can be obtained via the hybrid cartesian/spherical expression (6) for ~r or
directly from the geometry and understanding of partial derivatives (see (14, 15) below).
Then, from (1) and (7),

∂f

∂r
=

∂~r

∂r
· ~∇f = r̂ · ~∇f, (8)

∂f

∂θ
=

∂~r

∂θ
· ~∇f = rθ̂ · ~∇f, (9)

∂f

∂φ
=

∂~r

∂φ
· ~∇f = r sin θφ̂ · ~∇f. (10)

Since r̂, θ̂ and φ̂ are orthonormal, these expressions imply that

~∇f = r̂
∂f

∂r
+ θ̂

1

r

∂f

∂θ
+ φ̂

1

r sin θ

∂f

∂φ
. (11)

Note that the gradient in spherical coordinates is not ~∇f = r̂∂f/∂r + θ̂ ∂f/∂θ + φ̂ ∂f/∂φ!
That expression is not even dimensionally correct.
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To derive the spherical coordinates expression for other operators such as divergence ~∇ · ~v,
curl ~∇ × ~v and Laplacian ∇2 = ~∇ · ~∇, one needs to know the rate of change of the unit
vectors r̂, θ̂ and φ̂ with the coordinates (r, θ, φ). These vectors change with (r, θ, φ) unlike
the cartesian direction vectors x̂, ŷ, ẑ which are the same at every point.
Since a partial with respect to r means the rate of change in a fixed radial direction (θ, φ
fixed), it should be clear geometrically that r̂, θ̂ and φ̂ do not change with r

∂r̂

∂r
=

∂θ̂

∂r
=

∂φ̂

∂r
= 0. (12)

To deduce the rates of change with respect to θ and φ, we could start from the hybrid
expression (6) for ~r(r, θ, φ) and crank it out, but a much faster, geometric approach is to
use our knowledge of rotation: if a vector ~v rotates about ~ω then its governing equation is
d~v/dt = ~ω × ~v where t is time. In differential form, this is d~v = ~ωdt× ~v or

d~v = dα ω̂ × ~v (13)

where dα = |~ω| dt is the differential angle of rotation during the time interval dt.
The ∂/∂θ derivatives correspond to ‘infinitesimal’ rotation in meridional planes since r and
φ are fixed. This is rotation by dθ about φ̂ hence from (13), we obtain (14)

∂r̂

∂θ
= φ̂× r̂ = θ̂,

∂θ̂

∂θ
= φ̂× θ̂ = −r̂,

∂φ̂

∂θ
= φ̂× φ̂ = 0. (14)

Likewise ∂/∂φ corresponds to ‘infinitesimal’ rotation about ẑ by angle dφ, hence from (13),

θ

θ

r̂

θ̂

φ̂

ẑ

φ̂× ẑ

∂r̂

∂φ
=ẑ × r̂ = sin θ φ̂, (15)

∂θ̂

∂φ
=ẑ × θ̂ = cos θ φ̂, (16)

∂φ̂

∂φ
=ẑ × φ̂ = − sin θ r̂ − cos θ θ̂. (17)

Exercises:

1. What is ~∇ · ~v in spherical coordinates where ~v = r̂ u + θ̂ v + φ̂w ?
2. Derive the gradient in cylindrical coordinates and the derivatives of the cylindrical direc-
tion vectors.


