0 bdac0 -aabc= 0 because $det(A) = det(A^T) = det(-A) = (-1)^n det(A)$ 1. -b -a0 ab-c -b-a0 a-d -c -b -a0 where n is the matrix dimension, n = 5 here.

2. Solve
$$z^2 = \frac{a - ia}{b + ib}$$
, \forall (for all) $a, b > 0$ and complex z .
 $z^2 = \frac{a - ia}{b + ib} = \frac{a}{b} \frac{1 - i}{1 + i} = \frac{a}{b} \frac{e^{-i\pi/4}}{e^{i\pi/4}} = \frac{a}{b} e^{-i\pi/2 + 2ik\pi}, \Rightarrow z = \sqrt{\frac{a}{b}} e^{-i\pi/4 + ik\pi} = \pm \sqrt{\frac{a}{b}} e^{-i\pi/4} = \pm \sqrt{\frac{a}{b}} (1 - i).$

1. det $(ab^T) = 0$, because each column is a multiple of a (each row is a multiple of b^T also), so by the shearing and stretching rule, det=0.

2. Find all complex z's such that $e^z = -\pi$. Any complex z can be written in cartesian or polar form: $z = x + iy = re^{i\theta + 2ik\pi}$. Here: $e^z = e^x e^{iy}$ and $-\pi = \pi e^{i\pi + 2ik\pi}$, and $e^z = -\pi$ implies

$$e^x = \pi \Rightarrow x = \ln \pi, \quad y = (2k+1)\pi.$$

So there are an infinite number of solutions, one for every integer $k = 0, \pm 1, \pm 2, \dots e^{z} = e^{x+iy}$ is a periodic function of y of period 2π .