
c©FW Math 321, 10/24/2003 Tensor Product and Tensors

The tensor product is another way to multiply vectors, in addition to the dot and cross products.
The tensor product of vectors a and b is denoted a ⊗ b in mathematics but simply ab with no
special product symbol in mechanics. The result of the tensor product of a and b is not a scalar,
like the dot product, nor a (pseudo)-vector like the cross-product. It is a new object called a tensor
of second order ab that is defined indirectly through the following dot products between the tensor
ab and any vector v:

(ab) · v ≡ a(b · v), v · (ab) ≡ (v · a)b, ∀v. (1)

The right hand sides of these equations are readily understood. These definitions clearly imply
that ab 6= ba, the tensor product does not commute. However,

v · (ab) = (ba) · v ≡ (ab)T · v, ∀v. (2)

The product ba is the transpose of ab, denoted with a ‘T ′ superscript: (ab)T ≡ ba.
We also deduce the following distributive properties, from (1):

(ab) · (αu+ βv) = α(ab) · u+ β(ab) · v, (3)

which hold for any scalars α, β and vectors u,v.

A general tensor of 2nd order can be defined similarly as an object T such that T · v is a vector
and

T · (αu+ βv) = αT · u+ βT · v, ∀α, β,u,v. (4)

Thus T · v is a linear transformation of v and T is a linear operator.
The linearity property (4) allows us to figure out the effect of T on any vector v once we know its
effect on three non co-planar vectors. Therefore T is fully determined once we know, or specify,
the three vectors tj ≡ T · ej , j = 1, 2, 3. Each of these vectors tj has three components, Tij such
that

T · ej ≡ tj = Tijei, (5)

(sum over i) and
Tij = ei · tj = ei · (T · ej) (6)

if the basis e1, e2, e3 is orthogonal. These Tij ’s are the 9 components of the tensor T with respect to
the basis e1, e2, e3. They fully define T . Indeed using the summation convention and the linearity
property (4), for any vector v = vjej (sum over j) we get

T · v = T · (vjej) = vjT · ej = Tijvjei. (7)

(the last term is a double sum over i and j!).
The sum and product of tensors T and S are defined by (T +S) ·v ≡ T ·v+S ·v and (T ·S) ·v ≡
T · (S ·v). Note that the dot product of two second order tensors is a second order tensor and that
product does not commute T · S 6= S · T .
The tensor T can be expressed as the following linear combination of the 9 tensor products eiej ,
i, j = 1, 2, 3 between the basis vectors:

T = Tij eiej . (8)

This is checked easily as follows:

(Tijeiej) · ek = Tijei(ej · ek) = Tijeiδjk = Tikei ≡ T · ek,
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from (5). This check also shows that the tensor expansion formula (8) and (6), hold only for an
orthogonal basis e1, e2, e3 although the tensor T itself, and the number of its components, do not
depend on the properties of any particular basis.

The 9 components Tij form the 3-by-3 matrix of components of the tensor T with respect to the
basis e1, e2, e3. Likewise the tensor product ab can be represented in terms of that basis as

ab = aibj eiej . (9)

(double sum over i, j) where a = aiei and b = bjej . More explicitly, the components of the tensor
ab in the orthogonal basis e1, e2, e3, consist of a 3-by-3 matrix obtained through the “row-by-
column” product of column (a1, a2, a3) with the row (b1, b2, b3)

ab ≡

 a1

a2

a3

 (b1 b2 b3) =

 a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

 . (10)

In particular, e1e1, e1e2, and e1e1 + e2e2 + e3e3 for instance, have components 1 0 0
0 0 0
0 0 0

 ,

 0 1 0
0 0 0
0 0 0

 and

 1 0 0
0 1 0
0 0 1

 , (11)

in the orthogonal basis e1, e2, e3, respectively. This last tensor is the identity tensor

I = δij eiej = eiei ≡ e1e1 + e2e2 + e3e3. (12)

This is the only tensor such that I · v = v · I = v, ∀v.

The transpose of tensor T , denoted T T , is defined through the double dot product with any vectors
u and v

u · (T · v) ≡ v · (T T · u), ∀u,v. (13)

The transpose of T = Tijeiej can be written explicitly as

T T = Tij ejei = Tji eiej . (14)

In either case, if Tij are the components of T , then the components of T T are Tji. A tensor is
symmetric if it equals its transpose, i.e. if T = T T (e.g. I is symmetric). It is antisymmetric if it
is equal to minus its transpose, i.e. if T = −T T . Any tensor can be decomposed into a symmetric
part and an antisymmetric part

T =
1
2

(T + T T ) +
1
2

(T − T T ).

One antisymmetric tensor of particular interest is the antisymmetric part of the tensor product ab:

ab =
1
2

(ab+ ba) +
1
2

(ab− ba). (15)

It is left to the reader to verify that

(ab− ba) · c = c× (a× b), ∀c. (16)
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This relationship leads to a generalization of the cross-product a×b in terms of the antisymmetric
part of the tensor product, ab− ba, for dimensions higher than 3.

Transformation theory of tensors
In Cartesian coordinates, the basis vectors are orthogonal and constant. We can easily “hide” them
and focus on the components as the latter determine everything following well-known formulas for
dot product, cross-product, etc. The tensor product of the vectors with Cartesian components
ai and bj gives the tensor aibj , ∀i, j = 1, 2, 3. Vectors have 3 components denoted using one
free index, such as ai for i = 1, 2, 3. These components transform like the coordinates under
orthogonal transformation of the axes (i.e. rotations and reflections). If x′i = Qkixk (sum over
k) corresponds to a change of orthogonal basis, where Qki = x̂k · x̂′i is the matrix of direction
cosines, then the components of the vector a = aix̂i = a′ix̂

′
i are related as a′i = Qkiak. Likewise

b′j = Qljbl for the vector b = bjx̂j = b′jx̂
′
j and the components of the tensor product in the new

basis are a′ib
′
j = QkiQljakbl (double sum over k and l). Therefore in the indicial notation, a tensor

of second order has 2 free indices (9 components), e.g. Tij , that transform according to the rule
T ′ij = QkiQljTkl. Tensors are usually denoted with a capital letter. Scalars and vectors can be
called tensor of 0th and 1st order, respectively. This approach directly leads to an extension to
tensor of third, fourth and higher order. A tensor of order n, as n free indices and 3n components
(in 3D space) that transform in a systematic way. For instance, Cijk is a third order tensor whose
components in the x′ basis are C ′ijk = QliQmjQnkClmn. In summary, if x′i = Qkixk then tensor
components must obey the transformation rules

ai → a′i = Qkiak, Tij → T ′ij = QkiQljTkl, Cijk → C ′ijk = QliQmjQnkClmn. (17)

This systematic and automatic generalization is useful in the continuum theory of elastic materials,
for instance, where the stress tensor Tij is related to the deformation tensor Ekl through a fourth
order tensor in general: Tij = CijklEkl.

Exercises and Applications
Assume that the basis e1, e2, e3 is orthogonal and right-handed. Coordinates are expressed in that
basis unless otherwise noted.

1. What are the matrix representations of e2e1, e3e2 and e1e3?

2. If a = aiei and b = bjej , calculate (ab) · e3, e2 · (ab) and (ab)T · e1.

3. What are the transposes and the symmetric parts of e1e2 and e1e3 + e2e2?

4. Verify (16).

5. The angular momentum of N rigidly connected particles of mass mα, α = 1, . . . , N , rotating
about the origin is L =

∑N
α=1mα(rα × (ω × rα)), where rα is the position vector of particles α

and ω is the rotation vector of the rigid system of particles. Write L as the dot product of a tensor
with the rotation vector ω. That tensor is the tensor of inertia, I, find its antisymmetric part.

6. Any vector a = a‖ + a⊥ where a‖ is parallel and a⊥ perpendicular to a given normalized
(i.e. unit) vector n. Then a‖ ≡ n(n · a) = (nn) · a, ∀a. Therefore the parallel projection tensor
P ‖ ≡ nn. Show that the perpendicular projection tensor is P⊥ = I−nn. Sketch, sketch, sketch!!!
don’t just stick with algebra, visualize.

7. Show that the tensor that expresses reflection about the plane perpendicular to n is H =
I − 2nn. This is called a Householder tensor. Its generalizations to N dimensions is an important



c©F. Waleffe, Math 321, 10/24/2003 4

tool in linear algebra to obtain the QR decomposition of a matrix and other similar operations.
Sketch and visualize!

8. Show that right-hand rotation by an angle ϕ about n of any vector a is given by

R(a) = cosϕ a⊥ + sinϕ(n× a) + a‖.

Sketch and visualize! Using (16) and earlier exercises, find the tensor Rϕ that expresses this
rotation. Express the components Rij of Rϕ with respect to the orthogonal basis e1, e2, e3 using
the alternating (Levi-Civita) tensor εijk. [Hint: To find Rϕ in a coordinate-free form, use (16):
a × n = (x̂ŷ − ŷx̂) · a, where x̂, ŷ are any (!) vectors such that x̂ × ŷ = n (hence x̂, ŷ,n form a
right handed orthogonal basis)].

9. What are the components of the vector b obtained by right-hand rotation of the vector (1,2,3)
by an angle π/3 about the direction (4,1,2)?


