1. Calculate the area between the curves

$$pV = T_1, \quad pV = T_2, \qquad T_2 > T_1 > 0, pV^{\gamma} = S_1, \quad pV^{\gamma} = S_2, \qquad S_2 > S_1 > 0,$$

in the (p, V) plane with $\gamma > 1$. SKETCH the curves, identifying each of them clearly.

See posted exercise and curvilinear coords notes. This is the mechanical energy produced by a perfect gas during a Carnot cycle. Sketch left to you, it's 221 level but very few got it right! Let T = pV and $S = pV^{\gamma}$, then Area $= \int \int dp dV = \int \int J dT dS$ where J is the Jacobian, i.e.

$$J = \begin{vmatrix} \frac{\partial p}{\partial T} & \frac{\partial p}{\partial S} \\ \frac{\partial V}{\partial T} & \frac{\partial V}{\partial S} \end{vmatrix} = \frac{1}{\begin{vmatrix} \frac{\partial T}{\partial p} & \frac{\partial T}{\partial V} \\ \frac{\partial S}{\partial p} & \frac{\partial S}{\partial V} \end{vmatrix}} = \frac{1}{(\gamma - 1)pV^{\gamma}} = \frac{1}{(\gamma - 1)S^{\gamma}}$$

and

$$Area = \frac{1}{(\gamma - 1)} \int_{T_1}^{T_2} dT \int_{S_1}^{S_2} \frac{dS}{S} = \frac{(T_2 - T_1)}{\gamma - 1} \ln\left(\frac{S_2}{S_1}\right).$$

2. $\varphi = \varphi(x_1, x_2, x_3), v_k = v_k(x_1, x_2, x_3)$ are scalar and vector fields that are at least twice continuously differentiable with respect to each coordinate and i, j, k are indices running from 1 to 3. Repeated indices imply summation over the range of that index. ϵ_{ijk} is the permutation tensor (Levi-Civita symbol), δ_{ij} is the identity tensor (Kronecker symbol). Calculate (you must show your steps/reasoning)

(a) $\epsilon_{132} = -1$, (b) $\epsilon_{ijk}\epsilon_{kji} = -\epsilon_{ijk}\epsilon_{ijk} = -6$, (c) $\epsilon_{ijk}\frac{\partial}{\partial x_j}\frac{\partial}{\partial x_k}\varphi = \epsilon_{ikj}\frac{\partial^2\varphi}{\partial x_k\partial x_j} = -\epsilon_{ijk}\frac{\partial^2\varphi}{\partial x_k\partial x_j} = \varphi$, hence it is zero. (d) $\epsilon_{ijk}\frac{\partial}{\partial x_i}\frac{\partial}{\partial x_j}v_k = \epsilon_{jik}\frac{\partial^2 v_k}{\partial x_j\partial x_i} = -\epsilon_{ijk}\frac{\partial^2 v_k}{\partial x_i\partial x_j}$, hence zero again. Same as (c) really. (e) $\epsilon_{ijk}\delta_{i1}\delta_{2j}\delta_{k3} = 1$.

3. If e_1, e_2, e_3 and e'_1, e'_2, e'_3 are two right-handed orthonormal bases in \mathbb{R}^3 and $\mathbf{x} = x_i \mathbf{e}_i = x'_i \mathbf{e}'_i$ then $x'_i = Q_{ij} x_j$ (summation convention). What is (show/explain your steps)

(a) $x'i = \mathbf{e}'_i \cdot \mathbf{x} = \mathbf{e}'_i \cdot \mathbf{e}_j x_j$, thus $Q_{ij} = \mathbf{e}'_i \cdot \mathbf{e}_j$ (b) $Q_{ik}Q_{jk} = \delta_{ij}$ (c) $Q_{ki}Q_{kj} = \delta_{ij}$. (d) $\epsilon_{ijk}Q_{i1}Q_{j2}Q_{k3} = \det(\mathbf{Q}) = +1 =$ volume spanned by three orthornormal vectors (and bases have same right-handed orientation).

(e) Find the matrix $[Q_{ij}]$ if e'_1, e'_2, e'_3 corresponds to a right hand rotation of e_1, e_2, e_3 by an angle α about e_1 .

Make a sketch (see fig 2.20 but sketch basis vectors) then recall that $Q_{ij} = \mathbf{e}'_i \cdot \mathbf{e}_j$ and

$$Q = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos \alpha & \sin \alpha\\ 0 & -\sin \alpha & \cos \alpha \end{pmatrix}$$

4. If a and b are n-by-1, A is n-by-n and $()^T$ denotes transpose, state and explain what is

(a) det $(\boldsymbol{a}^T\boldsymbol{b}) = \boldsymbol{a}^T\boldsymbol{b}$, (b) det $(\boldsymbol{a}\boldsymbol{b}^T) = 0$, (c) det $(3\boldsymbol{A}) = 3^n \det(\boldsymbol{A})$, (d) det $(\boldsymbol{A} - \boldsymbol{A}^T) = \det(\boldsymbol{A} - \boldsymbol{A}^T)^T = \det(\boldsymbol{A}^T - \boldsymbol{A}) = (-1)^n \det(\boldsymbol{A} - \boldsymbol{A}^T) = 0$ if n odd. (e) $\begin{vmatrix} 0 & 0 & 0 & a \\ 0 & 0 & a & b \\ 0 & a & b & c \\ a & b & c & d \end{vmatrix} = a^4$, switch rows (or colums) to make it into an upper triangular.

5. Find the mirror image of the vector $\mathbf{a} = (1, 2, 3)$ about the plane perpendicular to the vector (4, 1, 2).

See your class notes on reflection about a plane, Householder tensor and exercises 6,7 and 8 in tensor handout.

Reflection about a plane perpendicular to the *unit* vector \boldsymbol{n} is given by the tensor

$$H = I - 2nn$$

such that the reflection of vector \boldsymbol{a} is

$$\boldsymbol{H} \cdot \boldsymbol{a} = \boldsymbol{a} - 2\boldsymbol{n}(\boldsymbol{n} \cdot \boldsymbol{a}).$$

Here $\boldsymbol{n} = (4,1,2)/\sqrt{4^2 + 1^2 + 2^2} = (4,1,2)/\sqrt{21}$, and $\boldsymbol{n} \cdot \boldsymbol{a} = (1,2,3) \cdot (4,1,2)/\sqrt{21} = (4+2+6)/\sqrt{21} = 12/\sqrt{21}$ and

$$\boldsymbol{H} \cdot \boldsymbol{a} = \boldsymbol{a} - 2\boldsymbol{n}(\boldsymbol{n} \cdot \boldsymbol{a}) = (1, 2, 3) - \frac{24}{21}(4, 1, 2) = (-75, 18, 15)/21.$$