
FW Math 321 Exam 1 Solutions, F10/17/2003

1. Consider three vectors a, b, c in three-dimensional space such that a+ b+ c = 0. Define a, b, c
to be the magnitudes of the vectors a, b, c, respectively, and let α be the angle between a and b.
Likewise, β is the angle between b and c, and γ is the angle between c and a. Let a × b = Aẑ
where A > 0 and ẑ is a unit vector.
(a) Sketch the problem.
(b) What is the geometrical interpretation of A and what is its value in terms of a, b and α?
(c) Calculate c · ẑ. (d) Calculate b× c and c× a. (e) Deduce the ‘law of sines’.

See Exercise 1.3.9 and figure 1.19 on p 28 but watch out for different conventions (to force you to
re-derive).
Vectors a, b and c form a closed triangle loop. They are all in same plane. If a × b = Aẑ that
means they are all orthogonal to ẑ, hence c · ẑ = 0. A is the area of the parallelogram formed by
a and b, that is 1/2 the area of the a, b, c triangle and A = |a× b| = ab sinα. Now geometrically
thinking b × c = c × a = a × b = Aẑ. Algebraically, using the properties of cross-product:
b × c = b × (−a − b) = −b × a = a × b. Therefore, expressing the magnitudes of these different
cross products in terms of the vector magnitudes and the sine of the angle between them, we get

ab sinα = bc sinβ = ca sin γ = A

or , dividing by abc:
sinα
c

=
sinβ
a

=
sin γ
b

=
A

abc
.

This is the “law of sines” which is usually written differently (as in the book) because of different
naming convention for the angles.

2. Let r represent the position vector in 3D space and r its magnitude. The gradient vector
operator is denoted ∇. If f(r) is an arbitrary twice differentiable function of r, calculate the
following expressions showing or stating the key steps of your reasoning

(a)∇f(r): Example 1.5.5 p 41 + class notes where we deduce the answer quicker from the geometric
meaning of the gradient and directional derivatives.

(b) ∇ · r: Example 1.6.1 p 44 + class notes

(c) ∇×∇f(r) = 0 ALWAYS even if f was a more general function of the coordinates. See formula
(1.92) p 55 and discussion thereafter (“all gradients are irrotational. Note that zero in (1.92) is a
mathematical identity...”). See also section 1.12 and formula (1.127). Important stuff!

(d) ∇ × (f(r)r): Example 1.7.2 p 48, also by direct application of (a) above: f(r)r ≡ dF/dr r̂ =
∇F (r), so ∇× (f(r)r) =∇×∇F (r) = 0 by (c).

(e)
∫
V
∇2f(r)dV , where V is the sphere of radius R centered at the origin: This integral could be

done directly by computing the volume integral using Example 1.8.1 p 54 but it is easier to use the
Divergence (Gauss) theorem: ∫

V
∇ · v dV =

∮
S
v · n̂dS

for any closed volume V where S is the surface of V and n̂ is the unit normal pointing outward.

Then in our case
∫
V
∇2f(r)dV =

∫
V
∇ ·(∇f(r))dV =

∮
S

(∇f) ·n̂ dS and, by (a),∇f(r) = df/dr r̂.

Now, for any sphere centered at the origin, n̂ = r̂, so the integral is simply∫
V
∇2f(r)dV =

df

dr

∣∣∣∣
r=R

∮
S
dS = 4πR2f ′(R).
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See formula (1.90) for definition of Laplacian operator: ∇2 =∇ ·∇. See also exercise 1.10.2 p 70
and sections 1.12 and 1.13 on Potential theory and Gauss’s law whose summary is ∇×E = 0 ⇒
E = −∇ϕ, so ∇ ·E = −∇2ϕ and∫

V
∇2ϕdV = −

∫
V
∇ ·EdV = −

∮
E · dS = −

∫
V

ρ

ε0
dV. (1.142)

The last equality is known as Gauss’s law in electromagnetism. As this is true for any closed volume
V , this implies ∇2ϕ = −ρ/ε0 (eqn. 1.145, p 84). This is a Poisson equation. Its solution gives
the electric potential ϕ if the charge density ρ is known. Poisson equations pop up in all sorts of
places, in flow of an incompressible fluid for instance.

(f)
∮
S
r · dS where S is the surface of the sphere of radius 1 centered at xc = 5, yc = zc = 0.

By Gauss:
∮
S
r · dS =

∫
V
∇ · rdV = 4π using (b) above.

(g)
∮
C
r × dr where C is the curve (x− x0)2/a2 + y2/b2 = 1, z = 0.∮

C
r × dr = 2πab which is twice the area of the ellipse. See problem 1.11.1 p 75. Also we did this

in class when discussing motion of planets. See extra exercises posted on web page.

3. Consider the vector field v = v(r)ϕ̂ where r is the distance to the origin and ϕ̂ is the unit vector
in the azimuthal direction in spherical coordinates.

(a) Calculate
∫
NHS
∇× v · dS where NHS is the surface of the Northern hemisphere of a sphere

of radius R i.e. the surface x2 + y2 + z2 = R2, z ≥ 0 and dS is the surface element pointing out of
the sphere.

(b) Calculate
∫
EHS
∇× v · dS where EHS is the surface of the Eastern Hemisphere of the sphere

of radius R, i.e. the surface x2 + y2 + z2 = R2, y ≥ 0.

(c) Calculate
∮
S
∇× v · dS where S is the surface of the “smoothed cube” x8 + y8 + z8 = R8.

Three direct applications of Stokes Theorem which says that for any orientable surface S:∫
S
∇× v · dS =

∮
C
v · dr

where C is the curve boundary of the surface S and the orientation of the line integral and the
surface element dS must obey the right-hand rule (because of the definition of the curl).

Then (a)
∫
NHS
∇×v ·dS =

∮
equator

v(r)ϕ̂ ·dr but the line element along the equator is dr = ϕ̂Rdϕ

so the integral is simply = 2πRv(R).

(b)
∫
EHS
∇ × v · dS =

∮
meridian

v(r)ϕ̂ · dr where the meridian is the reference meridian i.e. the

circle x2 + z2 = R2 with y = 0. On any meridian ϕ̂ · dr = 0, so the integral is zero.
(c) The equation x8+y8+z8 = R8 obviously “looks like” the equation of a sphere but because of the
higher powers this CLOSED surface looks more like a smoothed cube (try plotting the “smoothed
square” x8 + y8 = R8). In any case the key fact is that it is closed and therefore

∮
S∇×v · dS = 0.

See Exercise 1.10.1 p 70 which uses Gauss’s theorem and∇·∇×v = 0 (another important identity),
also Exercise 1.11.4.
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Gauss and Stokes Theorems are the Fundamental theorems of Vector Calculus relating
divergence, curl, volume integral, surface integral and line integrals. There are several versions of
these theorems that you can derive using special vector fields (e.g. try v = vx̂ in the divergence
theorem). These theorems also give “physical” interpretations of divergence as the flux (or “flow”)
through a closed surface normalized by volume and curl as the “circulation” of a vector field around
a closed loop, normalized by area.

4. Pick appropriate coordinates then specify explicit integral formulas for the area and volume of
a torus (i.e. specify the variables and the bounds of integration). You may, but not do have to,
compute the integrals.
We sketched this in class the Friday before the exam. See notes for a figure. The parametrization
of the torus is

x = (R1 + r cos θ) cosϕ, y = (R1 + r cos θ) sinϕ, z = r sin θ,

where 0 ≤ r ≤ R2 and θ and ϕ both run from 0 to 2π IF R1 > R2 which is required for a torus
(otherwise it’s an apple not a donut!).
The position vector is r = x̂x+ ŷy + ẑz. We need the displacement vectors

∂r

∂r
= x̂ cos θ cosϕ+ ŷ cos θ sinϕ+ ẑ sin θ,⇒ hr = 1

∂r

∂ϕ
= −x̂(R1 + r cos θ) sinϕ+ ŷ(R1 + r cos θ) cosϕ,⇒ hϕ = R1 + r cos θ

∂r

∂θ
= −x̂ r sin θ cosϕ− ŷ r sin θ sinϕ+ ẑr cos θ,⇒ hθ = r.

It is straightforward to verify that these vectors are orthogonal. Hence the surface element is

dA =
∣∣∣∣∂r∂ϕ × ∂r

∂θ

∣∣∣∣ dϕdθ = hϕhθdϕdθ = R2(R1 +R2 cos θ)dϕdθ

and the volume element is

dV =
∣∣∣∣∂r∂r · ∂r∂ϕ × ∂r

∂θ

∣∣∣∣ drdϕdθ = hrhϕhθdrdϕdθ = r(R1 + r cos θ)drdϕdθ.

So the surface area is

A =
∫ 2π

0

∫ 2π

0
R2(R1 +R2 cos θ)dϕdθ = 4π2R1R2

and the volume

V =
∫ R2

0

∫ 2π

0

∫ 2π

0
r(R1 + r cos θ)dϕdθdr = 2π2R1R

2
2.

Note that both of these formula simply corresponds to the cross-sectional perimeter 2πR2 and area
πR2

2 multiplied by the perimeter of the centerline of the torus 2πR1. This says something about
the geometry of the torus, can you see what?


